U同位素在重建古海洋氧化还原环境中的应用

朱紫光 ,  侯佳凯 ,  朱光有 ,  李茜 ,  厉梦琪

地球科学 ›› 2025, Vol. 50 ›› Issue (03) : 1250 -1262.

PDF (1608KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (03) : 1250 -1262. DOI: 10.3799/dqkx.2024.129

U同位素在重建古海洋氧化还原环境中的应用

作者信息 +

Application of U Isotope Fractionation Effect in the Analysis of Paleooceans Redox Environments

Author information +
文章历史 +
PDF (1645K)

摘要

U同位素载体在沉积和成岩过程中均会发生显著的分馏,导致人们对古海洋氧化还原环境的误判.本文系统梳理了U同位素的分馏机制,逐一阐述了其在碳酸盐岩、黑色页岩和铁锰结壳的沉积和成岩过程中的分馏行为,并提出了理想载体的特征及消除沉积成岩效应的技术手段.总体而言,U同位素分馏机制丰富多样,分馏程度受反应速率、电子通量和环境离子强度等多种因素影响.碳酸盐岩和黑色页岩的沉积与成岩作用通常导致同位素组成偏重,而铁锰结壳则会出现相反方向的分馏,分馏程度受沉积环境和岩性组成的控制.实际应用中应选择成岩程度较低、以文石为主的海相碳酸盐岩,并采用离子交换色谱等技术手段,精确表征古海洋氧化还原环境.

Abstract

U isotope carriers undergo significant fractionation during sedimentation and diagenesis, often leading to misinterpretations of paleoocean redox conditions. This study systematically reviews the fractionation mechanisms of U isotopes, detailing their behavior during the sedimentation and diagenesis of carbonates, black shales, and ferromanganese crusts. It also proposes characteristics of ideal carriers and techniques to mitigate diagenetic effects. Overall, U isotope fractionation mechanisms are diverse, influenced by factors such as reaction rates, electron flux, and ionic strength. Sedimentation and diagenesis in carbonates and black shales typically result in heavier isotope compositions, while ferromanganese crusts exhibit fractionation in the opposite direction. The extent of fractionation is controlled by depositional environments and lithological composition. In practical applications, marine carbonates with low diagenetic alteration and primarily aragonitic mineralogy are recommended. Advanced techniques, such as ion-exchange chromatography, should be employed to accurately reconstruct the redox conditions of paleooceans.

Graphical abstract

关键词

U同位素 / 分馏效应 / 分馏机理 / 古海洋 / 氧化还原环境 / 沉积学 / 地球化学.

Key words

U isotopes / fractionation effect / fractionation mechanism / paleooceans / redox environment / sedimentology / geochemistry

引用本文

引用格式 ▾
朱紫光,侯佳凯,朱光有,李茜,厉梦琪. U同位素在重建古海洋氧化还原环境中的应用[J]. 地球科学, 2025, 50(03): 1250-1262 DOI:10.3799/dqkx.2024.129

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

古海洋氧化还原环境是研究生命演化、气候变化和生物地球化学循环的热点,追踪其变化对于理解生命与地球环境的协同演化至关重要(Anbar and Knoll, 2002Scott et al., 2008).传统氧化还原敏感元素和矿物因其在时空上分布的离散性,难以提供全球海洋氧化还原环境的连续记录(Chen et al., 2016).21世纪以来,多接收电感耦合等离子质谱仪的应用推动了U同位素在古海洋氧化还原方面的研究,其优势在于U同位素分馏与氧化还原反应相关,但与放射性衰变无关(Weyer et al., 2008Andersen et al., 2016Brown et al., 2018).此外,U的长滞留时间使其在开阔海洋中具有均一的同位素组成,可通过碳酸盐岩、黑色页岩、铁锰结壳等载体追溯全球海水的U同位素特征(Chen et al., 2017).碳酸盐岩因其稳定性,被广泛用于重建古海洋氧化还原环境(Andersen et al., 2017).例如,Gilleaudeau et al. (2019)通过碳酸盐岩U同位素研究发现,中元古代缺氧海水的分布有限.国内研究人员亦通过碳酸盐岩U同位素分析,揭示了奥陶纪和寒武纪海洋氧化还原波动事件(邱晨等,2022; 闵思雨等,2023).然而,碳酸盐岩在沉积和成岩过程中会发生U同位素分馏,可能导致人们对古海洋环境的误判(Chen et al., 2017).黑色页岩同样是重要的反映氧化还原环境的载体.Yang et al. (2017)通过黑色页岩U同位素研究发现,13亿年前的海洋增氧事件显著提高了氧化程度.然而,黑色页岩在U富集过程中因氧化还原反应和热液侵入可能导致U同位素分馏,限制了其对海水U同位素组成的真实反映(Brown et al., 2018).铁锰结壳因生长缓慢和分布稀少应用受限,Goto et al. (2014)通过U同位素研究证实了古海洋氧化还原环境的显著变化.然而,其在吸附铀酰离子过程中富集轻U同位素(Brennecka et al., 2011),也影响了结果的准确性.

综上,碳酸盐岩、黑色页岩和铁锰结壳等载体均存在U同位素分馏,给重建古海水U同位素组成带来困难.本文系统梳理了U在氧化还原和吸附反应中的分馏行为,分析了不同载体在沉积和成岩过程中U同位素分馏的机理,并总结了影响分馏程度的因素.提出理想载体特征和技术手段,旨在减小岩石载体与海水U同位素之间的分馏误差.这对于探索新型氧化还原指标和解释U同位素异常现象具有重要意义.

1 U元素与U同位素的地球化学行为

1.1 U元素的地球化学行为

U的微观稳定性和迁移性均受U的地球化学行为控制,天然存在的U主要以不溶的U(Ⅳ)矿物和可溶的U(Ⅵ)化合物形式存在,U(Ⅳ)矿物主要有晶质铀矿和铀石(Cumberland et al., 2016),U(Ⅵ)一般在天然水体中形成铀酰碳酸氢盐络合物(Langmuir, 1978),主要形态为Ca/Mg⁃UO2⁃CO3Endrizzi and Rao, 2014Endrizzi et al., 2016).相较于U(Ⅳ)和U(Ⅵ),自然环境中的U(Ⅲ)和U(Ⅴ)极少出现,实验数据显示U(Ⅲ)能与部分有机化合物形成配合物(Ferronsky and Polyakov, 2012),U(Ⅴ)能与配体自然形成络合物,但这种络合物的稳定性较差,仅在还原条件下具较高的稳定性(Langmuir and Donald, 1978).现代海水中U的滞留时间在200~400 ka,远远长于1~2 ka的海洋混合时间,因此开阔大洋具有均一的U含量,通常在3.2×10-9左右(Owens et al., 2011).

