基于AI技术的滑坡易发性制图研究进展
Landslide Susceptibility Mapping Based on AI Technology
,
基于AI技术的滑坡易发性制图具有高效、准确的优点,为推进其在滑坡灾害防治中的应用,在介绍和总结机器学习、深度学习以及集成学习模型的原理及特点的基础上,选择支持向量机、深度随机森林和随机森林等代表性模型在陕西省略阳县进行了应用分析;探讨了AI技术在滑坡易发性领域的应用及发展方向.研究结果表明:基于决策树的集成学习模型相比于逻辑回归、支持向量机等,表现出更高的效能,AUC值在0.90以上;LSM(landslide susceptibility mapping)中常用的类不平衡采样策略下,基于Boosting的集成模型具有优势,并且其受采样比的影响相对较小;对抗生成网络可以提高在深度学习模型在数据限制情况下的性能,本文中AUC值从0.77提升至0.82;滑坡理论模型与AI数据模型相结合,具有巨大的潜力;通过充分利用时序数据的AI模型可以提升模型的性能,并有助于揭示滑坡的链式灾害效应和时空演化特征;进行各种学习模型的系统性研究,对于AI技术在滑坡易发性制图中的应用具有重要的意义.
Utilizing AI technology for landslide susceptibility mapping offers the advantages of efficiency and accuracy.To promote its application in landslide disaster prevention and control, in this article it introduces and summarizes the principles and characteristics of machine learning, deep learning, and ensemble learning models. Representative models such as Support Vector Machines, Deep Random Forests, and Random Forests were applied for analysis in Lueyang County, Shaanxi Province. It discusses the application and development directions of AI technology in the field of landslide susceptibility. The results indicate that ensemble learning models based on decision trees, compared to logistic regression and support vector machines, demonstrate higher efficacy with AUC values above 0.90. Under the commonly used class imbalance sampling strategy in LSM (landslide susceptibility mapping), ensemble models based on Boosting show advantages and are relatively less affected by sampling ratios. Generative Adversarial Networks can enhance the performance of deep learning models under data constraints, where in this study, the AUC value increased from 0.77 to 0.82. Combining landslide theoretical models with AI data models has great potential; leveraging AI models that fully utilize time-series data can improve model performance and help reveal the chain disaster effects and spatio-temporal evolution characteristics of landslides; conducting systematic studies of various learning models is of significant importance for the application of AI technology in landslide susceptibility mapping.
滑坡易发性制图 / 深度学习 / 机器学习 / 集成学习 / 工程地质.
landslide susceptibility mapping / deep learning / machine learning / ensemble learning / engineering geology
| [1] |
Alkhasawneh,M.S.,Ngah,U.K.,Tay,L.T.,et al.,2014.Modeling and Testing Landslide Hazard Using Decision Tree.Journal of Applied Mathematics,(1):929768.https://doi.org/10.1155/2014/929768 |
| [2] |
Breiman,L,1996.Bagging Predictors.Machine Learning,24:123-140. |
| [3] |
Breiman,L,2001.Random Forests.Mach. Learn.,45(1):5-32.https://doi.org/10.1023/a:1010933404324 |
| [4] |
Catani,F.,Lagomarsino,D.,Segoni,S.,et al.,2013.Landslide Susceptibility Estimation by Random Forests Technique:Sensitivity and Scaling Issues.Natural Hazards and Earth System Sciences,13(11):2815-2831.https://doi.org/10.5194/nhess⁃13⁃2815⁃2013 |
| [5] |
