新疆古生代斑岩铜矿叠加成矿模式
Superimposed Mineralization Model of Paleozoic Porphyry Copper Deposits in Xinjiang
,
随着21世纪绿色能源转型的推进,全球铜的需求急剧上升,斑岩型铜矿作为全球铜资源的主要来源,受到了学术界和矿业界的高度重视.尽管目前已建立了基于新生代斑岩铜矿的经典模型,但古生代中亚造山带的斑岩铜矿却展现出独特的特征,其成因机制尚未完全明确.本研究以新疆地区的重要斑岩铜矿为研究对象,揭示了这些矿区普遍存在多期岩浆活动,时间跨度可长达1~2亿年,并在斑岩成矿期后,常常出现叠加改造成矿阶段.例如,土屋‒延东矿床在斑岩成矿期后出现了硬石膏、黄铜矿、方解石和绿泥石的矿物组合;玉海‒三岔口矿区则出现了绿帘石、石英、绿泥石、沸石、方解石等斑岩期后的脉体;哈腊苏铜矿带发育含铜硫化物脉和粘土化蚀变的后期蚀变矿化.成矿流体研究进一步证实,在斑岩期热液流体系统结束后会出现新的流体系统叠加.基于这些观察,我们提出了新疆古生代斑岩铜矿的叠加改造成矿模式.在岛弧演化的早期,成矿前的岩浆活动可能会在矿区形成蚀变,但这些蚀变通常与矿化无关,如哈腊苏成矿带的早期钠钙化和绿帘石化蚀变.随着岛弧的成熟,特殊的构造机制如平坦俯冲,形成了高氧逸度、富水的岩浆活动.这些岩浆活动部分具有埃达克质地球化学特征,并形成了矿区的斑岩型矿化与蚀变,如土屋‒延东的斜长花岗斑岩和哈腊苏的闪长斑岩及花岗闪长斑岩.伴随构造的进一步演化,包括俯冲极性的转变或后碰撞阶段软流圈上涌,导致了新的岩浆热液活动叠加在先成的斑岩型矿化与蚀变之上.此外,成矿后的构造变质作用也可能引入新的成矿物质或导致早期成矿物质的再富集.本研究模型指示了对于长期活动的、存在多期岩浆活动的长寿弧,除了经典的斑岩矿化蚀变类型,还应特别关注那些可能叠加在先成斑岩成矿系统上的特定构造或岩浆活动,因为它们可能带来新的矿化并提高勘查潜力.
With the advance of green energy transformation in the 21st century, the demand for copper has surged dramatically and porphyry copper deposits as the main suppliers of global copper resources have been paid great attention from both academic and industrial communities. Although a set of classic models have been established for Cenozoic porphyry copper deposits, the porphyry copper deposits located at Paleozoic Central Asian Orogenic Belt exhibit unique characteristics and their genesis mechanisms are not fully understood. Taking important porphyry copper deposits in Xinjiang as research objects, this study reveals that these deposits generally experienced multiple magmatic activities with time spanning up to 100-200 Ma and often underwent superimposed and/or modification mineralization stages after porphyry mineralization. For example, the Tuwu-Yandong deposit has mineral assemblages of anhydrite, chalcopyrite, calcite, and chlorite after porphyry mineralization; the Yuhai-Sanchakou mining area exhibits post-porphyry veins of epidote, quartz, chlorite, zeolite, and calcite; and the Halasu copper belt shows late alteration and mineralization with copper-bearing sulfide veins and argillic alteration. Fluid inclusion studies further confirm that new fluid systems would overprint on the hydrothermal fluid system in the porphyry stage. Based on these observations, it proposes a new superimposed mineralization model of modification for Paleozoic porphyry copper deposits in Xinjiang. In the early stage of island arc evolution, pre-mineralization magmatic activities may form unmineralized alterations in the mining areas such as early sodic-calcic alteration and epidote alteration at the Halasu belt. With the maturity of the island arc, tectonic triggers such as flat subduction facilitated high oxygen fugacity, water-rich magmatic activities which partly have adakite-like geochemical features and formed the porphyry-type mineralization and alteration in the mining areas such as diorite porphyry in Tuwu-Yandong and diorite porphyry and granodiorite porphyry at Halasu. Further tectonic evolution including change of subduction polarity or postcollisional asthenospheric upwelling led to new magmatic hydrothermal activities superimposed on preexisting porphyry-type mineralization and alteration. Moreover, post-mineralization tectonic metamorphism may also introduce new mineralizing materials or cause remobilization of preexisting ores. The aforementioned models underscore the importance of specific tectonic or magmatic activities that may superimpose on pre-existing porphyry mineralization systems in long-lived arcs with sustained multistage magmatic activities. These activities, beyond the classic types of porphyry mineralization alteration, require special attention due to their exploration potential to introduce new mineralizing components.
