江汉平原古云梦泽形成演化及其影响机制

顾延生 ,  管硕 ,  李越南

地球科学 ›› 2025, Vol. 50 ›› Issue (03) : 830 -845.

PDF (5543KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (03) : 830 -845. DOI: 10.3799/dqkx.2024.130

江汉平原古云梦泽形成演化及其影响机制

作者信息 +

The Formation and Evolution of the Paleo⁃Yunmeng Lake Group in the Jianghan Plain and Its Influencing Mechanism

Author information +
文章历史 +
PDF (5675K)

摘要

夏商以来,江汉平原发育的古云梦泽具有重要的历史、地理、文化与生态环境研究价值,但长久以来受到历史记载贫乏和钻孔调查精度的限制,古云梦泽的成因、分布、演化的时空格局尚不清晰.在前人历史文献和钻孔调查基础上,本文首次系统开展了钻孔高分辨率古环境演化研究,真实还原了4 000年来古云梦泽形成演化历史,全面而深刻地揭示了古云梦泽沉积地貌过程与区域新构造运动、气候变化、河道变迁和人类活动的关系.多钻孔沉积学分析表明,古云梦泽发育时期沉积环境具有多样性,包括河床相、漫滩相、湖相和三角洲相,指示了“河流‒湖泊‒三角洲”复合沉积体系.沉积相自西向东分布呈现一定规律,西部以漫滩相、三角洲相为主,中部以漫滩相、三角洲、湖相为主,东部以湖相为主,古地理重建表明古云梦泽是江汉平原内部河间洼地发育的多变的湖群景观.根据历史文献与钻孔记录重建了古云梦泽形成演化的4个时期:鼎盛期(夏商时期)、淤浅期(周秦汉时期)、萎缩期(魏晋南北朝时期)和湮灭期(唐宋时期).结果表明,古云梦泽形成演化主要受到新构造运动、气候变化、洪水泛滥与河道变迁以及人类活动的叠加影响:(1)新构造沉降为古云梦泽分布创造了空间条件,长江主泓来水来沙为古云梦泽出现创造了可能,但后续长江主泓的南移对古云梦泽演化趋势影响显著;(2)ENSO(El Niño-Southern Oscillation)关联的季风异常降水与河道洪水泛滥作用推动了古云梦泽的兴盛,而荆江三角洲的推进与古云梦泽的於浅及萎缩有关;(3)唐宋以来,随着荆江统一河床的塑造、人为筑堤堵穴、围湖建垸和围湖造田加速了古云梦泽的湮灭.总之,本研究揭示了古云梦泽形成演化的时空格局及其复杂的影响机制,为存在已久的争议提供了可靠的答案,也为预测未来长江中游地区江湖关系演变和现代江汉湖群保护提供了重要参考.

Abstract

The Paleo-Yunmeng Lake Group (PYMLG) in the Jianghan Plain has been significant of historical, geographical, cultural, and ecological environment research since the Xia and Shang Dynasties. Owing to rare historical records and limited borehole surveys, the cause and spatiotemporal pattern of the PYMLG remain ambiguous. Based on previous historical documents and borehole survey, this paper first conducted high resolution research on the boreholes sedimentary environment and reconstructed a 4 000-year evolution history of PYMLG. This study systematically revealed the relationship among the PYMLG sedimentary landform process and regional neotectonic movement, climate change, river channel migration and human activities. Multiple borehole analyses revealed the diverse sedimentary environments including riverbed, floodplain, lake, and delta facies, indicating a composite sedimentary system marked by a composite sedimentary system of “river-lake-delta”. The distribution of sedimentary facies from west to east shows a certain pattern: the west is mainly floodplain and delta facies, the central part is mainly floodplain, delta and lake facies, and the east is dominated by lake facies. Paleogeographic reconstruction indicated that the PYMLG is always a landscape of changeable lake group developed in the interriver depressions in the Interior of Jianghan Plain. A 4 000-year evolution history of the PYMLG experienced four stages ranging from a peak period (Xia and Shang Dynasties) to a siltation period (Zhou, Qin, and Han Dynasties), a shrinkage period (Wei, Jin, and Southern and Northern Dynasties), and a breakup period (Tang and Song Dynasties). Our results indicate that the PYMLG is jointly influenced by the superposition of neotectonic movements, climate change, river flooding and migration of the ancient Yangtze River channels, and human activities: (1) The neotectonic subsidence created space conditions for the distribution of the PYMLG, and the main water and sand of the Yangtze River created the emergence of the PYMLG, but the subsequent southward migration of dominant channels of ancient Yangtze River determines the evolutionary process of the PYMLG; (2) the ENSO-related abnormal precipitation and river flooding have promoted the rise of PYMLG, and the expansion of the Jingjiang Delta has been the driver of the siltation and shrinkage of the PYMLG; (3) since the Tang and Song Dynasties, the shaping of the unified riverbed of the Jingjiang River and increasing embankments and reclamations of lakes accelerated the breakup of the PYMLG. This study first systematically reveal the spatiotemporal pattern of the PYMLG and its complex influencing mechanism, providing reliable answers to long-standing controversies and important references for the protection of current Jianghan Lake Group.

Graphical abstract

关键词

多变的湖群 / 河‒湖‒三角洲复合沉积体系 / 河道变迁 / ENSO关联洪水 / 人类活动 / 淤积作用 / 沉积学 / 气候变化.

Key words

changeable lake group / river⁃lake⁃delta sedimentary system / rive channel migration / ENSO⁃related flooding / human activity / siltation process / sedimentology / climate change

引用本文

引用格式 ▾
顾延生,管硕,李越南. 江汉平原古云梦泽形成演化及其影响机制[J]. 地球科学, 2025, 50(03): 830-845 DOI:10.3799/dqkx.2024.130