1.2 U同位素的地球化学行为

天然U的同位素主要是238U和235U,它们的半衰期分别为4.5 Ga和0.7 Ga,相比之下234U显得不稳定,半衰期仅为246 ka(Cheng et al., 2013).由于234U半衰期相对较短,其在阿尔法衰变过程中的反冲作用更为明显,更容易从矿物受损的晶格位置释放,因此地球表面234U/238U偏离长期平衡状态的情况常有发生(Andersen et al., 2009).由于U同位素的分馏效应通常是细微的,为精确表征234U/238U和238U/235U的变化,通常要将U同位素进行标准化:

δ238U=(238U/235U)样品(238U/235U)标准样品-1×103  ,          
δ234U=(234U/238U)样品(234U/238U)长期平衡-1×103  ,         

式(1)中的(238U/235U)样品代表测试样品中的238U/235U,(238U/235U)标准样品代表标准样品CRM145中的238U/235U.式(2)中的(234U/238U)样品代表测试样品中的234U/238U,(234U/238U)长期平衡代表长期平衡状态时固有的234U/238U(Andersen et al., 2014).由于U在现代完全氧化的海洋中具有较长的滞留时间,其同位素组成均一,海水δ²³⁸U平均为-0.39‰(Tissot and Dauphas, 2015).

2 U同位素的分馏

2.1 氧化还原过程中的U同位素分馏

2.1.1 生物氧化还原过程中的分馏

微生物通过细胞色素、菌毛及电子传递体等介质,将U(Ⅵ)还原为U(Ⅳ) (Suzuki et al., 2005Newsome et al., 2014).以希瓦氏菌MR⁃1为例,电子经内膜传递至外膜,通过FccA、STC、CymA等小四血红素和MtrA、MtrB、MtrC等多血红素色素介导的电子传递链,最终还原铀酰离子(图1),而微生物需传递两个电子才能完成还原(Wall and Krumholz, 2006Shi et al., 2016).实验表明,乙醇或乙酸盐的加入可显著提高还原速率(Veeramani et al., 2011Bargar et al., 2013),而高浓度钙离子则可能通过竞争机制抑制希瓦氏菌的还原能力 (Plette et al., 1996Ulrich et al., 2011).微生物还原U(Ⅵ)会引发显著的同位素分馏,Rademacher et al. (2006)观察到溶液中δ238U随反应进行逐渐升高,即U(Ⅳ)中富集轻的235U,这归因于质量分馏效应.然而,后续研究人员发现溶液δ238U逐渐降低,表明U(Ⅳ)中富集重的238U,这主要由核体积效应主导(Weyer et al., 2008Basu et al., 2014),Rademacher观察到的质量分馏现象可能由吸附过程引起(Basu et al., 2014).此外,还原速率显著影响分馏程度,速率较高时分馏程度较低;速率较低时,因U(Ⅵ)与U(Ⅳ)有足够时间接触,分馏程度更强(Wang et al., 2015).近期Brown et al. (2023)指出,电子通量是分馏的关键因素.无细胞提取物因缺乏电子传递链导致反应速率低,分馏程度高达1‰;而完整细胞的分馏仅为0.5‰.乳酸实验同样支持此结论:乳酸浓度增加提升电子通量,降低同位素分馏(图1).

2.1.2 非生物氧化还原过程中的分馏

除了微生物外,含铁矿物、含硫矿物及有机质也可作为铀酰离子的还原剂,并引发U同位素分馏(Liger et al., 1999Hua and Deng, 2008Chakraborty et al., 2010).Stylo et al. (2015)发现采用微生物、磁铁矿、绿锈、硫化亚铁、含水硫化物及有机质等多种还原剂的实验显示出相近的还原速率,但同位素分馏行为存在显著差异.在微生物主导的还原中,²³⁸U倾向富集于U(Ⅳ),符合核体积效应规律;而非生物还原剂中,含铁矿物的同位素分馏呈现相反趋势,即轻同位素²³⁵U富集于U(Ⅳ),表明分馏可能由质量分馏效应主导(Stylo et al., 2015).具体机制存在争议:一方面,Fe(Ⅱ)可能通过单电子转移将U(Ⅵ)还原为短期存在的U(Ⅴ),后者迅速歧化生成U(Ⅳ)和U(Ⅵ)(Renock et al., 2013);另一方面,Fe(Ⅱ)也可能直接还原U(Ⅵ)为U(Ⅳ),此过程可能受矿物表面Fe(Ⅱ)/Fe(Ⅲ)比值调控(Skomurski et al., 2011Singer et al., 2012).相比之下,含硫矿物和有机质几乎不引发U同位素分馏,这可能由于其将两个电子直接转移至U(Ⅵ)、生成U(Ⅳ),且U(Ⅳ)与U(Ⅵ)间缺乏同位素交换.类似现象也在铁单质(Rademacher et al., 2006)及锌单质(Stirling et al., 2007)还原反应中被观察到,进一步支持单向电子转移限制U同位素分馏的观点.综上,非生物还原剂的U同位素分馏行为差异显著,主要由其电子转移机制决定,未来研究需进一步聚焦还原反应机制对U同位素分馏的调控作用.

2.2 吸附过程中的U同位素分馏

除了氧化还原反应外,U同位素在吸附过程中也会发生显著分馏.近期研究表明,在不涉及电子转移的吸附作用中,U同位素仍表现出分馏效应.例如,为分析生物吸附对U同位素的影响,有学者在含铀酰离子的环境中培养淡水浮游生物,测定培养基与生物体内的U同位素.结果显示,与生物氧化还原反应富集²³⁸U不同,生物吸附使反应产物富集轻的²³⁵U(Chen et al., 2020).这一现象可能与吸附过程中核场位移效应的缺失有关.他们推测,细胞表面的有机配体(如羟基、羧基、胺基和磷酰基)改变了铀酰离子的配位几何结构,导致生物表面富集轻同位素,这一发现可解释成岩程度较低的表层海洋沉积物中δ²³⁸U的低值异常(Holmden et al., 2015).非生物吸附与生物吸附类似,矿物如水钠锰矿、针铁矿、石英和铁锰结壳均可引发显著的U同位素分馏.这是由于溶液中铀酰离子与矿物表面吸附的铀酰离子在配位几何结构上存在差异(Brennecka et al., 2011Goto et al., 2014Dang et al., 2016Jemison et al., 2016).实验显示,针铁矿和水钠锰矿吸附过程中,其表面富集轻的²³⁵U,且针铁矿的分馏程度随铀酰离子浓度增加而增强,而水钠锰矿分馏则较稳定(Dang et al., 2016).铁氧化物吸附有双齿‒单核和双齿‒双核两种模式(图2),高铀浓度和低pH下更倾向双齿‒双核模式,分馏显著,而锰氧化物则仅表现出双齿‒单核模式,分馏程度稳定(Bargar et al., 2000Dang et al., 2016).分馏程度还与吸附剂的结构特点、点面结合位点密度以及溶液中铀浓度相关,溶解性无机碳、有机碳及共沉淀元素如Ca均能显著降低分馏程度(Dang et al., 2016).此外,高离子强度环境下,吸附剂间分馏差异减小,仅水钠锰矿表现出非典型大分馏(Jemison et al., 2016).整体上,吸附过程使矿物表面富集轻的²³⁵U,平均分馏程度约为-0.15‰,研究者需充分考虑吸附引发的分馏效应以优化U同位素在古环境重建中的应用.