古生代斑岩铜矿 / 叠加矿化 / 新疆 / 中亚造山带 / 地球化学 / 矿床.
Paleozoic porphyry copper deposit / superimposed mineralization / Xinjiang / Central Asian Orogenic Belt / geochemistry / deposits
| [1] |
Chen, H. Y., Wan, B., Pirajno, F., et al., 2018. Metallogenesis of the Xinjiang Orogens, NW China: New Discoveries and Ore Genesis. Ore Geology Reviews, 100: 1-11. https://doi.org/10.1016/j.oregeorev.2018.02.035 |
| [2] |
Chen, H. Y., Wu, C., 2020. Metallogenesis and Major Challenges of Porphyry Copper Systems above Subduction Zones. Science China Earth Sciences, 63(7): 899-918 (in Chinese). https://doi.org/10.1007/s11430⁃019⁃9595⁃8 |
| [3] |
Chiaradia, M., 2022. Distinct Magma Evolution Processes Control the Formation of Porphyry Cu⁃Au Deposits in Thin and Thick Arcs. Earth and Planetary Science Letters, 599: 117864. https://doi.org/10.1016/j.epsl.2022.117864 |
| [4] |
Cooke, D. R., Hollings, P., Walshe, J. L., 2005. Giant Porphyry Deposits: Characteristics, Distribution, and Tectonic Controls. Economic Geology, 100(5): 801-818. https://doi.org/10.2113/gsecongeo.100.5.801 |
| [5] |
Du, S. J., Qu, X., Deng, G., et al., 2010. Chronology and Tectonic Setting of the Intrusive Bodies and Associated Porphyry Copper Deposit in Hersai Area, Eastern Junggar. Acta Petrologica Sinica, 26(10): 2981-2996 (in Chinese with English abstract). |
| [6] |
Han, C. M., Xiao, W. J., Zhao, G. C., et al., 2006. Geological Characteristics and Genesis of the Tuwu Porphyry Copper Deposit, Hami, Xinjiang, Central Asia. Ore Geology Reviews, 29(1): 77-94. https://doi.org/10.1016/j.oregeorev.2005.07.032 |
| [7] |
Hou, Z. Q., 2004. Porphyry Cu⁃Mo⁃Au Deposits: Some New Insights and Advances. Earth Science Frontiers, 11(1): 131-144 (in Chinese with English abstract). |
| [8] |
Hou, Z. Q., Yang, Z. M., 2009. Porphyry Deposits in Continental Settings of China: Geological Characteristics, Magmatic⁃Hydrothermal System, and Metallogenic Model. Acta Geologica Sinica, 83(12): 1779-1817 (in Chinese with English abstract). |
| [9] |
Hou, Z. Q., Yang, Z. M., Wang, R., et al., 2020. Further Discussion on Porphyry Cu⁃Mo⁃Au Deposit Formation in Chinese Mainland. Earth Science Frontiers, 27(2): 20-44 (in Chinese with English abstract). https://doi.org/10.13745/j.esf.sf.2020.3.8 |
| [10] |
Long, L. L., Wang, Y. W., Du, A. D., et al., 2011. Molybdenite Re⁃Os Age of Xilekuduke Cu⁃Mo Deposit in Xinjiang and Its Geological Significance. Mineral Deposits, 30(4): 635-644 (in Chinese with English abstract). |
| [11] |
Lowell, J. D., Guilbert, J. M., 1970. Lateral and Vertical Alteration⁃Mineralization Zoning in Porphyry Ore Deposits. Economic Geology, 65(4): 373-408. https://doi.org/10.2113/gsecongeo.65.4.373 |
| [12] |
Meng, X. Y., Mao, J. W., Simon, A., et al., 2024. Contrasting Tectonomagmatic Conditions for Coexisting Iron Oxide⁃Apatite Deposits and Porphyry and Skarn Cu ± Au Deposits in the Middle⁃Lower Yangtze River Metallogenic Belt, China. Economic Geology, 119(5): 1059-1087. https://doi.org/10.5382/econgeo.5084 |
| [13] |
