早始新世江汉盆地新沟嘴组下段沉积环境与有机质富集机理

范晓杰 ,  滕晓华 ,  王春连 ,  张靖宇 ,  陆扬博 ,  张亮 ,  陆永潮 ,  李龙 ,  秦占杰

地球科学 ›› 2025, Vol. 50 ›› Issue (05) : 1953 -1967.

PDF (11529KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (05) : 1953 -1967. DOI: 10.3799/dqkx.2024.136

早始新世江汉盆地新沟嘴组下段沉积环境与有机质富集机理

作者信息 +

Sedimentary Environment and Organic Matter Enrichment Mechanism of the Lower Member of the Xingouzui Formation in the Jianghan Basin during the Early Eocene

Author information +
文章历史 +
PDF (11805K)

摘要

中国陆相页岩油资源潜力巨大,早始新世新沟嘴组下段(新下段)作为江汉盆地页岩油勘探的主要层位,先前的研究主要集中在生烃潜力及储层特征方面,有关其沉积环境演化及有机质富集机理方面的讨论仍相对缺乏.以江汉盆地SKD1和CY1钻孔早始新世新下段地层为主要研究对象,基于岩相分析及元素和同位素地球化学方法对新下段古环境变化及有机质富集机理进行了研究.结果表明:新下段有机质含量整体较低,总有机碳(TOC)均值为0.9%.在古新世‒始新世极热时期(PETM),快速增温和氧化环境加速了有机质的分解,导致有机质含量较低,TOC仅为0.5%;在气候干旱时期,湖水盐度上升,硬石膏、钙芒硝等蒸发盐矿物陆续沉积,高盐度条件下嗜盐生物贡献了部分生产力,并且高盐、缺氧的环境促进了有机质的保存,TOC含量增大为2.56%.指示了早始新世江汉盆地古湖泊的有机质富集主要受生产力和保存条件协同控制.本研究为温室气候条件下陆相咸化湖盆中的有机质富集机制做出了解释,同时为未来油气资源有利层段勘探提供了理论依据.

Abstract

The potential of continental shale oil resources in China is enormous, and the lower member of the Xingouzui Formation (LXF) from the Early Eocene serves as the primary target for shale oil exploration in the Jianghan basin. Previous research has mainly focused on hydrocarbon generation potential and reservoir characteristics, while discussions regarding its depositional environment evolution and mechanisms of organic matter enrichment remain relatively scarce.This study takes the Early Eocene LXF from the SKD1 and CY1 boreholes as the main research object. Based on lithofacies, elemental, and isotopic geochemical analyses,it investigates the paleoenvironmental changes and organic matter enrichment mechanisms of the LXF. The results indicate that organic matter content in the LXF is relatively low, with an average total organic carbon (TOC) of 0.9%. During the Paleocene-Eocene Thermal Maximum (PETM), rapid warming and oxidative conditions accelerated the decomposition of organic matter, resulting in relatively low organic matter content, with a TOC of only 0.5%. In contrast, during arid climatic periods, increasing lake salinity led to the sequential deposition of evaporative minerals such as anhydrite and glauberite. Under high-salinity conditions, halophilic organisms contribute to part of the productivity. High salt and hypoxic environment promotes the production and preservation of organic matter, with average TOC increaing to 2.56%. These findings indicate that organic matter enrichment in the Jianghan basin during the Eocene was primarily controlled by synergy of productivity and preservation conditions. This study provides insights into the mechanisms of organic matter preservation in continental saline lacustrine basins under greenhouse climate conditions and provides a theoretical basis for identifying favorable stratigraphic intervals for future oil and gas exploration.

Graphical abstract

关键词

江汉盆地 / 早始新世 / 有机质富集 / 古环境 / 元素组成 / 沉积学 / 油气地质.

Key words

Jianghan basin / Early Eocene / organic matter enrichment / paleoenvironment / elemental composition / sedimentology / petroleum geology

引用本文

引用格式 ▾
范晓杰,滕晓华,王春连,张靖宇,陆扬博,张亮,陆永潮,李龙,秦占杰. 早始新世江汉盆地新沟嘴组下段沉积环境与有机质富集机理[J]. 地球科学, 2025, 50(05): 1953-1967 DOI:10.3799/dqkx.2024.136

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

随着我国油气勘探领域逐渐由常规油气向非常规油气过渡,近年来,我国东部陆相咸化湖盆页岩油勘探开发工作相继取得重大突破,渤海湾盆地、苏北盆地、南襄盆地和江汉盆地的古近纪页岩油工业产量稳步提高(邹才能等, 2022).与海相盆地相比,陆相湖盆的面积和地理延伸范围有限,导致沉积序列更加错综复杂(Feng et al., 2013).构造和气候因素对陆相湖盆的地层序列和沉积系统的形成有很大的影响(Cavinato et al., 2002),构造运动被认为是控制湖盆可容纳空间的主要因素,并对区域气候模式产生重大影响(Lin et al., 2001);气候条件会进一步改变湖泊周缘流域的水文和植被生态系统,导致湖泊水位波动,从而影响沉积过程和有机质的生产和保存条件(Jiang et al., 2007Hao et al., 2011).除此之外,沉积速率导致的稀释效应,水体盐度变化、火山、热液活动等都可能对湖相沉积岩中的有机质富集机理产生影响(Tyson, 2001; 刘全有等, 2022).

地质历史上大规模有机质富集过程往往与重大地质事件有关,例如奥陶纪‒志留纪冰期事件,早白垩世大洋缺氧事件,二叠纪‒三叠纪生物大灭绝事件等(Shen et al., 2015Raven et al., 2018Lu et al., 2020),这些事件对全球碳循环和化石能源的埋藏至关重要(Berner, 2003).在早古近纪,全球处于“温室”气候状态(Westerhold et al., 2020).在此期间全球经历了数次极热事件,如古新世‒始新世极热事件(PETM)和早始新世极热事件2(ETM2)等(Dickens et al., 1995).许多基于深海沉积物的研究显示PETM期间由于强烈的化学风化及火山爆发等因素带来的营养物质促进了表层浮游生物的生长,极大地提高了生产力,导致埋藏的有机质含量较高(Sluijs et al., 2008),被认为是大气CO2的主要消耗机制之一(Soliman et al., 2011).湖泊中的有机碳埋藏作为全球碳循环的一个重要组成部分,对于防止温室气体产生和生态系统碳平衡意义重大(Mendonça et al., 2017).然而,迄今为止,人们对处于温室气候的早古近纪时期湖相环境中的有机质埋藏情况知之甚少.