2.3 U同位素在碳酸盐岩沉淀及成岩过程中的分馏

2.3.1 U同位素在碳酸盐岩沉淀过程中的分馏

研究表明,原生碳酸钙与U共沉淀时,U同位素分馏使碳酸钙富集重的²³⁸U,但分馏程度较低(Chen et al., 2016).现代海洋中,这一过程分馏效应较小,但在显生宙多数时期仍具显著影响(Chen et al., 2017).分馏现象源于U形态差异(图3),其中负电荷组分(CaUO₂(CO₃)₃²⁻、MgUO₂(CO₃)₃²⁻、UO₂(CO₃)₃⁴⁻) 的δ²³⁸U较高,中性组分Ca₂UO₂(CO₃)₃的δ²³⁸U较低,负电荷组分优先吸附于带正电的碳酸钙表面(表1),导致碳酸钙富集重的²³⁸U(Tunusoğlu, 2007Chen et al., 2016).U形态受pH、pCO₂、离子强度及Ca²⁺和Mg²⁺浓度等环境因素控制,并随地质时间变化(Dong and Brooks, 2006Endrizzi et al., 2014Lowenstein et al., 2014).研究表明,pH、pCO₂、离子强度和Mg²⁺浓度升高时,Ca₂UO₂(CO₃)₃含量下降,溶液中高δ²³⁸U的负电荷组分增加,碳酸钙沉淀的分馏程度降低;反之Ca²⁺浓度升高会增加Ca₂UO₂(CO₃)₃比例,溶液δ²³⁸U下降,使更多负电荷组分进入碳酸钙,分馏程度显著增加(Chen et al., 2016,2017).

2.3.2 U同位素在碳酸盐岩成岩过程中的分馏

碳酸盐岩是古海洋U同位素的重要载体,其成岩作用可能引发U同位素分馏,影响对古海洋的准确重建.因此,明确碳酸盐岩成岩过程中U同位素的分馏机制尤为重要.早期成岩过程中,碳酸盐岩的溶解与重结晶作用会导致U的迁移及Ca²⁺、Mg²⁺和CO₃²⁻浓度的变化(Reeder et al., 2000Chen et al., 2016).方解石主导的碳酸盐岩显示出更显著的U同位素分馏.研究表明,方解石中U含量较低,导致成岩过程中还原生成的U(Ⅳ)对其U同位素特征的影响更明显.方解石的δ²³⁸U与U/Ca相关性较强,分馏效应随着U含量的增加而升高,而文石因U含量较高,分馏程度反而较小(Chen et al., 2022).白云石化是碳酸盐岩常见的成岩作用,其对初始δ²³⁸U的影响取决于成岩方式与时期(Hood et al., 2016Dahl et al., 2019).研究表明,白云石化引起的同位素分馏方向不一,既有²³⁸U富集(Stirling et al., 2007),也有²³⁵U富集(Romaniello et al., 2013Herrmann et al., 2018).这种差异可能与外源流体的混入有关,而非白云石化的直接作用(Zhang et al., 2020).尽管白云石化分馏方向尚存争议,其分馏程度较低,使得白云岩仍是有效的同期海水δ²³⁸U载体.

2.4 U同位素在黑色页岩沉积及沉积后发生的分馏

2.4.1 U同位素在黑色页岩沉积过程中的分馏

近期研究表明,黑色页岩的U同位素组成难以直接反映古海洋的氧化还原环境(Chen et al., 2021).这是因为黑色页岩在沉积过程中发生显著的U同位素分馏,其δ²³⁸U通常比同期海水高约0.6‰.黑色页岩通过有机质、微生物、粘土矿物及含铁、含硫和含磷矿物等成分,以还原或吸附方式富集U(Waite et al., 1994Bachmaf and Merkel, 2011),这些过程伴随显著的动力学分馏,且受控于海水中U的形态(Chen et al., 2016; Brown et al., 2018).相比之下,碳酸盐岩沉积过程中的U同位素分馏较低(图4),因为U渗入碳酸盐岩时未发生氧化还原反应,而在黑色页岩中U(VI)会还原为U(IV),导致其U同位素组成与同期海水偏差更大(Brown et al., 2018).实验表明,黑色页岩的U同位素分馏与铀酰离子的形态密切相关.当Ca₂UO₂(CO₃)₃为主导组分时,主要发生非生物氧化还原反应,分馏程度显著;而当其浓度降低时,分馏程度减弱(Brown et al., 2018).影响铀酰离子形态的关键环境因素包括pH、pCO₂、离子强度以及Ca²⁺和Mg²⁺浓度(Chen et al., 2017).此外,局部沉积环境对黑色页岩的U同位素分馏也有重要作用.

2.4.2 U同位素在黑色页岩沉积后发生的分馏

研究表明,黑色页岩沉积后经历的热液侵蚀显著影响其U同位素组成.例如,Kendall et al. (2009)对McArthur盆地南部Wollogorang组黑色页岩的Re⁃Os测年研究发现,热液侵蚀导致地质年代异常,进一步分析表明,热液侵蚀作用会显著提高黑色页岩的δ²³⁸U值,这可能与热液流体氧化U(Ⅳ)的过程有关(Yang et al., 2017).热液侵蚀中将U(Ⅳ)氧化为U(Ⅵ)的反应伴随显著的U同位素分馏,使黑色页岩富集重的²³⁸U.虽然δ²³⁸U与U含量未表现出明确相关性,但这可能表明热液流体的淋滤作用既改变了U的同位素组成,也影响了其含量(Yang et al., 2017).分馏程度受环境pH、U(Ⅳ)与U(Ⅵ)的接触时间等因素控制(Langmuir, 1978Wang et al., 2015).此外,热液流体可能优先带走低δ²³⁸U的组分,冷却后于其他环境中沉积,从而进一步改变U的地球化学分布(Yang et al., 2017).

2.5 U同位素在铁锰结壳形成过程中发生的分馏

铁锰结壳是深海自生沉积物,广泛分布于海平面以下1 000至6 000 m的斜坡区域.其最外层由同期海水沉淀形成 (Tokumaru et al., 2015),可记录古海洋的δ²³⁸U值.由于形成过程中铀同位素分馏程度较小,铁锰结壳被视为有效的古海洋氧化还原环境载体(Goto et al., 2014Wang et al., 2016).然而,铁锰结壳实例较少,这与其生长缓慢和稀缺分布有关(Tissot et al., 2018).Brennecka et al. (2010)发现铀在锰氧化物上的吸附过程中,因溶液中铀酰离子与矿物表面铀酰离子的配位结构差异而产生分馏,分馏程度受铀酰离子浓度、溶解性碳及离子强度等因素控制 (Dang et al., 2016).但受制于天然样品稀缺性,该推测尚需进一步验证.

