峡东九龙湾剖面埃迪卡拉纪陡山沱组盖帽白云岩无机碳同位素异常成因
蔡应雄 , 安志辉 , 杨文武 , 王宁涛 , 王保忠 , 梅玉萍 , 丁丽雪 , 杨小莉 , 宋松
地球科学 ›› 2025, Vol. 50 ›› Issue (07) : 2566 -2583.
峡东九龙湾剖面埃迪卡拉纪陡山沱组盖帽白云岩无机碳同位素异常成因
Origin of Inorganic Carbon Isotope Excursions in Ediacaran Doushantuo Cap Dolostone at Jiulongwan Section in East Yangtze Gorges
,
峡东地区埃迪卡拉纪陡山沱组盖帽白云岩中异常偏负的无机碳同位素(δ13CV‒PDB<‒40‰),是甲烷释放的关键地质证据,但其具体成因机制尚不明确.对九龙湾剖面陡山沱组盖帽白云岩中白云岩和自生碳酸盐岩的碳、氧、硫、锶同位素及元素地球化学进行对比研究.自生碳酸盐岩极低的无机碳同位素值,极大的硫酸盐和黄铁矿硫同位素变化范围,较低的δ18O(CAS,Brt)⁃δ34S(CAS,Brt)斜率,Δ33Spyrite⁃δ34Spyrite具有的负相关性,指示古海洋冷泉环境下AOM-MSR作用参与;氧化还原敏感元素显示自生碳酸盐岩(JF1和JF2)形成于缺氧环境,整个盖帽白云岩形成于氧化(/贫氧)‒缺氧‒氧化(/贫氧)‒缺氧‒氧化(/贫氧)环境转变;古水深指标指示在JF1和JF2阶段海平面分别下降;主、微量元素及锶同位素表明,JF1和JF2阶段陆源风化物质输入增加.九龙湾地区埃迪卡拉纪早期两次海退形成的海底缺氧环境和水化学条件改变,是形成极负无机碳同位素组成的重要原因.
Extremely negative inorganic carbon isotope values (δ13CV‒PDB<‒40‰) from the Ediacaran Doushantuo cap dolostone in East Yangtze Gorges were taken as key evidence for a methane release event, but the origin of the cap dolostone remain contested. Here we investigated carbon, oxygen, sulfur, and strontium isotopes, and major and trace element compositions in both authigenic carbonates and dolostones from the Doushantuo cap dolostone at the Jiulongwan Section. Authigenic carbonates show extremely negative inorganic carbon isotope values, remarkably wide ranges of sulfur isotope values for sulfates and pyrites, a positive δ18O(CAS, Brt)⁃δ34S(CAS, Brt) correlation with a low slope, and a distinctly negative Δ33Spyrite⁃δ34Spyrite correlation, which indicates that the extremely 13C-depleted carbonates were deposited from seawater via anaerobic oxidation of methane coupled to microbial sulfate reduction (AOM-MSR) at paleo-marine cold seeps. Redox-sensitive elements reveal that the authigenic carbonates (JF1 and JF2) were deposited in an anoxic condition, while the whole cap dolostone was deposited in transitional conditions of suboxic-anoxic-suboxic-anoxic-suboxic. Paleodepth indicators imply that the sea level in the Jiulongwan area dropped during the JF1 and JF2 stages, respectively. Results of major and trace elements and strontium isotopes demonstrate that the input of terrigenous weathered materials increased during the JF1 and JF2 stages. In Early Ediacaran Epoch, two regressions in the Jiulongwan area resulted in an anoxic environment and altered hydrochemical conditions, which is an important origin for the extremely negative inorganic carbon isotopes observed in the cap dolostone in this area.
埃迪卡拉纪 / 陡山沱组 / 盖帽白云岩 / 自生碳酸盐岩 / 碳同位素负偏 / 地球化学.