江汉盆地作为发育在中国东部的咸化湖盆,在新生代沉积了巨厚的湖相沉积物,早始新世新沟嘴组下段(新下段)作为页岩油勘探的主要产层,近年来有关学者对其生烃潜力、储层特征等展开了详细的研究(Li et al., 2021Gou et al., 2023).然而受制于样品分辨率不足,新下段长序列沉积环境演化及有机质富集模式等方面的研究仍相对缺乏,在一定程度上制约了勘探程度的进一步提高.因此,本文以江汉盆地新下段高分辨率岩心为研究对象,基于岩相特征及元素地球化学分析重建新下段沉积古环境,并厘清温室气候背景下新下段有机质的富集机制,为未来有利勘探层段优选提供理论依据.

1 地质背景

江汉盆地地处扬子板块中部,盆地范围位于33°~34°40′N,195°40′~198°E,是发育在我国湖北省白垩系‒古近系的含油气裂谷盆地,总面积约为28 000 km2Huang and Hinnov, 2014)(图1a).江汉盆地周缘构造带发育,盆地北接南秦岭‒大别山造山带和南襄盆地,东临大别阶地和鄂东褶皱逆冲带,西接神农架‒黄陵地块,南临洞庭盆地和江南造山带(Hu et al., 2006Wu et al., 2017).盆地内构造样式复杂,断裂发育.晚燕山期是主要构造发育时期,盆地在晚喜山期定型为盐湖盆地,大量褶皱和断裂是造成研究区内复杂的“隆凹相间、斜坡相伴”构造格局的主要原因(王必金等, 2006).江汉盆地内沉积了巨厚的中、新生代河湖相沉积物,地层发育完整(图1b),早始新世新沟嘴组下段是主要的页岩油产层,自下而上可细分为Ⅲ油组、泥隔层、Ⅱ油组及Ⅰ油组.岩性以蒸发盐岩、泥岩、白云岩等为主(图2a).新下段底界的地质年龄已经通过玄武岩样品K⁃Ar测年限定在始新世底界 (56 Ma)(徐论勋等, 1995).在绝对地质年龄的限定下,Teng et al. (2021)基于碳同位素负偏在SKD1井新下段(1 312~1 376 m)中识别出PETM事件.基于岩性特征及测井曲线,地层对比结果显示两口取心井SKD1、CY1井可划分为4个阶段:第Ⅰ阶段对应于沙市组上段,岩性以膏质泥岩、粉沙岩为主,夹薄层细砂岩和硬石膏层;第Ⅱ阶段对应于新下段Ⅲ油组及泥隔层,即PETM时期,岩性以钙质泥岩、薄层粉砂岩‒砂岩为主;第Ⅲ阶段对应于新下段Ⅱ油组下部,即PETM事件之后,以大套蒸发盐岩和泥质白云岩为主,顶部为厚度较薄的粉砂岩、泥岩;第Ⅳ阶段对应于新下段Ⅱ油组上部岩性主要为蒸发盐岩与泥岩、粉砂岩、细砂岩互层(图2b).

2 方法

首先,对岩心的颜色、粒度和沉积构造进行详细观察、描述;若单层岩层(如泥质层、钙芒硝层、白云质层)的厚度小于2 mm,则为纹层状结构,大于 2 mm可视为层状结构,块状结构通常成分均一且致密,同时选取典型样品进行薄片鉴定.另外,为了获得古气候和古环境信息,对样品进行了总有机碳(TOC)分析、碳酸盐碳氧同位素和元素组成分析.

总有机碳(TOC)分析在江汉油田勘探开发研究院完成.实验前将所有样品粉碎成粒径小于100目的颗粒,之后使用浓度为10%的稀盐酸(HCl)去除无机碳,剩余样品经过处理在高温下热解,并使用LECO CS⁃230仪器进行测量.

CY1井碳酸盐碳氧同位素在加拿大阿尔伯塔大学稳定同位素地球化学实验室完成.在分离式玻璃管中称取一定量样品加入磷酸(H3PO4)抽至真空,倒入H3PO4后在50 ℃下水浴加热2 h,生成的二氧化碳气体经低温净化后送入MAT⁃253同位素质谱仪进行测量.碳酸盐岩碳同位素(δ13Ccarb)和氧同位素(δ18Ocarb)组成以相对于Vienna PeeDee Belemnite(VPDB)标准来表示,相对标准偏差小于0.2‰,δ18Ocarb的校正详见Kim et al. (2015).

主微量元素测试在中国地质科学院矿产资源研究所自然资源部成矿与矿产评价重点实验室完成.首先,取适量200目样品粉末,于105 ℃烘干,之后称取适量样品粉末置于铂金坩埚中,加入四硼酸锂‒偏硼酸锂‒硝酸混合溶剂,置于熔样机中于 1 050 ℃熔融,再将熔浆导入铂金模具中冷却呈熔片,最后在PW4400 X射线荧光光谱仪(XRF)上测试,测试精度优于5%;微量元素样品用封闭酸溶法进行预处理.首先取适量200目的样品粉末于特氟龙熔样罐中,加入适量浓硝酸和浓氢氟酸后封入钢罐.在220 ℃烘箱中加热24 h进行初熔,后取出特氟龙熔样罐,置于电热板上敞口加热至湿盐状态后,加浓硝酸进行赶酸,赶酸过程重复3次,最后一次赶至湿盐状态时,加入1∶1硝酸后封罐在150 ℃烘箱中加热4 h进行复熔,放凉后取出使用超纯水定容,最后在Jena PQ⁃MS电感耦合等离子体质谱仪(ICP⁃MS)上测试,测试精度优于10%.