3 U同位素分馏分析古氧化还原环境的原理

U同位素在海洋地球化学循环中对海水氧化还原状态非常敏感,因此被视为可靠的古海洋氧化还原环境指标 (Rolison et al., 2017).尽管海水U同位素的组成会受到多种因素影响,前人普遍认为古海洋氧化还原条件是影响同期海水U同位素组成的主要因素(Andersen et al., 2014Tissot et al., 2015).U主要以铀酰离子的形式存在,且铀酰离子相较于深水更新、具有较长的海水滞留时间(Dunk et al., 2002).在缺氧条件下,U(Ⅵ)会被还原为难溶的U(Ⅳ);通过微生物、含铁矿物、有机质等还原剂作用,U进入沉积物中 (Dunk et al., 2002Tissot et al., 2015).由于核场位移效应,还原条件下海水中的238U相较于235U优先进入硫化沉积物中,导致海水中的δ238U降低;古海洋还原条件越强,δ²³⁸U降低越显著,因此记录海水U同位素的沉积岩往往呈现较低的δ²³⁸U (Kendall et al., 2015).因此,通过测定碳酸盐岩、黑色页岩、铁锰结壳等U同位素载体的δ²³⁸U,并应用适当的分馏因子,可推断古海洋氧化还原条件.需要注意的是黑色页岩中的U并非完全来自海水,因此在研究古海洋氧化还原环境时,必须区分岩石中的碎屑U(陆源输入)与自生U(海水中析出).只有自生U的同位素数据在重建古海洋环境时才可靠 (Xu et al., 2012Wang et al., 2020).而自生组分U同位素可以通过U全岩、U碎屑、δ238U全岩、δ238U碎屑关系式计算得出:

δ238U自生=U全岩×δ238U全岩-U碎屑×δ238U碎屑U自生 ,        

实验室中可以针对岩石样品直接测定其δ238U全岩,而δ238U碎屑受制于构成碎屑组分的颗粒性质,以及风化作用等后生作用侵蚀的影响,需要针对样品对U碎屑和δ238U碎屑进行精确的重新评估(Cole et al., 2017).尽管目前使用U同位素分馏分析古氧化还原的理论框架十分牢固,但同期海水中的U在进入碳酸盐岩、黑色页岩、铁锰结壳等载体时均会发生U同位素分馏,且这些沉积岩在成岩过程中也会产生U同位素分馏,这给研究人员在分析古氧化还原环境时带来了困难(Zhang et al., 2020).由于还原情况下238U优先进入硫化沉积物,使得硫化沉积物具有最高的Δ238U=0.60‰~0.85‰(Zhang et al., 2020).碳酸盐岩、黑色页岩和铁锰结壳在沉积过程中产生的U同位素分馏分别为Δ238U碳酸盐岩=0.3‰、Δ238U黑色页岩=0.6‰~0.7‰、Δ238U铁锰结壳=-0.24‰(Andersen et al., 2014Chen et al., 2021Wei et al., 2021),碳酸盐岩和黑色页岩记录的δ238U较同期海水偏重,这会导致对古海水含氧量的过度估计,且黑色页岩由于分馏程度更大,引起古海水含氧量的误差也较大.铁锰结壳记录的δ238U较同期海水偏轻,导致对含氧量估计偏低.

4 准确使用U同位素分析古海洋氧化还原环境

4.1 选取古海水δ238U的可靠载体

4.1.1 选取沉积过程中分馏程度小的岩样

从岩性角度看,碳酸盐岩作为古海洋δ²³⁸U的载体,相较于黑色页岩具有以下显著优点:(1) U同位素分馏机制差异.黑色页岩在沉积过程中经历大量氧化还原反应,导致U同位素分馏较大(Brown et al., 2018),而碳酸盐岩的U同位素分馏主要由海水中U的多样形态主导,分馏程度相对较低(Chen et al., 2021),因此,碳酸盐岩样品的δ²³⁸U值更接近同期海水的δ²³⁸U信息.(2) 时空分布与同位素记录.海相碳酸盐岩广泛分布,具有长时间跨度和高分辨率的同位素记录,已被前人验证(Morse and Mackenzie, 1990Veizer et al., 1999Prokoph et al., 2008Vollstaedt et al., 2014);但黑色页岩在某些区域也能作为δ²³⁸U的可靠载体,尤其在海相碳酸盐岩稀缺的地区,黑色页岩通过水体交换与开阔海洋联系,提供接近同期海水的δ²³⁸U信息.其中Kendall et al. (2015)通过陡山沱组黑色页岩的δ²³⁸U数据,成功证明了埃迪卡拉纪的海洋氧化作用.此外,铁锰结壳因生长缓慢且分布稀缺,限制了其在古海洋环境分析中的应用(Tissot et al., 2018),基于铁锰结壳的分析方法亟需进一步开发.综上所述,沉积环境中的pH、pCO₂、离子强度、Ca²⁺和Mg²⁺浓度等因素会影响岩石U同位素分馏程度(表2).随着pH、pCO₂、离子强度和Mg²⁺浓度的增加,U同位素分馏程度减小;反之,Ca²⁺浓度增加则使分馏程度增大(Brown et al., 2018).

4.1.2 选取成岩过程中分馏程度小的岩样

碳酸盐岩在成岩过程中会经历溶解和重结晶作用,导致矿物学转变、原生U的损失和外源U的混入,以及孔隙水地球化学特征的变化,最终使碳酸盐岩的U同位素偏重(Reeder et al., 2000Reeder et al., 2001).早期的成岩转变主要包括亚稳态文石的重结晶和方解石的交代.由于原生文石中的U含量高于方解石,因此方解石中的δ²³⁸U对外源U的混入更加敏感,表现为方解石中的δ²³⁸U比文石中的δ²³⁸U更容易受到成岩作用的影响(Chen et al., 2022).碳酸盐岩的成岩作用可导致δ²³⁸U值异常偏高,因此可以使用常规的成岩地球化学指标(如Fe/Sr、Mn/Sr)进行判别,近期Hu et al.(2023)还发现87Sr/86Sr也可作为成岩程度的标识.随着碳酸盐岩成岩程度的增加,这些指标值会有所提升,因此理想的碳酸盐岩样品应具有较低的Fe/Sr和Mn/Sr,以避免后期成岩作用的干扰.此外,黑色页岩在成岩过程中遭遇的热液蚀变也应被重视.有研究表明热液蚀变与黑色页岩Re⁃Os同位素体系的高异常有关,导致U同位素偏高.理想的样品应维持正常的Re⁃Os同位素体系,以确保不受热液流体的干扰(Yang et al., 2017).

