藏东玉龙斑岩铜矿剥蚀历史与保存程度‒热年代学约束

甘圣添 ,  孙茂妤 ,  董磊磊

地球科学 ›› 2025, Vol. 50 ›› Issue (11) : 4208 -4228.

PDF (12759KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (11) : 4208 -4228. DOI: 10.3799/dqkx.2024.151

藏东玉龙斑岩铜矿剥蚀历史与保存程度‒热年代学约束

作者信息 +

Exhumation History and Preservation Degree of Yulong Porphyry Copper Deposit in East Xizang: Constrained by Thermochronology

Author information +
文章历史 +
PDF (13064K)

摘要

玉龙斑岩铜矿是玉龙斑岩铜矿带内唯一的超大型斑岩矿床,以往对该矿床的研究多与成因有关,未突出成矿后改造对制定找矿策略的重要意义.运用锆石U-Pb、磷灰石裂变径迹、磷灰石和锆石(U-Th)/He等热年代学方法进行了定年及相关热历史反演模拟研究.结果表明,玉龙矿床含矿二长花岗斑岩的锆石U-Pb谐和年龄为(41.7±0.5) Ma,锆石(U-Th)/He年龄在34.9~39.3 Ma,说明玉龙矿床的岩浆‒热液演化过程可能至少持续了5 Ma.磷灰石裂变径迹年龄在34.7~ 19.7 Ma,磷灰石(U-Th)/He年龄在20.7~18.4 Ma.这几个年龄大致依次降低,能代表冷却和剥蚀事件发生的时间.热历史反演模拟结果显示玉龙矿床经历了大致三个阶段的冷却过程,结合区域构造演化,34~30 Ma经历的相对快速冷却可能与同期印度大陆与亚欧大陆持续碰撞引起的青藏高原快速隆升有关;30~21 Ma相对缓慢的冷却可能是与碰撞活动的减弱有关;21~14 Ma相对快速冷却可能是与同期由构造缩短或者岩浆底垫造成的北羌塘地体地壳加厚事件有关.热历史模拟法计算得到的玉龙矿床剥蚀量为3.45 km, 考虑到玉龙矿床4~5 km的成矿深度,矿床深部还有0.5~1.5 km的找矿空间.

Abstract

The Yulong porphyry copper deposit is the only super-large porphyry deposit in the Yulong porphyry copper belt, and the previous research on this deposit is primarily focused on genesis, with limited emphasis on the significance of post-metallogenic transformation in formulating prospecting strategies. Thermochronological methods such as zircon U-Pb, apatite fission track, apatite and zircon (U-Th)/He were employed to date and conduct related thermal history inverse modellings. The results indicate that the zircon U-Pb concordant age of the monzogranite porphyry of the Yulong deposit is (41.7±0.5) Ma, with zircon (U-Th)/He age ranging from 34.9 Ma to 39.3 Ma, indicating that the magmatic-hydrothermal evolution process of the Yulong deposit may have lasted at least 5 Ma. The apatite fission track ages range from 34.7 Ma to 19.7 Ma, while apatite (U-Th)/He ages range from 20.7 Ma to 18.4 Ma. These sequentially decreasing ages are indicative of the timing of cooling and exhumation events. The inverse thermal history modelling indicates that the Yulong deposit has undergone a roughly three-stage cooling process, combined with the regional tectonic evolution data, and the relatively rapid cooling between 34 Ma and 30 Ma may be related to the rapid uplift of the Qinghai-Xizang Plateau, resulting from the ongoing collision between the India and Eurasian continents during this period. The relatively slow cooling observed between 30 Ma and 21 Ma could be linked to the weakening collision activity. The relatively rapid cooling between 21 Ma and 14 Ma may be associated with the crustal thickening event in the North Qiangtang terrane, triggered by tectonic shortening or magma inflation during this period. Utilizing the thermal history simulation method, the exhumation amount of Yulong deposit is 3.45 km, Considering the 4- 5 km of metallogenic depth of Yulong deposit, there is still 0.5-1.5 km of prospecting space in the deep part of the deposit.

Graphical abstract

关键词

斑岩铜矿 / 玉龙 / 矿床 / 隆升剥蚀 / 地质年代学 / 矿床保存.