为了消除稀释效应并减少陆源通量的影响,富集因子(XEF)用于评估沉积物中元素的富集程度.在此使用铝(Al)归一化富集因子.XEF的计算公式为:

XEF=(X/Al)样品/(X/Al)PAAS,

其中PAAS代表太古代后平均页岩的相应组成(McLennan, 2001Tribovillard et al., 2006).

3 结果

3.1 岩性、岩相特征

沙市组及新下段岩相类型多变,发育蒸发盐岩、粉砂岩、泥岩、白云岩等多种岩性,基于矿物特征及沉积构造共识别出13种主要岩相.膏岩产状主要为致密块状或团块状(图3a),如果硫酸盐型卤水中氯化钠含量较高,那么早先沉淀的石膏与氯化钠反应而生成钙芒硝(魏东岩, 1988),部分样品中出现钙芒硝交代石膏的现象可能为后期成岩过程中的产物(图4a).钙芒硝作为新下段主要盐类矿物之一,产状以花斑状、致密块状、板状、纹层状为主,深灰色纹层状泥质钙芒硝以黑色泥质层、浅灰色钙芒硝层和深灰色云质层交替排列为特征,细晶钙芒硝成层状分布,纹层平直,向上反映了盐度的频繁变化(图3b).深灰色块状芒硝泥岩可见粉晶‒细晶钙芒硝晶体致密排列在泥质基质上(图3c),钙芒硝晶体为四面体,晶体间的微裂缝内有油迹(图4b).此外,钙芒硝晶体还以层状或者透镜状与白云岩共生.石盐在研究区分布相对局限,以成分较纯的白色半透明立方体石盐晶体为主(图3d).

浅粉色块状泥质粉砂岩中可见交错层理,说明沉积时水动力较强,水流方向频繁改变(图3e).深灰色层状泥质粉砂岩中见厚层粉砂质条带夹薄泥质层,粉砂质层厚度不一,见波状层理和粉砂质透镜体(图3f).薄片上可见明显的泥质,粉砂质分界线(图4c),反映了水动力的突然增强,搬运成分从泥质突变为碎屑石英、长石等粒度较粗的成分.

深灰色层状白云质泥岩以平直的灰黄色云质层、灰白色粉砂质层与深灰色泥质层交替出现为特征(图4d),反映了较弱的水动力和周期性变化的水体环境(图3g).灰黑色块状粉砂质泥岩中见碳酸盐胶结物(图4e),灰白色粉砂质层分布于黑色泥质基质上,反映了水动力的突然增强(图3h).深灰色层状芒硝质泥岩分布相对局限,泥质基质上定向排列的层状粗晶钙芒硝为后期成岩的产物(图3i),可能为孔隙水与泥质成分离子交换的成因.

浅灰色块状泥质白云岩岩心上以泥晶白云石堆积为主要特征(图4f),成分均一,偶见粗晶钙芒硝(图3j).深灰色层状泥质白云岩中可见透镜状,灰白色层状钙芒硝层和灰黄色白云质层及黑色泥质层互层(图3k).纹层状灰黑色泥质白云岩作为新下段的主力勘探岩相,可见泥质纹层,粉晶白云质纹层和钙芒硝纹层,纹层形态平直(图3l,4g,4h),薄片中还可见长英质纹层和油气运移形成的超压缝(图4i),各种成分的纹层可能为水体季节性变化的产物.

3.2 TOC、δ13Ccarb和δ18Ocarb

153个样品的TOC值分布在0.06%~6.86%,平均值为1.05%.第Ⅱ阶段的TOC含量最低,波动范围为0.15%~3.38%,平均值为0.50%;第Ⅲ阶段的TOC含量最高,分布在0.59%~6.68%,平均值为2.56%;第Ⅰ和Ⅳ阶段中,TOC含量中等,平均值分别为1.42%和0.75%.SKD1碳酸盐碳氧同位素数据源自Teng et al. (2021)δ13Ccarbδ18O变化趋势一致,δ13Ccarb分布在-13.6‰~-2.0‰,δ18O分布在-7.6‰~-2.7‰,二者均在第II阶段PETM时期出现大幅度负偏,并在第III阶段恢复;第IV阶段,CY1井δ13Ccarb分布在-6.8‰~-2.9‰,平均值为-5.0‰,δ18O分布在0.5‰~-4.4‰,平均值为-1.9‰.

3.3 元素组成及其比值

Al2O3含量分布在0.1%~19.0%,平均值为7.8%.在第Ⅱ阶段中含量最高,平均值为11.9%,第Ⅲ阶段含量最低,平均值为5.2%;TiO2含量分布在0.04%~0.69%,平均值为0.36%,其含量变化与Al2O3相似,第Ⅱ阶段含量最高,Ⅲ阶段含量最低,平均值分别为0.54%和0.26%;Rb/Sr比值分布在0.001~0.921,平均值为0.151,最大值(平均值为0.322),最小值段(平均值为0.051)分别出现在第Ⅱ、Ⅲ阶段;锶/钡(Sr/Ba)比值分布在0.5~34.1,平均值为8.3,第Ⅰ阶段Sr/Ba值最高,平均值为15.2,第Ⅱ阶段值最低,平均值为3.4;镁/钙(Mg/Ca)比值分布在0.05~6.55,平均值为0.50;镍(Ni)含量和Ni/Al分布在1~58 μg/g和0.19×10-4~37.75×10-4,平均值分别为22 μg/g和7.93×10-4;UEF(铀)分布在1~47,平均值为13,MoEF(钼)分布在1~207,平均值为32,各参数不同阶段的详细数据分布见表1.