Chang,Z.L.,Catani,F.,Huang,F.M.,et al.,2023.Landslide Susceptibility Prediction Using Sope Unit⁃Based Machine Learning Models Considering the Heterogeneity of Conditioning Factors.Journal of Rock Mechanics and Geotechnical Engineering,15(5):1127-1143.https://doi.org/10.1016/j.jrmge.2022.07.009 |
| [6] |
Dikshit,A.,Pradhan,B.,Alamri,A.M.,2021.Pathways and Challenges of the Application of Artificial Intelligence to Geohazards Modelling.Gondwana Research,100:290-301.https://doi.org/10.1016/j.gr.2020.08.007 |
| [7] |
Dosovitskiy,A.,Beyer,L.,Kolesnikov,A.,et al.,2020.An Image is Worth 16×16 Words:Transformers for Image Recognition at Scale.ArXiv e⁃Prints:arXiv:2010.11929.https://doi.org/10.48550/arXiv.2010.11929 |
| [8] |
Dou,J.,Xiang,Z.L.,Xu,Q.,et al.,2023.Application and Development Trend of Machine Learning in Landslide Intelligent Disaster Prevention and Mitigation.Earth Science,48(5):1657-1674 (in Chinese with English abstract). |
| [9] |
Fang,Z.C.,Wang,Y.,Peng,L.,et al.,2020.Integration of Convolutional Neural Network and Conventional Machine Learning Classifiers for Landslide Susceptibility Mapping.Computers & Geosciences,139:104470.https://doi.org/10.1016/j.cageo.2020.104470 |
| [10] |
Hochreiter,S.,Schmidhuber,J.,1997.Long Short⁃Term Memory.Neural Computation,9(8):1735-1780.https://doi.org/10.1162/neco.1997.9.8.1735 |
| [11] |
Huang,Y.,Zhao,L.,2018.Review on Landslide Susceptibility Mapping Using Support Vector Machines.Catena,165:520-529.https://doi.org/10.1016/j.catena.2018.03.003 |
| [12] |
Jia,J.,Mao,Y.M.,Meng,X.J.,et al.,2023.Comparison of Landslide Susceptibility Evaluation by Deep Random Forest and Random Forest Model: A Case Study of Lueyang County,Hanzhong City.Northwestern Geology,56(3):239-249 (in Chinese with English abstract). |
| [13] |
Kirschbaum,D.,Stanley,T.,2018.Satellite⁃Based Assessment of Rainfall⁃Triggered Landslide Hazard for Situational Awareness.Earth’s Future,6(3):505-523.https://doi.org/10.1002/2017ef000715 |
| [14] |
Krizhevsky,A.,Sutskever,I.,Hinton,G.,2012.ImageNet Classification with Deep Convolutional Neural Networks.Communications of the ACM, 60(6):84-90.https://doi.org/10.1145/3065386 |
| [15] |
Li,L.P.,Lan,H.X.,Guo,C.B.,et al.,2017.Geohazard Susceptibility Assessment along the Sichuan⁃Tibet Railway and Its Adjacent Area Using an Improved Frequency Ratio Method.Geoscience,31(5):911-929 (in Chinese with English abstract). |
| [16] |
Li,X.P.,Chong,J.X.,Lu,Y.B.,et al.,2022.Application of Information Gain in the Selection of Factors for Regional Slope Stability Evaluation.Bulletin of Engineering Geology and the Environment,81(11):470.https://doi.org/10.1007/s10064⁃022⁃02970⁃y |
| [17] |
Liu,F.,Deng,Y.H.,Mu,H.D.,et al.,2023.A Study of the Stability Evaluation Method of Rainfall⁃Induced Shallow Loess Landslides Based on the Maxent⁃Sinmap Slope Model.Hydrogeology & Engineering Geology,50(5):146-158 (in Chinese with English abstract). |
| [18] |
Liu,S.L.,Wang,L.Q.,Zhang,W.G.,et al.,2023.A Comprehensive Review of Machine Learning⁃Based Methods in Landslide Susceptibility Mapping.Geological Journal,58(6):2283-2301.https://doi.org/10.1002/gj.4666 |
