U同位素在重建古海洋氧化还原环境中的应用
Application of U Isotope Fractionation Effect in the Analysis of Paleooceans Redox Environments
,
U同位素载体在沉积和成岩过程中均会发生显著的分馏,导致人们对古海洋氧化还原环境的误判.本文系统梳理了U同位素的分馏机制,逐一阐述了其在碳酸盐岩、黑色页岩和铁锰结壳的沉积和成岩过程中的分馏行为,并提出了理想载体的特征及消除沉积成岩效应的技术手段.总体而言,U同位素分馏机制丰富多样,分馏程度受反应速率、电子通量和环境离子强度等多种因素影响.碳酸盐岩和黑色页岩的沉积与成岩作用通常导致同位素组成偏重,而铁锰结壳则会出现相反方向的分馏,分馏程度受沉积环境和岩性组成的控制.实际应用中应选择成岩程度较低、以文石为主的海相碳酸盐岩,并采用离子交换色谱等技术手段,精确表征古海洋氧化还原环境.
U isotope carriers undergo significant fractionation during sedimentation and diagenesis, often leading to misinterpretations of paleoocean redox conditions. This study systematically reviews the fractionation mechanisms of U isotopes, detailing their behavior during the sedimentation and diagenesis of carbonates, black shales, and ferromanganese crusts. It also proposes characteristics of ideal carriers and techniques to mitigate diagenetic effects. Overall, U isotope fractionation mechanisms are diverse, influenced by factors such as reaction rates, electron flux, and ionic strength. Sedimentation and diagenesis in carbonates and black shales typically result in heavier isotope compositions, while ferromanganese crusts exhibit fractionation in the opposite direction. The extent of fractionation is controlled by depositional environments and lithological composition. In practical applications, marine carbonates with low diagenetic alteration and primarily aragonitic mineralogy are recommended. Advanced techniques, such as ion-exchange chromatography, should be employed to accurately reconstruct the redox conditions of paleooceans.
U同位素 / 分馏效应 / 分馏机理 / 古海洋 / 氧化还原环境 / 沉积学 / 地球化学.
U isotopes / fractionation effect / fractionation mechanism / paleooceans / redox environment / sedimentology / geochemistry
| [1] |
Anbar, A. D., Knoll, A. H., 2002. Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? Science, 297(5584): 1137-1142. https://doi.org/10.1126/science.1069651 |
| [2] |
Andersen, M. B., Erel, Y., Bourdon, B., 2009. Experimental Evidence for 234U⁃238U Fractionation during Granite Weathering with Implications for 234U/238U in Natural Waters. Geochimica et Cosmochimica Acta, 73(14): 4124-4141. https://doi.org/10.1016/j.gca.2009.04.020 |
| [3] |
Andersen, M. B., Romaniello, S., Vance, D., et al., 2014. A Modern Framework for the Interpretation of 238U/235U in Studies of Ancient Ocean Redox. Earth and Planetary Science Letters, 400: 184-194. https://doi.org/10.1016/j.epsl.2014.05.051 |
| [4] |
Andersen, M. B., Stirling, C. H., Weyer, S., 2017. Uranium Isotope Fractionation. Reviews in Mineralogy and Geochemistry, 82(1): 799-850. https://doi.org/10.2138/rmg.2017.82.19 |
| [5] |
Andersen, M. B., Vance, D., Morford, J. L., et al., 2016. Closing in on the Marine 238U/235U Budget. Chemical Geology, 420: 11-22. https://doi.org/10.1016/j.chemgeo.2015.10.041 |
| [6] |
Bachmaf, S., Merkel, B. J., 2011. Sorption of Uranium(VI) at the Clay Mineral⁃Water Interface. Environmental Earth Sciences, 63(5): 925-934. https://doi.org/10.1007/s12665⁃010⁃0761⁃6 |
| [7] |