4 讨论

4.1 古气候与古环境特征

4.1.1 古湖盐度、流域化学风化强度与古气候

Mg和Sr在自生碳酸盐矿物中的分配与水中的Ca离子含量成正比,当湖水蒸发导致盐度增加时,降雨量与蒸发量负平衡,Mg/Ca值增大,因此,自生碳酸盐中的Mg/Ca可用作古盐度的代用指标(Chivas et al., 1985);海水中的Sr通常比淡水中的Sr高几个数量级,而Ba在海水和淡水中的差异并不明显(<10倍),尽管Sr含量在一定程度上会受到过多碳酸盐矿物的影响,但Sr/Ba比值总体上仍可以反映盐度的变化趋势(Wei et al., 2018);Rb元素惰性较强,化学性质相对更稳定,而Sr元素则更具流动性,在风化过程中优先被析出,因此,Rb/Sr与风化程度成正比,强烈的化学风化往往对应更加潮湿的气候(Dasch, 1969);封闭湖泊自生碳酸盐碳氧同位素(δ13Ccarbδ18Ocarb)主要受蒸发‒降水条件的控制,气候干旱时,碳酸盐δ13Ccarbδ18Ocarb增加,反之δ13Ccarbδ18Ocarb降低(Leng and Marshall, 2004; 滕晓华等, 2013).

在古新统沙市组上段沉积时期,即第Ⅰ阶段,硬石膏的广泛出现代表了较为干旱的气候条件.Mg/Ca和Sr/Ba值相对较高分别为0.88和15.2,Rb/Sr值较低为0.14,指示了湖水盐度较高,化学风化较弱,气候相对干旱,与孢粉组合以高比例的旱生麻黄素和嗜热旱生类群相一致(Xie et al., 2022),这可能与北半球副热高压带控制下的干旱/半干旱气候有关,当时在南方地区发育了大量指示干热气候的红层与蒸发岩沉积(Guo et al., 2008).另外,Mg/Ca和Sr/Ba的波动与岩性一致,在蒸发盐岩沉积期,Mg/Ca和Sr/Ba值较高,指示湖水盐度较高,气候相对干旱;在泥岩和含膏泥岩沉积时,二者值较低,指示了湖水盐度较低,气候相对湿润.第Ⅱ阶段,即PETM时期,Mg/Ca值和Sr/Ba值迅速下降至0.31和3.4,Rb/Sr显著增加,泥岩和砂岩的交互沉积取代膏质泥岩和硬石膏,说明气候变湿,化学风化作用增强.此阶段δ13Ccarbδ18Ocarb的大幅度负漂与大量轻碳释放和降水显著增加有关(Teng et al., 2021;滕晓华等,2022;Zhang et al., 2024).前人利用孢粉组成重建的年平均降水量高达1 600 mm,也表明该时期江汉盆地气候炎热潮湿(Xie et al., 2022).第Ⅲ阶段,蒸发盐岩再次沉积,与此同时,Rb/Sr显著降低,Mg/Ca值逐渐升高,δ18Ocarb由PETM时期的-6‰快速正偏至-0.3‰,这些证据均表明PETM结束后气候再次变得干旱;第Ⅳ阶段岩性转变为泥质白云岩和芒硝质白云岩,Sr/Ba比值也有所降低,Rb/Sr值升高,δ18Ocarb较上一阶段减小至-1.9‰,反映了此阶段气候逐渐相对湿润的特点.

4.1.2 陆源输入

铝元素(Al)主要来源于铝硅酸盐黏土矿物,钛(Ti)元素的溶解度低,主要与钛铁矿、金红石和榍石等重矿物有关(Rimmer et al., 2004Tribovillard et al., 2006).在成岩和埋藏过程中,这两种矿物一般都不会移动.因此,Al2O3和TiO2被认为完全来自于陆源输入,通常被用作陆源输入通量的指标(Tribovillard et al., 2006).图5显示,Al2O3和TiO2与Rb/Sr变化趋势相同.第Ⅰ阶段,Al2O3和TiO2均值相对较高,分别为8.2%和0.35%(表1),并且与岩性变化相对应,蒸发盐岩沉积期Al2O3和TiO2为低值而在泥岩沉积期出现高值;第Ⅱ阶段,Al2O3和TiO2达到最大值,平均值分别为11.9%和0.54%,指示了陆源输入达到最大,说明了此时相对较高的降水量和暖湿的气候促进了物理风化作用,导致了粒度较粗的粉砂岩和粉砂质泥岩的沉积;而在第Ⅲ阶段,Al2O3和TiO2均值降低到5.2%和0.26%,说明物理风化作用逐渐减弱,陆源输入也随之降低,指示了气候重回干旱(图5);第Ⅳ阶段干旱程度有所减弱,岩心和薄片上石英、长石等碎屑矿物含量增加, Al2O3和TiO2也呈现出增大的趋势,说明陆源输入增强,指示了气候相对阶段III较为湿润.

4.1.3 氧化还原条件

在氧化条件下Mo元素主要以钼酸盐(MoO42-)的形式存在,U元素则以碳酸根络合物(UO2(CO334-)形式存在,在还原条件下MoO42-会转化为硫代钼酸盐(MoSO x4-x2-),U会以UO2+或氧化亚铀络合物的形式被还原,从而可能导致大量自生Mo和U富集.通常来说这些元素在氧化条件下贫化,但在还原条件下富集(Algeo and Maynard, 2004Tribovillard et al., 2006).因此,这些元素被广泛用于重建海洋和湖泊系统中的氧化还原条件(Liang et al., 2018Liu and Algeo, 2020).

第Ⅰ阶段沉积时期,MoEF(平均值为59)和UEF(平均值为21)均为高值,指示了相对较强的还原环境;第Ⅱ阶段,Mo和U元素贫化,MoEF和UEF平均值下降到5,指示了氧化较强的水体环境,说明此时,湖泊水循环加快,水体滞留时间短.另外,湖相沉积物在氧化环境下Fe2+被氧化为Fe3+会使沉积物颜色变红(McBride, 1974),因此,该时期沉积的浅红色交错层理泥质粉砂岩为典型水动力较强下氧化环境的产物;第Ⅲ阶段,Mo和U元素再次富集,MoEF和UEF平均值分别为53和18,指示了较强的还原环境,这可能与较高的盐度有关.较高的硫酸盐离子浓度促进硫酸盐还原菌生存,硫酸盐还原菌的生理化学作用消耗水体中的氧气,并释放出大量的H2S,致使底水形成缺氧环境(Raiswell et al., 1988).另一方面,较高的盐度有利于湖泊的氧化还原分层,使得湖泊底部形成缺氧环境(Liang et al., 2024);第Ⅳ阶段MoEF和UEF分别下降到23和11,指示了相对较弱的还原环境.