登录浏览全文

4963

注册一个新账户 忘记密码

长江中下游平原地区孕育了全球同纬度地区唯一丰富的湖泊资源(葛继稳, 2007;顾延生等, 2009),其中,江汉湖群是中国最大的淡水湖泊群,这些湖群在维系地区的生物多样性、水资源安全及南水北调中线工程方面发挥着重要的资源环境功能.作为江汉湖群的前身,古云梦泽是先秦以来的重要文化、地理及生态载体(谭其骧,1980;张修桂,1980),它不仅与楚文化的渊源和发展息息相关,而且对寻找地下资源、合理利用水资源,探讨湿地生物类群演化息息相关(蔡述明和官子和,1982).20世纪60年代以来,历史、地理、水利等学科众多学者对古云梦泽的由来与演变进行了富有成效的探索与研究,特别是古云梦泽的成因、分布与演化是研究热点(林承坤和陈钦峦,1965;蔡述明和官子和,1979,1982;金伯欣,1979;谭其骧,1980;张修桂,1980;周凤琴,1994).然而,人们关于古云梦泽是否存在“跨江而立、江北一统、荆江三角洲”仍存在较多争议.
争议之一:古云梦泽是否跨江而立?前人的研究一致否定了汉晋以来历史记录中的“跨江南北的古云梦泽说”,认为是谬传(蔡述明和官子和,1979,1982;金伯欣,1979;谭其骧,1980;张修桂,1980;中国科学院《中国自然地理》编辑委员会,1982;石泉,1988;石泉和蔡述明,1996).谭其骧(1980)理清了“云梦”与“云梦泽”的关系,指出古云梦泽是当时江汉平原东部(楚地荆州一带)发育的湖泊沼泽沉积地貌景观.由于先秦著作记述云梦多以其泽薮为主,汉晋以来的注疏家望文生义,将云梦狩猎区与云梦泽混为一谈,云梦泽于是成为“跨江南北的大湖”,并一直为后世所沿袭(谭其骧,1980;石泉,1988,1993).现在的问题是,如果把古云梦泽理解为一个整体的大湖,且用现代长江、汉江河床的位置来重现古地理,一个跨江而立的巨湖看似不可能,但如果古代长江(荆江段)存在多汊(多分支)、古云梦泽也不是一个统一湖泊的话(如湖泊群),那么跨江而立的情形需要重新审视.
争议之二:古云梦泽与三角洲有无关联?林承坤和陈钦峦(1965)、谭其骧(1980)、张修桂(1980)、(中国科学院《中国自然地理》编辑委员会,1982)、周凤琴(1994)、Yin et al.(2007)等认为古云梦泽的演变与下荆江河道变迁和三角洲沉积演化相关.值得注意的是,以上观点是基于历史文献提出的,至今尚没有得到钻孔沉积物的证实.
争议之三:古云梦泽是否存在江北统一的大湖景观?著名历史地理学家谭其骧(1980)、张修桂(1980)等认为先秦时代著名的古云梦泽是一个巨大的统一湖泊,分布于江汉平原东部,长江与汉水之间,西部接纳荆江三角洲上的长江分流夏水和涌水,范围约九百里.然而,前人依据野外地貌第四纪地质调查与钻孔资料分析研究提出江汉平原众多湖泊主要成因为雍塞湖和河间洼地湖(蔡述明和官子和,1979,1982;蔡述明等,1998),且历史地理研究表明夏、涌二水并非长江的分流水道,故研究人员对“江北一统说”和“三角洲演化说”提出了质疑和挑战(石泉,1988,1993;石泉和蔡述明,1996;李青淼和韩茂莉,2010).
迄今为止,由于历史记载极为贫乏,要详细阐述古云梦泽变迁是不可能的(谭其骧,1980),有关古云梦泽分布与演化的古环境与古地理研究仍存在争议,如何精细刻画先秦以来古云梦泽形成、分布、演化的时空格局显得尤为重要.本文利用已有文献资料和钻孔资料开展了古云梦泽相关的古地理环境重建综合研究,获得了阶段性认识,深入分析了古云梦泽形成演化与区域环境(新构造、河道变迁、沉积演化、气候变化)及人类活动的复杂关系,为历史地理界存在已久的争论提供了重要证据,也为深入了解长江中游地区淡水湖泊群成因和生态环境整治保护提供了参考.

1 样品采集与实验方法

本文对研究区内前人研究钻孔进行了系统收集整理,结合本研究开展的钻孔调查,已形成覆盖整个江汉平原的钻孔库(图1),共有81个钻孔数据,包括本研究开展钻孔25个、前人钻孔56个.前人钻孔数据主要来自《湖北省江汉平原第四纪地质、水文地质、工程地质及环境地质综合调查研究报告》(湖北省水文地质工程地质大队,1985,湖北省江汉平原地下水资源评价报告)、《江汉湖群综合研究》(金伯欣, 1992)、长江中游荆江及江汉平原水患区环境地质调查评价报告(湖北省地质调查研究院,2003,长江中游主要水患区环境地质调查评价报告),以及相关文献报道钻孔等(谢远云等, 2004, 2007;张玉芬等, 2005;顾延生等, 2007,2018;Li et al., 2014;张跞颖等, 2019).此外,本文还收集了江汉平原地区夏商至隋唐宋时期的考古遗址分布点 3 356个,其中,夏商文化遗址115个,楚文化遗址807个,周秦汉文化遗址1 235个,魏晋南北朝文化遗址582个,隋唐宋时期文化遗址617个(国家文物局, 2002;朱诚等, 2007;邓辉等,2009;Xie et al., 2013)(图1b).样品的AMS14C测年在美国Beta公司(美国迈阿密)和中国科学院地球环境研究所共同完成,OSL样品在中国地质大学(武汉)OSL测年实验室完成测试.粒度样品、总有机碳(TOC)和磁化率于中国地质大学(武汉)环境学院实验室完成,仪器分别为英国产Mastersizer 3000型激光粒度仪、德国产Elementar Vario TOC测定仪和捷克产卡巴桥.

2 结果与讨论

2.1 钻孔年代学

本次测试有10块AMS14C样品的数据,其中6块来自Beta公司,4块来自中国科学院地球环境研究所(表1),年代数据采用CALIB 8.2软件校正为日历年代(Reimer et al., 2020).年代深度模型采用Bacon模型(Blaauw and Christen, 2011),该方法被广泛应用于湖沼沉积物年代框架建立(Gayantha et al., 2017Daniels et al., 2021Huang et al., 2021Yao et al., 2021Zhang et al., 2021).此外,表2来自JH002的3块OSL年龄引自徐砚田(2019).

2.2 钻孔沉积相判别与三角洲相的发现

沉积物粒度频率分布曲线是反映沉积物各粒径含量以及沉积物各粒径组分相对关系的重要指标,能直观体现沉积物的粒度分布特征,被广泛运用在沉积相判别中(Sun et al., 2001;谢远云等, 2007;殷志强等, 2008;顾延生等, 2018;Yang et al., 2020Vauclin et al., 2021).研究表明,江汉平原钻孔沉积物中可识别出河床相、漫滩相(洪水相)、湖相和三角洲相,反映了冲洪积平原沉积地貌的多样性.湖相频率曲线主要为宽缓单峰型(图2a),峰值位于5~20 μm之间,峰值较小,各粒径分布较为分散,说明其主要受到稳定且较弱水动力沉积作用影响.值得一提的是,尽管前人文献多次提及三角洲相,但鲜有钻孔沉积报道证实,本研究发现江汉平原的钻孔中普遍存在三角洲相,其频率曲线多为双峰型或三峰型,细粒端峰值位于3~ 10 μm之间,粗粒端峰值位于20~60 μm之间(图2b),且有粗颗粒组分汇入,峰值较小,区间较宽,各粒径分布较为分散,表明沉积环境有两种以上水动力共同作用,且水动力强弱不一致.漫滩相频率曲线多为宽缓的单峰型,粒度分布区间较宽,峰值位于30~100 μm之间(图2c),峰值大于湖相,以较粗的颗粒组分为主,表明水动力较强,流速大、历时短,粗细混杂,细粒端有拖尾,代表样品沉积物分选较差.河床相频率曲线多为狭窄的单峰型,主要受到河道单向水流作用影响,水动力强,峰值位于100~300 μm之间(图2d),以粗粉砂、细砂组分为主,粒径分布较集中.

