西准噶尔谢米斯台地区志留纪中酸性侵入体的成因与构造意义

张叶军 ,  吕会莉 ,  王国庆 ,  李盛富 ,  杨清茂 ,  尹松 ,  杨文龙 ,  魏虎 ,  高奇 ,  郭换青 ,  李益龙

地球科学 ›› 2025, Vol. 50 ›› Issue (08) : 3013 -3033.

PDF (13310KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (08) : 3013 -3033. DOI: 10.3799/dqkx.2024.131

西准噶尔谢米斯台地区志留纪中酸性侵入体的成因与构造意义

作者信息 +

Petrogenesis and Tectonic Significance of Silurian Intermediate⁃Acid Intrusive Rocks in the Xiemisitai Area, West Junggar

Author information +
文章历史 +
PDF (13629K)

摘要

西准噶尔谢米斯台地区发育大量的古生代中酸性侵入体,是研究中亚造山带地壳增生作用的热点地区.对谢米斯台西段乌什加嘎衣提金矿床地区的侵入体进行了详细的岩石学、地球化学、锆石U⁃Pb年代学和Hf同位素组成研究.结果表明,该区侵入体以二长岩和石英二长岩为主,锆石U⁃Pb年龄为429~424 Ma,εHft)值为+11.7~+15.2,Hf同位素两阶段模式年龄tDM2在560 Ma左右. 两类岩石地球化学特征相似,均属于高钾钙碱性-钾玄岩系列,富集Rb、K、Zr和Hf,亏损Nb、Ta、P和Ti,具有I型花岗岩特征,指示大陆弧构造背景.综合研究认为,谢米斯台西段中酸性侵入体形成于早古生代准噶尔-巴尔喀什洋向北俯冲过程的火山弧构造背景,由新生镁铁质下地壳部分熔融形成,记录了玄武质洋内弧向大陆弧转变的地壳生长过程.

Abstract

There are abundant Paleozoic intermediate⁃acid intrusive rocks in the Xiemisitai area, West Junggar, which is a hotspot for the study of crustal accretion of the Central Asian Orogenic Belt. In this study, detailed petrology, geochemistry, zircon U⁃Pb geochronology and Hf isotopic composition analysis were conducted for the intrusive rocks in the Wushijiagayiti gold deposit area in the western section of Xiemisitai. The results show that the intrusive rocks mainly consist of monzonites and quartz monzonites, with zircon U⁃Pb ages ranging from 429 to 424 Ma, εHf(t) values ranging from +11.7 to +15.2, and Hf isotope model ages of tDM2 of ca. 560 Ma. The monzonites and quartz monzonites have similar geochemical characteristics belonging to high⁃K calc⁃alkaline to shoshonitic series and are enriched in Rb, K, Zr and Hf, depleted Nb, Ta, P and Ti. All of them are typical of I⁃type granitoids and show continental arcaffinity. According to comprehensive research, it is inferred that the intermediate⁃acid intrusive rocks in the western section of the Xiemisitai area were derived from partial melting of young mafic lower crust in a volcanic arc setting during the northward subduction of the Junggar⁃Balkhash Ocean in the early Paleozoic. They recorded the transformation from a basaltic intra⁃oceanic arc to a continental arc during crustal growth.

Graphical abstract

关键词

中酸性侵入体 / 谢米斯台火山弧 / 岩浆作用 / 西准噶尔 / 中亚造山带 / 地球化学.

Key words

intermediate⁃acid intrusive rocks / Xiemisitai volcanic arc / magmatism / West Junggar / Central Asian Orogenic Belt / geochemistry

引用本文

引用格式 ▾
张叶军,吕会莉,王国庆,李盛富,杨清茂,尹松,杨文龙,魏虎,高奇,郭换青,李益龙. 西准噶尔谢米斯台地区志留纪中酸性侵入体的成因与构造意义[J]. 地球科学, 2025, 50(08): 3013-3033 DOI:10.3799/dqkx.2024.131

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

中亚造山带是世界上最大的增生型造山带之一(Windley et al., 2007),是显生宙大陆地壳生长的典型地区(Jahn et al., 2004Zhang et al., 2018),从新元古代到晚古生代,中亚造山带经历了长期且复杂的洋壳俯冲、陆块增生、弧陆碰撞及碰撞后伸展等构造演化过程(Windley et al., 2007). 西准噶尔地区位于新疆北部,处于西伯利亚、哈萨克斯坦、塔里木三大板块的交界处,由不同时期的岛弧、蛇绿岩、洋岛、海山、增生楔、大洋高原及微陆块等地质单元拼贴而成,是中亚造山带的重要组成部分(Xiao et al.,2008). 谢米斯台地区位于西准噶尔北部,广泛出露古生代火山岩、火山碎屑岩及侵入岩类,以中酸性岩浆活动最为强烈,是研究中亚造山带结构和造山作用过程的热点地区(Xiao et al., 2015).

西准噶尔北部的中酸性岩浆活动可以分为3期:(1)晚志留-早泥盆世(422~405 Ma; Chen et al., 2010);(2)晚泥盆-早石炭世(364~321 Ma; 韩宝福等, 2006; 尹继元等, 2013; 舍建忠等, 2019);(3)晚石炭-中二叠世(304~263 Ma; 韩宝福等, 2006;童英等, 2010;尹继元等, 2013),之后岩浆活动明显减弱(高睿等, 2013). 晚志留-早泥盆世以A型钾长花岗岩为主,另有少量闪长岩(Yin et al., 2017),多含霓石、钠角闪石等碱性矿物(Chen et al., 2010; 陈家富等, 2010);晚泥盆-早石炭世主要为I型花岗闪长岩和钾长花岗岩,以及少量闪长岩,普遍含有角闪石(Chen et al., 2010; 舍建忠等, 2019, 2023);晚石炭-中二叠世包括闪长岩、石英闪长岩、二长花岗岩及碱长花岗岩等,多以独立的岩株或岩基产出,具有A型花岗岩类特征,该期侵入体在西准噶尔地区最为发育(高睿等, 2013).

西准噶尔北部地区经历了奥陶-志留纪的洋-陆俯冲及志留-泥盆纪的后造山作用等过程,形成了不同构造背景下不同阶段的岩石组合,其间岩浆活动频繁,为该地区多金属成矿提供了必要条件,具有良好的成矿背景(陈家富, 2010),形成了以布兰萨拉和乌什加嘎衣提金矿床为代表的石英脉型和蚀变岩型金矿(杨文龙等, 2021)、莫阿特铜矿(申萍等, 2010)、布拉特铜矿(王居里等, 2014)及白杨河铍铀矿(王谋等, 2013)等多金属矿床. 因此,查明谢米斯台地区古生代所处的构造环境不仅可以为了解西准噶尔北部古生代构造演化提供基础资料,而且可为区内进一步开展找矿勘查工作提供理论依据. 乌什加嘎衣提金矿床位于谢米斯台山西段地区,本文对该区出露的中酸性侵入体开展了详细的岩石学、地球化学、锆石U⁃Pb年代学及Lu⁃Hf同位素特征研究,对其形成时代、岩石成因、构造背景及地质意义等进行了全面的探讨.

1 地质背景

西准噶尔地区位于中亚造山带西南缘,地处阿尔泰山以南,天山以北,西与哈萨克斯坦毗邻,东南邻接准噶尔盆地(图1a、1b),是中亚古生代俯冲-增生复合造山带的重要组成部分(张元元和郭召杰, 2010;李玉芹等, 2015),主要由一系列增生杂岩、古生代岩浆弧及蛇绿岩等构成(Choulet et al.,2012; 杨高学等, 2024). 区内主要发育奥陶纪以来的地层,尚未发现统一的前寒武纪基底(Liu et al., 2019; 舍建忠等, 2023). 根据物质组成、构造特征及演化历史的差异,西准噶尔地区以谢米斯台断裂为界划分为南、北两部分(图1c):北部以近东西向构造为主(Xiao et al., 2008),包括萨吾尔断裂、塔尔巴哈台断裂、洪古勒楞断裂及谢米斯台断裂;南部主要为北东向构造,包括达拉布特断裂、哈图断裂、玛依勒断裂及巴尔雷克断裂,这些断裂构造控制着区内侵入岩和蛇绿岩的分布. 西准噶尔地区发育有多条不同时代的蛇绿岩带,如唐巴勒、玛依勒、巴尔雷克、达尔布特及白碱滩等,这些蛇绿岩主要沿着近东西向和北东向的走滑断裂分布,形态复杂,多发生变形,且被构造强烈改造(何国琦等, 2007; 张元元和郭召杰, 2010;杨高学等, 2023, 2024).