Key words

porphyry copper deposit / Yulong / deposits / uplift and exhumation / geochronology / deposit preservation

引用本文

引用格式 ▾
甘圣添,孙茂妤,董磊磊. 藏东玉龙斑岩铜矿剥蚀历史与保存程度‒热年代学约束[J]. 地球科学, 2025, 50(11): 4208-4228 DOI:10.3799/dqkx.2024.151

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

斑岩型铜矿为世界提供了约75%的Cu(Sillitoe, 2010),是世界上铜资源最重要的来源.在中国,也有大约42%的Cu来自斑岩型铜矿(Yang and Cooke, 2019),由此可见,斑岩型铜矿对保障我国铜资源安全至关重要.然而随着社会经济的快速发展,铜资源也在快速地被消耗,因此急需加强对斑岩铜矿的研究以助力找矿增储.

玉龙斑岩铜矿带位于藏东的北羌塘地体内,是一条资源潜力巨大的铜多金属成矿带,目前已陆续发现了玉龙、马拉松多、多霞松多、莽总、扎尕和纳日贡玛等斑岩型铜矿床(Yang and Cooke, 2019).其中,玉龙矿床为矿带内唯一的超大型矿床,探明铜资源达6.24 Mt,平均含铜品位为0.62%.前人已对玉龙的成岩成矿时代(Hou et al., 2006; 郭利果等, 2006; 梁华英等, 2008)、矿床地质(芮宗瑶等, 1984; 唐仁鲤和罗怀松, 1995)、岩浆起源与演化(张玉泉等, 1998; Hou et al., 2003Jiang et al., 2006Li et al., 2012;孙茂妤等, 2015; Huang et al., 2019)、成矿物质与成矿流体的起源和演化(李荫清等, 1981; 谢玉玲等, 2005; Chang et al., 2017Sun et al., 2021) 、构造背景(侯增谦等, 2004; 唐菊兴等, 2006; Huang et al., 2024)等做了大量的工作,基本厘清了玉龙矿床的“源、运、储”等关键问题.然而对成矿后矿床的变化和保存的研究相对薄弱,而这也是矿床学研究的一个重要内容,对理解斑岩矿床的分布保存规律以及区域隆升剥蚀历史具有重要意义,而且随着玉龙矿床开发工作的不断进行,地表资源不断减少,深部找矿潜力也亟待评价.

近年来低温热年代学方法的发展,使得定量‒半定量的量化造山带隆升剥蚀的过程成为可能(Reiners et al., 2003Reiners and Brandon, 2006).这些热年代学不仅能提供冷却过程中的时间信息,还能重建热演化过程(Reiners, 2005).目前,磷灰石裂变径迹(AFT)、锆石(U⁃Th)/He(ZHe)和磷灰石(U⁃Th)/He(AHe)是最常用的低温热年代学定年方法,其记录的封闭温度(Tc)范围从~40℃到200℃ (Ketcham et al., 1999; Farley, 2000Reiners et al., 2004),因此,这几种定年方法对抬升剥蚀到一到几公里的地壳深度很敏感,从而能记录下不同热事件的冷却年龄.此外,低温热年代学方法也已被成功地应用于揭示热液矿床的剥蚀和冷却历史中(McInnes et al., 2005Zhao et al., 2016Leng et al., 2018Yang et al., 2024).

因此,本研究选择玉龙矿床斑岩体为研究对象,拟通过详细的锆石U⁃Pb年代学、磷灰石裂变径迹、锆石(U⁃Th)/He和磷灰石(U⁃Th)/He等低温热年代学研究,揭示该矿床从岩浆侵位到后期隆升剥蚀的历史,同时结合前人矿物温压计和流体包裹体数据,综合评价该矿床的变化和保存情况,为该矿床进一步的找矿勘查和理解区域构造历史提供见解 .

1 地质背景

1.1 区域地质背景

玉龙斑岩铜矿带位于青藏高原东缘的北羌塘地体内(图1), 矿带内目前发现了玉龙、扎尕、莽总、多霞松多、马拉松多、纳日贡玛等多个矿床,整体呈NW⁃SE向展布,长500 km,宽15~30 km.北羌塘地体以金沙江缝合带和双湖缝合带为界分别与松潘‒甘孜地体与南羌塘地体分隔开来(Yang et al., 2011),通常被认为是由冈瓦纳和劳拉亚大陆之间闭合的古特提斯主洋形成(Yang et al., 2014).北羌塘地体主要由暴露程度较差的元古代结晶基底和早古生代褶皱基底组成,石炭纪至早三叠世古特提斯洋主洋向北(或向东)俯冲导致北羌塘地体内广泛发育弧岩浆活动(Zhai et al., 2013),这些弧岩浆岩暴露程度较差,被晚三叠世至白垩纪沉积岩覆盖(Zhang et al., 2006).晚三叠世以来,本区未发生过大洋俯冲,因此,始新世玉龙斑岩铜带一般被认为是在65~55 Ma以来亚洲‒印度大陆碰撞导致的金沙江走滑断裂体系中形成的(Hou et al., 2003).