2.3 “河流‒湖泊‒三角洲”沉积组合的钻孔剖面证据

江汉平原是长江和汉水之间的典型泛滥平原,在长江稳定河床形成之前,其上存在许多河流、湖泊和河间洼地,自古以来沉积环境经历了复杂的变化.前面提及,关于“古云梦泽”成因演化模式至今存在诸多争议.因此,全面了解历史时期江汉平原内部沉积演化模式对重建古云梦泽形成、分布的时空格局至关重要.

钻孔沉积相空间分布对比显示,江汉平原西部钻孔普遍发育1~2 m的湖相层,平原西部最早出现河漫滩相和三角洲相等陆相沉积环境.江汉平原中部普遍发育4 m左右的湖相层,漫滩相和三角洲相占主导地位,4 000年来其经历了湖相‒漫滩相‒三角洲相‒漫滩相的沉积演化过程.江汉平原东部普遍发育10 m左右的湖相层(JH001、YMZ1和YLW01),表明江汉平原自西向东湖相层明显变厚.4 000年来,江汉平原东部主要以湖相沉积为主,间夹湖相和河流相交替(图3).

总之,江汉平原中西部沉积环境复杂多变,江汉平原东部长时间处于湖泊沉积环境.三角洲相沉积最先发育于江汉平原西部,呈逐渐向东部扩张趋势,最终导致湖相沉积逐渐减少(图3).特别重要的是,“河流‒湖泊‒三角洲”复合沉积体系贯穿于古云梦泽形成演化过程,该复合沉积体系的发现首次从沉积学角度证实古云梦泽沉积环境的多样性,也为前人提出的“三角洲演化说”提供了重要实证.

2.4 古云梦泽形成演化阶段重建

钻孔沉积与历史文献记录综合分析表明,4 000年以来,在区域新构造运动、气候变化、沉积演化和人类活动综合影响下,古云梦泽形成演化经历了鼎盛期、於浅期、萎缩期和湮灭期4个显著阶段.

2.4.1 阶段1鼎盛期(夏商时期、距今4 000~3 000年左右)

夏商时期,由于构造沉降(方鸿琪,1959;尹玲玲,2000;湖北省地质调查研究院,2003,长江中游主要水患区环境地质调查评价报告;杨青雄等,2016)和ENSO相关异常季风降水的影响(Hu et al., 2008Zhu et al., 2017Guan et al., 2022),长江中下游整体呈现湿润的气候格局,长江、汉水达到高水位期(Wang et al., 2014),河流水位上升,溢出的河水(洪水)不断涌入江汉平原,使平原内低洼的古河槽里首先蓄水形成湖沼,最早的古云梦泽开始形成,长江(荆江段)以漫流的形式流淌于江汉平原之中,夏水为其主泓,调蓄后再下夏口,河床形态不甚明显,涌水主流在沔阳附近与夏水交会(张修桂, 1980)(图4a).洞庭湖地区4 000年后湖泊也开始扩张,与江汉平原古云梦泽扩张同步(Fang, 1991Liu et al., 2012).钻孔沉积相重建古地理分布表明该时期研究区湖泊沉积发育,为古云梦泽分布鼎盛期(肖平和易朝路, 1989;朱育新等,1997a;张玉芬等, 2005;袁胜元等, 2011;缪君翔, 2018)(图4a).持续的季风降雨引发极端洪水导致河流冲破天然堤,天然堤溃口,长江的河道夏水、涌水水沙首先在江陵以东淤积,出现决口扇,三角洲雏形开始形成,古云梦泽承接长江漫流的大量水沙,分布面积迅速扩张,形成大规模湖泊群,宽阔的江汉平原地区以湖沼沉积为主.由于古云梦泽的扩张,古人类被挤出平原,迁往更高的区域,如江汉平原东北和西南侧的山前台地‒岗地和高冲积平原(国家文物局, 2002;朱诚等, 2007;Xie et al., 2013)(图4a).因此,江汉平原在约4 000~ 3 400 cal a BP期间形成了文化断层现象(李枫, 2014).

2.4.2 阶段2古云梦泽淤浅期(周秦汉时期、距今 3 000~1 800年左右)

由于受到ENSO相关的洪水影响(Guan et al.,2022),漫流的长江在江陵以东通过夏水和涌水向古云梦泽分水分沙,塑造了荆江三角洲,泥沙淤积使三角洲不断向东、向南推进,导致古云梦泽分布范围不断被排挤,古云梦泽的主体被排挤在当时古华容县东部,湖泊水域逐渐淤浅缩小,且以湖沼形式为主(图4b).此时汉水一支合夏水形成汉水流向龟山之北汇入长江,与今相比,当时汉水河道位置更偏北(张修桂, 1984;姜加虎等, 2015).

钻孔沉积相证实,研究区西部、北部出现较稳定的陆相漫滩相和三角洲相沉积(谢远云等, 2004, 2007;王晓翠等, 2012),中部处于湖相向三角洲相和漫滩相过渡阶段,表明湖泊在收缩变浅,东部以湖相沉积为主(肖平和易朝路, 1989;张玉芬等, 2005;袁胜元等, 2011;缪君翔, 2018),整体表现为河床相‒漫滩相‒湖相和三角洲相组成的复合沉积体系,且古云梦泽湖群多为河间洼地湖状态,不太稳定.

荆江三角洲的发育与古云梦泽的淤浅为人类又一次向平原进军创造了条件,古文化遗址在三角洲分流顶点和各分流河道沿岸多处被发现(朱诚等, 2007;邓辉等, 2009;Xie et al.,2013).特别重要的是,该时期江汉平原发育了长江流域著名的楚文化(770~278 BC),与夏商文化遗址相比,楚文化遗址的分布位置由山前台地、丘陵向冲积平原、湖积平原扩展(图4b),表明古云梦泽的淤浅以及荆江三角洲的出现为当时江陵地区的楚人向低平的平原地区进军创造了条件(国家文物局, 2002;朱诚等, 2007;Xie et al., 2013).水草丰美的古云梦泽生态环境对楚国的农业、宗教、军事和文化等产生了深远的影响,楚人利用水淹没草地来获得种植水稻的肥料.楚人不仅修建了堤防工程,而且还有排灌工程等水利工程.水产品,特别是鱼成了楚国人除了米饭以外的第二大日常食物.水神也成为楚地宗教崇拜中的重要对象(谢树成等,2015).