Ediacaran / Doushantuo Formation / cap dolomite / authigenic carbonate / negative carbon isotope excursion / geochemistry
| [1] |
Ader, M., Macouin, M., Trindade, R. I. F., et al., 2009. A Multilayered Water Column in the Ediacaran Yangtze Platform? Insights from Carbonate and Organic Matter Paired δ13C. Earth and Planetary Science Letters, 288(1-2): 213-227. https://doi.org/10.1016/j.epsl.2009.09.024 |
| [2] |
Algeo, T. J., Maynard, J. B., 2008. Trace⁃Metal Covariation as a Guide to Water⁃Mass Conditions in Ancient Anoxic Marine Environments. Geosphere, 4(5): 872-887. https://doi.org/10.1130/GES00174.1 |
| [3] |
An, Z. H., Jiang, G. Q., Tong, J. N., et al., 2015. Stratigraphic Position of the Ediacaran Miaohe Biota and Its Constrains on the Age of the Upper Doushantuo δ13C Anomaly in the Yangtze Gorges Area, South China. Precambrian Research, 271: 243-253. https://doi.org/10.1016/j.precamres.2015.10.007 |
| [4] |
Antler, G., Turchyn, A. V., Herut, B., et al., 2014. Sulfur and Oxygen Isotope Tracing of Sulfate Driven Anaerobic Methane Oxidation in Estuarine Sediments. Estuarine, Coastal and Shelf Science, 142: 4-11. https://doi.org/10.1016/j.ecss.2014.03.001 |
| [5] |
Banner, J. L., Hanson, G. N., 1990. Calculation of Simultaneous Isotopic and Trace Element Variations during Water⁃Rock Interaction with Applications to Carbonate Diagenesis. Geochimica et Cosmochimica Acta, 54(11): 3123-3137. https://doi.org/10.1016/0016⁃7037(90)90128⁃8 |
| [6] |
Bao, H. M., 2006. Purifying Barite for Oxygen Isotope Measurement by Dissolution and Reprecipitation in a Chelating Solution.Analytical Chemistry, 78(1): 304-309. https://doi.org/10.1021/ac051568z |
| [7] |
Bristow, T. F., Bonifacie, M., Derkowski, A., et al., 2011. A Hydrothermal Origin for Isotopically Anomalous Cap Dolostone Cements from South China. Nature, 474(7349): 68-71. https://doi.org/10.1038/nature10096 |
| [8] |
Cai, C. F., Liu, D. W., Hu, Y. J., et al., 2023. Interlinked Marine Cycles of Methane, Manganese, and Sulfate in the Post⁃Marinoan Doushantuo Cap Dolostone. Geochimica et Cosmochimica Acta, 346: 245-258. https://doi.org/10.1016/j.gca.2023.02.014 |
| [9] |
Canfield, D. E., Raiswell, R., Westrich, J. T., et al., 1986. The Use of Chromium Reduction in the Analysis of Reduced Inorganic Sulfur in Sediments and Shales. Chemical Geology, 54(1-2): 149-155. https://doi.org/10.1016/0009⁃2541(86)90078⁃1 |
| [10] |
Frimmel, H. E., 2009. Trace Element Distribution in Neoproterozoic Carbonates as Palaeoenvironmental Indicator. Chemical Geology, 258(3-4): 338-353. https://doi.org/10.1016/j.chemgeo.2008.10.033 |
| [11] |
Feng, D., Gong, S. G., 2019. Progress on the Biogeochemical Process of Sulfur and Its Geological Record at Submarine Cold Seeps. Bulletin of Mineralogy, Petrology and Geochemistry, 38(6): 1047-1056, 1046 (in Chinese with English abstract). |
| [12] |
Feng, D., Peng, Y. B., Bao, H. M., et al., 2016. A Carbonate⁃Based Proxy for Sulfate⁃Driven Anaerobic Oxidation of Methane. Geology, 44(12): 999-1002. https://doi.org/10.1130/G38233.1 |
| [13] |
Feng, D., Roberts, H. H., 2011. Geochemical Characteristics of the Barite Deposits at Cold Seeps from the Northern Gulf of Mexico Continental Slope. Earth and Planetary Science Letters, 309(1-2): 89-99. https://doi.org/10.1016/j.epsl.2011.06.017 |
| [14] |
Gong, S. G., Peng, Y. B., Bao, H. M., et al., 2018. Triple Sulfur Isotope Relationships during Sulfate⁃Driven Anaerobic Oxidation of Methane. Earth and Planetary Science Letters, 504: 13-20. https://doi.org/10.1016/j.epsl.2018.09.036 |
| [15] |
Guan, C. G., Wang, W., Zhou, C. M., 2024. Revisiting the Carbonate Carbon Isotopic Composition of the Lowermost Doushantuo Formation in Yichang, Hubei Province: Implications for Searching the Original Seawater Carbon Isotopic Signal. Acta Geologica Sinica, 98(3): 712-724 (in Chinese with English abstract). |
| [16] |
Hatch, J. R., Leventhal, J. S., 1992. Relationship between Inferred Redox Potential of the Depositional Environment and Geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A.. Chemical Geology, 99(1-3): 65-82. https://doi.org/10.1016/0009⁃2541(92)90031⁃Y |