1.2 矿床地质背景

始新世玉龙斑岩体侵位于恒星错‒甘龙拉背斜的南端转折端,该背斜被认为对斑岩侵位起到了构造控制作用(唐仁鲤和罗怀松, 1995; 唐菊兴, 2003).玉龙复式侵入体周围也发育有多处环形陡倾断裂,它们是由玉龙斑岩侵入体侵入时造成的局部挤压形成的小断裂.该斑岩体主要由二长花岗斑岩和花岗斑岩组成,其中二长花岗斑岩为玉龙矿床的含矿斑岩,广泛出露于矿区,构成了玉龙复式斑岩的主体.花岗斑岩为致矿斑岩,但花岗斑岩在矿区地表出露较差,仅在钻孔中观察到花岗斑岩呈岩枝状切穿二长花岗斑岩,表明其侵位时间晚于二长花岗斑岩(孙茂妤等, 2015).该复式斑岩体呈岩株侵位于恒星错‒甘龙拉背斜轴部的由三叠纪海相碎屑岩和碳酸盐岩层序组成的上三叠统地层中(图2),侵入三叠系地层的二长花岗斑岩是主要的含矿岩体.二长花岗斑岩多发生高级泥化,并叠加在前期形成的钾化蚀变和绢云母蚀变之上.

斑岩体中心为一无矿核心,围绕着斑岩体四周形成了环状的斑岩型硫化物矿化(图3a~3c),在斑岩体外围与地层的接触带形成了角岩型氧化矿化和矽卡岩矿化(图3b~3d).斑岩型硫化物矿体主要由黄铜矿、斑铜矿和黄铁矿等矿石矿物组成,铜品位相对较低,一般在0.3%~0.7%,但这些类型的矿石构成了矿床主要矿体.矽卡岩及次生氧化矿石铜品位较高,主要由辉铜矿、黄铜矿和磁铁矿以及次生氧化矿石孔雀石和褐铁矿等组成,这些矿石铜品位多在0.7%~1.5%,尽管矿体规模较小,但由于其品位高,因此也是玉龙矿床金属资源的重要来源.

玉龙铜矿的主要原生矿石矿物有黄铜矿、斑铜矿和黄铁矿等.含铜矿物主要为黄铜矿及少量斑铜矿.黄铜矿常和黄铁矿、斑铜矿伴生(图4a).黄铜矿和黄铁矿主要呈浸染状和网脉状产出(图4c~4e).与矿化有关的脉体主要有:黄铁矿±石英±绢云母(图4c~4d),黄铜矿±斑铜矿±黄铁矿±石英±绢云母(图4a~4b),黄铜矿±斑铜矿±石英±绢云母(图4e~4f)等.黄铜矿等多与绢云母伴生产出,表明玉龙矿床中铜的沉淀主要发生在绢云母化阶段.

2 样品及分析方法

2.1 样品采集与分布

本次研究选用了在玉龙矿区采集的7件样品,样品来自矿区地表露头和钻孔岩心,岩性为二长花岗斑岩.样品先送去切片和进行单矿物挑选,但有3件样品挑出来的磷灰石单矿物颗粒数太少,因此这3件样品未开展裂变径迹测试,用于磷灰石裂变径迹测试的样品为ZK1303⁃681、ZK1303⁃371、YL23⁃3⁃2和ZK1203⁃229,样品采集位置见图2.样品YL23⁃3⁃2和ZK1303⁃681用于锆石U⁃Pb定年,并且各自挑选2粒锆石和磷灰石进行(U⁃Th)/He测试.样品的具体信息见表1.

2.2 分析方法

2.2.1 锆石U⁃Pb定年

锆石U⁃Pb定年在中国地质科学院地质研究所进行.定年岩石样品首先在北京首钢地质勘查院进行预处理,然后通过重磁法分离样品中的锆石颗粒,将挑好的颗粒安装在环氧树脂圆盘上,抛光以暴露颗粒.采用透射、反射光显微照片和阴极发光(CL)图像对其内部结构进行表征.使用安捷伦7900 ICP⁃MS和NWR 193UC激光烧蚀系统(LA⁃ICP⁃MS)同步测定了锆石U⁃Pb定年和微量元素.