2.4.3 阶段3古云梦泽萎缩期(魏晋南北朝时期、距今1 800~1 400年左右)

由于区域新构造运动自北向南掀斜抬升以及科里奥力的长期影响(尹玲玲,2000;湖北省地质调查研究院,2003,长江中游主要水患区环境地质调查评价报告;杨青雄等,2016),古长江主泓(夏、涌水)呈逐渐南移趋势,《水经注》记载证实江陵以南的荆江河床开始向东延伸发展,石首境内的下荆江河段,开始摆脱湖沼区的漫流状态,塑造自身的河床,而监利境内下荆江河段,依旧通过古云梦泽湖沼区,尚无独立河床可言,仅有东南方向的大致流路(张修桂, 1980).由于三角洲泥沙的溯源堆积,夏、涌分流口开始出现沙洲,并形成河曲,夏水上游不断南迁,直到被涌水取代,此时古云梦泽的位置在云杜、惠怀、监利一线以东,由大浐湖、马骨湖等组成,且汉江通过沌口分流在今汉江分洪区潴汇成太白湖(图4c).到了东晋、南北朝时期,荆江三角洲东南的古云梦泽主体被三角洲分流河道分解成大小不一、形态各异的陂池、湖荡,即使到洪水季节,这些纵横交错的分流河道天然堤仍露在水面之上,于是古云梦泽的大水面不复存在.南朝时期,随着江汉平原陆上三角洲的东向扩展,古云梦泽主体不断被迫东移,城陵矶至武汉的长江西侧泛滥平原大部沦为湖泽,但湖泊范围不及先秦之半,深度也较为平浅(张修桂, 1980).

钻孔沉积相结果证实,研究区西部、中部地区为较稳定的漫滩相和三角洲相环境,陆相沉积占主导(朱育新等,1997a;谢远云等, 2004, 2007;王晓翠等, 2012),东部地区钻孔沉积环境仍为稳定的湖相,属于古云梦泽的湖群区,但湖泊水位存在阶段性波动(肖平和易朝路, 1989;张玉芬等, 2005;缪君翔, 2018).

该时期古云梦泽水域萎缩与三角洲扩张为当时人类在低平原活动提供了更为广阔的场地,魏晋南北朝时期的古文化遗址相比之前呈现明显的向地势低平的平原区迁移趋势,分布在低冲积平原和湖积平原的古文化遗址百分占比为24.23%,是秦汉时期的两倍左右(朱诚等, 2007;邓辉等, 2009;Xie et al.,2013).在汉代,古云梦泽的西部地区只设有华容和竟陵2县,到了西晋时期古云梦泽的东部地区又增设了监利、石首、惠怀、云杜四县,至此增加到了6个县(张修桂, 1980).

2.4.4 阶段4古云梦泽湮灭期(唐宋时期、距今 1 400~800年左右)

历史文献记载表明由于下荆江统一河床最终塑造完成,沿江依次出现了三国时代的公安、西晋时期的石首、北宋时期的建宁县、南宋时期的监利县,人类的筑堤活动也在该时期达到顶峰,不断修筑的堤坝极大程度地阻止了荆江洪水对古云梦泽地区水沙的输送(张修桂, 1980;姜加虎等, 2015),三角洲发展趋于停滞.随着荆江河床的形成与淤高,荆江水沙改为注入江南洞庭平原,洞庭湖水域迅速扩展,号称八百里洞庭(张修桂, 1980).

钻孔沉积相结果证实,研究区中部、西部地区为稳定的陆相环境,其上零星分布小规模湖泊群(肖平和易朝路, 1989;谢远云等, 2004, 2007;张玉芬等, 2005),东部地区以三大湖泊群(赤野湖、大浐湖、马骨湖)为主(张修桂, 1980;袁胜元等,2011).宋以后,三角洲上残留水道将古云梦泽淤浅和肢解成众多的小湖泊,与此同时,在分支河道间的洼地内以及岗地边缘洼地内又形成了许多大小不一的新湖泊(图4d).这些众多的新、老湖泊因位于长江和汉水之间,故被称为“江汉湖群”(张修桂, 1980).

稳定的陆相平原和淤浅的湖泊洲滩环境,为人类生产生活提供了广阔的发展空间,以围湖造田为代表的人类活动使原已浅平的古云梦泽主体基本上已填淤成陆.隋唐宋时期分布在低冲积平原和湖积平原的古文化遗址数量占比达到35.33%,且古文化遗址的高程分布降低到海拔≤26 m区域,说明人类活动已经全面进入江汉平原腹地(邓辉等, 2009).宋以后的江汉湖群演化已经进入人类活动的控制时代(顾延生等, 2013).

3 古云梦泽演化影响因素探讨

与众多湖泊演化类似,古云梦泽形成演化主要受到新构造、气候变化、河道变迁和人类活动等因素的影响,但以上多个因素可能相互交织,错综复杂,也是造成过去多年来古云梦泽形成演化认识发生争议的根本原因,本文系统梳理分析了各个影响因素的阶段性表现,具体影响如下.

3.1 新构造运动与长江主泓南迁对古云梦泽的影响

新构造对古云梦泽的影响主要有2个方面:(1)新生代以来,江汉盆地一直处于拗陷下沉,使盆地内部形成了潜江凹陷、江陵凹陷和沔阳凹陷3大凹陷带,凹陷带的河谷低洼处为古湖泊的发育提供了空间(张德厚, 1994;湖北省地质调查研究院,2003,长江中游主要水患区环境地质调查评价报告;杨青雄等, 2016;顾延生等,2018).(2)更新世以来,江汉盆地新构造运动受到自西北向东南的掀斜作用影响,加之受地球偏转科里奥力的影响,造成长江古河道逐步南迁(方鸿琪, 1959;李长安, 1998;王必金等, 2006).由于荆江分流水道逐渐南移、水沙向南汇集,荆江三角洲东向扩展,古云梦泽呈现向下游东南方向位移的趋势(尹玲玲,2000).前人钻孔沉积结果证实长江古河道南移的年代为3.9 ka BP(14C)(朱育新等,1997b),JH001、YMZ01和周老(张玉芬等, 2005)等钻孔在晚全新世时期频繁的河流相沉积也表明长江主泓在平原内部存在不断向南迁移的现象(顾延生等,2018).

历史文献记录也证实,荆江最显著的演变特征就是其主泓的南移,如郦道元的《水经注》、屈原的《哀郢》、《三国志》等记录了长江荆江段的分流河道变迁历史:夏商至秦汉,夏水为荆江分流主泓道,还有杨水、涌水等主要河道的存在(张修桂, 1984),三国后期,荆江主泓道(涌水)已逐渐淤浅,至此,新水道自杨口(古江陵?)沿着今日荆江水道直达巴陵(今岳阳),并在巴陵附近袭夺了湘水(原为古澧水)的下游河道(即今日的浩浩长江)(姜加虎等, 2015),从而奠定了今日荆江的轮廓.因此,历史文献记载证实荆江在不同时期存在不同主泓并存在南移的事实.

本文研究表明,新构造运动为古云梦泽分布创造了空间条件,长江主泓的来水来沙为古云梦泽出现创造了可能,但后续长江主泓的南移对古云梦泽的形成演化影响显著,彼此交织在一起,息息相关.