西准噶尔北部分布着两条近东西向展布的火山弧,自北向南依次为早石炭世扎尔玛-萨吾尔火山弧和晚志留-早泥盆世博什库尔-成吉斯火山弧,二者以奥陶纪库吉拜-和布克赛尔-洪古勒楞蛇绿岩带为界(Xiao et al., 2008; 陈家富等, 2010; Chen et al., 2010; 韩宝福等, 2010; 张元元和郭召杰, 2010; 申萍等, 2015; 王敏等, 2018; 图1b、1c). 扎尔玛-萨吾尔弧主要发育泥盆纪沉积岩、中酸性火山岩及早石炭世火山岩和火山碎屑岩等(朱永峰和徐新, 2006; Chen et al., 2010),并伴有少量早古生代火山碎屑岩及二叠纪双峰式火山岩(陈家富等, 2010),是额尔齐斯-斋桑洋在晚泥盆-早石炭世向南俯冲的产物(Windley et al., 2007Chen et al., 2010);博什库尔-成吉斯弧主要以中奥陶-早泥盆世火山岩、火山碎屑岩及沉积岩为主,并出露晚志留-早泥盆世中基性侵入岩及A型花岗岩等(陈家富等, 2010; Chen et al., 2010),形成于早古生代准噶尔-巴尔喀什洋的北向俯冲(Degtyarev, 2011Yang et al., 2014Chen et al., 2015Choulet et al., 2016)或额尔齐斯-斋桑洋的南向俯冲(Shen et al., 2012a; 杨钢等, 2015; 杨维等, 2015; Yin et al., 2017).

谢米斯台山位于西准噶尔北部地区,呈近东西向展布(图1c),属于早古生代博什库尔-成吉斯火山弧在中国境内的东延部分(陈家富等, 2010;申萍等, 2010, 2015; Shen et al., 2012a; 王敏等, 2018). 区内出露地层主要为下志留统谢米斯台组(S1⁃4x),由中国地质大学(武汉)王国灿等进行1∶25万铁厂沟幅(L45C002001)区域地质调查时创名(原1∶20万乌尔禾幅区调将其划归为中泥盆统呼吉尔斯特组),该组地层主要为一套巨厚的杂色火山岩夹少量火山碎屑岩,其中火山岩以安山岩、英安岩及流纹岩为主,火山碎屑岩包括火山角砾岩、角砾凝灰岩、凝灰岩及凝灰质粉砂岩等.

谢米斯台地区中酸性侵入岩分布广泛,普遍侵入谢米斯台组火山岩及火山碎屑岩地层中,其形成时代主体为晚志留-早泥盆世(Chen et al., 2010Yin et al., 2017; 杨钢等, 2015; 王敏等, 2018; 王居里等, 2019; 图2). Wang et al.(2017)在谢米斯台中部采集的伊尼萨拉花岗闪长岩的年龄为452.0±1.9 Ma,是谢米斯台地区所报道过的最古老的酸性岩浆岩;Chen et al.(2010,2015)在谢米斯台地区晚志留世的中酸性岩浆岩中发现了多颗年龄为450~440 Ma的继承锆石. 目前对于这些古生代中酸性火山岩及侵入岩的构造背景尚存在较多争议,一种观点认为谢米斯台西段中晚志留世花岗岩形成于后碰撞阶段(Chen et al., 2010,2015; 杨钢等, 2015);另有学者研究表明谢米斯台地区晚志留-早泥盆世火山岩及侵入岩的地球化学组成普遍具有俯冲带岩浆岩特征,认为该时期仍处于俯冲阶段的岩浆弧构造背景(Shen et al., 2012aYang et al. 2014Yin et al., 2017). 区内断裂构造十分发育,包括近东西向、北东向和北西向多期次活动(王敏等, 2018),谢米斯台山南、北坡断裂之间发育多条北东向和北西向的次级断裂,多为压性断裂和压扭性断裂,控制着区内火山岩和侵入岩的展布.

2 岩体地质概况及岩石学特征

2.1 岩体地质概况

乌什加嘎衣提金矿床位于西准噶尔北部谢米斯台山西段地区(图2),本研究对该地区出露的中酸性侵入体进行了系统采样(图3). 乌什加嘎衣提中酸性侵入体整体呈近东西向展布,分布范围约22 km2,多呈岩株、岩枝、岩脉等侵入谢米斯台组火山岩与火山碎屑岩地层中,倾向介于330°~345°之间,倾角约65°~80°,与围岩呈侵入接触关系(图4a). 岩体呈肉红色或黄褐色,岩性主要包括二长岩和石英二长岩,广泛发育张性裂隙,后期硅质流体多沿裂隙灌入形成石英脉(图4b). 岩石普遍发生绿泥石化、绿帘石化及绢云母化等后期蚀变.

2.2 岩石学特征

二长岩多呈灰褐色,具有典型的二长结构(即斜长石自形程度高于钾长石,自形板、柱状斜长石被半自形-他形钾长石包裹)、块状构造. 主要矿物组成为:斜长石35%~45%、钾长石35%~45%、石英低于5%、黑云母2%~3%,另有少量的磁铁矿、锆石、磷灰石、榍石等副矿物~1%(图4c、4d). 斜长石呈自形板柱状,粒径0.1~0.5 mm,多发生绿泥石化;钾长石呈半自形柱状或它形不规则状,粒径0.1~0.2 mm;石英为不规则粒状,粒径0.1~0.2 mm;黑云母呈半自形板片状,粒径0.1~0.2 mm,绿泥石化显著.

石英二长岩多呈棕褐色,具有典型的二长结构、块状构造. 斜长石和钾长石含量大致相当,主要矿物组成为:斜长石35%~40%,自形板柱状,粒径0.2~0.5 mm,多绿泥石化;钾长石35~40%,半自形柱状或它形,粒径0.1~0.3 mm,表面多黏土化呈暗褐色;石英含量较二长岩明显升高,约10%~15%,呈不规则状,粒径0.2~0.5 mm;黑云母2%~3%,半自形板片状,粒径0.1~0.2 mm,多发生绿泥石化;另有少量磁铁矿、锆石、磷灰石、榍石等副矿物~1%(图4e、4f).

3 分析方法

全岩主量元素测试在中国地质大学(武汉)地质过程与矿产资源国家重点实验室(GPMR)X射线荧光光谱仪(XRF)实验室完成. 将样品制备成200目以下岩石粉末,与复合助熔剂(Li2B4O7∶LiBO2=12∶22)充分混合后置于高频熔样炉中加热熔融制成饼状玻璃片(直径约34 mm),用XRF⁃1800顺序扫描型X射线荧光光谱仪对玻璃片进行全岩主量元素含量测试,并采用国际标样GBW07103(花岗岩)和GBW07111(花岗闪长岩)监控数据质量,测试条件:电压=40 kV、电流=70 mA,用标准曲线法对数据进行定量校准,分析误差低于3%.

全岩微量元素测试在河北省诚信地质检测技术有限公司完成,将所制备200目以下岩石粉末用酸溶法进行处理后用Agilent 7500e等离子体质谱仪(ICP⁃MS)进行全岩微量元素含量分析测试,处理过程均在超净室内完成,采用AGV⁃2、BHVO⁃2、BCR⁃2及RGM⁃2四种国际标样监控数据质量,分析精度优于5%.