Bargar, J. R., Reitmeyer, R., Lenhart, J. J., et al., 2000. Characterization of U(VI)⁃Carbonato Ternary Complexes on Hematite: EXAFS and Electrophoretic Mobility Measurements. Geochimica et Cosmochimica Acta, 64(16): 2737-2749. https://doi.org/10.1016/S0016⁃7037(00)00398⁃7 |
| [8] |
Bargar, J. R., Williams, K. H., Campbell, K. M., et al., 2013. Uranium Redox Transition Pathways in Acetate⁃Amended Sediments. Proceedings of the National Academy of Sciences, 110(12): 4506-4511. https://doi.org/10.1073/pnas.1219198110 |
| [9] |
Basu, A., Sanford, R. A., Johnson, T. M., et al., 2014. Uranium Isotopic Fractionation Factors during U(VI) Reduction by Bacterial Isolates. Geochimica et Cosmochimica Acta, 136: 100-113. https://doi.org/10.1016/j.gca.2014.02.041 |
| [10] |
Brennecka, G. A., Borg, L. E., Hutcheon, I. D., et al., 2010. Natural Variations in Uranium Isotope Ratios of Uranium Ore Concentrates: Understanding the 238U/235U Fractionation Mechanism. Earth and Planetary Science Letters, 291(1-4): 228-233. https://doi.org/10.1016/j.epsl.2010.01.023 |
| [11] |
Brennecka, G. A., Wasylenki, L. E., Bargar, J. R., et al., 2011. Uranium Isotope Fractionation during Adsorption to Mn⁃Oxyhydroxides. Environmental Science & Technology, 45(4): 1370-1375. https://doi.org/10.1021/es103061v |
| [12] |
Brown, A. R., Molinas, M., Roebbert, Y., et al., 2023. Electron Flux Is a Key Determinant of Uranium Isotope Fractionation during Bacterial Reduction. Communications Earth & Environment, 4: 329. https://doi.org/10.1038/s43247⁃023⁃00989⁃x |
| [13] |
Brown, S. T., Basu, A., Ding, X., et al., 2018. Uranium Isotope Fractionation by Abiotic Reductive Precipitation. Proceedings of the National Academy of Sciences, 115(35): 8688-8693. https://doi.org/10.1073/pnas.1805234115 |
| [14] |
Chakraborty, S., Favre, F., Banerjee, D., et al., 2010. U(VI) Sorption and Reduction by Fe(II) Sorbed on Montmorillonite. Environmental Science & Technology, 44(10): 3779-3785. https://doi.org/10.1021/es903493n |
| [15] |
Chen, X. M., Robinson, S. A., Romaniello, S. J., et al., 2022. 238U/235U in Calcite Is More Susceptible to Carbonate Diagenesis. Geochimica et Cosmochimica Acta, 326: 273-287. https://doi.org/10.1016/j.gca.2022.03.027 |
| [16] |
Chen, X. M., Romaniello, S. J., Anbar, A. D., 2017. Uranium Isotope Fractionation Induced by Aqueous Speciation: Implications for U Isotopes in Marine CaCO3 as a Paleoredox Proxy. Geochimica et Cosmochimica Acta, 215: 162-172. https://doi.org/10.1016/j.gca.2017.08.006 |
| [17] |
Chen, X. M., Romaniello, S. J., Herrmann, A. D., et al., 2016. Uranium Isotope Fractionation during Coprecipitation with Aragonite and Calcite. Geochimica et Cosmochimica Acta, 188: 189-207. https://doi.org/10.1016/j.gca.2016.05.022 |
| [18] |
Chen, X., Tissot, F. L. H., Jansen, M. F., et al., 2021. The Uranium Isotopic Record of Shales and Carbonates through Geologic Time. Geochimica et Cosmochimica Acta, 300: 164-191. https://doi.org/10.1016/j.gca.2021.01.040 |
| [19] |
Chen, X., Zheng, W., Anbar, A. D., 2020. Uranium Isotope Fractionation (238U/235U) during U(VI) Uptake by Freshwater Plankton. Environmental Science & Technology, 54(5): 2744-2752. https://doi.org/10.1021/acs.est.9b06421 |