3.2 季风降水、ENSO相关洪水及三角洲演化对古云梦泽的影响

气候变化对古云梦泽的影响贯穿始终,不同阶段表现不一样,显著影响表现在古云梦泽的鼎盛期和於浅期,而泥沙淤积和河道变迁对古云梦泽后期影响显著.

3.2.1 古云梦泽鼎盛期(夏商时期)主要受到季风降水影响

长江中下游的石笋和孢粉重建古降水结果显示该时期季风降水整体偏多(Hu et al., 2008Xie et al., 2013Zhu et al., 2017Liu et al., 2019Sun et al., 2019),河湖水位快速上升,古云梦泽扩张达到鼎盛,夏水和涌水较为稳定的流路可能就在该时期形成,而洪水携卷的大量水体则汇入古云梦泽之中,古云梦泽承接了大量来水之后快速发育至鼎盛时期,此时古云梦泽范围广且水位较深(图4图5).同时受洪水影响,河流水位继续升高,在上游处的天然堤容易溃口,河流携带的泥沙在决口处沉积,形成冲积扇,早期的三角洲雏形也在此时出现.该时期异常强盛的季风降水与长江中游湖沼湿地扩张有关,如与洞庭湖面积扩张(Liu et al.,2012)、鄱阳湖出现(Gu et al., 2018)、大九湖亚高山泥炭堆积发育(Xie et al., 2013Liu et al., 2020),以及长江入海口陆源有机质供应加大、东海生产量突然升高(Wang et al., 2014)等环境事件有关.

3.2.2 古云梦泽於浅期(周秦汉时期)主要受到洪水泛滥与三角洲推进的影响

该时期夏水和涌水的河床形态已基本塑造完成,长江通过荆江三角洲向古云梦泽分水分沙,尽管降水存在较大的波动,但存在两次较长时间的大洪水事件(2 750~2 550、2 050~1 820 cal a BP)(Guan et al., 2022),大洪水发生时,强烈的水流惯性使泥沙在距离河道口较远的地方落淤.因此,三角洲呈现快速的纵向推进(Swenson et al., 2000Reitz et al., 2010;辛玮琰等, 2021),当三角洲发育至下游湖区时,水流被静止湖面束缚,流速急剧减小,泥沙迅速沉积于湖内,导致湖泊水面变浅(Kim and Jerolmack, 2008Hoyal and Sheets, 2009),因此,大洪水带来的大量泥沙使古云梦泽整体淤浅(图4图5).

3.2.3 古云梦泽萎缩期(魏晋南北朝时期)主要受到泥沙淤积与河道南迁的影响

该时期降水不断减少,长江河道带来泥沙持续在入湖口处淤积,河流下游不断的淤积抬高导致泥沙开始向中游沉积并发生溯源淤积,河道极易崩溃坍塌,主流废弃为故道,冲刷新的河道.因此,三角洲开始横向发展(Van Dijk et al., 2009Hamilton et al., 2013Wickert et al., 2013),夏水和涌水河道在该时期的变迁可能与此有关.在新的河道形成之后,三角洲则会继续向前纵向推进,如此反复,导致古云梦泽愈发萎缩(图4图5).

3.2.4 古云梦泽湮灭期主要受到荆江统一河床与围湖造田的影响(唐宋时期)

唐宋时期,一个标志性的事件发生即荆江统一河床塑造完成(张修桂, 1980;尹玲玲,2000),尽管该时期降水小幅增加、也发生了几次洪水事件,但由于人类筑堤活动的兴盛,大部分洪水仅限于堤内,荆江不再向古云梦泽输送水沙,古云梦泽因此而湮灭.至此,“河流‒湖泊‒三角洲”复合沉积模式不再存在,广阔的古云梦泽地区大部已淤积成陆,这为农田开垦和农业区的扩大提供了必需的土地资源,唐后期江汉平原地区不仅成为唐中央政府重要的粮赋供给地,而且还是支撑唐政府的主要支柱经济区(朱士光,1991).“靖康之难”后,宋室南迁,北方大量人口再次涌入江南与湖广地区,南宋朝廷鼓励开垦“沿江旷土”.因此,南宋的屯田和营田是江汉平原垸田的初期形式(赵艳等,2000).宋代流行着“苏湖熟,天下足”的民谚,至明代,这一谚语逐渐转化为“湖广熟,天下足”(朱士光,1991).总之,宋代以来人类大规模挽堤围垸活动加速了古云梦泽萎缩与消亡进程(朱士光,1991;赵艳等,2000;顾延生等,2013).

4 结论

综合分析钻孔和历史文献记录表明,晚全新世以来江汉平原内部的古云梦泽形成演化主要受新构造运动、气候变化、河道变迁和人类活动的影响,古云梦泽演化经历了4个显著阶段,即夏商 (4 000~3 000 cal a BP)鼎盛期、周秦汉(3 000~ 1 800 cal a BP)於浅期、魏晋南北朝(1 800~ 1 400 cal a BP)萎缩期和唐宋(1 400~800 cal a BP)湮灭期.地质历史时期江汉盆地的新构造沉降为古云梦泽的形成分布提供了空间,气候变化(异常降水和ENSO关联大洪水)促进了古云梦泽鼎盛,三角洲的推进加快了古云梦泽的於浅,长江主泓南移与人类活动(围湖建垸和筑堤堵穴)加快了古云梦泽的萎缩和湮灭.本研究首次证实,古云梦泽演化过程中存在“河流‒湖泊‒三角洲”复合沉积体系,这对于还原古云梦泽演化的古环境与古地理特征至关重要,也说明古云梦泽不存在江北的统一大湖,而是多变的湖群景观,为古云梦泽成因与演化争议画上句号.特别重要的是,古云梦泽不仅是区域全球变化的产物,也是历史时期长江中游的楚文化渊源、地理环境及生态演化的重要载体,对当代江汉湖群的保护与规划具有重要的参考意义.

参考文献

[1]

Blaauw, M., Christen, J. A., 2011. Flexible Paleoclimate Age⁃Depth Models Using an Autoregressive Gamma Process. Bayesian Analysis, 6(3): 457-474. https://doi.org/10.1214/ba/1339616472

[2]

Bond, G., Kromer, B., Beer, J., et al., 2001. Persistent Solar Influence on North Atlantic Climate during the Holocene. Science, 294(5549): 2130-2136. https://doi.org/10.1126/science.1065680

[3]

Cai, S. M., Guan, Z. H., 1979. Study on Lake Geology (Quaternary Period) of Lake Donghu, Wuhan, Hubei Province, China⁃With Comments on Its Formation and on Ancient Yunmeng Swamp. Oceanologia et Limnologia Sinica, 10(4): 383-394 (in Chinese with English abstract).

[4]

Cai, S. M., Guan, Z. H., 1982. The Ungrounded Hypothesis of the Presence of the Ancient Yunmeng Swamp Traversing South and North of the Changjiang River on the Jianghan⁃Dongting Plain⁃Second Comments on the Ancient Yunmeng Swamp. Oceanologia et Limnologia Sinica, 13(2): 129-142 (in Chinese with English abstract).

