华北自生黏土矿物指示中元古代末期浅海氧化还原条件的时空差异性
谢宝增 , 汤冬杰 , 刘亚婕 , 杨欣囡 , 柯竺彤 , 孙龙飞 , 李超 , 王新强 , 史晓颖
地球科学 ›› 2025, Vol. 50 ›› Issue (03) : 1066 -1081.
华北自生黏土矿物指示中元古代末期浅海氧化还原条件的时空差异性
Authigenic Clay Minerals from North China Reveal Spatiotemporal Variations in Shallow Seawater Redox Conditions during the Terminal Mesoproterozoic
,
,
为了重建中元古代末期冠群真核生物快速演化的环境背景,以华北4条剖面的长龙山组碎屑岩为研究对象,开展了沉积学和矿物学分析.结果表明,怀来剖面深‒浅潮下带细‒粗砂岩中的黏土矿物以鲕绿泥石为主,指示缺氧铁化的海水环境;而深潮下带粉砂质泥岩‒泥质粉砂岩中以海绿石为主,反映次氧化的海水条件.门头沟剖面浅潮下带中‒粗砂岩中的黏土矿物以鲕绿泥石为主,指示缺氧铁化的海水条件;蓟县和卢龙剖面深潮下带砂岩中的黏土矿物则以海绿石为主,表明次氧化的环境条件.这些结果揭示,长龙山组沉积期华北浅海的氧化还原条件存在显著的时空差异,增氧促进了龙凤山藻的出现,但氧化水体分布的时空不连续性限制了它们的持续演化与广泛分布.
This study investigates the environmental context for the rapid evolution of crown-group eukaryotes during the Late Mesoproterozoic, focusing on sedimentological and mineralogical analyses of clastic rocks from the Changlongshan Formation across four sections of the North China Craton. In the Huailai section, fine-to-coarse sandstones from the deep-to-shallow subtidal zones are dominated by chamosite, indicating an anoxic, ferruginous marine environment. Conversely, glauconite dominates silty mudstone and muddy siltstone in the deep subtidal zone, reflecting suboxic conditions. In the Mentougou section, medium-to-coarse sandstones from the shallow subtidal zone are rich in chamosite, suggesting persistent anoxic, ferruginous conditions. In the Jixian and Lulong sections, deep subtidal zone sandstones are dominated by glauconite, indicative of suboxic environments. These results reveal pronounced spatiotemporal variations in redox conditions across the shallow seas of North China during the deposition of the Changlongshan Formation. While oxygenation facilitated the emergence of Longfengshania algae, the spatiotemporal discontinuity in the distribution of oxic water bodies may have limited the sustained evolution and widespread distribution of eukaryotes.
长龙山组 / 海绿石 / 鲕绿泥石 / 氧化还原环境 / 空间差异性 / 冠群真核生物 / 沉积学 / 矿物学.
Changlongshan Formation / glauconite / chamosite / redox condition / spatial heterogeneity / crown⁃group eukaryote / sedimentology / mineralogy
| [1] |
Alcott, L. J., Mills, B. J. W., Bekker, A., et al., 2022. Earth’s Great Oxidation Event Facilitated by the Rise of Sedimentary Phosphorus Recycling. Nature Geoscience, 15: 210-215. https://doi.org/10.1038/s41561⁃022⁃00906⁃5 |
| [2] |
Banerjee, S., Choudhury, T. R., Saraswati, P. K., et al., 2020. The Formation of Authigenic Deposits during Paleogene Warm Climatic Intervals: A Review. Journal of Palaeogeography, 9(1): 27. https://doi.org/10.1186/s42501⁃020⁃00076⁃8 |
| [3] |
Banerjee, S., Mondal, S., Chakraborty, P. P., et al., 2015. Distinctive Compositional Characteristics and Evolutionary Trend of Precambrian Glaucony: Example from Bhalukona Formation, Chhattisgarh Basin, India. Precambrian Research, 271: 33-48. https://doi.org/10.1016/j.precamres.2015.09.026 |
| [4] |
Bansal, U., Banerjee, S., Nagendra, R., 2020. Is the Rarity of Glauconite in Precambrian Bhima Basin in India Related to Its Chloritization? Precambrian Research, 336: 105509. https://doi.org/10.1016/j.precamres.2019.105509 |
| [5] |
Cole, D. B., Reinhard, C. T., Wang, X. L., et al., 2016. A Shale⁃Hosted Cr Isotope Record of Low Atmospheric Oxygen during the Proterozoic. Geology, 44(7): 555-558. https://doi.org/10.1130/g37787.1 |