详细的分析方法见于超等(2019).每个光斑分析使用5次激光脉冲(~0.3 µm深度)进行预烧蚀,以去除潜在的表面污染.采用直径为30 µm的光斑,重复频率为8 Hz,激光通量为2 J/cm2的条件对样品进行分析.以锆石91500为一级标样,GJ⁃1为二级标样.采用NIST 610和91Zr分别作为外标样和内标样校准微量元素浓度,以BHVO⁃2G和BIR⁃1G作为二级标样.数据处理使用Iolite程序 (Paton et al., 2010),使用Isoplot 3.0程序计算加权平均206Pb/238U年龄(Ludwig, 2003).

2.2.2 磷灰石裂变径迹

磷灰石裂变径迹样品预处理和单矿物挑选在北京中科矿研检测技术有限公司完成,磷灰石单矿物制靶、抛光、蚀刻、自发径迹密度的统计、围陷径迹长度(Confined track lengths)的数据的测量、238U含量测试在中国科学院地球化学研究所矿床地球化学国家重点实验室完成.

样品先粉碎碾磨以60目过筛,以保证磷灰石颗粒的完整性,经过粗选、磁选和重液分选后在双目镜下挑选出单粒磷灰石,然后安装在环氧树脂中并抛光以暴露内部,在室温下((20±0.5) ℃)用5.5 mol/L HNO3溶液蚀刻抛光后的含磷灰石的载玻片20 s,以显示自发裂变径迹.在Auto scan系统上找到径迹分布均匀且密度适中的单粒磷灰石,并定位拍照,尽量避开有包裹体和裂隙的位置,使用Fast Tracks软件中的自动计数程序测量每个磷灰石颗粒的裂变径迹计数面积、裂变径迹数量、围陷径迹长度、Dpar,统计其自发裂变径迹的密度并对统计径迹密度的单粒磷灰石在镜下圈定所要测量U含量的位置,并对该磷灰石在整个载玻片中的具体位置进行拍照定位.具体实验细节详见武利民等(2021).

238U含量使用LA⁃ICP⁃MS进行直接测定(Hasebe et al., 2004),束斑直径为32 µm,LA⁃ICP⁃MS的本底采集信号为20 s,激光剥蚀时间为20 s,选择信号平坦尽量宽的一段来积分计算微量元素含量,积分时间一般定为10 s.测试过程中外标采用NIST610和NIST612,内标采用测得的43Ca数据,Durango磷灰石作质控标样,微量元素用内标法处理,输入对应探针的主量值,没有探针值就用通用值,数据处理利用ICP⁃MS Data Cal软件完成(Liu et al., 2010).

磷灰石裂变径迹单颗粒年龄在程序IsoplotR 6.3.5 (Vermeesch, 2018)里计算得到.首先需在 IsoplotR中将Durango磷灰石的裂变径迹数量、圈画的裂变径迹面积、238U/43Ca比值以及238U/43Ca比值的标准偏差输入,并输入束斑直径和Durango磷灰石的推荐年龄以计算得到ζICP值,再将其他颗粒的由实验得到的裂变径迹数量、圈画的裂变径迹面积、238U/43Ca比值以及238U/43Ca比值的标准偏差在程序 IsoplotR 6.3.5 (Vermeesch, 2018)结合计算得到的ζICP值和束斑直径计算得到磷灰石裂变径迹单颗粒年龄.磷灰石裂变径迹中值年龄由单颗粒年龄数据在Radial Plotter(Vermeesch, 2009)中计算得到.

2.2.3 锆石和磷灰石(U⁃Th)/He年代学

锆石和磷灰石(U⁃Th)/He测试和分析在中国科学院地球化学研究所矿床地球化学国家重点实验室进行.首先在双目显微镜下进行挑选自形、不含包裹体和裂隙以及晶体宽度大于70 µm的矿物颗粒;然后测量晶体的长、宽、高及锥体长度,确定锥体的几何形状,并计算α校正系数(FT)(Farley et al., 1996);将所选锆石颗粒用铌囊包裹,磷灰石颗粒用铂囊包裹,置于质谱仪的激光样盘内;待质谱真空度优于10-10 mbar后,测试仪器本底和标准气体,确认仪器的工作状态;采用同位素稀释法(3He为稀释剂),应用Alphachron He质谱仪提取、纯化、测试和计算样品的4He含量;提取完4He后,矿物颗粒连同囊一同转移到PFA溶样瓶中,在超净化学实验室里进行溶解,并加入适量的U、Th稀释剂;溶解好的溶液,稀释至1 mL,应用Agilent 7900型等离子体质谱仪 (ICP⁃MS)测试并计算样品的U⁃Th含量,实验方法和流程详见吴林等(2016)、孙敬博等(2017).根据测得的U、Th、4He,应用如下放射性衰变公式计算年龄:

4 He=8×238 U(eλ238t -1)+7×235U(eλ235t -1)+ 6×232Th(eλ232t -1).

该年龄通过FT校正后,得到样品的年龄.其中,4He、238U、235U、232Th,为t时刻同位素的原子数, λ238、λ235、λ232 分别是238U、235U、232Th 的衰变常数,其值分别 为 1. 551 25×10-10/a、9. 848 5× 10 -10/a、4. 947 5×10-11/a.

3 实验结果和热历史模拟

3.1 实验结果

3.1.1 锆石U⁃Pb年龄

本研究对玉龙矿床两件二长花岗斑岩样品进行了锆石U⁃Pb定年.两件样品中的锆石大多数晶形完好,呈长柱状或短柱状.长度为100~200 µm,宽度为50~100 µm,长宽比介于1∶2~ 1∶4.阴极发光图像显示这些锆石晶体柱面平直发育,具有清晰的振荡环带结构(图5),Th/U比值在0.336~1.724(90%介于0.4~0.9),是典型岩浆锆石的特征.

样品YL23⁃3⁃2的谐和年龄为(41.82±0.46) Ma(n=28,MSWD=0.55)(图6a),样品ZK1303⁃681的谐和年龄为(41.54±0.22) Ma(n=28,MSWD=1.4)(图6c),YL23⁃3⁃2和ZK1303⁃681的206Pb/238U加权平均年龄分别为(41.78±0.47) Ma和(41.51±0.23) Ma(图6b和6d).

3.1.2 磷灰石裂变径迹

运用Durango 年龄标样在Isoplot里计算得到本次研究的ζICP值为(1 121±129) Ma/μm2,输入束斑直径为32 µm,裂变径迹年龄参考值为(31.4±0.5) Ma(McDowell and Keizer, 1977).计算得到的单颗粒年龄值及范围见图8,4件样品磷灰石裂变径迹的具体结果见表2.

裂变径迹的长度分布特征能在一定程度上反映样品所经历的热历史.ZK1303⁃681的围陷径迹长度在7.59~14.17 µm,平均围陷径迹长度为 11.41 µm; ZK1303⁃371围陷径迹长度在8.97~15.62 µm,平均围陷径迹长度为12.98 µm;YL23⁃3⁃2围陷径迹长度在9.26~15.34 µm,平均围陷径迹长度为12.35 µm;ZK1203⁃229围陷径迹长度在9.05~14.55 µm,平均围陷径迹长度为11.96 µm. 4件样品的围陷径迹长度分布大致呈单峰式分布(图7),说明玉龙矿床经历了一个较简单的冷却过程,在快速降到封闭温度以下后,又在部分退火带停留了较长的一段时间,后面温度降到部分退火带以下,径迹完全保留下来.

4件二长花岗斑岩样品的裂变径迹定年雷达图可见图8.ZK1303⁃681中值年龄为(20.71±2.7) Ma,

PX2)=99%;;ZK1303⁃371中值年龄为(19.7± 2.8) Ma,PX2)=99%;YL23⁃3⁃2中值年龄为(34.7±7.2) Ma,PX2)=100%;ZK1203⁃229中值年龄为(31.5±9.4) Ma,PX2)=66%.4件样品的PX2)均大于5%(Galbraith, 1981),说明它们所测的颗粒具有同组年龄,具有确切的地质意义.本文记录的玉龙矿床4件样品磷灰石裂变径迹年龄在(19.7±2.8)~(34.7±7.2)Ma的范围内,均明显小于锆石U⁃Pb谐和年龄,因此这些磷灰石裂变径迹年龄可被认为是成矿后样品降温通过磷灰石部分退火带的时间.