| [17] |
Higgins, J. A., Blättler, C. L., Lundstrom, E. A., et al., 2018. Mineralogy, Early Marine Diagenesis, and the Chemistry of Shallow⁃Water Carbonate Sediments. Geochimica et Cosmochimica Acta, 220: 512-534. https://doi.org/10.1016/j.gca.2017.09.046 |
| [18] |
Hoffman, P. F., Kaufman, A. J., Halverson, G. P., et al., 1998. A Neoproterozoic Snowball Earth. Science, 281(5381): 1342-1346. https://doi.org/10.1126/science.281.5381.1342 |
| [19] |
Hoffman, P. F., Schrag, D. P., 2002. The Snowball Earth Hypothesis: Testing the Limits of Global Change. Terra Nova, 14(3): 129-155. https://doi.org/10.1046/j.1365⁃3121.2002.00408.x |
| [20] |
Horacek, M., Brandner, R., Abart, R., 2007. Carbon Isotope Record of the P/T Boundary and the Lower Triassic in the Southern Alps: Evidence for Rapid Changes in Storage of Organic Carbon. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2): 347-354. https://doi.org/10.1016/j.palaeo.2006.11.049 |
| [21] |
Jiang, G. Q., Kennedy, M. J., Christie⁃Blick, N., 2003. Stable Isotopic Evidence for Methane Seeps in Neoproterozoic Postglacial Cap Carbonates. Nature, 426(6968): 822-826. https://doi.org/10.1038/nature02201 |
| [22] |
Jiang, G. Q., Shi, X. Y., Zhang, S. H., et al., 2011. Stratigraphy and Paleogeography of the Ediacaran Doushantuo Formation (ca. 635-551 Ma) in South China. Gondwana Research, 19(4): 831-849. https://doi.org/10.1016/j.gr.2011.01.006 |
| [23] |
Jiang, G. Q., Zhang, S. H., Shi, X. Y., et al., 2008. Chemocline Instability and Isotope Variations of the Ediacaran Doushantuo Basin in South China. Science China Earth Sciences, 51(11): 1560-1569. https://doi.org/10.1007/s11430⁃008⁃0116⁃2 |
| [24] |
Li, C., Hardisty, D. S., Luo, G., et al., 2017. Uncovering the Spatial Heterogeneity of Ediacaran Carbon Cycling. Geobiology, 15(2): 211-224. https://doi.org/10.1111/gbi.12222 |
| [25] |
Li, D., Ling, H. F., Jiang, S. Y., et al., 2009. New Carbon Isotope Stratigraphy of the Ediacaran⁃Cambrian Boundary Interval from SW China: Implications for Global Correlation. Geological Magazine, 146(4): 465-484. https://doi.org/10.1017/S0016756809006268 |
| [26] |
Li, W.P., 2017. Geochemistry of Sedimentary Carbonates from the Late Ediacaran to the Early Cambrian in the Lower Yangtze Region of South China (Dissertation). University of Science and Technology of China, Hefei (in Chinese with English abstract). |
| [27] |
Lin, Z. J., Wang, Q. X., Feng, D., et al., 2011. Post⁃ Depositional Origin of Highly 13C⁃Depleted Carbonate in the Doushantuo Cap Dolostone in South China: Insights from Petrography and Stable Carbon Isotopes. Sedimentary Geology, 242(1-4): 71-79. https://doi.org/10.1016/j.sedgeo.2011.10.009 |
| [28] |
Lin, Z. Y., Sun, X. M., Peckmann, J., et al., 2016. How Sulfate⁃Driven Anaerobic Oxidation of Methane Affects the Sulfur Isotopic Composition of Pyrite: A SIMS Study from the South China Sea. Chemical Geology, 440: 26-41. https://doi.org/10.1016/j.chemgeo.2016.07.007 |
| [29] |
Liu, C., Wang, Z. R., Raub, T. D., et al., 2014. Neoproterozoic Cap⁃Dolostone Deposition in Stratified Glacial Meltwater Plume. Earth and Planetary Science Letters, 404: 22-32. https://doi.org/10.1016/j.epsl.2014.06.039 |
| [30] |
Lu, M., Zhu, M. Y., Zhang, J. M., et al., 2013. The DOUNCE Event at the Top of the Ediacaran Doushantuo Formation, South China: Broad Stratigraphic Occurrence and Non⁃Diagenetic Origin. Precambrian Research, 225: 86-109. https://doi.org/10.1016/j.precamres.2011.10.018 |
| [31] |
Montañez, I.P., Osleger, D.A., Mack, L.E., et al., 2000. Evolution of the Sr and C Isotope Composition of Cambrian Oceans. GSA Today, 10(5): 1-7. |
| [32] |
Peng, Y. B., Bao, H. M., Jiang, G. Q., et al., 2022. A Transient Peak in Marine Sulfate after the 635 Ma Snowball Earth. Proceedings of the National Academy of Sciences of the United States of America, 119(19): e2117341119. https://doi.org/10.1073/pnas.2117341119 |
| [33] |