| [6] |
Deng, Y., Wang, H. J., Lü, D., et al., 2021. Evolution of the 1.8-1.6 Ga Yanliao and Xiong’er Basins, North China Craton. Precambrian Research, 365: 106383. https://doi.org/10.1016/j.precamres.2021.106383 |
| [7] |
Du, R. L., 1982. The Discovery of the Fossils such as Chuaria in the Qingbaikou System in Northwestern Hebei and Their Significance. Geological Review, 28(1): 1-6 (in Chinese with English abstract). |
| [8] |
Du, R. L., Tian, L. F., 1985. Discovery and Preliminary Study of Mega⁃Alga Longfengshania from the Qingbaikou System of the Yanshan Mountain Area. Acta Geological Sinica, 59(3): 183-190 (in Chinese with English abstract). |
| [9] |
Du, R. L, Tian, L. F., Hu, H. B., et al., 2009. The Neoproterozoic Qingbaikou Period Longfengshan Biota. Science Press, Beijing (in Chinese). |
| [10] |
Gao, L. Z., Zhang, C. H., Liu, P. J., et al., 2009. Reclassification of the Meso⁃ and Neoproterozoic Chronostratigraphy of North China by SHRIMP Zircon Ages. Acta Geologica Sinica⁃English Edition, 83(6): 1074-1084. https://doi.org/10.1111/j.1755⁃6724.2009.00135.x |
| [11] |
Gilleaudeau, G. J., Frei, R., Kaufman, A. J., et al., 2016. Oxygenation of the Mid⁃Proterozoic Atmosphere: Clues from Chromium Isotopes in Carbonates. Geochemical Perspectives Letters,2(2): 178-187. https://doi.org/10.7185/geochemlet.1618 |
| [12] |
Gong, H., Gao, F. H., Jia, X. Y., 2023. The Response of Geochemical Characteristics to Neoproterozoic Great Oxidation Event from Nanfen Formation in Tonghua Area. Journal of Jilin University (Earth Science Edition), Online (in Chinese with English abstract). |
| [13] |
Jahnke, L., Klein, H. P., 1979. Oxygen as a Factor in Eukaryote Evolution: Some Effects of Low Levels of Oxygen on Saccharomyces Cerevisiae. Origins of Life, 9(4): 329-334. https://doi.org/10.1007/BF00926825 |
| [14] |
Jahnke, L., Klein, H. P., 1983. Oxygen Requirements for Formation and Activity of the Squalene Epoxidase in Saccharomyces Cerevisiae. Journal of Bacteriology, 155(2): 488-492. https://doi.org/10.1128/jb.155.2.488⁃492.1983 |
| [15] |
Jing, Y. H., Chen, Z. Q., Anderson, R. P., et al., 2022. Microscopic and Geochemical Analyses of the Tonian Longfengshan Biota from the Luotuoling Formation (Hebei Province, North China) with Taphonomic Implications. Precambrian Research, 382: 106899. https://doi.org/10.1016/j.precamres.2022.106899 |
| [16] |
Kuang, H. W., Peng, N., Liu, Y. Q., et al., 2023. Is There a Great Unconformity between Xiamaling and Longshan Formations in the North China Craton? Science China Earth Sciences, 66(5): 959-984. https://doi.org/10.1007/s11430⁃022⁃1034⁃9 |
| [17] |
Li, H. K., Lu, S. N., Su, W. B., et al., 2013. Recent Advances in the Study of the Mesoproterozoic Geochronology in the North China Craton. Journal of Asian Earth Sciences, 72: 216-227. https://doi.org/10.1016/j.jseaes.2013.02.020 |
| [18] |
Liaoning Institute of Geological Exploration, 2017. Regional Geology of China⁃Records of Liaoning. Geological Publishing House, Beijing (in Chinese). |
| [19] |
Lin, Y. T., Tang, D. J., Shi, X. Y., et al., 2019. Shallow⁃Marine Ironstones Formed by Microaerophilic Iron⁃Oxidizing Bacteria in Terminal Paleoproterozoic. Gondwana Research, 76: 1-18. https://doi.org/10.1016/j.gr.2019.06.004 |