3.1.3 锆石和磷灰石(U⁃Th)/He年代学

对ZK1303⁃681和YL23⁃3⁃2两件样品分别挑选了2个颗粒做锆石(U⁃Th)/He和磷灰石(U⁃Th)/He分析,挑选颗粒的镜下及测量照片如图9所示.可见,所有颗粒都晶形完好,宽度大约70 µm,几乎没有包裹体和裂隙,能满足(U⁃Th)/He测试的要求.

除了颗粒YL23⁃3⁃2⁃A1在做实验的过程中出现失误,故而没有得到实验数据外,其余每个颗粒的具体测试结果见表3.未经校正的单颗粒磷灰石(U⁃Th)/He年龄相对分散,在(13.54±0.74)~(31.36±1.37) Ma,经过FT校正后的单颗粒磷灰石(U⁃Th)/He年龄在(18.4±1.0)~(40.78±1.8) Ma,其中样品YL23⁃3⁃2经FT校正的单颗粒磷灰石(U⁃Th)/He年龄为(40.78±2.0) Ma,此年龄几乎达到了锆石U⁃Pb谐和年龄,因此此数据我们视为异常值,后续分析过程不予采用.样品ZK1303⁃681的单颗粒磷灰石(U⁃Th)/He年龄在(18.4±1.0)~(20.68±1.2) Ma,在剔除掉异常值后, ZK1303⁃681的单颗粒平均磷灰石(U⁃Th)/He年龄为(19.9±1.2) Ma,样品YL23⁃3⁃2未得到有意义的磷灰石(U⁃Th)/He年龄值.未经校正的单颗粒锆石(U⁃Th)/He年龄相对分散,在(25.76±1.48)~(31.32±1.86) Ma,经过FT校正后的单颗粒锆石(U⁃Th)/He年龄在(34.94±2.1)~(44.55±2.6) Ma,其中样品YL23⁃3⁃2经FT校正的单颗粒锆石(U⁃Th)/He年龄在(34.94±2.1)~(39.27±2.3) Ma,样品ZK1303⁃681的单颗粒锆石(U⁃Th)/He年龄在(35.61±2.1)~(44.55±2.6) Ma,其中ZK1303⁃681⁃Z2的结果明显超过了锆石U⁃Pb谐和年龄,因此这个颗粒的结果在后续分析中也视为异常值不予采用.在剔除掉异常值后,YL23⁃3⁃2和ZK1303⁃681的单颗粒加权平均锆石(U⁃Th)/He年龄分别为(35.95±2.1) Ma和(36.06±2.1) Ma.

3.2 热历史反演模拟

为了了解玉龙矿床的热历史和剥蚀程度,本研究采用基于贝叶斯跨维马尔可夫链蒙特卡罗(MCMC)的QTQt(5.71)软件(Gallagher, 2012)对玉龙矿床进行热历史反演模拟.通过输入新获取的锆石(U⁃Th)/He、磷灰石裂变径迹、磷灰石(U⁃Th)/He数据进行联合热历史建模,建模过程详见Glorie et al.(2019).建模时选择了裂变径迹退火模型(Ketcham et al., 2007)、磷灰石和锆石的辐射损伤模型分别选择 Gautheron et al. (2009)Guenthner et al.(2013)中提出的模型,Dpar动力学参数的设置参考Donelick (2005).模拟起始温度设置为(220±10) ℃,采用目前(20±10) ℃的地表温度约束热冷却路径.此外,为了得到更可靠的tT路径,还根据锆石(U⁃Th)/He、磷灰石裂变径迹、磷灰石(U⁃Th)/He的封闭温度区间和本次测得的年龄范围添加了三个限制框来约束热历史路径.模拟次数设置为40 000次,“burn⁃in”20 000次,“post burn⁃in”20 000次,以记录最适合的tT路径的分布.由于期望模型曲线代表加权平均热历史的后验分布,本研究采用QTQt(5.7.1)软件中的期望模型来解读每个样品的热演化史.

样品ZK1303⁃681的热历史反演模拟结果和年龄观测值与预测值关系如图10所示.热历史模拟结果表明玉龙矿床大致经历了三阶段的冷却过程(图10a),样品ZK1303⁃681在大约34~30 Ma时在锆石He部分保留区经历了一个相对快速的冷却阶段,在约30~21 Ma时在磷灰石He部分退火带经历了一个相对缓慢的冷却阶段,随后在21~14 Ma左右冷却速率又相对前一个阶段加快. 模拟得到的预测值与观测值也在误差范围内基本一致,说明本次反演模拟结果可靠(图10b).