[5]

Cai, S. M., Zhao, Y., Du, Y., et al., 1998. Environmental Evolution and Future Development Trends of the Holocene Jianghan Lake Group: A Further Understanding of the Ancient Yunmeng Swamp Problem. Wuhan University Journal (Philosophy & Social Science Edition), 51(6): 96-100 (in Chinese).

[6]

Daniels, W. C., Russell, J. M., Morrill, C., et al., 2021. Lacustrine Leaf Wax Hydrogen Isotopes Indicate Strong Regional Climate Feedbacks in Beringia since the last Ice Age. Quaternary Science Reviews, 269: 107130. https://doi.org/10.1016/j.quascirev.2021.107130

[7]

Deng, H., Chen, Y. Y., Jia, J. Y., et al., 2009. Distribution Patterns of the Ancient Cultural Sites in the Middle Reaches of the Yangtze River since 8 500 a BP. Acta Geographica Sinica, 64(9): 1113-1125 (in Chinese with English abstract).

[8]

Editorial Committee of Physical Geography of China, Chinese Academy of Sciences, 1982. Physical Geography of China, Historical Physical Geography. Science Press, Beijing (in Chinese).

[9]

Fang, H. Q., 1959. Neotectonic Movements in the Middle and Lower Reaches of the Yangtze River. Acta Geologica Sinica, 39(3): 328-343 (in Chinese with Russian abstract).

[10]

Fang, J. Q., 1991. Lake Evolution during the Past 30, 000 Years in China, and Its Implications for Environmental Change. Quaternary Research, 36(1): 37-60. https://doi.org/10.1016/0033⁃5894(91)90016⁃x

[11]

Gayantha, K., Routh, J., Chandrajith, R., 2017. A Multi⁃Proxy Reconstruction of the Late Holocene Climate Evolution in Lake Bolgoda, Sri Lanka. Palaeogeography, Palaeoclimatology, Palaeoecology, 473: 16-25. https://doi.org/10.1016/j.palaeo.2017.01.049

[12]

Ge, J. W., 2007. Wetland Resources and Their Management: A Case Study on Hubei Province, Central China. Science Press, Beijing (in Chinese).

[13]

Gu, Y. S., Ge, J. W., Huang, J. H., et al., 2009. Climate Change and Human Activity and Its Relationship with the Evolution of the Jianghan Lakes over the Past 20 000 Years. Geological Publishing House, Beijing (in Chinese).

[14]

Gu, Y. S., Guan, S., Ma, T., et al., 2018. Quaternary Sedimentary Environment Documented by Borehole Stratigraphical Records in Eastern Jianghan Basin. Earth Science, 43(11): 3989-4000 (in Chinese with English abstract).

[15]

Gu, Y. S., Liu, H. Y., Guan, S., et al., 2018. Possible El Niño⁃Southern Oscillation⁃Related Lacustrine Facies Developed in Southern Lake Poyang during the Late Holocene: Evidence from Spore⁃Pollen Records. The Holocene, 28(4): 503-512. https://doi.org/10.1177/0959683617735593

[16]

Gu, Y. S., Li, K. J., Qin, Y. M., et al., 2013. The Impact of Human Activity on the Evolution of the Ecological Environment of Jianghan Lake Group since the Historical Period. Earth Science, 38(S1): 133-144 (in Chinese with English abstract).

[17]

Gu, Y. S., Yu, J. X., Xie, S. C., et al., 2007. Palaeoclimate Changes Derived from Core Sediments Spore⁃ Pollen and Phytolith Records in the Jianghan Plain over the Past 5 000 Years. Earth Science, 32 (Suppl.): 133-141 (in Chinese with English abstract).

[18]

Guan, S., Yang, Q., Li, Y. N., et al., 2022. River Flooding Response to ENSO⁃Related Monsoon Precipitation: Evidence from Late Holocene Core Sediments in the Jianghan Plain. Palaeogeography, Palaeoclimatology, Palaeoecology, 589: 110834. https://doi.org/10.1016/j.palaeo.2022.110834

[19]

Hamilton, P. B., Strom, K., Hoyal, D. C. J. D., 2013. Autogenic Incision⁃Backfilling Cycles and Lobe Formation during the Growth of Alluvial Fans with Supercritical Distributaries. Sedimentology, 60(6): 1498-1525. https://doi.org/10.1111/sed.12046

[20]

Hoyal, D. C. J. D., Sheets B. A., 2009. Morphodynamic Evolution of Experimental Cohesive Deltas. Journal of Geophysical Research: Earth Surface, 114: F02009. https://doi.org/10.1029/2007JF000882

[21]

Hu, C. Y., Henderson, G. M., Huang, J. H., et al., 2008. Quantification of Holocene Asian Monsoon Rainfall from Spatially Separated Cave Records. Earth and Planetary Science Letters, 266(3-4): 221-232. https://doi.org/10.1016/j.epsl.2007.10.015

[22]

Huang, X. Z., Ren, X. X., Chen, X. M., et al., 2021. Anthropogenic Mountain Forest Degradation and Soil Erosion Recorded in the Sediments of Mayinghai Lake in Northern China. CATENA, 207: 105597. https://doi.org/10.1016/j.catena.2021.105597

[23]

Huang, Z. H., Ma, C. M., Feng, S., et al., 2023. Vegetation, Hydrology, and Quantitative Monsoon Precipitation since the Last Glacial Maximum in Central China. Global and Planetary Change, 231: 104298. https://doi.org/10.1016/j.gloplacha.2023.104298

[24]

Jiang, J. H., Dou, H. S., Su, S. D., et al., 2015. The Evolution of Dongting Lake and Ancient Yunmengze and the Jingxiang Water Culture. Changjiang Press, Wuhan (in Chinese).

[25]

Jin, B. X., 1979. Preliminary Exploration of Ancient Yunmeng Lake. Journal of Central China Normal University (Natural Sciences), 13(3): 52-61 (in Chinese).

[26]

Jin, B. X., Deng, Z. R., Li, X. M., 1992. Integrated Research on the Jianghan Lakes. Hubei Science and Technology Press, Wuhan (in Chinese).

[27]

Kim, W., Jerolmack, D. J., 2008. The Pulse of Calm Fan Deltas. The Journal of Geology, 116(4): 315-330. https://doi.org/10.1086/588830

[28]

Lee, C. S. L., Qi, S. H., Zhang, G., et al., 2008. Seven Thousand Years of Records on the Mining and Utilization of Metals from Lake Sediments in Central China. Environmental Science & Technology, 42(13): 4732-4738. https://doi.org/10.1021/es702990n

[29]

Li, C. A., 1998. Effect of Tilted Uplift of Tongbai Dabie Mountains on Middle Yangtze River Environment. Earth Science, 23(6): 562-566 (in Chinese with English abstract).