| [20] |
Cheng, H., Lawrence Edwards, R., Shen, C. C., et al., 2013. Improvements in 230Th Dating, 230Th and 234U Half⁃Life Values, and U⁃Th Isotopic Measurements by Multi⁃Collector Inductively Coupled Plasma Mass Spectrometry. Earth and Planetary Science Letters, 371: 82-91. https://doi.org/10.1016/j.epsl.2013.04.006 |
| [21] |
Cole, D. B., Zhang, S., Planavsky, N. J., 2017. A New Estimate of Detrital Redox⁃Sensitive Metal Concentrations and Variability in Fluxes to Marine Sediments. Geochimica et Cosmochimica Acta, 215: 337-353. https://doi.org/10.1016/j.gca.2017.08.004 |
| [22] |
Cumberland, S. A., Douglas, G., Grice, K., et al., 2016. Uranium Mobility in Organic Matter⁃Rich Sediments: A Review of Geological and Geochemical Processes. Earth⁃Science Reviews, 159: 160-185. https://doi.org/10.1016/j.earscirev.2016.05.010 |
| [23] |
Dahl, T. W., Connelly, J. N., Li, D., et al., 2019. Atmosphere⁃Ocean Oxygen and Productivity Dynamics during Early Animal Radiations. Proceedings of the National Academy of Sciences, 116(39): 19352-19361. https://doi.org/10.1073/pnas.1901178116 |
| [24] |
Dang, D. H., Novotnik, B., Wang, W., et al., 2016. Uranium Isotope Fractionation during Adsorption, (Co) Precipitation, and Biotic Reduction. Environmental Science & Technology, 50(23): 12695-12704. https://doi.org/10.1021/acs.est.6b01459 |
| [25] |
Dang, D. H., Wang, W., Gibson, T. M., et al., 2022. Authigenic Uranium Isotopes of Late Proterozoic Black Shale. Chemical Geology, 588: 120644. https://doi.org/10.1016/j.chemgeo.2021.120644 |
| [26] |
Dong, W., Brooks, S. C., 2006. Determination of the Formation Constants of Ternary Complexes of Uranyl and Carbonate with Alkaline Earth Metals (Mg2+, Ca2+, Sr2+, and Ba2+) Using Anion Exchange Method. Environmental Science & Technology, 40(15): 4689-4695. https://doi.org/10.1021/es0606327 |
| [27] |
Dunk, R. M., Mills, R. A., Jenkins, W. J., 2002. A Reevaluation of the Oceanic Uranium Budget for the Holocene. Chemical Geology, 190(1-4): 45-67. https://doi.org/10.1016/S0009⁃2541(02)00110⁃9 |
| [28] |
Endrizzi, F., Leggett, C. J., Rao, L. F., 2016. Scientific Basis for Efficient Extraction of Uranium from Seawater. I: Understanding the Chemical Speciation of Uranium under Seawater Conditions. Industrial & Engineering Chemistry Research, 55(15): 4249-4256. https://doi.org/10.1021/acs.iecr.5b03679 |
| [29] |
Endrizzi, F., Rao, L., 2014. Chemical Speciation of Uranium(VI) in Marine Environments: Complexation of Calcium and Magnesium Ions with [(UO2)(CO3)3]4- and the Effect on the Extraction of Uranium from Seawater. Chemistry A European Journal, 20(44): 14499-14506. https://doi.org/10.1002/chem.201403262 |
| [30] |
Ferronsky, V. I., Polyakov, V. A., 2012. Production and Distribution of Radiogenic Isotopes. In: Ferronsky, V. I., Polyakov, V. A., eds., Isotopes of the Earth’s Hydrosphere. Springer, Dordrecht, 377-405. https://doi.org/10.1007/978⁃94⁃007⁃2856⁃1_16 |
| [31] |