Richards, J. P., 2011. Magmatic to Hydrothermal Metal Fluxes in Convergent and Collided Margins. Ore Geology Reviews, 40(1): 1-26. https://doi.org/10.1016/j.oregeorev.2011.05.006 |
| [14] |
Rui, Z. Y., Wang, L. S., Wang, Y. T., et al., 2002. Discussion on Metallogenic Epoch of Tuwu and Yandong Porphyry Copper Deposits in Eastern Tianshan Mountains, Xinjiang. Mineral Deposits, 21(1): 16-22 (in Chinese with English abstract). |
| [15] |
Shen, P., Dong, L. H., Feng, J., et al., 2010. Distribution, Age and Metallogenic Characteristics of the Porphyry Copper Deposits in Xinjiang, China. Xinjiang Geology, 28(4): 358-364 (in Chinese with English abstract). |
| [16] |
Shen, P., Pan, H. D., Eleonora, S., 2015. Characteristics of the Porphyry Cu Deposits in the Central Asia Metallogenic Domain. Acta Petrologica Sinica, 31(2): 315-332 (in Chinese with English abstract). |
| [17] |
Shen, P., Pan, H. D., Zhou, T. F., et al., 2014. Petrography, Geochemistry and Geochronology of the Host Porphyries and Associated Alteration at the Tuwu Cu Deposit, NW China: A Case for Increased Depositional Efficiency by Reaction with Mafic Hostrock? Mineralium Deposita, 49(6): 709-731. https://doi.org/10.1007/s00126⁃014⁃0517⁃4 |
| [18] |
Sillitoe, R. H., 2010. Porphyry Copper Systems. Economic Geology, 105(1): 3-41. https://doi.org/10.2113/gsecongeo.105.1.3 |
| [19] |
Sun, W. D., Huang, R. F., Li, H., et al., 2015. Porphyry Deposits and Oxidized Magmas. Ore Geology Reviews, 65: 97-131. https://doi.org/10.1016/j.oregeorev.2014.09.004 |
| [20] |
Sun, Y., Xiao, Y. F., Li, F. C., et al., 2009. The Mineralizing Fluid Characteristics and Genesis of the Sanchakou Copper Deposit in Xinjiang. Geology and Exploration, 45(3): 235-239 (in Chinese with English abstract). |
| [21] |
Tang, G. J., Wang, Q., Wyman, D. A., et al., 2010. Geochronology and Geochemistry of Late Paleozoic Magmatic Rocks in the Lamasu⁃Dabate Area, Northwestern Tianshan (West China): Evidence for a Tectonic Transition from Arc to Post⁃Collisional Setting. Lithos, 119(3/4): 393-411. https://doi.org/10.1016/j.lithos.2010.07.010 |
| [22] |
Tong, Y., Hong, D. W., Wang, T., et al., 2006. TIMS U⁃Pb Zircon Ages of Fuyun Post⁃Orogenic Linear Granite Plutons on the Southern Margin of Altay Orogenic Belt and Their Implications. Acta Petrologica et Mineralogica, 25(2): 85-89 (in Chinese with English abstract). |
| [23] |
Tu, G. Z., 1999. On the Certral Asia Metallogenic Province. Chinese Journal of Geology (Scientia Geologica Sinica), 34(4): 397-404 (in Chinese with English abstract). |
| [24] |
Wang, J. B., Xu, X., 2006. Post⁃Collisional Tectonic Evolution and Metallogenesis in Northern Xinjiang, China. Acta Geologica Sinica,80(1): 23-31 (in Chinese with English abstract) . |
| [25] |
Wang, Y. F., 2018. Overprinting⁃Type Porphyry Cu Deposits and Associated Magmatism in the Eastern Tianshan, Xinjiang-Case Study of the Tuwu, Yandong, Yuhai and Sanchakou Cu deposits (Dissertation). University of Chinese Academy of Sciences, Beijing (in Chinese with English abstract). |
| [26] |