| [19] |
Lyu,L.,Chen,T.,Li,J.,2023.An Interpretation Study on the ML Models for Landslide Susceptibility Mapping.IGARSS 2023—2023 IEEE International Geoscience and Remote Sensing Symposium.July 16-21,2023,Pasadena,CA,USA.IEEE,7241-7244.https://doi.org/10.1109/igarss52108.2023.10282171 |
| [20] |
Miao,F.S.,Wu,Y.P.,Xie,Y.H.,et al.,2018.Prediction of Landslide Displacement with Step⁃Like Behavior Based on Multialgorithm Optimization and a Support Vector Regression Model.Landslides,15(3):475-488.https://doi.org/10.1007/s10346⁃017⁃0883⁃y |
| [21] |
Miao,F.S.,Zhao,F.C.,Wu,Y.P.,et al.,2023.Landslide Susceptibility Mapping in Three Gorges Reservoir Area Based on GIS and Boosting Decision Tree Model.Stochastic Environmental Research and Risk Assessment,37(6):2283-2303.https://doi.org/10.1007/s00477⁃023⁃02394-4 |
| [22] |
Ngo,P.T.T.,Panahi,M.,Khosravi,K.,et al.,2021.Evaluation of Deep Learning Algorithms for National Scale Landslide Susceptibility Mapping of Iran.Geoscience Frontiers,12(2):505-519.https://doi.org/10.1016/j.gsf.2020.06.013 |
| [23] |
Pham,B. T.,Prakash,I.,Singh,S.K.,et al.,2019.Landslide Susceptibility Modeling Using Reduced Error Pruning Trees and Different Ensemble Techniques: Hybrid Machine Learning Approaches.Catena,175:203-218.https://doi.org/10.1016/j.catena.2018.12.018 |
| [24] |
Pradhan,B.,Dikshit,A.,Lee,S.,et al.,2023.An Explainable AI (XAI) Model for Landslide Susceptibility Modeling.Applied Soft Computing,142.https://doi.org/10.1016/j.asoc.2023.110324 |
| [25] |
Reichenbach,P.,Rossi,M.,Malamud,B.D.,et al.,2018.A Review of Statistically⁃Based Landslide Susceptibility Models.Earth⁃Science Reviews,180:60-91.https://doi.org/10.1016/j.earscirev.2018.03.001 |
| [26] |
Sahin,E.K.,2022.Comparative Analysis of Gradient Boosting Algorithms for Landslide Susceptibility Mapping.Geocarto International,37(9):2441-2465.https://doi.org/10.1080/10106049.2020.1831623 |
| [27] |
Saito,H.,Nakayama,D.,Matsuyama,H.,2009.Comparison of Landslide Susceptibility Based on a Decision⁃Tree Model and Actual Landslide Occurrence:The Akaishi Mountains,Japan.Geomorphology,109(3-4):108-121.https://doi.org/10.1016/j.geomorph.2009.02.026. |
| [28] |
Stott,P.,2016.How Climate Change Affects Extreme Weather Events.Science,352(6293):1517-1518.https://doi.org/10.1126/science.aaf7271 |
| [29] |
Taalab,K.,Cheng,T.,Zhang,Y.,2018.Mapping Landslide Susceptibility and Types Using Random Forest.Big Earth Data,2(2):159-178.https://doi.org/10.1080/20964471.2018.1472392 |
| [30] |
Tian,N.M.,Lan,H.X.,Wu,Y.M.,et al.,2020.Performance Comparison of BP Artificial Neural Network and CART Decision Tree Model in Landslide Susceptibility Prediction.Journal of Geo⁃Information Science,22(12):2304-2316 (in Chinese with English abstract). |
| [31] |
van Westen,C.J.,van Asch,T.W.J.,Soeters,R.,2006.Landslide Hazard and Risk Zonation:Why is It still so Difficult?Bulletin of Engineering Geology and the Environment,65(2):167-184.https://doi.org/10.1007/s10064⁃005⁃0023⁃0 |