4.2 消除陆源碎屑对U同位素组成的影响

在使用黑色页岩等碎屑岩分析古海洋氧化还原环境时,必须考虑陆源碎屑的混入对黑色页岩U同位素组成的影响,准确区分碎屑组分(陆源碎屑输入)和自生组分(从同期海水析出).由于物理化学风化作用会影响碎屑颗粒性质,需要重新精确评估岩石样品的U碎屑和δ²³⁸U碎屑(Cole et al., 2017).目前主流方法是使用浓硝酸(Wang et al., 2020)或王水(Xu et al., 2012)溶解黑色页岩.强酸溶解物仅能溶解有机物、硫化物、碳酸盐矿物等,主要反映同期海水自生U的同位素组成,而硅酸盐矿物的碎屑组分通常不被溶解(Xu et al., 2012).因此,黑色页岩经强酸溶解后的渗滤液中的U浓度和U同位素信息,直接反映了自生U组分.这种方法的显著优点是所有参数都可测定,减少了自生U组分的不确定性(Dang et al., 2022).但需要注意的是,虽然王水能有效溶解碳酸盐、有机物、硫化物和磷灰石,释放海水来源的U,但长时间浸泡可能会浸出少量硅酸盐矿物中的U(Xu et al., 2012).

4.3 消除后生作用对U同位素组成的影响

前文提到,碳酸盐岩在成岩过程中会发生U同位素分馏,导致对古海洋环境的错误解读.U同位素分馏的原因是U(Ⅳ)的混入,U(Ⅳ)的加入导致碳酸盐岩中U同位素偏高,而U(Ⅵ)则反映了古海水的U同位素组成.因此,应分离U(Ⅳ)和U(Ⅵ),并使用U(Ⅵ)的同位素组成来估计古海水的氧化还原环境.虽然分离U(Ⅳ)和U(Ⅵ)存在挑战,但近年来开发的离子交换色谱技术成功实现了这一分离.该方法通过滤膜过滤碳酸盐岩溶液,使用AG1X8阴离子树脂分离U(Ⅳ)和U(Ⅵ),从而消除成岩作用对U同位素的影响.然而,碳酸盐岩中U(Ⅳ)的来源仍不完全明确,可能不仅与成岩作用有关,也可能记录了古海水的同位素信息.因此,未来需要进一步研究U(Ⅳ)的赋存状态及来源,并优化技术以去除成岩影响.

5 结论与展望

(1)U同位素分馏现象在自然界广泛存在.U在经历氧化还原反应和吸附反应时,会产生不同程度的U同位素分馏,且分馏程度受多种因素的影响.常见的古海洋载体,如碳酸盐岩和黑色页岩,在富集U的过程中,难以避免发生氧化还原反应和吸附反应.

(2)碳酸盐岩和黑色页岩在沉积和成岩过程中均会使岩石内部富集重的U同位素,直接使用会导致研究人员对古海水含氧量的过度估计,因此沉积物中出现高的δ238U信号不一定代表全球海洋的氧化程度增加,而沉积物中出现低的δ238U信号基本可以代表全球海洋的缺氧程度增加.

(3)在碱性条件、较高二氧化碳分压、较强离子强度以及较高的镁离子浓度、较低钙离子浓度的环境下,沉积的碳酸盐岩的U同位素分馏程度较低.同时矿物组成以文石为主,且具有较低的Fe/Sr和Mn/Sr比值的碳酸盐岩,在成岩过程中发生的U同位素分馏程度也较低.

参考文献

[1]

Anbar, A. D., Knoll, A. H., 2002. Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? Science, 297(5584): 1137-1142. https://doi.org/10.1126/science.1069651

[2]

Andersen, M. B., Erel, Y., Bourdon, B., 2009. Experimental Evidence for 234U⁃238U Fractionation during Granite Weathering with Implications for 234U/238U in Natural Waters. Geochimica et Cosmochimica Acta, 73(14): 4124-4141. https://doi.org/10.1016/j.gca.2009.04.020

[3]

Andersen, M. B., Romaniello, S., Vance, D., et al., 2014. A Modern Framework for the Interpretation of 238U/235U in Studies of Ancient Ocean Redox. Earth and Planetary Science Letters, 400: 184-194. https://doi.org/10.1016/j.epsl.2014.05.051

[4]

Andersen, M. B., Stirling, C. H., Weyer, S., 2017. Uranium Isotope Fractionation. Reviews in Mineralogy and Geochemistry, 82(1): 799-850. https://doi.org/10.2138/rmg.2017.82.19

[5]

Andersen, M. B., Vance, D., Morford, J. L., et al., 2016. Closing in on the Marine 238U/235U Budget. Chemical Geology, 420: 11-22. https://doi.org/10.1016/j.chemgeo.2015.10.041

[6]

Bachmaf, S., Merkel, B. J., 2011. Sorption of Uranium(VI) at the Clay Mineral⁃Water Interface. Environmental Earth Sciences, 63(5): 925-934. https://doi.org/10.1007/s12665⁃010⁃0761⁃6

[7]

Bargar, J. R., Reitmeyer, R., Lenhart, J. J., et al., 2000. Characterization of U(VI)⁃Carbonato Ternary Complexes on Hematite: EXAFS and Electrophoretic Mobility Measurements. Geochimica et Cosmochimica Acta, 64(16): 2737-2749. https://doi.org/10.1016/S0016⁃7037(00)00398⁃7

[8]

Bargar, J. R., Williams, K. H., Campbell, K. M., et al., 2013. Uranium Redox Transition Pathways in Acetate⁃Amended Sediments. Proceedings of the National Academy of Sciences, 110(12): 4506-4511. https://doi.org/10.1073/pnas.1219198110

[9]

Basu, A., Sanford, R. A., Johnson, T. M., et al., 2014. Uranium Isotopic Fractionation Factors during U(VI) Reduction by Bacterial Isolates. Geochimica et Cosmochimica Acta, 136: 100-113. https://doi.org/10.1016/j.gca.2014.02.041

[10]

Brennecka, G. A., Borg, L. E., Hutcheon, I. D., et al., 2010. Natural Variations in Uranium Isotope Ratios of Uranium Ore Concentrates: Understanding the 238U/235U Fractionation Mechanism. Earth and Planetary Science Letters, 291(1-4): 228-233. https://doi.org/10.1016/j.epsl.2010.01.023

[11]

Brennecka, G. A., Wasylenki, L. E., Bargar, J. R., et al., 2011. Uranium Isotope Fractionation during Adsorption to Mn⁃Oxyhydroxides. Environmental Science & Technology, 45(4): 1370-1375. https://doi.org/10.1021/es103061v

[12]

Brown, A. R., Molinas, M., Roebbert, Y., et al., 2023. Electron Flux Is a Key Determinant of Uranium Isotope Fractionation during Bacterial Reduction. Communications Earth & Environment, 4: 329. https://doi.org/10.1038/s43247⁃023⁃00989⁃x

[13]

Brown, S. T., Basu, A., Ding, X., et al., 2018. Uranium Isotope Fractionation by Abiotic Reductive Precipitation. Proceedings of the National Academy of Sciences, 115(35): 8688-8693. https://doi.org/10.1073/pnas.1805234115

[14]

Chakraborty, S., Favre, F., Banerjee, D., et al., 2010. U(VI) Sorption and Reduction by Fe(II) Sorbed on Montmorillonite. Environmental Science & Technology, 44(10): 3779-3785. https://doi.org/10.1021/es903493n