[30]

Li, F., 2014. Environmental Change and Its Impacts on the Archaeological Culture Evolutions in the Jianghan Plain during 5.5~3.4 kyr BP (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract).

[31]

Li, F., Zhu, C., Wu, L., et al., 2014.Environmental Humidity Changes Inferred from Multi⁃Indicators in the Jianghan Plain, Central China during the Last 12 700 Years. Quaternary International, 349: 68-78. https://doi.org/10.1016/j.quaint.2013.09.040

[32]

Li, Q. M., Han, M. L., 2010. Further Discussion on the Problems of Yunmeng and Yunmeng Lake. Journal of Hubei University (Philosophy and Social Sciences), 37(4): 30-36 (in Chinese).

[33]

Lin, C. K., Chen, Q. L., 1965. The Origin and Evolution of the Jingjiang River Bend. Journal of Nanjing University (Natural Science), 9 (1): 97-122 (in Chinese with Russian abstract).

[34]

Liu, H. Y., Gu, Y. S., Huang, X. Y., et al., 2019. A 13 000⁃Year Peatland Palaeohydrological Response to the ENSO⁃Related Asian Monsoon Precipitation Changes in the Middle Yangtze Valley. Quaternary Science Reviews, 212: 80-91. https://doi.org/10.1016/j.quascirev.2019.03.034

[35]

Liu, H., Gu, Y., Yu, Z., et al., 2020. Holocene Peatland Water Regulation Response to ~1 000⁃Year Solar Cycle Indicated by Phytoliths in Central China. Journal of Hydrology, 589: 125169. https://doi.org/10.1016/j.jhydrol.2020.125169

[36]

Liu, T., Chen, Z. Y., Sun, Q. L., et al., 2012. Migration of Neolithic Settlements in the Dongting Lake Area of the Middle Yangtze River Basin, China: Lake⁃Level and Monsoon Climate Responses. The Holocene, 22(6): 649-657. https://doi.org/10.1177/0959683611405084

[37]

Liu, Z. Y., Lu, Z. Y., Wen, X. Y., et al., 2014. Evolution and Forcing Mechanisms of El Niño over the Past 21 000 Years. Nature, 515: 550-553. https://doi.org/10.1038/nature13963

[38]

Miao, J. X., 2018. Study on OSL Dating on the HJ003 Boreholes in Jianghan Plain (Dissertation). Jiangxi Normal University, Nanchang (in Chinese with English abstract).

[39]

National Cutural Heritage Administration, 2002. Atlas of Chinese Cultural Relics, Hubei Branch. Xi’an Cartographic Publishing House, Xi'an (in Chinese).

[40]

Reimer, P. J., Austin, W. E. N., Bard, E., et al., 2020. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0-55 Cal kBP). Radiocarbon, 62(4): 725-757. https://doi.org/10.1017/rdc.2020.41

[41]

Reitz, M. D., Jerolmack, D. J., Swenson, J. B., 2010. Flooding and Flow Path Selection on Alluvial Fans and Deltas. Geophysical Research Letters, 37(6): L06401. https://doi.org/10.1029/2009gl041985

[42]

Shi, Q., 1988. New Exploration of the Geography of Ancient Jingchu. Wuhan University Press, Wuhan (in Chinese).

[43]

Shi, Q., 1993. Error on the Ancient Yunmeng Lakes “Across the South of the North” Said. Journal of Wuhan University (Social Science), (6): 80-85 (in Chinese).

[44]

Shi, Q., Cai, S. M., 1996. Research on Ancient Yunmeng Lake. Hubei Education Press, Wuhan (in Chinese).

[45]

Sun, D. H., An, Z. S., Su, R. X., et al., 2001. Mathematical Approach to Sedimentary Component Partitioning of Polymodal Sediments and Its Applications. Progress in Natural Science, 11(5): 374-382.

[46]

Sun, J., Ma, C. M., Cao, X. Y., et al., 2019. Quantitative Precipitation Reconstruction in the East⁃Central Monsoonal China since the Late Glacial Period. Quaternary International, 521: 175-184. https://doi.org/10.1016/j.quaint.2019.05.033

[47]

Swenson, J. B., Voller, V. R., Paola, C., et al., 2000. Fluvio⁃Deltaic Sedimentation: A Generalized Stefan Problem. European Journal of Applied Mathematics, 11(5): 433-452. https://doi.org/10.1017/s0956792500004198

[48]

Tan, Q. X., 1980. Yunmeng and Yunmeng Lake. Journal of Fudan University (Social Sciences Edition), (S1): 1-11 (in Chinese).

[49]

Van Dijk, M., Postma, G., Kleinhans, M. G., 2009. Autocyclic Behaviour of Fan Deltas: An Analogue Experimental Study. Sedimentology, 56(5): 1569-1589. https://doi.org/10.1111/j.1365⁃3091.2008.01047.x

[50]

Vauclin, S., Mourier, B., Dendievel, A. M., et al., 2021. Depositional Environments and Historical Contamination as a Framework to Reconstruct Fluvial Sedimentary Evolution. Science of the Total Environment, 764: 142900. https://doi.org/10.1016/j.scitotenv.2020.142900

[51]

Wang, B. J., Lin, C. S., Chen, Y., et al., 2006. Episodic Tectonic Movement and Evolutional Character in Jianghan Basin. Oil Geophysical Prospecting, 41(2): 226-230 (in Chinese with English abstract).

[52]

Wang, F. F., Liu, J., Qiu, J. D., et al., 2014. Historical Evolution of Hypoxia in the East China Sea off the Changjiang (Yangtze River) Estuary for the Last ~13 000 Years: Evidence from the Benthic Foraminiferal Community. Continental Shelf Research, 90: 151-162. https://doi.org/10.1016/j.csr.2014.02.013

[53]

Wang, X. C., Zhu, C. Wu, L., et al., 2012. Grain⁃Size Characteristics and Sedimentary Environment Change of JZ⁃2010 Section in Jianghan Plain, Hubei Province. Journal of Lake Sciences, 24(3): 480-486 (in Chinese with English abstract).

[54]

Wickert, A. D., Martin, J. M., Tal, M., et al., 2013. River Channel Lateral Mobility: Metrics, Time Scales, and Controls. Journal of Geophysical Research: Earth Surface, 118(2): 396-412. https://doi.org/10.1029/2012jf002386

[55]

Xiao, P., Yi, C. L., 1989. Preliminary Study on Environmental Changes in the Jianghan Plain during the Holocene. Journal of Arid Land Resources and Environment, 3(3): 158-162 (in Chinese with English abstract).

[56]

Xie, S. C., Evershed, R. P., Huang, X., et al., 2013. Concordant Monsoon⁃Driven Postglacial Hydrological Changes in Peat and Stalagmite Records and Their Impacts on Prehistoric Cultures in Central China. Geology, 41(8): 827-830. https://doi.org/10.1130/G34318.1

[57]

Xie, S. C. Hu, C. Y., Gu, Y. S., et al., 2015. Paleohydrological Variation since 13 ka BP in Middle Yangtze Region. Earth Science, 40(2): 198-205 (in Chinese with English abstract).