4 讨论

4.1 玉龙矿床热年代学数据的解释

通常情况下,由低封闭温度定年系统得出的同一矿物年龄应比其高封闭温度定年系统得出的年龄年轻或一致(Chew and Spikings, 2015).本研究中锆石U⁃Pb、锆石和磷灰石(U⁃Th)/He二级标样GJ⁃1、FCT锆石、Durango磷灰石的测试结果分别为(603±3.2) Ma、(27.00±1.56) Ma和(31.5±1.18) Ma,与参考方法推荐的结果((602±0.7) Ma、(28.18±0.51) Ma和(31.61±2.7) Ma)(Morel et al., 2008; 吴林等, 2016; 孙敬博等, 2017)在误差范围内一致,说明得到的测试结果可靠.在本研究中,获得的锆石U⁃Pb谐和年龄分别为(41.78±0.47) Ma和(41.51±0.23) Ma,这和前人得到的二长花岗斑岩年龄基本相近(郭利果等, 2006; 梁华英等, 2008),因此本研究获得的锆石U⁃Pb谐和年龄为岩浆侵位年龄,可认为二长花岗斑岩在这个时间内侵位.本研究首次报道的玉龙矿床磷灰石裂变径迹年龄在(34.7±7.2)~(19.7±2.8) Ma,年龄跨度较大,但这可能反映了位于不同深度的样品穿过部分退火带时间的不同,深度越深的样品将越晚通过部分退火带,但可能早在34 Ma时那个样品所在的温度就已经降到了120 ℃以下.本研究获得的两个样品的锆石(U⁃Th)/He年龄在34.94~ 39.27 Ma,这与前人获得的锆石(U⁃Th)/He年龄((35.7±1.2)~(39.6±1.4) Ma)基本一致(Li et al., 2012),表明玉龙矿床的岩浆‒热液演化可能至少持续了5 Ma.本研究获得的磷灰石(U⁃Th)/He年龄在40.78~18.40 Ma,最老的磷灰石(U⁃Th)/He年龄与前人的相近(Li et al., 2012).单粒内(U⁃Th)/He年龄的变化,特别是部分锆石(U⁃Th)/He、磷灰石(U⁃Th)/He年龄的变化超出了相关的分析误差.因此,有必要研究引起年龄分散的潜在因素.这些因素可能包括晶粒尺寸的变化、辐射损伤、母体同位素的不均匀分布、邻近富铀和富钍矿物或包裹体的He注入、冷却速率差异等(Farley, 2000Reiners and Farley, 2001Fitzgerald et al., 2006Flowers et al., 2009Danišík et al., 2017Leng et al., 2018).前人研究表明,辐射损伤可能会使 eU与He年龄之间呈正相关或者负相关关系(Flowers et al., 2009) ,而本研究中玉龙矿床样品的eU与He年龄之间没有明显的相关性(图11a~11b),表明样品没有受到辐射损伤的影响(Guenthner et al., 2013).前人研究也表明锆石和磷灰石的晶粒尺寸可能影响它们的有效扩散域和He封闭温度(Farley, 2000Reiners and Farley, 2001),相对较大的晶粒通常产生较老的年龄,因为它们具有较大的扩散域,具有较高的封闭温度.然而,本研究显示,玉龙矿床矿物颗粒大小与年龄的相关性不明显(图11c~11d),因此,矿物粒度与年龄之间不存在相关性,说明粒度对年龄的影响较小.He注入的可能性也可以排除,因为镜下锆石或磷灰石中没有观察到富U或富Th矿物和包裹体.此外,在LA⁃ICP⁃MS分析中,既没有观察到U分带也没有观察到Th分带,这表明母体同位素的不均匀分布也不是导致玉龙矿产单颗粒年龄差异很大的主要因素.因此,冷却速率的差异似乎是造成单晶年龄分散的最可能因素,缓慢冷却或长时间停留在氦部分保留区,扩散可以放大不同尺寸晶体(特别是小晶体)的He浓度差异.因此,不同晶体之间的年龄差异变得更大(Fitzgerald et al ., 2006).除了少数异常年龄,总的来说,本研究得到的锆石(U⁃Th)/He、磷灰石裂变径迹、磷灰石(U⁃Th)/He年龄都小于前人得到的锆石U⁃Pb年龄和辉钼矿Re⁃Os年龄并大致依次减小,这与它们的封闭温度区间依次减小相对应,因此本研究得到的这些热年代学数据是有确切地质意义的,可代表冷却事件发生的时间.尽管锆石(U⁃Th)/He、磷灰石裂变径迹、磷灰石(U⁃Th)/He年龄有一定的重叠,这可能反映了它们封闭温度区间的重叠,也可能代表不同位置的样品通过部分退火带或者部分保留带时间的不同,因为越在岩体上部的样品将越早通过部分退火带或部分保留带,因而记录下越老的年龄.