| [20] |
Lü, D., Deng, Y., Wang, H. J., et al., 2021. Using Cyclostratigraphic Evidence to Define the Unconformity Caused by the Mesoproterozoic Qinyu Uplift in the North China Craton. Journal of Asian Earth Sciences, 206: 104608. https://doi.org/10.1016/j.jseaes.2020.104608 |
| [21] |
Lü, D., Deng, Y., Wang, X. M., et al., 2022. New Chronological and Paleontological Evidence for Paleoproterozoic Eukaryote Distribution and Stratigraphic Correlation between the Yanliao and Xiong’er Basins, North China Craton. Precambrian Research, 371: 106577. https://doi.org/10.1016/j.precamres.2022.106577 |
| [22] |
Lu, S. N., Yang, C. L., Li, H. K., et al., 2002. A Group of Rifting Events in the Terminal Paleoproterozoic in the North China Craton. Gondwana Research, 5(1): 123-131. https://doi.org/10.1016/S1342⁃937X(05)70896⁃0 |
| [23] |
Lu, S. N., Zhao, G. C., Wang, H. C., et al., 2008. Precambrian Metamorphic Basement and Sedimentary Cover of the North China Craton: A Review. Precambrian Research, 160(1-2): 77-93. https://doi.org/10.1016/j.precamres.2007.04.017 |
| [24] |
Luo, G. M., Junium, C. K., Kump, L. R., et al., 2014. Shallow Stratification Prevailed for ∼1 700 to ∼1 300 Ma Ocean: Evidence from Organic Carbon Isotopes in the North China Craton. Earth and Planetary Science Letters, 400: 219-232. https://doi.org/10.1016/j.epsl.2014.05.020 |
| [25] |
Lyons, T. W., Diamond, C. W., Planavsky, N. J., et al., 2021. Oxygenation, Life, and the Planetary System during Earth’s Middle History: An Overview. Astrobiology, 21(8): 906-923. https://doi.org/10.1089/ast.2020.2418 |
| [26] |
Ma, J. B., Shi, X. Y., Lechte, M., et al., 2022. Mesoproterozoic Seafloor Authigenic Glauconite⁃Berthierine: Indicator of Enhanced Reverse Weathering on Early Earth. American Mineralogist, 107(1): 116-130. https://doi.org/10.2138/am⁃2021⁃7904 |
| [27] |
Miao, L., Yin, Z., Knoll, A. H., et al., 2024. 1.63⁃Billion⁃Year⁃Old Multicellular Eukaryotes from the Chuanlinggou Formation in North China. Sci Adv, 10(4): eadk3208. https://doi.org/10.1126/sciadv.adk3208 |
| [28] |
Mills, B., Lenton, T. M., Watson, A. J., 2014. Proterozoic Oxygen Rise Linked to Shifting Balance between Seafloor and Terrestrial Weathering. Proceedings of the National Academy of Sciences of the United States of America, 111(25): 9073-9078. https://doi.org/10.1073/pnas.1321679111 |
| [29] |
Mills, D. B., Simister, R. L., Sehein, T. R., et al., 2024. Constraining the Oxygen Requirements for Modern Microbial Eukaryote Diversity. Proceedings of the National Academy of Sciences of the United States of America, 121(2): e2303754120. https://doi.org/10.1073/pnas.2303754120 |
| [30] |
Niu, S. W., 2019. More on the Morphological Characteristics and Systematic Texology of Genus Longfengshania Du, 1982 (Magascopic Alga). Geological Bulletin of China, 38(8): 1259-1265 (in Chinese with English abstract). |
| [31] |
Planavsky, N. J., Reinhard, C. T., Wang, X. L., et al., 2014. Low Mid⁃Proterozoic Atmospheric Oxygen Levels and the Delayed Rise of Animals. Science, 346(6209): 635-638. https://doi.org/10.1126/science.1258410 |
| [32] |
Qiao, X. F., Gao, L. Z., Zhang, C. H., 2007. New Idea of the Meso⁃ and Neoproterozoic Chronostratigraphic Chart and Tectonic Environment in Sino⁃Korean Plate. Geological Bulletin of China, 26(5): 503-509 (in Chinese with English abstract). |