用于锆石年代学分析的岩石样品在河北省诚信地质检测技术有限公司进行锆石分选及制靶,在中国地质大学(武汉)地质过程与矿产资源国家重点实验室(GPMR)场发射扫描电镜(SEM)实验室进行锆石阴极发光(CL)显微拍摄,以详细观察锆石内部结构. 锆石微量元素含量测试及U⁃Pb年代学分析在河北省诚信地质检测技术有限公司利用激光剥蚀电感耦合等离子体质谱仪(LA⁃ICP⁃MS)完成. 仪器由美国NewWave公司生产的准分子激光器(型号为NWR193;波长=193 nm)和德国Analytik Jena AG公司设计的PlasmaQuant MS elite四级杆质谱组成. 激光剥蚀束斑直径=32 μm、剥蚀深度=20~40 μm、频率=13 Hz;采样方式为单点剥蚀,以氦气作剥蚀物质载气,用人工合成硅酸盐玻璃标准参考物质NIST SRM610进行仪器最佳化. 采用跳峰方式采集数据,单点停留时间设定为15 ms. 每测试5个样品交替测试两次Plesovice(Sláma et al., 2008)和Qinghu(Li et al., 2013)标样,背景采集时间为30 s,信号采集时间为30 s. 以Plesovice为外标进行U⁃Th⁃Pb同位素分馏效应和仪器漂移校正,以Qinghu标样对仪器状态进行监控. 数据采用GLITTER(ver4.0)程序处理,各样品的加权平均年龄计算及谐和图绘制采用Isoplot4.15完成.

锆石Lu⁃Hf同位素分析在河北省廊坊诚信地质检测有限公司完成,测试点位与U⁃Pb定年点位相同或相近,所使用的仪器为Neptune Plus多接收电感耦合等离子体质谱仪(MC⁃ICP⁃MS),配备有New Wave UP21激光剥蚀系统,激光剥蚀束斑直径为44 μm,剥蚀脉冲频率=8 Hz,剥蚀时间=27 s,剥蚀能量密度=6 J/cm2,具体测试流程及干扰校正见Wu et al.(2006). εHft)计算是基于球粒陨石的176Hf/177Hf值(0.282 772)和176Lu/177Hf值(0.033 2),tDM1计算参考现今亏损地幔值(176Hf /177Hf=0.283 25、176Lu/177Hf=0.038 40),tDM2计算采用的平均地壳176Lu/177Hf值为0.015. 数据详细处理方法见Yuan et al.(2008).

4 分析结果

4.1 全岩地球化学特征

全岩主微量分析结果见附表1. 二长岩的SiO2含量为56.42%~62.71%,全碱(Na2O+K2O)含量为6.53%~7.28%,K2O/Na2O=0.71~1.76,Al2O3含量14.80%~16.58%,MgO含量2.01%~3.29%,TFeO/MgO=2.18~2.60,P2O5含量0.20%~0.36%,TiO2含量0.60%~0.79%,CaO含量2.96%~4.81%;石英二长岩的SiO2和全碱含量较二长岩明显增加,SiO2=63.51%~68.95%,(Na2O+K2O)=7.53%~8.77%,K2O/Na2O=1.18~2.80,Al2O3含量13.61%~15.44%,MgO含量1.03%~1.71%,TFeO/MgO=2.27~3.51,P2O5含量0.11%~0.23%,TiO2含量0.34%~0.56%,CaO含量1.25%~3.13%. 两类岩石主量元素特征整体一致,均具有较高的SiO2和Al2O3含量及较低的MgO、P2O5、TiO2和CaO含量,并表现出随着酸性程度增加钾含量升高而钠含量降低的趋势. 在SiO2⁃(Na2O+K2O)图解中,样品主要落在亚碱性系列的二长岩和石英二长岩区域(图5a),与岩相观察结果一致;在SiO2⁃K2O图解中显示出高钾钙碱性系列-钾玄岩系列的特征(图5b).

样品相对富集Rb、K等大离子亲石元素(LILE)及Zr和Hf,相对亏损Nb、Ta、P和Ti元素,部分样品亏损Sr元素. 微量元素原始地幔标准化蛛网图显示,二长岩与石英二长岩具有相似的微量元素分布特征(图5c),显示出同源演化的特点. 样品的稀土元素总量(ΣREE)变化不大,ΣREE=103×10-6~181×10-6. 稀土元素球粒陨石标准化分布模式为右倾型(图5d),轻、重稀土分馏明显,相对富集轻稀土、亏损重稀土,(La/Yb)N=6.07~10.94. 重稀土弱分馏,(Gd/Yb)N=1.15~1.94. 所有样品均表现出相同的变化趋势,可能为同一岩浆源区演化的产物. 二长岩Eu/Eu*=0.87~1.04,平均0.92,显示弱的Eu负异常;石英二长岩Eu/Eu*=0.56~0.94,平均0.75,Eu负异常较为明显,说明岩浆演化过程中发生了斜长石的分离结晶作用. 样品微量元素分布特征与谢米斯台地区中-晚志留世I型花岗岩高度一致,而与A型花岗岩(Eu强烈负异常、“右倾海鸥型”稀土配分曲线特征及高度亏损Ba、Sr、P和Ti)区别明显(图5c、5d).

4.2 锆石U⁃Pb年代学

选择4件二长岩和3件石英二长岩样品分别进行锆石U⁃Pb年代学测试分析,分析结果见附表2. 二长岩的锆石颗粒自形程度较高,晶棱平直,呈长柱状或短柱状产出,长约70~300 μm,长宽比约为1∶1~3∶1,晶面整洁光滑无裂纹,内部不含明显包裹体,发育明显的震荡环带(图6a~6c). 锆石Th/U值变化范围介于0.6~1.8之间,显示出典型岩浆成因锆石(Th/U>0.4)特征(吴元保和郑永飞, 2004),其U⁃Pb定年结果可代表岩浆结晶年龄. 石英二长岩的锆石颗粒呈短柱状,长约60~150 μm,宽约50~120 μm,边界清晰平直,无明显包裹体,震荡环带结构清晰(图6d、6e),Th/U值为0.4~11.6,属于典型的岩浆成因锆石.

样品的206Pb/238U年龄数据点均集中分布在谐和线上,4件二长岩样品给出的加权平均年龄分别为426±2 Ma(KYL302⁃1,MSWD=1.6,图7a)、427±4 Ma(KYL304⁃1,MSWD=4.1,图7b)、429±3 Ma(KYL502⁃1,MSWD=4.1,图7c)、424±3 Ma(KYL505⁃1,MSWD=2.8,图7d). 3件石英二长岩样品给出的加权平均年龄分别为424±5 Ma(KYL402⁃1,MSWD=14.0,图7e)、428±3 Ma(KYL602⁃1,MSWD=2.6,图7f)、425±4 Ma(KYL704⁃1,MSWD=3.7,图7g). 因此,乌什加嘎衣提地区二长岩侵位时代为429~424 Ma,峰值为427 Ma(图7h);石英二长岩侵位时代为428~424 Ma,峰值为426 Ma(图7i),两者时代基本一致,指示为同一期岩浆活动的产物.

4.3 锆石Lu-Hf同位素特征

锆石Lu⁃Hf同位素分析结果见附表3. 样品的锆石176Lu/177Hf值为0.000 419~0.002 795,平均值为0.001 177,大部分小于0.002,表明锆石形成后具有很低的放射性成因Hf积累(杨进辉等, 2006),可以忽略锆石形成后由176Lu衰变形成的放射性成因176Hf,因而所测176Hf/177Hf值可以代表锆石结晶时岩浆体系的Hf同位素组成(吴福元等, 2007).

二长岩与石英二长岩样品的Hf同位素组成相近,表明二者源区基本相同. 其176Hf/177Hf=0.252 845~0.282 952,加权平均值为0.282 895±0.000 011;εHft)均为正值且变化范围较窄,介于+11.7~+15.2之间(图8a),平均值为+13.4;对应的两阶段Hf同位素模式年龄tDM2平均为561 Ma,在频率分布直方图(图8b)中,tDM2峰值为564 Ma. 正的εHft)值及相对年轻的tDM2指示源区为亏损地幔或由亏损地幔而来的新生下地壳(Bonin, 2007).