4.1.4 古生产力

Ni主要以有机金属络合物的形式迁移到沉积物中.当有机物衰变时,这些元素会被释放出来,并被保留在黄铁矿中.因此,Ni的丰度被认为是有机物通量的标志,至少部分与生产力有关(Tribovillard et al., 2006),Ni的富集代表了高有机物通量.此外,即使在有机物分解后,Ni仍可与黄铁矿一起保留在沉积物中,这些特点使Ni成为生产力的可靠替代指标,为了排除陆源碎屑的影响,在此使用Ni/Al来指代生产力的变化(Algeo and Maynard, 2004; Tribovillard et al., 2006).

第Ⅰ阶段,Ni/Al平均值为11.76×10-4,并呈现波动的趋势,与岩性对应关系较好,在气候干旱膏岩沉积时生产力相对较低,而在气候相对湿润的泥岩和含膏泥岩沉积期Ni/Al含量上升,生产力提高;第Ⅱ阶段,Ni含量较高,平均值为30 μg/g,然而Ni/Al平均值仅为5.71×10-4,说明陆源输入贡献了大量的Ni,湖泊自生生产力相对较低.这与PETM时期全球变暖导致的海相沉积物高生产力现象相悖(Stoll et al., 2007),说明湖相沉积物沉积过程生产力变化受陆源影响较大;第Ⅲ阶段,Ni含量下降,而Ni/Al增大至9.06×10-4,说明有机质通量下降,但生产力略微上升;第Ⅳ阶段生产力变化与前一时期类似,Ni/Al平均值为6.62×10-4图5).

4.2 有机质富集机理

第Ⅰ阶段,气候较为干旱,湖水盐度较高,研究表明,在盐度逐渐增加且未到阈值的过程中,有机质含量可能会随着盐度的升高而增加(Hu et al., 2018).根据实验模拟在中等盐度条件下(10~ 20 ppt),充足的营养物质会增强浮游植物的氮吸收潜力和与硝化相关的细菌数量,从而有效提高初级生产力(Kumar et al., 2018).一旦盐度超过一定阈值,由于不耐盐碱,生物量将急剧下降,从而降低生产力,这些淡水物种的灭绝也会产生部分有机质(Barbe et al., 1990),在极短的时间内提高有机质含量.此外,现代盐湖中的证据表明部分生物(如嗜卤生物)可通过有效缓解高渗透压的不利影响而在高盐度条件下存活(Strahl and Greie, 2008Deng et al., 2010),贡献部分生产力,因此该阶段生产力最高,并且该阶段的还原环境有利于有机质的保存,但 TOC与Ni/Al和UEF之间均无明显的相关性(图6a,6b), 可能与陆源碎屑输入导致的稀释效应相关,有机质含量适中(图7a).

第Ⅱ阶段,气候相对暖湿,增强的地表径流和降水带来了充足的陆源输入,盐度急剧下降,硬石膏消失,泥岩、粉砂岩等碎屑岩成为主要沉积物.此时,大量来自陆地的有机物被输送到湖泊中,可能在一定程度上增加沉积物中的有机质通量(Ni含量较高),但湖泊自生生产力较低(Ni/Al较低),表明大多有机质是与陆源输入相关的,TOC和Ni/Al之间的正相关说明虽然生产力较低但仍对保存的有机质有重要影响(图6a).温度的快速上升和大量氧气的输入破坏了之前的缺氧环境,高温和氧化环境下会加快有机物分解的速度,不利于有机质的保存,导致有机质减少(Meyers, 1994).这一推论与UEF与TOC之间的正相关一致(R2=0.59)(图6b).因此,尽管PETM期间输入的有机质通量较高,但生产力和有机质的保存潜力较低,有机质含量最低(图7b).

第Ⅲ阶段,江汉盆地的古气候再次变得十分干旱,湖泊盐度增加,石盐、钙芒硝等蒸发盐矿物开始沉积,该时期的陆源输入、盐度、氧化还原、生产力和TOC协同变化,在气候干旱时期陆源碎屑输入减少,盐度增加,生产力降低,TOC含量低,与之相反的是在相对湿润的时期,陆源碎屑输入增加,盐度降低,生产力增强,TOC含量高,并与Ni/Al存在较强的正相关关系(R2=0.72)(图6a),指示了生产力是影响有机质富集的重要因素.此外,该阶段强还原环境也有利于有机质的保存,有机质含量相对较高(图7c).

第Ⅳ阶段,气候相对阶段III较为湿润,陆源输入量增加迅速,盐度降低,以泥质白云岩和白云质泥岩为主要沉积,低Ni/Al比值说明生产力较低,Al2O3与Ni变化趋势一致,且该时期有机质以Ⅱ2和Ⅲ型干酪根为主(Li et al., 2021),说明陆源碎屑贡献了主要的有机质,同时该时期UEF较低,说明保存条件较差,有机质降解严重.TOC与Ni/Al和UEF之间均无明显的相关性(图6a,6b).Li et al.(2021)认为该时期沉积过程中可能存在强烈的震动或风暴,水体受扰动强烈,这些事件可能携带了大量的氧气下沉到湖底,破坏了原有的缺氧条件,较低的生产力加之较差的保存条件导致整体有机质含量较低(图7d).

5 结论

(1)古气候、盐度共同影响下沙市组上段及新沟嘴组下段沉积泥岩、粉砂岩、蒸发盐岩、白云岩等多种岩石类型,依据矿物特征和沉积构造识别出层状白云质泥岩、团块状石膏、块状泥质粉砂岩、纹层状泥质白云岩在内的13种主要岩相.

(2)古新世至始新世之交江汉盆地古气候经历了干旱‒短暂潮湿‒干旱的变化过程.气候变化通过影响生产力和保存条件控制着江汉盆地新下段有机质富集.此外,陆源碎屑输入导致的稀释效应也可能对沉积物中的有机质含量有一定影响.