| [33] |
Reinhard, C. T., Planavsky, N. J., Olson, S. L., et al., 2016. Earth’s Oxygen Cycle and the Evolution of Animal Life. Proceedings of the National Academy of Sciences of the United States of America, 113(32): 8933-8938. https://doi.org/10.1073/pnas.1521544113 |
| [34] |
Shang, M. H., Tang, D. J., Shi, X. Y., et al., 2019. A Pulse of Oxygen Increase in the Early Mesoproterozoic Ocean at Ca. 1.57-1.56 Ga. Earth and Planetary Science Letters, 527: 115797. https://doi.org/10.1016/j.epsl.2019.115797 |
| [35] |
Stolper, D. A., Revsbech, N. P., Canfield, D. E., 2010. Aerobic Growth at Nanomolar Oxygen Concentrations. Proceedings of the National Academy of Sciences, 107(44): 18755-18760. https://doi.org/10.1073/pnas.1013435107 |
| [36] |
Stüeken, E. E., Kipp, M. A., Koehler, M. C., et al., 2016. The Evolution of Earth’s Biogeochemical Nitrogen Cycle. Earth⁃Science Reviews, 160: 220-239. https://doi.org/10.1016/j.earscirev.2016.07.007 |
| [37] |
Su, W. B., Li, H. K., Warren, D. H., et al., 2010. Zircon SHRIMP U⁃Pb Ages of Tuff in the Tieling Formation and Their Geological Significance. Chinese Science Bulletin, 55(29): 3312-3323. https://doi.org/10.1007/s11434⁃010⁃4007⁃5 |
| [38] |
Tang, D. J., Ma, J. B., Shi, X. Y., et al., 2020. The Formation of Marine Red Beds and Iron Cycling on the Mesoproterozoic North China Platform. American Mineralogist, 105(9): 1412-1423. https://doi.org/10.2138/am⁃2020⁃7406 |
| [39] |
Tang, D. J., Shi, X. Y., Jiang, G. Q., et al., 2017b. Ferruginous Seawater Facilitates the Transformation of Glauconite to Chamosite: An Example from the Mesoproterozoic Xiamaling Formation of North China. American Mineralogist, 102(11): 2317-2332. https://doi.org/10.2138/am⁃2017⁃6136 |
| [40] |
Tang, D. J., Shi, X. Y., Ma, J. B., et al., 2017a. Formation of Shallow⁃Water Glaucony in Weakly Oxygenated Precambrian Ocean: An Example from the Mesoproterozoic Tieling Formation in North China. Precambrian Research, 294: 214-229. https://doi.org/10.1016/j.precamres.2017.03.026 |
| [41] |
Tang, D. J., Shi, X. Y., Wang, X. Q., et al., 2016. Extremely Low Oxygen Concentration in Mid⁃Proterozoic Shallow Seawaters. Precambrian Research, 276: 145-157. https://doi.org/10.1016/j.precamres.2016.02.005 |
| [42] |
Tang, F., 1995. Macroalgal Fossil of Changlongshan Stage in Beijing Region and Their Significance. Professional Papers of Stratigraphy and Palaeontology, 26: 24-36 (in Chinese with English abstract). |
| [43] |
Wang, H. Y., Liu, A. R., Li, C., et al., 2021. A Benthic Oxygen Oasis in the Early Neoproterozoic Ocean. Precambrian Research, 355: 106085. https://doi.org/10.1016/j.precamres.2020.106085 |
| [44] |
Wang, H. Z., 1985. Atlas of the Palaeogeography of China. Cartographic Publishing House, Beijing (in Chinese). |
| [45] |
Wang, H. Z., Shi, X. Y., Wang, X. L., et al., 2001. Research on the Sequence Stratigraphy of China. Guangdong Science and Technology Press, Guangzhou (in Chinese). |
| [46] |
Wang, L. F., Li, W. X., Luo, J. L., et al., 2000. The Study on Sedimentary Facies of Changlongshan Formation of Neoproterozoic Era in Huailai, Hebei. World Geology, 19(2): 138-143 (in Chinese with English abstract). |