5 讨论

5.1 岩石成因类型

花岗岩类根据源区和成分特征可划分为I、S、M、A型4类(White, 1979Chappell and White, 1992,2001Bonin, 2007). 对于SiO2含量在57%以上的岩石,据10 000Ga/Al⁃Nb和(Zr+Ce+Nb+Y)⁃(Na2O+K2O)/CaO图解(图9a、9b),样品点均落入I、S、M型花岗岩范围内,而明显区别于A型花岗岩. 岩石的CaO、Na2O及Sr含量相对较高,属于准铝质~弱过铝质岩石[铝饱和指数(ASI)=0.91~1.09)],且随着分离结晶作用的进行,P2O5在熔体中的含量逐渐减少至极低水平(图9c),与I型花岗质岩浆具有相似的演化趋势;此外,I型与S型花岗岩中Th和Y等元素含量在岩浆演化过程中表现出截然不同的变化(Chappell, 1999),在Rb⁃Th图解中,样品均与I型花岗岩特征相似(图9d). 一般认为,I型花岗岩主要来源于未经风化的岩浆岩或正变质岩(White, 1979),关于其成因,目前主要有3种观点:幔源岩浆结晶分异(如Moyen et al., 2017)、镁铁质下地壳熔融(如Yu et al., 2017)及壳源与幔源岩浆混合(如韩宝福等, 2006; Chen et al., 2010,2019). 乌什加嘎衣提地区侵入体的锆石εHft)均为正值(+11.7~+15.2),在年龄⁃εHft)图中(图8a),样品点均落在亏损地幔与球粒陨石演化线之间,且靠近亏损地幔线,说明该岩体源于幔源岩浆结晶分异或由亏损地幔而来的新生镁铁质下地壳重熔(Bonin, 2007).

实验岩石学证明,地幔橄榄岩部分熔融只能形成玄武质熔体,花岗质熔体不可能由地幔橄榄岩直接部分熔融产生(Wyllie,1984);镁铁质乃至长英质地壳部分熔融或玄武质岩浆结晶分异可以产生花岗质岩浆,但只有大量的玄武质岩浆结晶分异才能形成少量的花岗质熔体,且一般有大量的基性-超基性岩作为配套的共生岩石组合(郑永飞等, 2015). 此外,幔源岩浆分异形成的花岗岩岩性一般为斜长花岗岩或英云闪长岩,且成分上K2O含量较低(多小于2%)(王中刚, 1994). 再者,Mg#值也是区分幔源和壳源熔体的有效参数,无论熔融程度如何,源自镁铁质(或长英质)下地壳的熔体始终具有较低的Mg#值(<40),而高Mg#值(>40)的情况只有在地幔成分参与的条件下才能实现(Rapp and Watson, 1995). 乌什加嘎衣提中酸性侵入体以二长岩和石英二长岩为主,侵入地层主要为志留系谢米斯台组,该组岩性以中酸性火山岩及次火山岩为主,周围没有与之匹配的大量镁铁质岩堆积,且岩石具有高SiO2和低MgO含量,K2O含量较高(2.71%~6.46%,平均4.50%),Mg#值普遍偏低(34~45),这些特征均指示该岩体不属于幔源分异型或有幔源岩浆的参与,而是由亏损地幔而来的新生镁铁质下地壳重熔形成.

样品的Ce/Pb和Nb/Ta的平均值分别为3.15和14.52,接近地壳平均值(Ce/Pb=3.9,Rudnick and Gao, 2003; Nb/Ta=11~13,Barth et al., 2000)而显著区别于幔源岩浆值(Ce/Pb=27,Hofmann et al., 1986; Nb/Ta=16~19,Green, 1995);同时,岩石的Rb/Sr平均值为0.49、Rb/Ba平均值为0.21,也都远高于原始地幔值(Rb/Sr=0.029、Rb/Ba=0.008). 其锆石Hf同位素模式年龄tDM2在560 Ma左右,为新元古代末期,说明源区物质在地壳中的存留时间较短,指示岩浆源区为新生地壳而非古老地壳(吴福元等, 2007). 在Y⁃Nb和La⁃La/Sm图解中,乌什加嘎衣提中酸性侵入体均表现出以部分熔融为主的岩浆演化趋势(图10a、10b). 据源区判别图解可以看出,研究区中酸性侵入岩岩浆主要为角闪岩脱水熔融的产物(图10c、10d).

5.2 岩浆源区特征与岩浆演化

根据全岩微量元素含量及Profeta et al.(2015)给出的经验公式可以计算岩浆形成时的地壳厚度(dm),即:dm=21.277 ln[1.020 4(La/Yb)N]. 计算可得乌什加嘎衣提二长岩与石英二长岩的岩浆形成深度较为均一,总体约39~51 km,平均47 km(图11a). 根据前人已发表数据,谢米斯台地区429~407 Ma的I型花岗岩形成深度计算结果为43~59 km、A型花岗岩为9~47 km,A型花岗岩形成深度明显较I型浅,与该类岩石多形成于低压条件下地壳伸展减薄的构造背景一致.

锆石饱和温度(TZr)可以有效反映岩浆的形成温度,对于花岗岩质岩石来说,其岩浆的物理化学成分和性质能够使锆石在熔体中达到饱和状态,因而可以利用锆石饱和温度计进行岩浆形成温度估算. TZr可以由全岩成分及前人(Watson and Harrison, 1983Miller et al., 2003)给出的经验公式计算得到,即:TZr=12 900/[2.95+0.85M+ln(496 000/Zrmelt)]. 其中M是指锆石溶解度依赖于熔体SiO2及过铝质程度的成分因子[M=(Na+K+2Ca)/(Al·Si),均为阳离子分数]. 岩浆形成温度也可以指示花岗岩类的成因类型(King et al., 1997Xu et al., 2024). 根据上述公式计算出乌什加嘎衣提石英二长岩的TZr约为772~822 ℃,平均为795 ℃;谢米斯台地区429~407 Ma的I型花岗岩TZr为700~820 ℃、A型花岗岩TZr为709~990 ℃. 岩石的TZr与谢米斯台地区同时期I型花岗岩较为一致,均接近于King et al.(1997)给出的高分异I型花岗岩的形成温度764 ℃(Li et al., 2024);而A型花岗岩TZr则普遍偏高(图11b). TZr与岩浆类型和形成环境密切相关,A型花岗岩的形成通常与幔源岩浆相关,多形成于高温(800~900 ℃)、低压(~1.0 GPa)的张性构造背景下(杨钢等, 2015;Yin et al., 2017,2024),具有比高分异I型花岗岩更高的成岩温度(舍建忠等, 2023).

岩石的全岩主量元素中TiO2、Al2O5、FeOT、MnO、MgO、P2O5与SiO2均呈明显的负相关关系(图12),指示岩石在成岩之前经历了连续的分离结晶作用. 微量元素中富集Rb和K,亏损Eu、Ba、P、Ti及Sr等元素. 由于长石对Sr、Eu、Ba具有较高的分配系数,因此这3种元素的亏损及元素间的相关性说明长石可能是主要的分离相(图13a、13b). Eu的负异常及Sr亏损指示斜长石的分离结晶;钾长石的分离结晶会导致岩浆富集Rb、K而亏损Sr、Eu、Ba;Zr、P和Ti的亏损分别与锆石、磷灰石及钛铁氧化物(如榍石)等的结晶分异有关;因此,该岩浆可能经历了斜长石、钾长石、锆石、磷灰石及榍石等矿物的分离结晶作用,这与岩相学特征较为一致.

综上,乌什加嘎衣提中酸性侵入体的岩浆源于约39~51 km处的下地壳,由角闪岩相发生部分熔融形成,岩浆形成温度约772~822 ℃,在演化过程中经历了斜长石、钾长石、锆石、磷灰石及榍石等矿物的分离结晶作用.

5.3 构造背景与地质意义

对于西准噶尔北部地区古生代中期所处的构造环境,一直存在较多争议,包括后碰撞(Chen et al., 2010,2015;杨钢等, 2015)、洋内弧(Yang et al., 2014)和洋脊俯冲(Yin et al., 2017Zhang et al., 2018)等. 谢米斯台西段中志留世乌什加嘎衣提中酸性侵入体明显富集Rb、K等大离子亲石元素(LILE)及Zr、Hf等高场强元素(HFSE),相对亏损Nb、Ta、P和Ti元素,与谢米斯台地区广布的晚志留-早泥盆世火山岩、次火山岩及中酸性侵入岩特征一致(孟磊等, 2010; Shen et al., 2012aYang et al., 2014;杨钢等, 2015; Yin et al., 2017,2024; 王敏等, 2018; Zhang et al., 2018; 舍建忠等, 2019),均显示出俯冲期弧岩浆岩特征. 岩石普遍低Sr/Y(平均为20.34)及(La/Yb)N(平均为8.88),具有典型俯冲带岛弧岩浆岩特征,明显不同于埃达克质岩石高Sr,低Y、Yb及高Sr/Y的特点(Defant et al., 1991). 在构造背景判别图解(图14a、14b)中,样品点几乎全部落于现代大陆弧环境中(Pearce et al., 1984Wang et al., 2024).