Wang, Y. F., Chen, H. Y., Baker, M. J., et al., 2019. Multiple Mineralization Events of the Paleozoic Tuwu Porphyry Copper Deposit, Eastern Tianshan: Evidence from Geology, Fluid Inclusions, Sulfur Isotopes, and Geochronology. Mineralium Deposita, 54(7): 1053-1076. https://doi.org/10.1007/s00126⁃018⁃0859⁃4 |
| [27] |
Wang, Y. F., Chen, H. Y., Falloon, T. J., et al., 2022. The Paleozoic⁃Mesozoic Magmatic Evolution of the Eastern Tianshan, NW China: Constraints from Geochronology and Geochemistry of the Sanchakou Intrusive Complex. Gondwana Research, 103: 1-22. https://doi.org/10.1016/j.gr.2021.11.002 |
| [28] |
Wang, Y. F., Chen, H. Y., Han, J. S., et al., 2018a. Paleozoic Tectonic Evolution of the Dananhu⁃Tousuquan Island Arc Belt, Eastern Tianshan: Constraints from the Magmatism of the Yuhai Porphyry Cu Deposit, Xinjiang, NW China. Journal of Asian Earth Sciences, 153: 282-306. https://doi.org/10.1016/j.jseaes.2017.05.022 |
| [29] |
Wang, Y. F., Chen, H. Y., Xiao, B., et al., 2018b. Overprinting Mineralization in the Paleozoic Yandong Porphyry Copper Deposit, Eastern Tianshan, NW China—Evidence from Geology, Fluid Inclusions and Geochronology. Ore Geology Reviews, 100: 148-167. https://doi.org/10.1016/j.oregeorev.2017.04.013 |
| [30] |
Wang, Y. F., Chen, H. Y., Xiao, B., et al., 2016. Porphyritic⁃Overlapped Mineralization of Tuwu and Yandong Copper Deposits in Eastern Tianshan Mountains, Xinjiang. Mineral Deposits, 35(1): 51-68 (in Chinese with English abstract). |
| [31] |
Wang, Y. H., Xue, C. J., Liu, J. J., et al., 2014. Geochemistry, Geochronology, Hf Isotope, and Geological Significance of the Tuwu Porphyry Copper Deposit in Eastern Tianshan, Xinjiang. Acta Petrologica Sinica, 30(11): 3383-3399 (in Chinese with English abstract). |
| [32] |
Wang, Y. H., Zhang, F. F., Liu, J. J., 2016. The Genesis of the Ores and Intrusions at the Yuhai Cu⁃Mo Deposit in Eastern Tianshan, NW China: Constraints from Geology, Geochronology, Geochemistry, and Hf Isotope Systematics. Ore Geology Reviews, 77: 312-331. https://doi.org/10.1016/j.oregeorev.2016.03.003 |
| [33] |
Wang, Y. W., Wang, J. B., Long, L. L., et al., 2012. Tectonic Evolution Stages of Northern Xinjiang and Tectonic Types of Porphyry⁃Epithermal Deposits. Geology in China, 39(3): 695-716 (in Chinese with English abstract). |
| [34] |
Wu, C., Chen, H. Y., Hollings, P., et al., 2015. Magmatic Sequences in the Halasu Cu Belt, NW China: Trigger for the Paleozoic Porphyry Cu Mineralization in the Chinese Altay⁃East Junggar. Ore Geology Reviews, 71: 373-404. https://doi.org/10.1016/j.oregeorev.2015.06.017 |
| [35] |
Wu, C., Chen, H. Y., Liang, P., et al., 2018. Paragenesis and Fluid Evolution of the Halasu III Porphyry Cu Deposit, East Junggar (NW China): Implications for the Paleozoic Multiphase Superimposing Mineralization in the Central Asian Orogenic Belt. Ore Geology Reviews, 100: 183-204. https://doi.org/10.1016/j.oregeorev.2016.08.001 |
| [36] |
Wu, C., Chen, H. Y., Lu, Y. J., 2022. Crustal Structure Control on Porphyry Copper Systems in Accretionary Orogens: Insights from Nd Isotopic Mapping in the Central Asian Orogenic Belt. Mineralium Deposita, 57(4): 631-641. https://doi.org/10.1007/s00126⁃021⁃01074⁃z |