| [47] |
Xie, B. Z., Zhu, J. M., Wang, X. L., et al., 2023. Mesoproterozoic Oxygenation Event: From Shallow Marine to Atmosphere. GSA Bulletin, 135(3-4): 753-766. https://doi.org/10.1130/b36407.1 |
| [48] |
Yang, X. Q., Yang, G. W., Li, C., et al., 2025. Pulse of Intense Oxidative Weathering during the Latest Paleoproterozoic. Geology, 53(1): 78-82. https://doi.org/10.1130/g52373.1 |
| [49] |
Zhai, M. G., Zhu, X. Y., Zhou, Y. Y., et al., 2020. Continental Crustal Evolution and Synchronous Metallogeny through Time in the North China Craton. Journal of Asian Earth Sciences, 194: 104169. https://doi.org/10.1016/j.jseaes.2019.104169 |
| [50] |
Zhang, K., Zhu, X. K., Wood, R. A., et al., 2018. Oxygenation of the Mesoproterozoic Ocean and the Evolution of Complex Eukaryotes. Nature Geoscience, 11(5): 345-350. https://doi.org/10.1038/s41561⁃018⁃0111⁃y |
| [51] |
Zhang, S. C., Su, J., Ma, S. H., et al., 2021. Eukaryotic Red and Green Algae Populated the Tropical Ocean 1 400 Million Years Ago. Precambrian Research, 357: 106166. https://doi.org/10.1016/j.precamres.2021.106166 |
| [52] |
Zhang, S. C., Wang, X. M., Wang, H. J., et al., 2016a. Sufficient Oxygen for Animal Respiration 1, 400 Million Years Ago. Proceedings of the National Academy of Sciences, 113(7): 1731-1736. https://doi.org/10.1073/pnas.1523449113 |
| [53] |
Zhang, S. H., Zhao, Y., Ye, H., et al., 2016b. Early Neoproterozoic Emplacement of the Diabase Sill Swarms in the Liaodong Peninsula and Pre⁃Magmatic Uplift of the Southeastern North China Craton. Precambrian Research, 272: 203-225. https://doi.org/10.1016/j.precamres.2015.11.005 |
| [54] |
Zhang, S., Wang, X., Hammarlund, E. U., et al., 2015. Orbital Forcing of Climate 1.4 Billion Years Ago. Proceedings of the National Academy of Sciences, 112(12): E1406-E1413. https://doi.org/10.1073/pnas.1502239112 |
| [55] |
Zhao, G. C., Li, S. Z., Sun, M., et al., 2011. Assembly, Accretion, and Break⁃Up of the Palaeo⁃ Mesoproterozoic Columbia Supercontinent: Record in the North China Craton Revisited. International Geology Review, 53(11-12): 1331-1356. https://doi.org/10.1080/00206814.2010.527631 |
| [56] |
Zhao, H. Q., Zhang, S. H., Ding, J. K., et al., 2020. New Geochronologic and Paleomagnetic Results from Early Neoproterozoic Mafic Sills and Late Mesoproterozoic to Early Neoproterozoic Successions in the Eastern North China Craton, and Implications for the Reconstruction of Rodinia. Geological Society of America Bulletin, 132(3-4): 739-766. https://doi.org/10.1130/B35198.1 |
| [57] |
Zhou, H. R., Mei, M. X., Luo, Z. Q., et al., 2006. Sedimentary Sequence and Stratigraphic Framework of the Neoproterozoic Qingbaikou System in the Yanshan Region, North China. Earth Science Frontiers, 13(6): 280-290 (in Chinese with English abstract). |
| [58] |
Zhu, S. X., Liu, H., Hu, J., 2012. On the Disintegration of the Neoproterozoic Qingbaikouan System in Yanshan Range, North China. North China Geology, 35(2): 81-95 (in Chinese with English abstract). |
| [59] |
Zhu, S. X., Zhu, M. Y., Knoll, A. H., et al., 2016. Decimetre⁃Scale Multicellular Eukaryotes from the 1.56⁃ Billion⁃Year⁃Old Gaoyuzhuang Formation in North China. Nature Communications, 7: 11500. https://doi.org/10.1038/ncomms11500 |
国家自然科学基金重点项目(41930320)
/
| 〈 |
|
〉 |