大洋板块俯冲到大洋板块之下形成洋内弧,火山岩多以玄武岩为主,含少量安山岩;而大洋板块俯冲到大陆板块之下形成的陆缘弧,火山岩则主要为安山岩、英安岩及流纹岩,含少量玄武岩(郑永飞等, 2015). 谢米斯台地区火山岩以中酸性安山岩、英安岩及流纹岩为主,玄武岩分布较少,符合陆缘弧火山岩特征. 此外,陆缘弧与洋内弧最大的区别在于俯冲上盘是具有厚大陆地壳的大陆边缘,导致近大陆一侧有更多陆壳物质加入,此外,厚的陆壳可以提供更大的容纳空间,导致中酸性侵入岩类大量出现;西准噶尔地区地震剖面显示,其地壳厚度约40~46 km,周边造山带地壳厚约50~56 km,远厚于洋壳平均厚度(6.5~9.0 km)及其岛弧杂岩体厚度(20~30 km)(Wang et al., 2004Liu et al., 2007). 综上,谢米斯台地区在中志留-早泥盆世应属于俯冲背景下的陆缘弧构造环境.

对于西准噶尔北部古生代博什库尔-成吉斯火山弧的成因,有学者认为其可能形成于准噶尔-巴尔喀什洋的北向俯冲(Degtyarev, 2011; Yang et al., 2014; Chen et al., 2015; Choulet et al., 2016)或额尔齐斯-斋桑洋的南向俯冲(Shen et al., 2012a; 杨钢等, 2015; 杨维等, 2015; Yin et al., 2017). 根据前人有关蛇绿岩的研究(朱永峰和徐新, 2006; 张元元和郭召杰, 2010; 都厚远和陈家富, 2017),谢米斯台山北部存在早奥陶世和布克赛尔古洋盆,且该洋盆的闭合可能早于晚奥陶世(Chen et al., 2019). 和布克赛尔洋的存在及两个岛弧体系并置的情况与奥陶-志留纪额尔齐斯-斋桑洋南向俯冲(Shen et al., 2012aYin et al., 2017)及洋脊俯冲模型(Yin et al., 2017; Zhang et al., 2018)并不相符. 准噶尔-巴尔喀什洋具有寒武-奥陶纪洋壳及新元古代海山,其寒武纪以来的俯冲形成了包括博什库尔-成吉斯火山弧在内的延伸至西准噶尔的各条弧(Choulet et al., 2012Shen et al., 2015Alexeiev et al., 2019),尽管其闭合时间和过程仍存在争议,但普遍认为该大洋一直发育至早志留世末(Choulet et al., 2012Chen et al., 2015,2019). 谢米斯台山中部晚奥陶世(445~440 Ma)中酸性侵入岩具有典型的弧相关地球化学特征,且其Nd⁃Hf同位素解耦,说明准噶尔-巴尔喀什洋在该时期发生了北向俯冲(图15). 此外,谢米斯台中部地区自南到北分布的查干陶勒盖蛇绿混杂岩、晚奥陶世中酸性侵入岩及和布克赛尔蛇绿岩分别代表着增生杂岩、弧岩浆及弧后岩浆,此完整的岛弧体系进一步说明准噶尔-巴尔喀什洋板片在古生代中期于谢米斯台山之下逐渐向北俯冲,并导致了弧下地幔交代作用及相关弧岩浆的形成(Chen et al., 2019).

大陆地壳总体具有安山质钙碱性的中性成分,明显不同于地幔以玄武质成分为主的特点(Tang et al., 2016),这意味着大陆地壳具有生长和演化过程,即地幔部分熔融形成的玄武质岩浆加入地壳后需经过一系列的分异演化才能形成成熟的大陆地壳. 西准噶尔北部地区年轻的玄武质洋内弧地壳主要由来自地幔的玄武质成分组成,因此需要其他过程将其转变为成熟的大陆地壳. 古生代时期,中亚造山带有大量年轻地壳形成(Jahn et al., 2004),俯冲环境有利于形成年轻地壳(Arndt, 2013). Yin et al.(2024)通过对西准噶尔地区大量侵入岩Hf模式年龄的综合研究认为,俯冲相关地质过程在西准噶尔大陆地壳生长和成熟过程中起着重要作用,中酸性岩浆作用是大陆成熟和演化的主要驱动力(Kemp et al., 2007),西准噶尔地区广布的闪长岩-花岗岩暗示其在弧相关背景下经历了复杂的大陆地壳生长过程(Yin et al., 2024). 在西准噶尔地区,碎屑锆石Hf同位素数据揭示了二叠纪之前有3期幔源岩浆加入:(1)新元古代(850~550 Ma)、(2)早古生代(530~450 Ma)及(3)晚古生代(380~320 Ma)(Choulet et al., 2012),乌什加嘎衣提地区侵入体中的锆石εHft)均为正值,介于+11.7~+15.2之间,接近亏损地幔值,锆石U⁃Pb年龄与Hf模式年龄相近,说明西准噶尔谢米斯台地区在古生代中期经历了地壳生长事件.

镁铁质弧下地壳重熔可以导致大陆地壳的分异和成熟(Hawkesworth and Kemp, 2006). 谢米斯台地区中酸性岩浆活动主体在晚奥陶-早泥盆世(452~405 Ma),在此期间,准噶尔-巴尔喀什洋壳向北俯冲至博什库尔-成吉斯火山弧底部,来自俯冲板片的水和其他挥发分的加入导致上覆地幔楔熔融,产生的岩浆上升并底侵至弧下地壳,持续的高热条件使新生镁铁质下地壳发生部分熔融(主要为角闪岩相部分熔融),形成的长英质和安山质岩浆经进一步的结晶分异等演化过程逐渐演化为花岗质岩浆,最终形成包括乌什加嘎衣提地区中酸性侵入体在内的诸多晚奥陶-早泥盆世中酸性侵入体(图15),这一过程推动了年轻玄武质洋内弧向大陆弧转变的地壳生长过程.

6 结论

(1)谢米斯台西段乌什加嘎衣提金矿区中酸性侵入体岩性主要为二长岩和石英二长岩,其锆石U⁃Pb年龄为429~424 Ma,属于中志留世,锆石εHft)值为+11.7~+15.2,Hf同位素模式年龄tDM2在560 Ma左右.

(2)岩石属于高钾钙碱性-钾玄岩系列,相对富集Rb、K、Zr和Hf,亏损Nb、Ta、P和Ti,具有I型花岗岩特征,指示大陆弧构造背景.

(3)岩浆源于新生镁铁质下地壳部分熔融,岩浆形成深度约为39~51 km、温度约为772~822 ℃,是早古生代准噶尔-巴尔喀什洋北向俯冲过程中形成的弧岩浆岩,记录了谢米斯台地区玄武质洋内弧向大陆弧转变的地壳生长过程.

参考文献

[1]

Alexeiev, D. V., Kröner, A., Kovach, V. P., et al., 2019. Evolution of Cambrian and Early Ordovician Arcs in the Kyrgyz North Tianshan: Insights from U⁃Pb Zircon Ages and Geochemical Data. Gondwana Research, 66: 93-115. https://doi.org/10.1016/j.gr.2018.09.005

[2]

Arndt, N., 2013. Formation and Evolution of the Continental Crust. Geochemical Perspectives, 2(3): 405-533. https://doi.org/10.7185/geochempersp.2.3

[3]

Barth, M. G., McDonough, W. F., Rudnick, R. L., 2000. Tracking the Budget of Nb and Ta in the Continental Crust. Chemical Geology, 165(3/4): 197-213. https://doi.org/10.1016/S0009⁃2541(99)00173⁃4

[4]

Bonin, B., 2007. A⁃Type Granites and Related rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97(1/2): 1-29. https://doi.org/10.1016/j.lithos.2006.12.007

[5]

Chappell, B. W., White, A. J. R., 1992. I⁃ and S⁃Type Granites in the Lachlan Fold Belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1/2): 1-26. https://doi.org/10.1017/s0263593300007720

[6]

Chappell, B. W., 1999. Aluminium Saturation in I⁃ and S⁃Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535-551. https://doi.org/10. 1016/S0024⁃4937(98)00086⁃3

[7]

Chappell, B. W., White, A. J. R., 2001. Two Contrasting Granite Types: 25 Years Later. Australian Journal of Earth Sciences, 48(4): 489-499. https://doi.org/10.1046/j.1440⁃0952.2001.00882.x

[8]

Chen, J. F., Han, B. F., Ji, J. Q., et al., 2010. Zircon U⁃Pb Ages and Tectonic Implications of Paleozoic Plutons in Northern West Junggar, North Xinjiang, China. Lithos, 115(1/2/3/4): 137-152. https://doi.org/10.1016/j.lithos.2009.11.014

[9]

Chen, J.F., Han, B. F. Zhang, L., 2010. Geochemistry, Sr⁃Nd Isotopes and Tectonic Implications of Two Generations of Late Paleozoic Plutons in Northern West Junggar, Northwest China. Acta Petrologica Sinica, 26(8): 2317-2335 (in Chinese with English abstract).