(3)当气候相对暖湿时,增强的地表径流有利于陆源有机质的输送和溶解营养物质的供应,同时充足的淡水携带氧气进入湖盆,使湖泊以氧化环境为主,导致沉积物中保存的有机质减少;气候相对干旱时期,湖泊盐度增加,嗜盐生物贡献部分生产力,盐度分层导致的缺氧环境,从而减缓有机质的降解,提高了有机质的保存条件,有利于有机质的富集.

参考文献

[1]

Algeo, T. J., Maynard, J. B., 2004. Trace⁃Element Behavior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas⁃Type Cyclothems. Chemical Geology, 206(3-4): 289-318. https://doi.org/10.1016/j.chemgeo.2003.12.009

[2]

Barbe, A., Grimalt, J. O., Pueyo, J. J., et al., 1990. Characterization of Model Evaporitic Environments through the Study of Lipid Components. Organic Geochemistry, 16(4-6): 815-828. https://doi.org/10.1016/0146⁃6380(90)90120⁃o

[3]

Berner, R. A., 2003. The Long⁃Term Carbon Cycle, Fossil Fuels and Atmospheric Composition. Nature, 426(6964): 323-326. https://doi.org/10.1038/nature02131

[4]

Cavinato, G. P., Carusi, C., Dall’Asta, M., et al., 2002. Sedimentary and Tectonic Evolution of Plio⁃Pleistocene Alluvial and Lacustrine Deposits of Fucino Basin (Central Italy). Sedimentary Geology, 148(1/2): 29-59. https://doi.org/10.1016/S0037⁃0738(01)00209⁃3

[5]

Chivas, A. R., De Deckker, P., Shelley, J. M. G., 1985. Strontium Content of Ostracods Indicates Lacustrine Palaeosalinity. Nature, 316: 251-253. https://doi.org/10.1038/316251a0

[6]

Dasch, E. J., 1969. Strontium Isotopes in Weathering Profiles, Deep⁃Sea Sediments, and Sedimentary Rocks. Geochimica et Cosmochimica Acta, 33(12): 1521-1552. https://doi.org/10.1016/0016⁃7037(69)90153⁃7

[7]

Deng, S. C., Dong, H. L., Lv, G., et al., 2010. Microbial Dolomite Precipitation Using Sulfate Reducing and Halophilic Bacteria: Results from Qinghai Lake, Tibetan Plateau, NW China. Chemical Geology, 278(3-4): 151-159. https://doi.org/10.1016/j.chemgeo.2010.09.008

[8]

Dickens, G. R., O’Neil, J. R., Rea, D. K., et al., 1995. Dissociation of Oceanic Methane Hydrate as a Cause of the Carbon Isotope Excursion at the End of the Paleocene. Paleoceanography, 10(6): 965-971. https://doi.org/10.1029/95pa02087

[9]

Feng, Y. L., Li, S. T., Lu, Y. C., 2013. Sequence Stratigraphy and Architectural Variability in Late Eocene Lacustrine Strata of the Dongying Depression, Bohai Bay Basin, Eastern China. Sedimentary Geology, 295: 1-26. https://doi.org/10.1016/j.sedgeo.2013.07.004

[10]

Gou, Q. Y., Xu, S., Hao, F., et al., 2023. Petrography and Mineralogy Control the Nm⁃Μm⁃Scale Pore Structure of Saline Lacustrine Carbonate⁃Rich Shales from the Jianghan Basin, China. Marine and Petroleum Geology, 155: 106399. https://doi.org/10.1016/j.marpetgeo.2023.106399

[11]

Guo, Z. T., Sun, B., Zhang, Z. S., et al., 2008. A Major Reorganization of Asian Climate by the Early Miocene. Climate of the Past, 4(3): 153-174. https://doi.org/10.5194/cp⁃4⁃153⁃2008

[12]

Hao, F., Zhou, X. H., Zhu, Y. M., et al., 2011. Lacustrine Source Rock Deposition in Response to Co⁃Evolution of Environments and Organisms Controlled by Tectonic Subsidence and Climate, Bohai Bay Basin, China. Organic Geochemistry, 42(4): 323-339. https://doi.org/10.1016/j.orggeochem.2011.01.010

[13]

Hu, S. B., Kohn, B. P., Raza, A., et al., 2006. Cretaceous and Cenozoic Cooling History across the Ultrahigh Pressure Tongbai⁃Dabie Belt, Central China, from Apatite Fission⁃Track Thermochronology. Tectonophysics, 420(3-4): 409-429. https://doi.org/10.1016/j.tecto.2006.03.027

[14]

Hu, T., Pang, X. Q., Jiang, S., et al., 2018. Impact of Paleosalinity, Dilution, Redox, and Paleoproductivity on Organic Matter Enrichment in a Saline Lacustrine Rift Basin: A Case Study of Paleogene Organic⁃Rich Shale in Dongpu Depression, Bohai Bay Basin, Eastern China. Energy & Fuels, 32(4): 5045-5061. https://doi.org/10.1021/acs.energyfuels.8b00643

[15]

Huang, C. J., Hinnov, L., 2014. Evolution of an Eocene⁃ Oligocene Saline Lake Depositional System and Its Controlling Factors, Jianghan Basin, China. Journal of Earth Science, 25(6): 959-976. https://doi.org/10.1007/s12583⁃014⁃0499⁃2

[16]

Huang, C. J., Hinnov, L., 2019. Astronomically Forced Climate Evolution in a Saline Lake Record of the Middle Eocene to Oligocene, Jianghan Basin, China. Earth and Planetary Science Letters, 528: 115846. https://doi.org/10.1016/j.epsl.2019.115846

[17]

Jiang, Z. X., Chen, D. Z., Qiu, L. W., et al., 2007. Source⁃Controlled Carbonates in a Small Eocene Half⁃Graben Lake Basin (Shulu Sag) in Central Hebei Province, North China. Sedimentology, 54(2): 265-292. https://doi.org/10.1111/j.1365⁃3091.2006.00834.x