Gilleaudeau, G. J., Romaniello, S. J., Luo, G. M., et al., 2019. Uranium Isotope Evidence for Limited Euxinia in Mid⁃Proterozoic Oceans. Earth and Planetary Science Letters, 521: 150-157. https://doi.org/10.1016/j.epsl.2019.06.012 |
| [32] |
Goto, K. T., Anbar, A. D., Gordon, G. W., et al., 2014. Uranium Isotope Systematics of Ferromanganese Crusts in the Pacific Ocean: Implications for the Marine 238U/235U Isotope System. Geochimica et Cosmochimica Acta, 146: 43-58. https://doi.org/10.1016/j.gca.2014.10.003 |
| [33] |
Herrmann, A. D., Gordon, G. W., Anbar, A. D., 2018. Uranium Isotope Variations in a Dolomitized Jurassic Carbonate Platform (Tithonian; Franconian Alb, Southern Germany). Chemical Geology, 497: 41-53. https://doi.org/10.1016/j.chemgeo.2018.08.017 |
| [34] |
Holmden, C., Amini, M., Francois, R., 2015. Uranium Isotope Fractionation in Saanich Inlet: A Modern Analog Study of a Paleoredox Tracer. Geochimica et Cosmochimica Acta, 153: 202-215. https://doi.org/10.1016/j.gca.2014.11.012 |
| [35] |
Hood, A. V. S., Planavsky, N. J., Wallace, M. W., et al., 2016. Integrated Geochemical⁃Petrographic Insights from Component⁃Selective δ238U of Cryogenian Marine Carbonates. Geology, 44(11): 935-938. https://doi.org/10.1130/g38533.1 |
| [36] |
Hu, D. P., Li, D. D., Zhou, L., et al., 2023. Diagenetic Effects on Strontium Isotope (87Sr/86Sr) and Elemental (Sr, Mn, and Fe) Signatures of Late Ordovician Carbonates. JUSTC, 53(5): 503. https://doi.org/10.52396/justc⁃2022⁃0160 |
| [37] |
Hua, B., Deng, B. L., 2008. Reductive Immobilization of Uranium(VI) by Amorphous Iron Sulfide. Environmental Science & Technology, 42(23): 8703-8708. https://doi.org/10.1021/es801225z |
| [38] |
Jemison, N. E., Johnson, T. M., Shiel, A. E., et al., 2016. Uranium Isotopic Fractionation Induced by U(VI) Adsorption Onto Common Aquifer Minerals. Environmental Science & Technology, 50(22): 12232-12240. https://doi.org/10.1021/acs.est.6b03488 |
| [39] |
Kendall, B., Creaser, R. A., Gordon, G. W., et al., 2009. Re⁃Os and Mo Isotope Systematics of Black Shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, Northern Australia. Geochimica et Cosmochimica Acta, 73(9): 2534-2558. https://doi.org/10.1016/j.gca.2009.02.013 |
| [40] |
Kendall, B., Komiya, T., Lyons, T. W., et al., 2015. Uranium and Molybdenum Isotope Evidence for an Episode of Widespread Ocean Oxygenation during the Late Ediacaran Period. Geochimica et Cosmochimica Acta, 156: 173-193. https://doi.org/10.1016/j.gca.2015.02.025 |
| [41] |
Langmuir, D., 1978. Uranium Solution⁃Mineral Equilibria at Low Temperatures with Applications to Sedimentary Ore Deposits. Geochimica et Cosmochimica Acta, 42(6): 547-569. https://doi.org/10.1016/0016⁃7037(78)90001⁃7 |
| [42] |
Liger, E., Charlet, L., Van Cappellen, P., 1999. Surface Catalysis of Uranium(VI) Reduction by Iron(II). Geochimica et Cosmochimica Acta, 63(19/20): 2939-2955. https://doi.org/10.1016/S0016⁃7037(99)00265⁃3 |
| [43] |
Lowenstein, T. K., Kendall, B., Anbar, A. D., 2014. The Geologic History of Seawater. In: Holland H. D., Turekian K. K., eds., Treatise on Geochemistry. Elsevier, Amsterdam, 569-622. https://doi.org/10.1016/b978⁃ 0⁃08⁃095975⁃7.00621⁃5 |