[15]

Chen, X. M., Robinson, S. A., Romaniello, S. J., et al., 2022. 238U/235U in Calcite Is More Susceptible to Carbonate Diagenesis. Geochimica et Cosmochimica Acta, 326: 273-287. https://doi.org/10.1016/j.gca.2022.03.027

[16]

Chen, X. M., Romaniello, S. J., Anbar, A. D., 2017. Uranium Isotope Fractionation Induced by Aqueous Speciation: Implications for U Isotopes in Marine CaCO3 as a Paleoredox Proxy. Geochimica et Cosmochimica Acta, 215: 162-172. https://doi.org/10.1016/j.gca.2017.08.006

[17]

Chen, X. M., Romaniello, S. J., Herrmann, A. D., et al., 2016. Uranium Isotope Fractionation during Coprecipitation with Aragonite and Calcite. Geochimica et Cosmochimica Acta, 188: 189-207. https://doi.org/10.1016/j.gca.2016.05.022

[18]

Chen, X., Tissot, F. L. H., Jansen, M. F., et al., 2021. The Uranium Isotopic Record of Shales and Carbonates through Geologic Time. Geochimica et Cosmochimica Acta, 300: 164-191. https://doi.org/10.1016/j.gca.2021.01.040

[19]

Chen, X., Zheng, W., Anbar, A. D., 2020. Uranium Isotope Fractionation (238U/235U) during U(VI) Uptake by Freshwater Plankton. Environmental Science & Technology, 54(5): 2744-2752. https://doi.org/10.1021/acs.est.9b06421

[20]

Cheng, H., Lawrence Edwards, R., Shen, C. C., et al., 2013. Improvements in 230Th Dating, 230Th and 234U Half⁃Life Values, and U⁃Th Isotopic Measurements by Multi⁃Collector Inductively Coupled Plasma Mass Spectrometry. Earth and Planetary Science Letters, 371: 82-91. https://doi.org/10.1016/j.epsl.2013.04.006

[21]

Cole, D. B., Zhang, S., Planavsky, N. J., 2017. A New Estimate of Detrital Redox⁃Sensitive Metal Concentrations and Variability in Fluxes to Marine Sediments. Geochimica et Cosmochimica Acta, 215: 337-353. https://doi.org/10.1016/j.gca.2017.08.004

[22]

Cumberland, S. A., Douglas, G., Grice, K., et al., 2016. Uranium Mobility in Organic Matter⁃Rich Sediments: A Review of Geological and Geochemical Processes. Earth⁃Science Reviews, 159: 160-185. https://doi.org/10.1016/j.earscirev.2016.05.010

[23]

Dahl, T. W., Connelly, J. N., Li, D., et al., 2019. Atmosphere⁃Ocean Oxygen and Productivity Dynamics during Early Animal Radiations. Proceedings of the National Academy of Sciences, 116(39): 19352-19361. https://doi.org/10.1073/pnas.1901178116

[24]

Dang, D. H., Novotnik, B., Wang, W., et al., 2016. Uranium Isotope Fractionation during Adsorption, (Co) Precipitation, and Biotic Reduction. Environmental Science & Technology, 50(23): 12695-12704. https://doi.org/10.1021/acs.est.6b01459

[25]

Dang, D. H., Wang, W., Gibson, T. M., et al., 2022. Authigenic Uranium Isotopes of Late Proterozoic Black Shale. Chemical Geology, 588: 120644. https://doi.org/10.1016/j.chemgeo.2021.120644

[26]

Dong, W., Brooks, S. C., 2006. Determination of the Formation Constants of Ternary Complexes of Uranyl and Carbonate with Alkaline Earth Metals (Mg2+, Ca2+, Sr2+, and Ba2+) Using Anion Exchange Method. Environmental Science & Technology, 40(15): 4689-4695. https://doi.org/10.1021/es0606327

[27]

Dunk, R. M., Mills, R. A., Jenkins, W. J., 2002. A Reevaluation of the Oceanic Uranium Budget for the Holocene. Chemical Geology, 190(1-4): 45-67. https://doi.org/10.1016/S0009⁃2541(02)00110⁃9

[28]

Endrizzi, F., Leggett, C. J., Rao, L. F., 2016. Scientific Basis for Efficient Extraction of Uranium from Seawater. I: Understanding the Chemical Speciation of Uranium under Seawater Conditions. Industrial & Engineering Chemistry Research, 55(15): 4249-4256. https://doi.org/10.1021/acs.iecr.5b03679

[29]

Endrizzi, F., Rao, L., 2014. Chemical Speciation of Uranium(VI) in Marine Environments: Complexation of Calcium and Magnesium Ions with [(UO2)(CO3)3]4- and the Effect on the Extraction of Uranium from Seawater. Chemistry A European Journal, 20(44): 14499-14506. https://doi.org/10.1002/chem.201403262

[30]

Ferronsky, V. I., Polyakov, V. A., 2012. Production and Distribution of Radiogenic Isotopes. In: Ferronsky, V. I., Polyakov, V. A., eds., Isotopes of the Earth’s Hydrosphere. Springer, Dordrecht, 377-405. https://doi.org/10.1007/978⁃94⁃007⁃2856⁃1_16

[31]

Gilleaudeau, G. J., Romaniello, S. J., Luo, G. M., et al., 2019. Uranium Isotope Evidence for Limited Euxinia in Mid⁃Proterozoic Oceans. Earth and Planetary Science Letters, 521: 150-157. https://doi.org/10.1016/j.epsl.2019.06.012

[32]

Goto, K. T., Anbar, A. D., Gordon, G. W., et al., 2014. Uranium Isotope Systematics of Ferromanganese Crusts in the Pacific Ocean: Implications for the Marine 238U/235U Isotope System. Geochimica et Cosmochimica Acta, 146: 43-58. https://doi.org/10.1016/j.gca.2014.10.003

[33]

Herrmann, A. D., Gordon, G. W., Anbar, A. D., 2018. Uranium Isotope Variations in a Dolomitized Jurassic Carbonate Platform (Tithonian; Franconian Alb, Southern Germany). Chemical Geology, 497: 41-53. https://doi.org/10.1016/j.chemgeo.2018.08.017

[34]

Holmden, C., Amini, M., Francois, R., 2015. Uranium Isotope Fractionation in Saanich Inlet: A Modern Analog Study of a Paleoredox Tracer. Geochimica et Cosmochimica Acta, 153: 202-215. https://doi.org/10.1016/j.gca.2014.11.012

[35]

Hood, A. V. S., Planavsky, N. J., Wallace, M. W., et al., 2016. Integrated Geochemical⁃Petrographic Insights from Component⁃Selective δ238U of Cryogenian Marine Carbonates. Geology, 44(11): 935-938. https://doi.org/10.1130/g38533.1

[36]

Hu, D. P., Li, D. D., Zhou, L., et al., 2023. Diagenetic Effects on Strontium Isotope (87Sr/86Sr) and Elemental (Sr, Mn, and Fe) Signatures of Late Ordovician Carbonates. JUSTC, 53(5): 503. https://doi.org/10.52396/justc⁃2022⁃0160