[18]

Kim, S.T., Coplen, T.B., Horita, J., 2015. Normalization of Stable Isotope Data for Carbonate Minerals: Implementation of IUPAC Guidelines. Geochimica et Cosmochimica Acta, 158: 276-289. https://doi.org/10.1016/j.gca.2015.02.011

[19]

Kumar, S., Bhavya, P. S., Ramesh, R., et al., 2018. Nitrogen Uptake Potential under Different Temperature⁃ Salinity Conditions: Implications for Nitrogen Cycling under Climate Change Scenarios. Marine Environmental Research, 141: 196-204. https://doi.org/10.1016/j.marenvres.2018.09.001

[20]

Leng, M. J., Marshall, J. D., 2004. Palaeoclimate Interpretation of Stable Isotope Data from Lake Sediment Archives. Quaternary Science Reviews, 23(7-8): 811-831. https://doi.org/10.1016/j.quascirev.2003.06.012

[21]

Li, Q. Q., Xu, S., Hao, F., et al., 2021. Geochemical Characteristics and Organic Matter Accumulation of Argillaceous Dolomite in a Saline Lacustrine Basin: A Case Study from the Paleogene Xingouzui Formation, Jianghan Basin, China. Marine and Petroleum Geology, 128: 105041. https://doi.org/10.1016/j.marpetgeo.2021.105041

[22]

Li, Q. Q., Xu, S., Zhang, L., et al., 2022. Shale Oil Enrichment Mechanism of the Paleogene Xingouzui Formation, Jianghan Basin, China. Energies, 15(11): 4038. https://doi.org/10.3390/en15114038

[23]

Liang, C., Jiang, Z. X., Cao, Y. C., et al., 2018. Sedimentary Characteristics and Origin of Lacustrine Organic⁃Rich Shales in the Salinized Eocene Dongying Depression. GSA Bulletin, 130(1-2): 154-174. https://doi.org/10.1130/b31584.1

[24]

Liang, C., Yang, B., Cao, Y. C., et al., 2024. Salinization Mechanism of Lakes and Controls on Organic Matter Enrichment: From Present to Deep⁃Time Records. Earth⁃Science Reviews, 251: 104720. https://doi.org/10.1016/j.earscirev.2024.104720

[25]

Lin, C., Eriksson, K., Li, S., et al., 2001. Sequence Architecture, Depositional Systems, and Controls on Development of Lacustrine Basin Fills in Part of the Erlian Basin, Northeast China. AAPG, 85(11): 2017-2043. https://doi.org/10.1306/8626D0DB⁃173B⁃11D7⁃8645000102C1865D

[26]

Liu, J. S., Algeo, T. J., 2020. Beyond Redox: Control of Trace⁃Metal Enrichment in Anoxic Marine Facies by Watermass Chemistry and Sedimentation Rate. Geochimica et Cosmochimica Acta, 287: 296-317. https://doi.org/10.1016/j.gca.2020.02.037

[27]

Liu, Q. Y., Li, P., Jin, Z. J., et al., 2022. Organic⁃Rich Formation and Hydrocarbon Enrichment of Lacustrine Shale Strata: A Case Study of Chang 7 Member. Science China Earth Sciences, 52(2): 270-290 (in Chinese). https://doi.org/10.1007/s11430⁃021⁃9819⁃y

[28]

Lu, Y. B., Hao, F., Lu, Y. C., et al., 2020. Lithofacies and Depositional Mechanisms of the Ordovician⁃Silurian Wufeng⁃Longmaxi Organic⁃Rich Shales in the Upper Yangtze Area, Southern China. AAPG Bulletin, 103(1): 97-129. https://doi.org/10.1306/04301918099

[29]

McBride, E. F., 1974. Significance of Color in Red, Green, Purple, Olive, Brown, and Gray Beds of Difunta Group, Northeastern Mexico. SEPM Journal of Sedimentary Research, 44: 760-773. https://doi.org/10.1306/212F6B9A⁃2B24⁃11D7⁃8648000102C1865D

[30]

McLennan, S. M., 2001. Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochemistry, Geophysics, Geosystems, 2(4): 1021-1024. https://doi.org/10.1029/2000GC000109

[31]

Mendonça, R., Müller, R. A., Clow, D., et al., 2017. Organic Carbon Burial in Global Lakes and Reservoirs. Nature Communications, 8(1): 1694. https://doi.org/10.1038/s41467⁃017⁃01789⁃6

[32]

Meyers, P. A., 1994. Preservation of Elemental and Isotopic Source Identification of Sedimentary Organic Matter. Chemical Geology, 114(3-4): 289-302. https://doi.org/10.1016/0009⁃2541(94)90059⁃0

[33]

Peng, W., 2019. The Beach Bar Sand Deposit in the Lower Segment of Xingouzui Formation and Its Distribution Characteristics. Journal of Yangtze University (Natural Science Edition), 16(3): 9-15 (in Chinese with English abstract).

[34]

Raiswell, R., Buckley, F., Berner, R.A., et al., 1988. Degree of Pyritization of Iron as a Paleoenvironmental Indicator of Bottom⁃Water Oxygenation. Journal of Sedimentary Research, 58: 812-819.