| [44] |
Min, S. Y., Qiu, C., Luan, X. C., et al., 2023. Evolution of Oceanic Redox State during Early Ordovician Tremadocian Age Traced by Uranium Isotopes. Geological Journal of China Universities, 29(2):147-160 (in Chinese with English abstract). |
| [45] |
Morse, J. W., Mackenzie, F. T., 1990. Geochemistry of Sedimentary Carbonates. Elsevier, New York. |
| [46] |
Newsome, L., Morris, K., Lloyd, J. R., 2014. The Biogeochemistry and Bioremediation of Uranium and Other Priority Radionuclides. Chemical Geology, 363: 164-184. https://doi.org/10.1016/j.chemgeo.2013.10.034 |
| [47] |
Owens, S. A., Buesseler, K. O., Sims, K. W. W., 2011. Re⁃Evaluating the 238U⁃Salinity Relationship in Seawater: Implications for the 238U⁃234Th Disequilibrium Method. Marine Chemistry, 127(1-4): 31-39. https://doi.org/10.1016/j.marchem.2011.07.005 |
| [48] |
Plette, A. C. C., Benedetti, M. F., van Riemsdijk, W. H., 1996. Competitive Binding of Protons, Calcium, Cadmium, and Zinc to Isolated Cell Walls of a Gram⁃Positive Soil Bacterium. Environmental Science & Technology, 30(6): 1902-1910. https://doi.org/10.1021/es950568l |
| [49] |
Prokoph, A., Shields, G. A., Veizer, J., 2008. Compilation and Time⁃Series Analysis of a Marine Carbonate δ18O, δ13C, 87Sr/86Sr and δ34S Database through Earth History. Earth⁃Science Reviews, 87(3-4): 113-133. https://doi.org/10.1016/j.earscirev.2007.12.003 |
| [50] |
Qiu, C., Wei, G. Y., Min, S. Y., et al., 2022. Marine Redox Fluctuation during the Early Cambrian Age 10: Evidence from U Isotopes. Geological Journal of China Universities, 28(1):40-50 (in Chinese with English abstract). |
| [51] |
Rademacher, L. K., Lundstrom, C. C., Johnson, T. M., et al., 2006. Experimentally Determined Uranium Isotope Fractionation during Reduction of Hexavalent U by Bacteria and Zero Valent Iron. Environmental Science & Technology, 40(22): 6943-6948. https://doi.org/10.1021/es0604360 |
| [52] |
Reeder, R. J., Nugent, M., Lamble, G. M., et al., 2000. Uranyl Incorporation into Calcite and Aragonite: XAFS and Luminescence Studies. Environmental Science and Technology, 34(4): 638-644. https://doi.org/10.1021/es990981j |
| [53] |
Reeder, R. J., Nugent, M., Tait, C. D., et al., 2001. Coprecipitation of Uranium(VI) with Calcite: XAFS, Micro⁃XAS, and Luminescence Characterization. Geochimica et Cosmochimica Acta, 65(20): 3491-3503. https://doi.org/10.1016/S0016⁃7037(01)00647⁃0 |
| [54] |
Renock, D., Mueller, M., Yuan, K., et al., 2013. The Energetics and Kinetics of Uranyl Reduction on Pyrite, Hematite, and Magnetite Surfaces: A Powder Microelectrode Study. Geochimica et Cosmochimica Acta, 118: 56-71. https://doi.org/10.1016/j.gca.2013.04.019 |
| [55] |
Rolison, J. M., Stirling, C. H., Middag, R., et al., 2017. Uranium Stable Isotope Fractionation in the Black Sea: Modern Calibration of the 238U/235U Paleo⁃Redox Proxy. Geochimica et Cosmochimica Acta, 203: 69-88. https://doi.org/10.1016/j.gca.2016.12.014 |
| [56] |