[37]

Hua, B., Deng, B. L., 2008. Reductive Immobilization of Uranium(VI) by Amorphous Iron Sulfide. Environmental Science & Technology, 42(23): 8703-8708. https://doi.org/10.1021/es801225z

[38]

Jemison, N. E., Johnson, T. M., Shiel, A. E., et al., 2016. Uranium Isotopic Fractionation Induced by U(VI) Adsorption Onto Common Aquifer Minerals. Environmental Science & Technology, 50(22): 12232-12240. https://doi.org/10.1021/acs.est.6b03488

[39]

Kendall, B., Creaser, R. A., Gordon, G. W., et al., 2009. Re⁃Os and Mo Isotope Systematics of Black Shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, Northern Australia. Geochimica et Cosmochimica Acta, 73(9): 2534-2558. https://doi.org/10.1016/j.gca.2009.02.013

[40]

Kendall, B., Komiya, T., Lyons, T. W., et al., 2015. Uranium and Molybdenum Isotope Evidence for an Episode of Widespread Ocean Oxygenation during the Late Ediacaran Period. Geochimica et Cosmochimica Acta, 156: 173-193. https://doi.org/10.1016/j.gca.2015.02.025

[41]

Langmuir, D., 1978. Uranium Solution⁃Mineral Equilibria at Low Temperatures with Applications to Sedimentary Ore Deposits. Geochimica et Cosmochimica Acta, 42(6): 547-569. https://doi.org/10.1016/0016⁃7037(78)90001⁃7

[42]

Liger, E., Charlet, L., Van Cappellen, P., 1999. Surface Catalysis of Uranium(VI) Reduction by Iron(II). Geochimica et Cosmochimica Acta, 63(19/20): 2939-2955. https://doi.org/10.1016/S0016⁃7037(99)00265⁃3

[43]

Lowenstein, T. K., Kendall, B., Anbar, A. D., 2014. The Geologic History of Seawater. In: Holland H. D., Turekian K. K., eds., Treatise on Geochemistry. Elsevier, Amsterdam, 569-622. https://doi.org/10.1016/b978⁃ 0⁃08⁃095975⁃7.00621⁃5

[44]

Min, S. Y., Qiu, C., Luan, X. C., et al., 2023. Evolution of Oceanic Redox State during Early Ordovician Tremadocian Age Traced by Uranium Isotopes. Geological Journal of China Universities, 29(2):147-160 (in Chinese with English abstract).

[45]

Morse, J. W., Mackenzie, F. T., 1990. Geochemistry of Sedimentary Carbonates. Elsevier, New York.

[46]

Newsome, L., Morris, K., Lloyd, J. R., 2014. The Biogeochemistry and Bioremediation of Uranium and Other Priority Radionuclides. Chemical Geology, 363: 164-184. https://doi.org/10.1016/j.chemgeo.2013.10.034

[47]

Owens, S. A., Buesseler, K. O., Sims, K. W. W., 2011. Re⁃Evaluating the 238U⁃Salinity Relationship in Seawater: Implications for the 238U⁃234Th Disequilibrium Method. Marine Chemistry, 127(1-4): 31-39. https://doi.org/10.1016/j.marchem.2011.07.005

[48]

Plette, A. C. C., Benedetti, M. F., van Riemsdijk, W. H., 1996. Competitive Binding of Protons, Calcium, Cadmium, and Zinc to Isolated Cell Walls of a Gram⁃Positive Soil Bacterium. Environmental Science & Technology, 30(6): 1902-1910. https://doi.org/10.1021/es950568l

[49]

Prokoph, A., Shields, G. A., Veizer, J., 2008. Compilation and Time⁃Series Analysis of a Marine Carbonate δ18O, δ13C, 87Sr/86Sr and δ34S Database through Earth History. Earth⁃Science Reviews, 87(3-4): 113-133. https://doi.org/10.1016/j.earscirev.2007.12.003

[50]

Qiu, C., Wei, G. Y., Min, S. Y., et al., 2022. Marine Redox Fluctuation during the Early Cambrian Age 10: Evidence from U Isotopes. Geological Journal of China Universities, 28(1):40-50 (in Chinese with English abstract).

[51]

Rademacher, L. K., Lundstrom, C. C., Johnson, T. M., et al., 2006. Experimentally Determined Uranium Isotope Fractionation during Reduction of Hexavalent U by Bacteria and Zero Valent Iron. Environmental Science & Technology, 40(22): 6943-6948. https://doi.org/10.1021/es0604360

[52]

Reeder, R. J., Nugent, M., Lamble, G. M., et al., 2000. Uranyl Incorporation into Calcite and Aragonite: XAFS and Luminescence Studies. Environmental Science and Technology, 34(4): 638-644. https://doi.org/10.1021/es990981j

[53]

Reeder, R. J., Nugent, M., Tait, C. D., et al., 2001. Coprecipitation of Uranium(VI) with Calcite: XAFS, Micro⁃XAS, and Luminescence Characterization. Geochimica et Cosmochimica Acta, 65(20): 3491-3503. https://doi.org/10.1016/S0016⁃7037(01)00647⁃0

[54]

Renock, D., Mueller, M., Yuan, K., et al., 2013. The Energetics and Kinetics of Uranyl Reduction on Pyrite, Hematite, and Magnetite Surfaces: A Powder Microelectrode Study. Geochimica et Cosmochimica Acta, 118: 56-71. https://doi.org/10.1016/j.gca.2013.04.019

[55]

Rolison, J. M., Stirling, C. H., Middag, R., et al., 2017. Uranium Stable Isotope Fractionation in the Black Sea: Modern Calibration of the 238U/235U Paleo⁃Redox Proxy. Geochimica et Cosmochimica Acta, 203: 69-88. https://doi.org/10.1016/j.gca.2016.12.014

[56]

Romaniello, S. J., Herrmann, A. D., Anbar, A. D., 2013. Uranium Concentrations and 238U/235U Isotope Ratios in Modern Carbonates from the Bahamas: Assessing a Novel Paleoredox Proxy. Chemical Geology, 362: 305-316. https://doi.org/10.1016/j.chemgeo.2013.10.002

[57]

Scott, C., Lyons, T. W., Bekker, A., et al., 2008. Tracing the Stepwise Oxygenation of the Proterozoic Ocean. Nature, 452: 456-459. https://doi.org/10.1038/nature06811

[58]

Shi, L., Dong, H. L., Reguera, G., et al., 2016. Extracellular Electron Transfer Mechanisms between Microorganisms and Minerals. Nature Reviews Microbiology, 14: 651-662. https://doi.org/10.1038/nrmicro.2016.93

[59]

Singer, D. M., Chatman, S. M., Ilton, E. S., et al., 2012. U(VI) Sorption and Reduction Kinetics on the Magnetite (111) Surface. Environmental Science & Technology, 46(7): 3821-3830. https://doi.org/10.1021/es203878c