[35]

Raven, M. R., Fike, D. A., Gomes, M. L., et al., 2018. Organic Carbon Burial during OAE2 Driven by Changes in the Locus of Organic Matter Sulfurization. Nature Communications, 9(1): 3409. https://doi.org/10.1038/s41467⁃018⁃05943⁃6

[36]

Rimmer, S. M., Thompson, J. A., Goodnight, S. A., et al., 2004. Multiple Controls on the Preservation of Organic Matter in Devonian⁃Mississippian Marine Black Shales: Geochemical and Petrographic Evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 215(1-2): 125-154. https://doi.org/10.1016/j.palaeo.2004.09.001

[37]

Shen, J., Schoepfer, S. D., Feng, Q. L., et al., 2015. Marine Productivity Changes during the End⁃Permian Crisis and Early Triassic Recovery. Earth⁃Science Reviews, 149: 136-162. https://doi.org/10.1016/j.earscirev.2014.11.002

[38]

Sluijs, A., Röhl, U., Schouten, S., et al., 2008. Arctic Late Paleocene⁃Early Eocene Paleoenvironments with Special Emphasis on the Paleocene⁃Eocene Thermal Maximum (Lomonosov Ridge, Integrated Ocean Drilling Program Expedition 302). Paleoceanography, 23(1): 2007PA001495. https://doi.org/10.1029/2007pa001495

[39]

Soliman, M. F., Aubry, M. P., Schmitz, B., et al., 2011. Enhanced Coastal Paleoproductivity and Nutrient Supply in Upper Egypt during the Paleocene/Eocene Thermal Maximum (PETM): Mineralogical and Geochemical Evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 310(3-4): 365-377. https://doi.org/10.1016/j.palaeo.2011.07.027

[40]

Stoll, H. M., Shimizu, N., Archer, D., et al., 2007. Coccolithophore Productivity Response to Greenhouse Event of the Paleocene⁃Eocene Thermal Maximum. Earth and Planetary Science Letters, 258(1/2): 192-206. https://doi.org/10.1016/j.epsl.2007.03.037

[41]

Strahl, H., Greie, J. C., 2008. The Extremely Halophilic Archaeon Halobacterium Salinarum R1 Responds to Potassium Limitation by Expression of the K+⁃Transporting KdpFABC P⁃Type ATPase and by a Decrease in Intracellular K+. Extremophiles, 12(6): 741-752. https://doi.org/10.1007/s00792⁃008⁃0177⁃3

[42]

Teng, X.H., Wang, C.L., Liu, C.L., et al., 2021. Paleocene⁃Eocene Thermal Maximum Lacustrine Sediments in Deep Drill Core SKD1 in the Jianghan Basin: A Record of Enhanced Precipitation in Central China. Global and Planetary Change, 205: 103620. https://doi.org/10.1016/j.gloplacha.2021.103620

[43]

Teng, X. H., Fang, X. M., Kaufman, A. J., et al., 2019. Sedimentological and Mineralogical Records from Drill Core SKD1 in the Jianghan Basin, Central China, and Their Implications for Late Cretaceous⁃Early Eocene Climate Change. Journal of Asian Earth Sciences, 182: 103936. https://doi.org/10.1016/j.jseaes.2019.103936

[44]

Teng, X. H., Han, W. X., Ye, C. C., et al., 2013. Asian Inland Drought and Its Origin in Carbonate Isotope Records from Hole SG⁃1 in Qaidam Basin since 1.0 Ma. Quaternary Sciences, 33(5): 866-875 (in Chinese with English abstract).

[45]

Teng, X. H., Wang, C. L., Shen, L. J., et al., 2022. Paleoclimate during the Paleocene⁃Eocene Extreme Thermal Event Recorded by the Deep Drill Core SKD1 in the Jianghan Basin. Acta Geoscientica Sinica, 43(1): 65-72 (in Chinese with English abstract).

[46]

Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1-2): 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012

[47]

Tyson, R. V., 2001. Sedimentation Rate, Dilution, Preservation and Total Organic Carbon: Some Results of a Modelling Study. Organic Geochemistry, 32(2): 333-339. https://doi.org/10.1016/S0146⁃6380(00)00161⁃3

[48]

Wang, B.J., Lin, C.S., Chen, Y., et al., 2006. Episodic Tectonic Movement and Evolutional Character in Jianghan Basin. Oil Geophysical Prospecting, 41(2): 226-230, 248 (in Chinese with English abstract).

[49]

Wei, D.Y., 1998. Glauberite in Salt Deposits and Its Genesis. Minerals and Rocks, 8(2): 92-98 (in Chinese with English abstract).

[50]

Wei, W., Algeo, T. J., Lu, Y. B., et al., 2018. Identifying Marine Incursions into the Paleogene Bohai Bay Basin Lake System in Northeastern China. International Journal of Coal Geology, 200: 1-17. https://doi.org/10.1016/j.coal.2018.10.001

[51]

Westerhold, T., Marwan, N., Drury, A. J., et al., 2020. An Astronomically Dated Record of Earth’s Climate and Its Predictability over the Last 66 Million Years. Science, 369(6509): 1383-1387. https://doi.org/10.1126/science.aba6853

[52]

Wu, L. L., Mei, L. F., Liu, Y. S., et al., 2017. Multiple Provenance of Rift Sediments in the Composite Basin⁃Mountain System: Constraints from Detrital Zircon U⁃Pb Geochronology and Heavy Minerals of the Early Eocene Jianghan Basin, Central China. Sedimentary Geology, 349: 46-61. https://doi.org/10.1016/j.sedgeo.2016.12.003

[53]

Xie, Y. L., Wu, F. L., Fang, X. M., 2022. A Transient South Subtropical Forest Ecosystem in Central China Driven by Rapid Global Warming during the Paleocene⁃Eocene Thermal Maximum. Gondwana Research, 101: 192-202. https://doi.org/10.1016/j.gr.2021.08.005

[54]

Xu, L.X., Yan, C.D., Yu, H.L., et al., 1995. Age of Eogene Volcanic Rocks in Jianghan Basin. Oil & Gas Geology, 16(2):132-137 (in Chinese with English abstract).

[55]

Zhang, J. Y., Wang, C. L., Teng, X. H., et al., 2024. Orbital Modulation of an Intensified Hydrological Cycle during the Paleocene⁃Eocene Thermal Maximum. Earth and Planetary Science Letters, 635: 118693. https://doi.org/10.1016/j.epsl.2024.118693

[56]

Zou, C.N., Yang, Z., Li, G.X., et al., 2022. Why can China Realize the Continental‘Shale Oil Revolution’?.Earth Science, 47(10): 3860-3863 (in Chinese with English abstract).

基金资助

国家自然科学基金项目(41907262)

国家自然科学基金项目(42304082)

AI Summary AI Mindmap
PDF (11529KB)

216

访问

0

被引

详细

导航
相关文章

AI思维导图

/