Romaniello, S. J., Herrmann, A. D., Anbar, A. D., 2013. Uranium Concentrations and 238U/235U Isotope Ratios in Modern Carbonates from the Bahamas: Assessing a Novel Paleoredox Proxy. Chemical Geology, 362: 305-316. https://doi.org/10.1016/j.chemgeo.2013.10.002 |
| [57] |
Scott, C., Lyons, T. W., Bekker, A., et al., 2008. Tracing the Stepwise Oxygenation of the Proterozoic Ocean. Nature, 452: 456-459. https://doi.org/10.1038/nature06811 |
| [58] |
Shi, L., Dong, H. L., Reguera, G., et al., 2016. Extracellular Electron Transfer Mechanisms between Microorganisms and Minerals. Nature Reviews Microbiology, 14: 651-662. https://doi.org/10.1038/nrmicro.2016.93 |
| [59] |
Singer, D. M., Chatman, S. M., Ilton, E. S., et al., 2012. U(VI) Sorption and Reduction Kinetics on the Magnetite (111) Surface. Environmental Science & Technology, 46(7): 3821-3830. https://doi.org/10.1021/es203878c |
| [60] |
Skomurski, F. N., Ilton, E. S., Engelhard, M. H., et al., 2011. Heterogeneous Reduction of U6+ by Structural Fe2+ from Theory and Experiment. Geochimica et Cosmochimica Acta, 75(22): 7277-7290. https://doi.org/10.1016/j.gca.2011.08.006 |
| [61] |
Stirling, C. H., Andersen, M. B., Potter, E. K., et al., 2007. Low⁃Temperature Isotopic Fractionation of Uranium. Earth and Planetary Science Letters, 264(1-2): 208-225. https://doi.org/10.1016/j.epsl.2007.09.019 |
| [62] |
Stylo, M., Neubert, N., Wang, Y., et al., 2015. Uranium Isotopes Fingerprint Biotic Reduction. Proceedings of the National Academy of Sciences, 112(18): 5619-5624. https://doi.org/10.1073/pnas.1421841112 |
| [63] |
Suzuki, Y., Kelly, S. D., Kemner, K. M., et al., 2005. Direct Microbial Reduction and Subsequent Preservation of Uranium in Natural Near⁃Surface Sediment. Applied and Environmental Microbiology, 71(4): 1790-1797. https://doi.org/10.1128/aem.71.4.1790⁃1797.2005 |
| [64] |
Tissot, F. L. H., Chen, C., Go, B. M., et al., 2018. Controls of Eustasy and Diagenesis on the 238U/235U of Carbonates and Evolution of the Seawater (234U/238U) during the last 1.4 Myr. Geochimica et Cosmochimica Acta, 242: 233-265. https://doi.org/10.1016/j.gca.2018.08.022 |
| [65] |
Tissot, F. L. H., Dauphas, N., 2015. Uranium Isotopic Compositions of the Crust and Ocean: Age Corrections, U Budget and Global Extent of Modern Anoxia. Geochimica et Cosmochimica Acta, 167: 113-143. https://doi.org/10.1016/j.gca.2015.06.034 |
| [66] |
Tokumaru, A., Nozaki, T., Suzuki, K., et al., 2015. Re⁃Os Isotope Geochemistry in the Surface Layers of Ferromanganese Crusts from the Takuyo Daigo Seamount, Northwestern Pacific Ocean. Geochemical Journal, 49(3): 233-241. https://doi.org/10.2343/geochemj.2.0352 |
| [67] |
Tunusoğlu, Ö., 2007. Kinetic Morphological, and Compositional Characterization of the Uptake of Aqueous Ba2+, Mn2+, and Cd2+ Ions by Calcite and Aragonite over a Wide Range of Concentration. Izmir Institute of Technology, Izmir. |
| [68] |
Ulrich, K. U., Veeramani, H., Bernier⁃Latmani, R., et al., 2011. Speciation⁃Dependent Kinetics of Uranium(VI) Bioreduction. Geomicrobiology Journal, 28(5-6): 396-409. https://doi.org/10.1080/01490451.2010.507640 |
| [69] |