[10]

Chen, J. F., Han, B. F., Zhang, L., et al., 2015. Middle Paleozoic Initial Amalgamation and Crustal Growth in the West Junggar (NW China): Constraints from Geochronology, Geochemistry and Sr⁃Nd⁃Hf⁃Os Isotopes of Calc⁃Alkaline and Alkaline Intrusions in the Xiemisitai⁃Saier Mountains. Journal of Asian Earth Sciences, 113: 90-109. https://doi.org/10.1016/j.jseaes.2014.11.028

[11]

Chen, J. F., Ma, X., Simon, A., et al., 2019. Late Ordovician to Early Silurian Calc⁃Alkaline Magmatism in the Xiemisitai Mountains, Northern West Junggar: a Response to the Subduction of the Junggar⁃Balkhash Ocean. International Geology Review, 61(16): 2000-2020. https://doi.org/10.1080/00206814.2019.1576148

[12]

Choulet, F., Faure, M., Cluzel, D., et al., 2012. From Oblique Accretion to Transpression in the Evolution of the Altaid collage: New Insights from West Junggar, Northwestern China. Gondwana Research, 21(2/3): 530-547. https://doi.org/10.1016/j.gr.2011.07.015

[13]

Choulet, F., Faure, M., Cluzel, D., et al., 2016. Toward a Unified Model of Altaids geodynamics: Insight from the Palaeozoic Polycyclic Evolution of West Junggar (NW China). Science China Earth Sciences, 59(1): 25-57. https://doi.org/10.1007/s11430⁃015⁃5158⁃7

[14]

Defant, M. J., Richerson, P. M., de Boer, J. Z., et al., 1991. Dacite Genesis via both Slab Melting and Differentiation: Petrogenesis of La Yeguada Volcanic Complex, Panama. Journal of Petrology, 32(6): 1101-1142. https://doi.org/10.1093/petrology/32.6.1101

[15]

Degtyarev, K. E., 2011. Tectonic Evolution of Early Paleozoic Island⁃Arc Systems and Continental Crust Formation in the Caledonides of Kazakhstan and the North Tien Shan. Geotectonics, 45(1): 23-50. https://doi.org/10.1134/s0016852111010031

[16]

Du, H. Y., Chen, J. F., 2017. The Determination of Hoboksar Ancient Oceanic Basin in West Junngar: Evidence from Zircon U⁃Pb Age and Geochemistry of the Hoboksar Ophiolitic Méllange. Acta Geologica Sinica, 91(12): 2638-2650 (in Chinese with English abstract).

[17]

Du, H.Y., Chen, J.F., Ma, X., et al., 2019.Tectonic Significance of the Hoboksar Ocean in Northern West Junggar (NW China): Evidence from Geochronology, Geochemistry and Sr⁃Nd⁃Hf⁃OsIsotopes Characteristics of the Hoboksar Ophiolitic Mellange.Lithos, 336: 293-309. https://doi.org/10.1016/j.lithos.2019.04.010

[18]

Gao, R., Xiao, L., Wang, G. C., et al., 2013. Paleozoic Magmatism and Tectonic Setting in West Junggar. Acta Petrologica Sinica, 29(10): 3413-3434 (in Chinese with English abstract).

[19]

Green, T. H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust⁃Mantle System. Chemical Geology, 120(3/4): 347-359. https://doi.org/10.1016/0009⁃2541(94)00145⁃X

[20]

Han, B. F., Ji, J. Q., Song, B., et al., 2006. Late Paleozoic Vertical Growth of Continental Crust around the Junggar Basin, Xinjiang, China(PartⅠ): Timing of Post⁃Collisionai Plutonism. Acta Petrologica Sinica, 22(5): 1077-1086 (in Chinese with English abstract).

[21]

Han, B. F., Guo, Z. J., He, G. Q., 2010. Timing of Major Suture Zones in North Xinjiang, China: Constraints from Stitching Plutons. Acta Petrologica Sinica, 26(8): 2233-2246 (in Chinese with English abstract).

[22]

Hawkesworth, C. J., Kemp, A. I. S., 2006. Evolution of the Continental Crust. Nature, 443(7113): 811-817. https://doi.org/10.1038/nature05191

[23]

He, G. Q., Liu, J. B., Zhang, Y. Q., et al., 2007. Keramay Ophiolitic Mélange Formed during Early Paleozoic in Western Junggar Basin. Acta Petrologica Sinica, 23(7): 1573-1576 (in Chinese with English abstract).

[24]

Hofmann, A. W., Jochum, K. P., Seufert, M., et al., 1986. Nb and Pb in Oceanic Basalts: new Constraints on Mantle Evolution. Earth and Planetary Science Letters, 79(1/2): 33-45. https://doi.org/10.1016/0012⁃821X(86)90038⁃5

[25]

Jahn, B. M., Windley, B., Natal’in, B., et al., 2004. Phanerozoic Continental Growth in Central Asia. Journal of Asian Earth Sciences, 23(5): 599-603. https://doi.org/10.1016/S1367⁃9120(3)00124⁃X

[26]

Kaygusuz, A., Siebel, W., Ilbeyli, N., et al., 2010. Insight into Magma Genesis at Convergent Plate Margins a Case Study from the Eastern Pontides (NE Turkey). Neues Jahrbuch Für MineralogieAbhandlungen, 187(3): 265-287. https://doi.org/10.1127/0077⁃7757/2010/0178

[27]

Kemp, A. S., Hawkesworth, C. J., Foster, G. L., et al., 2007. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf⁃O Isotopes in Zircon. Science, 315(5814): 980-983. https://doi.org/10.1126/science.1136154

[28]

King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A⁃Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391. https://doi.org/10.1093/petroj/38.3.371

[29]

Li, H., Wang, M., Li, J. Q., et al., 2024. Geochemistry and Zircon U⁃Pb and Hf Isotopes of Early Devonian Hardawu Granites in the Eastern Segment of the Ultrahigh⁃Pressure Metamorphic Belt, Northern Qaidam Basin. Journal of Earth Science, 35(3): 866-877. https://doi.org/10.1007/s12583⁃022⁃1791⁃1

[30]

Li, X. H., Tang, G. Q., Gong, B., et al., 2013. Qinghu zircon: A Working Reference for Microbeam Analysis of U⁃Pb Age and Hf and O Isotopes. Chinese Science Bulletin, 58(36): 4647-4654. https://doi.org/10.1007/s11434⁃013⁃5932⁃x

[31]

Li, Y. Q., Nie, X. L., Wang, X. Z., et al., 2015. Geological Characteristics and Prospecting Direction in Bulansala Gold Copper Deposit at the Northwestern Margin of the Junggar Basin in Xinjiang Region. Gold Science and Technology, 23(6): 17-22 (in Chinese with English abstract).