[60]

Skomurski, F. N., Ilton, E. S., Engelhard, M. H., et al., 2011. Heterogeneous Reduction of U6+ by Structural Fe2+ from Theory and Experiment. Geochimica et Cosmochimica Acta, 75(22): 7277-7290. https://doi.org/10.1016/j.gca.2011.08.006

[61]

Stirling, C. H., Andersen, M. B., Potter, E. K., et al., 2007. Low⁃Temperature Isotopic Fractionation of Uranium. Earth and Planetary Science Letters, 264(1-2): 208-225. https://doi.org/10.1016/j.epsl.2007.09.019

[62]

Stylo, M., Neubert, N., Wang, Y., et al., 2015. Uranium Isotopes Fingerprint Biotic Reduction. Proceedings of the National Academy of Sciences, 112(18): 5619-5624. https://doi.org/10.1073/pnas.1421841112

[63]

Suzuki, Y., Kelly, S. D., Kemner, K. M., et al., 2005. Direct Microbial Reduction and Subsequent Preservation of Uranium in Natural Near⁃Surface Sediment. Applied and Environmental Microbiology, 71(4): 1790-1797. https://doi.org/10.1128/aem.71.4.1790⁃1797.2005

[64]

Tissot, F. L. H., Chen, C., Go, B. M., et al., 2018. Controls of Eustasy and Diagenesis on the 238U/235U of Carbonates and Evolution of the Seawater (234U/238U) during the last 1.4 Myr. Geochimica et Cosmochimica Acta, 242: 233-265. https://doi.org/10.1016/j.gca.2018.08.022

[65]

Tissot, F. L. H., Dauphas, N., 2015. Uranium Isotopic Compositions of the Crust and Ocean: Age Corrections, U Budget and Global Extent of Modern Anoxia. Geochimica et Cosmochimica Acta, 167: 113-143. https://doi.org/10.1016/j.gca.2015.06.034

[66]

Tokumaru, A., Nozaki, T., Suzuki, K., et al., 2015. Re⁃Os Isotope Geochemistry in the Surface Layers of Ferromanganese Crusts from the Takuyo Daigo Seamount, Northwestern Pacific Ocean. Geochemical Journal, 49(3): 233-241. https://doi.org/10.2343/geochemj.2.0352

[67]

Tunusoğlu, Ö., 2007. Kinetic Morphological, and Compositional Characterization of the Uptake of Aqueous Ba2+, Mn2+, and Cd2+ Ions by Calcite and Aragonite over a Wide Range of Concentration. Izmir Institute of Technology, Izmir.

[68]

Ulrich, K. U., Veeramani, H., Bernier⁃Latmani, R., et al., 2011. Speciation⁃Dependent Kinetics of Uranium(VI) Bioreduction. Geomicrobiology Journal, 28(5-6): 396-409. https://doi.org/10.1080/01490451.2010.507640

[69]

Veeramani, H., Alessi, D. S., Suvorova, E. I., et al., 2011. Products of Abiotic U(VI) Reduction by Biogenic Magnetite and Vivianite. Geochimica et Cosmochimica Acta, 75(9): 2512-2528. https://doi.org/10.1016/j.gca.2011.02.024

[70]

Veizer, J., Ala, D., Azmy, K., et al., 1999. 87Sr/86Sr, δ13C and δ18O Evolution of Phanerozoic Seawater. Chemical Geology, 161(1-3): 59-88. https://doi.org/10.1016/S0009⁃2541(99)00081⁃9

[71]

Vollstaedt, H., Eisenhauer, A., Wallmann, K., et al., 2014. The Phanerozoic δ88/86Sr Record of Seawater: New Constraints on Past Changes in Oceanic Carbonate Fluxes. Geochimica et Cosmochimica Acta, 128: 249-265. https://doi.org/10.1016/j.gca.2013.10.006

[72]

Waite, T. D., Davis, J. A., Payne, T. E., et al., 1994. Uranium(VI) Adsorption to Ferrihydrite: Application of a Surface Complexation Model. Geochimica et Cosmochimica Acta, 58(24): 5465-5478. https://doi.org/10.1016/0016⁃7037(94)90243⁃7

[73]

Wall, J. D., Krumholz, L. R., 2006. Uranium Reduction. Annual Review of Microbiology, 60: 149-166. https://doi.org/10.1146/annurev.micro.59.030804.121357

[74]

Wang, X. L., Johnson, T. M., Lundstrom, C. C., 2015. Isotope Fractionation during Oxidation of Tetravalent Uranium by Dissolved Oxygen. Geochimica et Cosmochimica Acta, 150: 160-170. https://doi.org/10.1016/j.gca.2014.12.007

[75]

Wang, X. L., Ossa, F. O., Hofmann, A., et al., 2020. Uranium Isotope Evidence for Mesoarchean Biological Oxygen Production in Shallow Marine and Continental Settings. Earth and Planetary Science Letters, 551: 116583. https://doi.org/10.1016/j.epsl.2020.116583

[76]

Wang, X., Planavsky, N. J., Reinhard, C. T., et al., 2016. A Cenozoic Seawater Redox Record Derived from 238U/235U in Ferromanganese Crusts. American Journal of Science, 316(1): 64-83. https://doi.org/10.2475/01.2016.02

[77]

Wei, W., Frei, R., Klaebe, R., et al., 2021. A Transient Swing to Higher Oxygen Levels in the Atmosphere and Oceans at ~1.4 Ga. Precambrian Research, 354: 106058. https://doi.org/10.1016/j.precamres.2020.106058

[78]

Weyer, S., Anbar, A. D., Gerdes, A., et al., 2008. Natural Fractionation of 238U/235U. Geochimica et Cosmochimica Acta, 72(2): 345-359. https://doi.org/10.1016/j.gca.2007.11.012

[79]

Xu, G. P., Hannah, J. L., Bingen, B., et al., 2012. Digestion Methods for Trace Element Measurements in Shales: Paleoredox Proxies Examined. Chemical Geology, 324: 132-147. https://doi.org/10.1016/j.chemgeo.2012.01.029

[80]

Yang, S., Kendall, B., Lu, X. Z., et al., 2017. Uranium Isotope Compositions of Mid⁃Proterozoic Black Shales: Evidence for an Episode of Increased Ocean Oxygenation at 1.36 Ga and Evaluation of the Effect of Post⁃Depositional Hydrothermal Fluid Flow. Precambrian Research, 298: 187-201. https://doi.org/10.1016/j.precamres.2017.06.016

[81]

Zhang, F. F., Lenton, T. M., Rey, Á. D., et al., 2020. Uranium Isotopes in Marine Carbonates as a Global Ocean Paleoredox Proxy: A Critical Review. Geochimica et Cosmochimica Acta, 287: 27-49. https://doi.org/10.1016/j.gca.2020.05.011

基金资助

国家自然科学基金面上项目(42073068)

AI Summary AI Mindmap
PDF (1608KB)

80

访问

0

被引

详细

导航
相关文章

AI思维导图

/