Veeramani, H., Alessi, D. S., Suvorova, E. I., et al., 2011. Products of Abiotic U(VI) Reduction by Biogenic Magnetite and Vivianite. Geochimica et Cosmochimica Acta, 75(9): 2512-2528. https://doi.org/10.1016/j.gca.2011.02.024 |
| [70] |
Veizer, J., Ala, D., Azmy, K., et al., 1999. 87Sr/86Sr, δ13C and δ18O Evolution of Phanerozoic Seawater. Chemical Geology, 161(1-3): 59-88. https://doi.org/10.1016/S0009⁃2541(99)00081⁃9 |
| [71] |
Vollstaedt, H., Eisenhauer, A., Wallmann, K., et al., 2014. The Phanerozoic δ88/86Sr Record of Seawater: New Constraints on Past Changes in Oceanic Carbonate Fluxes. Geochimica et Cosmochimica Acta, 128: 249-265. https://doi.org/10.1016/j.gca.2013.10.006 |
| [72] |
Waite, T. D., Davis, J. A., Payne, T. E., et al., 1994. Uranium(VI) Adsorption to Ferrihydrite: Application of a Surface Complexation Model. Geochimica et Cosmochimica Acta, 58(24): 5465-5478. https://doi.org/10.1016/0016⁃7037(94)90243⁃7 |
| [73] |
Wall, J. D., Krumholz, L. R., 2006. Uranium Reduction. Annual Review of Microbiology, 60: 149-166. https://doi.org/10.1146/annurev.micro.59.030804.121357 |
| [74] |
Wang, X. L., Johnson, T. M., Lundstrom, C. C., 2015. Isotope Fractionation during Oxidation of Tetravalent Uranium by Dissolved Oxygen. Geochimica et Cosmochimica Acta, 150: 160-170. https://doi.org/10.1016/j.gca.2014.12.007 |
| [75] |
Wang, X. L., Ossa, F. O., Hofmann, A., et al., 2020. Uranium Isotope Evidence for Mesoarchean Biological Oxygen Production in Shallow Marine and Continental Settings. Earth and Planetary Science Letters, 551: 116583. https://doi.org/10.1016/j.epsl.2020.116583 |
| [76] |
Wang, X., Planavsky, N. J., Reinhard, C. T., et al., 2016. A Cenozoic Seawater Redox Record Derived from 238U/235U in Ferromanganese Crusts. American Journal of Science, 316(1): 64-83. https://doi.org/10.2475/01.2016.02 |
| [77] |
Wei, W., Frei, R., Klaebe, R., et al., 2021. A Transient Swing to Higher Oxygen Levels in the Atmosphere and Oceans at ~1.4 Ga. Precambrian Research, 354: 106058. https://doi.org/10.1016/j.precamres.2020.106058 |
| [78] |
Weyer, S., Anbar, A. D., Gerdes, A., et al., 2008. Natural Fractionation of 238U/235U. Geochimica et Cosmochimica Acta, 72(2): 345-359. https://doi.org/10.1016/j.gca.2007.11.012 |
| [79] |
Xu, G. P., Hannah, J. L., Bingen, B., et al., 2012. Digestion Methods for Trace Element Measurements in Shales: Paleoredox Proxies Examined. Chemical Geology, 324: 132-147. https://doi.org/10.1016/j.chemgeo.2012.01.029 |
| [80] |
Yang, S., Kendall, B., Lu, X. Z., et al., 2017. Uranium Isotope Compositions of Mid⁃Proterozoic Black Shales: Evidence for an Episode of Increased Ocean Oxygenation at 1.36 Ga and Evaluation of the Effect of Post⁃Depositional Hydrothermal Fluid Flow. Precambrian Research, 298: 187-201. https://doi.org/10.1016/j.precamres.2017.06.016 |
| [81] |
Zhang, F. F., Lenton, T. M., Rey, Á. D., et al., 2020. Uranium Isotopes in Marine Carbonates as a Global Ocean Paleoredox Proxy: A Critical Review. Geochimica et Cosmochimica Acta, 287: 27-49. https://doi.org/10.1016/j.gca.2020.05.011 |
国家自然科学基金面上项目(42073068)
/
| 〈 |
|
〉 |