[32]

Liu, J., Liu, Q. Y., Guo, B., et al., 2007. Small⁃Scale Convection in the Upper Mantle beneath the Chinese Tian Shan Mountains. Physics of the Earth and Planetary Interiors, 163(1/2/3/4): 179-190. https://doi.org/10.1016/j.pepi.2007.04.019

[33]

Liu, W., Liu, X. J., Liu, L. J., 2013. Underplating Generated A⁃ and I⁃Type Granitoids of the East Junggar from the Lower and the Upper Oceanic Crust with Mixing of Mafic magma: Insights from Integrated Zircon U⁃Pb Ages, Petrography, Geochemistry and Nd⁃Sr⁃Hf Isotopes. Lithos, 179: 293-319. https://doi.org/10.1016/j.lithos. 2013. 08.009

[34]

Liu, B., Han, B. F., Gong, E. P., et al., 2019. The Tectono⁃Magmatic Evolution of the West Junggar Terrane (NW China) Unravelled by U⁃Pb Ages of Detrital Zircons in Modern River Sands. International Geology Review, 61(5): 607-621. https://doi.org/10.1080/00206814. 2018. 1440647

[35]

McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223-253. https://doi.org/10.1016/0009⁃2541(94)00140⁃4

[36]

Meng, L., Shen, P., Shen, Y. C., et al., 2010. Igneous Rocks Geochemistry, Zircon U⁃Pb Age and Its Geological Significance in the Central Section of Xiemisitai Area, Xinjiang. Acta Petrologica Sinica, 26(10): 3047-3056 (in Chinese with English abstract).

[37]

Miller, C. F., McDowell, S. M., Mapes, R. W., 2003. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology, 31(6): 529. https://doi.org/10.1130/0091⁃7613(2003)0310529:hacgio>2.0.co;2

[38]

Moyen, J. F., Laurent, O., Chelle⁃Michou, C., et al., 2017. Collision Vs. Subduction⁃Related Magmatism: Two Contrasting Ways of Granite Formation and Implications for Crustal Growth. Lithos, 277: 154-177. https://doi.org/10.1016/j.lithos.2016.09.018

[39]

Patiño Douce, A. E., 1999. What Do Experiments Tell us about the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas? Geological Society, London, Special Publications, 168(1): 55-75. https://doi.org/10.1144/gsl.sp.1999.168.01.05

[40]

Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956

[41]

Profeta, L., Ducea, M. N., Chapman, J. B., et al., 2015. Quantifying Crustal Thickness over Time in Magmatic Arcs. Scientific Reports, 5: 17786. https://doi.org/10.1038/srep17786

[42]

Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8~32 kbar: Implications for Continental Growth and Crust⁃Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36. 4. 891

[43]

Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Holland, H.D., Turekian, K.K., eds., Treatise on Geochemistry. Elsevier⁃Pergamon, Oxford, 1-64. https://doi.org/10.1016/b0⁃08⁃043751⁃6/03016⁃4

[44]

She, J. Z., Jia, J., Di, X. C., et al., 2019. Zircon U⁃Pb Age, Hf Isotope, Petrogeochemical Characteristics and Tectonic Significance of the Ⅰ Type Granites in the Middle Part of Xiemisitai Mountain in West Junggar. Geological Bulletin of China, 38(11): 1790-1800 (in Chinese with English abstract).

[45]

She, J. Z., Jia. J., Jin, C., et al., 2023. Geochemical Characteristics and Petrogenesis of Late Carboniferous A⁃Type Granites in the Middle Section of Xiemisitai Mountain, West Junggar.Geological Bulletin of China, 42(7): 1051-1068 (in Chinese with English abstract).

[46]

Shen, P., Shen, Y. C., Liu, T. B., et al., 2010. Discovery of the Xiemisitai Copper Deposit in Western Junggar, Xinjiang and Its Geological Significance. Xinjiang Geology, 28(4): 413-418 (in Chinese with English abstract).

[47]

Shen, P., Shen, Y. C., Li, X. H., et al., 2012a. Northwestern Junggar Basin, Xiemisitai Mountains, China: A Geochemical and Geochronological Approach. Lithos, 140: 103-118. https://doi.org/10.1016/j.lithos.2012.02.004

[48]

Shen, P., Shen, Y. C., Pan, H. D., et al., 2012b. Geochronology and Isotope Geochemistry of the Baogutu Porphyry Copper Deposit in the West Junggar Region, Xinjiang, China. Journal of Asian Earth Sciences, 49: 99-115. https://doi.org/10.1016/j.jseaes.2011.11.025

[49]

Shen, P., Pan, H. D., Seitmuratova, E., et al., 2015. A Cambrian Intra⁃Oceanic Subduction System in the Bozshakol Area, Kazakhstan. Lithos, 224: 61-77. https://doi.org/10.1016/j.lithos.2015.02.025

[50]

Shen, P., Zhou, T. F., Yuan, F., et al., 2015. Main Deposit Types, Mineral Systems, and Metallogenic Belt Connections in the Circum⁃Balkhash⁃West JunggarMetallogenic Province. Acta Petrologica Sinica, 31(2):285-303 (in Chinese with English abstract).

[51]

Sláma, J., Košler, J., Condon, D. J., et al., 2008. Plešovice Zircon: A New Natural Reference Material for U⁃Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1/2): 1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005

[52]

Tang, M., Chen, K., Rudnick, R. L., 2016. Archean Upper Crust Transition from Mafic to Felsic Marks the Onset of Plate Tectonics. Science, 351(6271): 372-375. https://doi.org/10.1126/science.aad5513

[53]

Tong, Y., Wang, T., Hong, D. W., et al., 2010. Spatial and Temporal Distribution of the Carboniferous⁃Permian Granitoids in Northern Xinjiang and Its Adjacent Areas, and Its Tectonic Significance. Acta Petrological EtMineralogica, 29(6): 619-641 (in Chinese with English abstract).

[54]

Wang, C. Y., Yang, Z. E., Luo, H., et al., 2004. Crustal Structure of the Northern Margin of the Eastern Tien Shan, China, and Its Tectonic Implications for the 1906 M~7.7 Manas Earthquake. Earth and Planetary Science Letters, 223(1/2): 187-202. https://doi.org/10.1016/j.epsl. 2004. 04.015

[55]

Wang, J. L., Hu, Y., Wang, J. Q., et al., 2017. The Discovery of Late Ordovician Granodiorite in the Xiemisitai Area, Xinjiang and Its Geological Significance. Acta Geologica SinicaEnglish Edition, 91(6): 2327-2329. https://doi.org/10.1111/1755⁃6724.13474

[56]

Wang, J. L., Wang, J. Q., Hu, Y., et al., 2014. The Discovery of Porphyry Copper Mineralization in Xiemisitai Area of Xinjiang and Its Significance. Acta Geoscientica Sinica, 35(3): 395-398 (in Chinese with English abstract).

[57]

Wang, J. L.,Hu, Y.,Wang, M., et al., 2019. Geochronology and Geochemistry of Blatter Mineralized Sub⁃Volcanic Rocksin Xiemisitai Area, Xinjiang: Implications for Tectonic Settig and Cu⁃Mineralization. Acta Petrologica Sinica,35(2): 523—540 (in Chinese with English abstract).

[58]

Wang, K., Li, Y. L., Xiao, W. J., et al., 2024. Geochemistry and Zircon U⁃Pb⁃Hf Isotopes of Paleozoic Granitoids along the Solonker Suture Zone in Inner Mongolia, China: Constraints on Bidirectional Subduction and Closure Timing of the Paleo⁃Asian Ocean. Gondwana Research, 126: 1-21. https://doi.org/10.1016/j.gr.2023.09.009

[59]

Wang, M.,Wang, G., Li, X. F., et al., 2013. Control Factor Analysis of Uranium Polymetallic Metallogenic in Xuemisitan Volcanic Belt, Xinjiang. Xinjiang Geology,31(1): 71—76 (in Chinese).

[60]

Wang, M., Wang, J. L., Hu, Y. et al., 2018. Geochemistry, Geochronology, Whole Rock Sr⁃Nd and Zircon Hf Isotopes of the WulansalaGranite Pluton in Xiemisitai Area, Xinjiang. Acta Petrologica Sinica, 34(3): 618-636 (in Chinese with English abstract).

[61]

Wang,Z. G., 1994. Genetic Types of Granitoids in Northern Xinjiang and Their Relationship with Mineralization. Xinjiang Geology, 12(1): 9—15 (in Chinese).

[62]

Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012⁃821X(83)90211⁃X

[63]

Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A⁃Type Granites: geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202

[64]

White, A. J. R., 1979. Sources of Granite Magma. Geological Society of America Program with Abstracts, 11: 539.