| [37] |
Wu, C., Cooke, D. R., Baker, M. J., et al., 2024. Using Pyrite Composition to Track the Multi⁃Stage Fluids Superimposed on a Porphyry Cu System. American Mineralogist, 109(5): 827-845. https://doi.org/10.2138/am⁃2022⁃8727 |
| [38] |
Xiao, B., 2016. Magmatic Evolution, Alteration Characteristics and Genesis of the Tuwu⁃Yandong Cu Belt, Xinjiang (Dissertation). University of Chinese Academy of Sciences, Beijing (in Chinese with English abstract). |
| [39] |
Xiao, B., Chen, H. Y., 2020. Elemental Behavior during Chlorite Alteration: New Insights from a Combined EMPA and LA⁃ICPMS Study in Porphyry Cu Systems. Chemical Geology, 543: 119604. https://doi.org/10.1016/j.chemgeo.2020.119604 |
| [40] |
Xiao, B., Chen, H. Y., Hollings, P., et al., 2017. Magmatic Evolution of the Tuwu⁃Yandong Porphyry Cu Belt, NW China: Constraints from Geochronology, Geochemistry and Sr⁃Nd⁃Hf Isotopes. Gondwana Research, 43: 74-91. https://doi.org/10.1016/j.gr.2015.09.003 |
| [41] |
Xiao, B., Chen, H. Y., Wang, Y. F., et al., 2015. Discovery of the Late Silurian Granodiorite and Its Tectonic Significance in the Tuwu⁃Yandong Porphyry Copper Deposits, Dananhu⁃Tousuquan Island Arc, Eastern Tianshan. Earth Science Frontier, 22(6): 251-266 (in Chinese with English abstract). |
| [42] |
Xiao, W. J., Song, D. F., Windley, B. F., et al., 2020. Accretionary Processes and Metallogenesis of the Central Asian Orogenic Belt: Advances and Perspectives. Science China Earth Sciences, 63(3): 329-361. https://doi.org/10.1007/s11430⁃019⁃9524⁃6 |
| [43] |
Yang, F. Q., Chai, F. M., Zhang, Z. X., et al., 2014. Zircon U⁃Pb Geochronology, Geochemistry, and Sr⁃Nd⁃Hf Isotopes of Granitoids in the Yulekenhalasu Copper Ore District, Northern Junggar, China: Petrogenesis and Tectonic Implications. Lithos, 190: 85-103. https://doi.org/10.1016/j.lithos.2013.12.003 |
| [44] |
Zhai, Y. S., Wang, J. P., Peng, R. M., et al., 2009. Research on Superimposed Metallogenic Systems and Polygenetic Mineral Deposits. Earth Science Frontiers, 16(6): 282-290 (in Chinese with English abstract). |
| [45] |
Zhang, D., Fan, J. J., Liu, P., et al., 2013. 40Ar⁃39Ar Dating of Sericite in the Songkaersu Cu⁃Au Deposit of Eastern Junggar, Xinjiang. Journal of Mineralogy and Petrology, 33(4): 61-67 (in Chinese with English abstract). |
| [46] |
Zhang, F. F., Wang, Y. H., Liu, J. J., et al., 2023. Multiple Mineralization Events at Paleozoic Sanchakou Porphyry Cu Deposit, Xinjiang: New Insights from Geology, Geochronology, Fluid Inclusions, and H⁃O⁃C Isotopes. Ore Geology Reviews, 163: 105726. https://doi.org/10.1016/j.oregeorev.2023.105726 |
| [47] |
Zhou, T. F., Yuan, F., Tan, L. G., et al., 2006. Time Limit, Geochemical Characteristics and Tectonic Setting of the Paleozoic Magmatism in the Sawuer Region, Xinjiang. Acta Petrologica Sinica, 22(5): 1225-1237 (in Chinese with English abstract). |
国家重点研发计划项目(2022YFC2903301)
新疆自治区重点研发计划项目(2023B03014)
广东省科技计划项目(2024B0303390002)
/
| 〈 |
|
〉 |