Porter, S. M., Knoll, A. H., Affaton, P., 2004. Chemostratigraphy of Neoproterozoic Cap Carbonates from the Volta Basin, West Africa. Precambrian Research, 130(1-4): 99-112. https://doi.org/10.1016/j.precamres.2003.10.015 |
| [34] |
Rimmer, S. M., 2004. Geochemical Paleoredox Indicators in Devonian⁃Mississippian Black Shales, Central Appalachian Basin (USA). Chemical Geology, 206(3-4): 373-391. https://doi.org/10.1016/j.chemgeo.2003.12.029 |
| [35] |
Sansjofre, P., Ader, M., Trindade, R. I. F., et al., 2011. A Carbon Isotope Challenge to the Snowball Earth. Nature, 478(7367): 93-96. https://doi.org/10.1038/nature10499 |
| [36] |
Shen, H. J., Gu, S. Y., Zhao, S. F., et al., 2020. The Sedimentary Geochemical Records of Ocean Environment during the Nantuo (Marinoan) Glaciation in South China-Carbon and Oxygen Isotopes and Trace Element Compositions of Dolostone in Nantuo Formation, Nanhuan System, in Eastern Guizhou. Geological Review, 66(1): 214-228 (in Chinese with English abstract). |
| [37] |
Shi, H. Y., Sun, Y. P., Ouyang, Q., et al., 2023. U⁃Pb Age of Highly 13C⁃Depleted Calcite from the Basal Ediacaran Cap Carbonate in Yichang, Hubei Province. Journal of Stratigraphy, 47(1): 1-16 (in Chinese with English abstract). |
| [38] |
Sui, Y., 2019. Cyclostratigraphic Analysis of the Ediacaran Doushantuo Formation, South China (Dissertation). China University of Geosciences,Wuhan (in Chinese with English abstract). |
| [39] |
Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1-2): 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012 |
| [40] |
Veizer, J., 1983. Chemical Diagenesis of Carbonates: Theory and Application of Trace Element Technique. In: Arthur, M. A., Anderson, T. F., Kaplan, I. R., et al., eds., Stable Isotopes in Sedimentary Geology. SEPM, Tulsa. |
| [41] |
Veizer, J., Ala, D., Azmy, K., et al., 1999. 87Sr/86Sr, δ13C and δ18O Evolution of Phanerozoic Seawater. Chemical Geology, 161(1-3): 59-88. https://doi.org/10.1016/S0009⁃2541(99)00081⁃9 |
| [42] |
Wang, J. S., Jiang, G. Q., Xiao, S. H., et al., 2008. Carbon Isotope Evidence for Widespread Methane Seeps in the ca. 635 Ma Doushantuo Cap Carbonate in South China. Geology, 36(5): 347-350. https://doi.org/10.1130/g24513a.1 |
| [43] |
Wang, J. S., Wang, Z., Hu, J., et al., 2012. Multiple Proxies Indicating Methane Seepage during the Neoproterozoic Cap Carbonate in South China. Earth Science, 37(S2): 14-22 (in Chinese with English abstract). |
| [44] |
Wang, Z., 2017. The Diagenesis of Early and Middle Ediacaran Carbonate Sediments in Western Hubei and the Paleoenvironmental Implications of the Doushantuo Glendonite (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). |
| [45] |
Webb, G. E., Kamber, B. S., 2000. Rare Earth Elements in Holocene Reefal Microbialites: A New Shallow Seawater Proxy. Geochimica et Cosmochimica Acta, 64(9): 1557-1565. https://doi.org/10.1016/S0016⁃7037(99)00400⁃7 |
| [46] |
Wei, G.Y., 2019. Evolution of Marine Environment from the Late Neoproterozoic to Early Paleozoic (Dissertation).Nanjing University, Nanjing (in Chinese with English abstract). |
| [47] |
Wei, H.M., 2019. The Evolution of Shallow Ocean Redox on Edicaran Yangtze Platform (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). |
| [48] |
Zhou, C. M., Bao, H. M., Peng, Y. B., et al., 2010. Timing the Deposition of 17O⁃Depleted Barite at the Aftermath of Nantuo Glacial Meltdown in South China. Geology, 38(10): 903-906. https://doi.org/10.1130/G31224.1 |
| [49] |
Zhou, C. M., Xie, G. W., McFadden, K., et al., 2007. The Diversification and Extinction of Doushantuo⁃Pertatataka Acritarchs in South China: Causes and Biostratigraphic Significance. Geological Journal, 42(3-4): 229-262. https://doi.org/10.1002/gj.1062 |
| [50] |
Zhu, M.Y., Zhang, J.M., Yang, A.H., 2007. Integrated Ediacaran (Sinian) Chronostratigraphy of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 7-61. https://doi.org/10.1016/j.palaeo.2007.03.025 |
古生物与地质环境演化湖北省重点实验室开放基金(PEL⁃202305)
中国地质调查局项目(DD20190315)
中国地质调查局项目(DD20221777)
中国地质调查局项目(DD20230218)
/
| 〈 |
|
〉 |