[65]

Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. https://doi.org/10.1144/0016⁃76492006⁃022

[66]

Wu, F. Y., Yang, Y. H., Xie, L. W., et al., 2006. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U⁃Pb Geochronology. Chemical Geology, 234(1/2): 105-126. https://doi.org/10.1016/j.chemgeo. 2006. 05.003

[67]

Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu⁃Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract).

[68]

Wu, Y. B., Zheng, Y. F., 2004. Genetic Mineralogy of Zircon and Its Constraints on U⁃Pb Age Interpretation. Chinese Science Bulletin, 49(16):1589-1604 (in Chinese).

[69]

Wyllie, P. J., Osmaston, M. F., Morrison, M. A., 1984. Constraints Imposed by Experimental Petrology on Possible and Impossible Magma Sources and Products. Philosophical Transactions of the Royal Society of London.Series A, Mathematical and Physical Sciences, 310(1514): 439-456. https://doi.org/10.1098/rsta.1984.0003

[70]

Xiao, W. J., Han, C. M., Yuan, C., et al., 2008. Middle Cambrian to Permian Subduction⁃Related Accretionary Orogenesis of Northern Xinjiang, NW China: Implications for the Tectonic Evolution of Central Asia. Journal of Asian Earth Sciences, 32(2/3/4): 102-117. https://doi.org/10.1016/j.jseaes.2007.10.008

[71]

Xiao, W. J., Windley, B. F., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo⁃Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43: 477-507. https://doi.org/10.1146/annurev⁃earth⁃060614⁃105254

[72]

Xu, J. H., Jiang, Y. P., Hu, S. L., et al., 2024. Petrogenesis and Tectonic Implications of the Paleoproterozoic A⁃Type Granites in the Xiong’ershan Area along the Southern Margin of the North China Craton. Journal of Earth Science, 35(2): 416-429. https://doi.org/10.1007/s12583⁃021⁃1424⁃0

[73]

Yang, G., Xiao, L., Wang, G. C., et al., 2015. Geochronology, Geochemistry and Zircon Lu⁃Hf Study of Granites in Western Section of Xiemisitai Area, Western Junggar. Earth Science, 40(3): 548—562(in Chinesewith English abstract).

[74]

Yang, G. X., Li, Y. J., Xiao, W. J., et al., 2014. Petrogenesis and Tectonic Implications of the Middle Silurian Volcanic Rocks in Northern West Junggar, NW China. International Geology Review, 56(7): 869-884. https://doi.org/10.1080/00206814.2014.905214

[75]

Yang, G. X., Zhu, Z., Liu, X. Y., et al., 2023. Ophiolite in West Junggar: Records of the Subduction⁃Accretion Process in Ancient Ocean. Acta Geologica Sinica, 97(6):2054-2066 (in Chinese).

[76]

Yang, G. X., Liu, X. Y., Zhu, Z., et al., 2024. Progress and Prospect of the Darbut Ophiolite in West Junggar, Central Asian Orogenic Belt. Northwestern Geology, 57(3): 1-10 (in Chinese with English abstract).

[77]

Yang, J. H., Wu, F. Y., Shao, J. A., et al., 2006. In⁃Situ U⁃Pb Dating and Hf Isotopic Analyses of Zircons from Volcanic Rocks of the Houcheng and Zhangjiakou Formations in the Zhang⁃Xuan Area, Northeast China. Earth Science, 31(1): 71-80 (in Chinese with English abstract).

[78]

Yang, W., Wang, G. C., Zong, R. W., et al., 2015. Determination of Silurian⁃Devonian Arc⁃Basin Pattern in Western Junggar and Its Regional Tectonic Significance. Earth Science, 40(3): 448-460 (in Chinese with English abstract).

[79]

Yang, W. L., Yang, Q. M., Qin, B., et al., 2021. Geological Characteristics and Prospecting Direction of the BulansalaArea, Western Junggar.Geology and Exploration, 57(5): 094-0958 (in Chinese).

[80]

Yang, Y. Q., Zhao, L., Zheng, R. G., et al., 2019. Evolution of the Early Paleozoic Hongguleleng⁃Balkybey Ocean: Evidence from the Hebukesaier Ophiolitic Mélange in the Northern West Junggar, NW China. Lithos, 324: 519-536. https://doi.org/10.1016/j.lithos.2018.11.029

[81]

Yin, J. Y., Chen, W., Yuan, C., et al., 2013. Ages and Tectonic Implication of Late Paleozoic Plutons in the West Junggar, North Xinjiang: Evidence from LA⁃ICPMS Zircon Geochronology. Geochimica, 42(5): 414-429 (in Chinese with English abstract).

[82]

Yin, J. Y., Chen, W., Xiao, W. J., et al., 2017. Late Silurian⁃Early Devonian Adakitic Granodiorite, A⁃Type and I⁃Type Granites in NW Junggar, NW China: Partial Melting of Mafic Lower Crust and Implications for Slab Roll⁃Back. Gondwana Research, 43: 55-73. https://doi.org/10.1016/j.gr.2015.06.016

[83]

Yin, J. Y., Chen, W., Xiao, W. J., et al., 2018. Petrogenesis and Tectonic Implications of Early Devonian Mafic Dike⁃Granite Association in the Northern West Junggar, NW China. International Geology Review, 60(1): 87-100. https://doi.org/10.1080/00206814.2017.1323238

[84]

Yin, J. Y., Xiao, W. J., Wang, T., et al., 2024. Maturation from Oceanic Arcs to Continental crust: Insights from Paleozoic Magmatism in West Junggar, NW China. EarthScience Reviews, 253: 104795. https://doi.org/10.1016/j.earscirev.2024.104795

[85]

Yu, Y., Sun, M., Long, X. P., et al., 2017. Whole⁃Rock Nd⁃Hf Isotopic Study of I⁃Type and Peraluminous Granitic Rocks from the Chinese Altai: Constraints on the Nature of the Lower Crust and Tectonic Setting. Gondwana Research, 47: 131-141. https://doi.org/10.1016/j.gr. 2016.07.003

[86]

Yuan, H. L., Gao, S., Dai, M. N., et al., 2008. Simultaneous Determinations of U⁃Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser⁃Ablation Quadrupole and Multiple⁃Collector ICP⁃MS. Chemical Geology, 247(1/2): 100-118. https://doi.org/10.1016/j.chemgeo.2007.10.003

[87]

Zhang, C., Santosh, M., Liu, L. F., et al., 2018. Early Silurian to Early Carboniferous Ridge Subduction in NW Junggar: Evidence from Geochronological, Geochemical, and Sr⁃Nd⁃Hf Isotopic Data on Alkali Granites and Adakites. Lithos, 300: 314-329. https://doi.org/10.1016/j.lithos.2017.12.010

[88]

Zhang, Y. Y., Guo, Z. J., 2010. New Constraints on Formation Ages of Ophiolites in Northern Junggar and Comparative Study on Their Connection. Acta Petrologica Sinica, 26(2): 421-430 (in Chinese with English abstract).

[89]

Zhao, L., He, G. Q., 2013. Tectonic Entities Connection between West Junggar (NW China) and East Kazakhstan. Journal of Asian Earth Sciences, 72: 25-32. https://doi.org/10.1016/j.jseaes.2012.08.004

[90]

Zheng, Y. F., Chen, Y. X., Dai, L. Q., et al., 2015. Developing Plate Tectonics Theory from Oceanic Subduction Zones to Collisional Orogens. Science China Earth Sciences, 58(7): 1045-1069. https://doi.org/10.1007/s11430⁃015⁃5097⁃3

[91]

Zhu, Y. F., Xu, X., 2006. The Discovery of Early Ordovician Ophiolite Mélange in Taerbahatai MTS., Xinjiang, NW China. Acta Petrologica Sinica, 22(12): 2833-2842 (in Chinese with English abstract).

基金资助

中国核工业地质局项目“新疆北部重点区铀-多金属矿调查评价与勘查”(202208)

新疆维吾尔自治区重大科技专项项目“新疆准噶尔铀成矿带成矿规律与勘查增储研究”(2024A03003⁃3)

AI Summary AI Mindmap
PDF (13310KB)

21

访问

0

被引

详细

导航
相关文章

AI思维导图

/