[58]

Xie, Y. Y., Li, C. A., Wang, Q. L., et al., 2007. Grain⁃Size Characteristics and Their Environmental Significance of Jiangling Lake Sediments in Jianghan Plain. Journal of Jilin University (Earth Science Edition), 37(3): 570-577 (in Chinese with English abstract).

[59]

Xie, Y. Y., Wang, Q. L., Li, C. A., et al., 2004. Climatic Implication of Grain Size from Lacustrine Sediments∶A Case Study of Jiangling Section, Jianghan Plain, China. Geological Science and Technology Information, 23(4): 41-43 (in Chinese with English abstract).

[60]

Xin, W. Y., Bai, Y. C., Liu, W. L., et al., 2021. Experimental Study on Staged Sedimentary Evolution of Lacustrine Delta. Journal of Hydroelectric Engineering, 40(8): 43-56 (in Chinese with English abstract).

[61]

Xu, Y. T., 2019. Sea⁃Level Change Determined Lake Formation in the Yangtze Plain (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).

[62]

Yang, L. Y., Zhang, W. L., Fang, X. M., et al., 2020. Aridification Recorded by Lithofacies and Grain Size in a Continuous Pliocene⁃Quaternary Lacustrine Sediment Record in the Western Qaidam Basin, NE Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 556: 109903. https://doi.org/10.1016/j.palaeo.2020.109903

[63]

Yang, Q. X., Tian, W. X., Li, Q. W., et al., 2016. The Neotectonic Restricts to Quaternary Deposition Environment Evolution of Jianghan Basin. Journal of Geomechanics, 22(3): 631-641 (in Chinese with English abstract).

[64]

Yao, Q., Liu, K. B., Wu, Y. J., et al., 2021. A Multi⁃Proxy Record of Hurricanes, Tsunami, and Post⁃Disturbance Ecosystem Changes from Coastal Southern Baja California. Science of the Total Environment, 796: 149011. https://doi.org/10.1016/j.scitotenv.2021.149011

[65]

Yin, H. F., Liu, G. R., Pi, J. G., et al., 2007. On the River⁃Lake Relationship of the Middle Yangtze Reaches. Geomorphology, 85(3-4): 197-207. https://doi.org/10.1016/j.geomorph.2006.03.017

[66]

Yin, L. L., 2000. Lake Evolution of Jianghan Plain: A Case Study of the Hebosuo Reduetion and Emergence in the Ming Dynasty. Journal of Lake Science, 12 (1): 38-46 (in Chinese with English abstract).

[67]

Yin, Z. Q., Qin, X. G., Wu, J. S., et al., 2008. Multimodal Grain⁃Size Distribution Characteristics and Formation Mechanism of Lake Sediments. Quaternary Sciences, 28(2): 345-353 (in Chinese with English abstract).

[68]

Yuan, S. Y., Li, C. A., Zhang, Y. F., et al., 2011. Grain Sizes and Magnetic Susceptibility of the Xiaosi Section in the Jianghan Plain and Their Environmental Significance. Transactions of Oceanology and Limnology, (4): 169-176 (in Chinese with English abstract).

[69]

Zhang, D. H., 1994. Neotectonics and Quaternary Environmental Changes in Jianghan Basin. Crustal Deformation and Earthquake, 14(1): 74-80 (in Chinese with English abstract).

[70]

Zhang, L. Y., Li, C. A., Zhang, Y. F., et al., 2019. Sedimentary Strata and Paleoflood Identification Indexes of Wuhan Section, Yangtze River, during 4.5-2.5 ka BP. Geological Review, 65(4): 973-982 (in Chinese with English abstract).

[71]

Zhang, M. M., Bu, Z. J., Liu, S. S., et al., 2021. Mid⁃Late Holocene Peatland Vegetation and Hydrological Variations in Northeast Asia and Their Responses to Solar and ENSO Activity. CATENA, 203: 105339. https://doi.org/10.1016/j.catena.2021.105339

[72]

Zhang, X. G., 1980. Evolution of Yunmeng Lake and the Formation of the Lower Jingjiang River Bend. Journal of Fudan University (Social Sciences Edition), (2): 40-48 (in Chinese).

[73]

Zhang, X. G., 1984. Historical Evolution of Hanjiang Estuary and Its Influence on Hankou Section of Yangtze River. Journal of Fudan University (Social Sciences Edition), (3): 29-39 (in Chinese).

[74]

Zhang, Y. F., Li, C. A., Chen, G. J., et al., 2005. Characteristics and Paleoclimatic Significance of Magnetic Susceptibility and Stable Organic Carbon Isotopes from a Bore in Zhoulao Town, Jianghan Plain. Earth Science, 30(1): 114-120 (in Chinese with English abstract).

[75]

Zhao, Y., Wu, Y. J., Du, Y., 2000. The Impact of Human Activities on the Environmental Evolution of Jianghan Lake Group. Journal of Huazhong Agricultural University (Social Sciences Edition), (1):31-33 (in Chinese).

[76]

Zhou, F. Q., 1994. Historical Evolution of Yunmeng Marsh and Jingjiang Delta. Journal of Lake Science, 6(1): 22-32 (in Chinese with English abstract).

[77]

Zhu, C., Zhong, Y. S., Zheng, C. G., et al., 2007. Relationship of Archaeological Sites Distribution and Environment from the Paleolithic Age to the Warring States Time in Hubei Province. Acta Geographica Sinica, 62(3): 227-242 (in Chinese with English abstract).

[78]

Zhu, S. G., 1991. The Formation of the Agricultural Area and the Evolution of the Agricultural Environment in the Jianghan Plain in the Historical Period. Agricultural Archaeology, (3): 84-92 (in Chinese with English abstract).

[79]

Zhu, Y. X., Wang, S. M., Wu, R.J., 1997b. Sedimentologic Evidence for Date of Southward Moving of the Yangtze River in the Jianghan Plain since the Holocene. Chinese Science Bulletin, 42(18): 1972-1974 (in Chinese).

[80]

Zhu, Y. X., Xue, B., Yang, X. D., et al., 1997a.The Sedimentary Characteristics and Paleoenvironment of Core M1 Areain Jianghan Basin. Journal of Geomechanics, 3(4): 77-84 (in Chinese with English abstract).

[81]

Zhu, Z. M., Feinberg, J. M., Xie, S. C., et al., 2017. Holocene ENSO⁃Related Cyclic Storms Recorded by Magnetic Minerals in Speleothems of Central China. Proceedings of the National Academy of Sciences of the United States of America, 114(5): 852-857. https://doi.org/10.1073/pnas.1610930114

基金资助

国家自然科学基金项目(41572153)

国家自然科学基金项目(U23A2023)

AI Summary AI Mindmap
PDF (5543KB)

357

访问

0

被引

详细

导航
相关文章

AI思维导图

/