| [32] |
Wang,H.J.,Wang,L.,Zhang,L.M.,2023.Transfer Learning Improves Landslide Susceptibility Assessment.Gondwana Research,123:238-254.https://doi.org/10.1016/j.gr.2022.07.008 |
| [33] |
Wang,H.J.,Zhang L.,Luo H.,et al.,2021.AI-Powered Landslide Susceptibility Assessment in Hong Kong.Engineering Geology, 288:106103.https://doi.org/10.1016/j.enggeo.2021.106103 |
| [34] |
Wang,Y.,Fang,Z.C.,Hong,H.Y.,2019.Comparison of Convolutional Neural Networks for Landslide Susceptibility Mapping in Yanshan County,China.Science of the Total Environment,666:975-993.https://doi.org/10.1016/j.scitotenv.2019.02.263 |
| [35] |
Wang,Y.K.,Tang,H.M.,Huang,J.S.,et al.,2022.A Comparative Study of Different Machine Learning Methods for Reservoir Landslide Displacement Prediction.Engineering Geology,298:106544.https://doi.org/10.1016/j.enggeo.2022.106544 |
| [36] |
Ward,P.J.,Blauhut,V.,Bloemendaal,N.,et al.,2020.Review Article:Natural Hazard Risk Assessments at the Global Scale.Natural Hazards and Earth System Sciences,20(4):1069-1096.https://doi.org/10.5194/nhess⁃20⁃1069⁃2020 |
| [37] |
Xu,S.H.,Liu,J.P.,Wang,X.H.,et al.,2020.Landslide Susceptibility Assessment Method Incorporating Index of Entropy Based on Support Vector Machine:A Case Study of Shaanxi Province.Geomatics and Information Science of Wuhan University,45(8):1214-1222 (in Chinese with English abstract). |
| [38] |
Yang,C.,Liu,L.L.,Huang,F.M.,et al.,2023.Machine Learning⁃Based Landslide Susceptibility Assessment with Optimized Ratio of Landslide to Non⁃Landslide Samples.Gondwana Research,123:198-216.https://doi.org/10.1016/j.gr.2022.05.012 |
| [39] |
Zhang,W.G.,He,Y.W.,Wang,L.Q.,et al.,2023.Landslide Susceptibility Mapping Using Random Forest and Extreme Gradient Boosting:A Case Study of Fengjie,Chongqing.Geological Journal,58(6):2372-2387.https://doi.org/10.1002/gj.4683 |
| [40] |
Zhu,J.J.,Yang,M.Q.,Ren,Z.J.,2023.Machine Learning in Environmental Research:Common Pitfalls and Best Practices.Environmental Science & Technology,57(46):17671-17689.https://doi.org/10.1021/acs.est.3c00026 |
| [41] |
Zuccaro,G.,De Gregorio,D.,Leone,M.F.,2018.Theoretical Model for Cascading Effects Analyses.International Journal of Disaster Risk Reduction,30:199-215.https://doi.org/10.1016/j.ijdrr.2018.04.019 |
| [42] |
窦杰,向子林,许强,等,2023.机器学习在滑坡智能防灾减灾中的应用与发展趋势.地球科学,48(5):1657-1674. |
| [43] |
贾俊,毛伊敏,孟晓捷,等,2023.深度随机森林和随机森林算法的滑坡易发性评价对比:以汉中市略阳县为例.西北地质,56(3):239-249. |
| [44] |
李郎平,兰恒星,郭长宝,等,2017.基于改进频率比法的川藏铁路沿线及邻区地质灾害易发性分区评价.现代地质,31(5):911-929. |
| [45] |
刘凡,邓亚虹,慕焕东,等,2023.基于最大熵-无限边坡模型的降雨诱发浅层黄土滑坡稳定性评价方法研究.水文地质工程地质,50(5):146-158. |
| [46] |
田乃满,兰恒星,伍宇明,等,2020.人工神经网络和决策树模型在滑坡易发性分析中的性能对比.地球信息科学学报,22(12):2304-2316. |
| [47] |
徐胜华,刘纪平,王想红,等,2020.熵指数融入支持向量机的滑坡灾害易发性评价方法:以陕西省为例.武汉大学学报(信息科学版),45(8):1214-1222. |
自然资源部地裂缝地质灾害重点实验室开放基金(EFGD2021-05-01)
国家自然科学基金项目(42341101)
陕西省自然科学基金(2023-JC-YB-231)
/
| 〈 |
|
〉 |