本研究收集了前人所做的关于玉龙矿床的热年代学数据,加上本研究得到的锆石U⁃Pb年龄、锆石(U⁃Th)/He、磷灰石裂变径迹、磷灰石(U⁃Th)/He年龄数据,汇编了玉龙矿床热年代学数据表(表4).综上,我们根据几个具有代表性的热年代学结果建立了玉龙矿床的热历史演化图(图12).

4.2 区域构造演化和矿床剥蚀历史

在本研究的热历史模拟期望模型中(图10),玉龙矿床二长花岗斑岩在约34~30 Ma时经历了一个相对快速的冷却阶段,在约30~21 Ma时经历了一个相对缓慢的冷却阶段,随后在21~14 Ma左右又经历了一个相对快速的冷却过程.已发表的研究表明,青藏高原在约33~30 Ma期间发生了快速隆升(图13),这与印度大陆与欧亚大陆持续碰撞相关(Zhong and Ding, 1996Dai, 2005) .长时间的碰撞构造运动通常会导致地体的快速隆升和剥蚀,同时上涌岩浆也会迅速冷却(Corti et al., 2003Spikings and Simpson, 2014).因此,玉龙矿床二长花岗斑岩在约34~30 Ma期间发生的快速降温可能是与同期印度大陆与亚欧大陆持续碰撞引起的青藏高原快速隆升有关.在约30~21 Ma期间,冷却速率相对缓慢,可能是因为碰撞活动的减弱导致的高原隆升速率减慢,从而冷却速率变慢.区域构造资料显示,在20~15 Ma期间北羌塘地体发生了一次快速隆升过程,这一期的快速隆升被认为是由构造缩短或者岩浆底垫造成的地壳加厚引起(Staisch et al., 2016Chen et al., 2018),因此,本研究认为玉龙矿床从21 Ma开始的冷却速率加快可能与20~15 Ma期间北羌塘地体因地壳构造缩短或岩浆底垫造成的地壳增厚事件有关.

4.3 玉龙矿床保存程度及找矿潜力

进一步了解玉龙矿床的保存情况对于深部找矿潜力至关重要,这取决于岩浆的原始侵位深度和矿化后剥蚀的程度(McInnes, 2005).对于斑岩矿床而言,成矿部位多发生在斑岩岩株的顶部或周围与围岩的接触带内(Seedorff et al., 2005),因此成岩深度可作为成矿深度的下限,而流体包裹体估算成矿深度可作为成矿深度的上限.

本研究采用热历史模拟方法计算冷却速率、剥蚀速率和剥蚀深度,剥蚀速率的计算要结合区域地温梯度,考虑到地壳地温梯度一般在20~35 ℃,而青藏高原为碰撞造山带地温梯度通常更高,因此本研究假设羌塘地体的地温梯度为40 ℃.考虑到玉龙矿床的成矿温度在200~537 ℃ (谢玉玲等, 2005; Chang et al., 2018Sun et al., 2021),辉钼矿Re⁃Os限定的成矿年龄在(41.29±0.56)~(39.69± 0.57) Ma(Hou et al., 2006; 唐菊兴等, 2009),对于玉龙矿床,因为在封闭温度区间之外的热历史没有条件限定,本研究只采用封闭温度在40~200 ℃的锆石(U⁃Th)/He、磷灰石裂变径迹和磷灰石(U⁃Th)/He年龄(约35.6~18.4 Ma)来评价成矿后的剥蚀和保存.基于热历史模拟方法(图13),玉龙矿床在34~30 Ma期间冷却速率为17.5 ℃/Ma,剥蚀速率为0.43 km/Ma,剥蚀深度为1.72 km;30~21 Ma期间冷却速率为3.3 ℃/Ma,剥蚀速率为0.08 km/Ma,剥蚀深度为0.75 km;22~10 Ma期间冷却速率为5.7 ℃/Ma,剥蚀速率为0.14 km/Ma,剥蚀深度为0.98 km.玉龙矿床总的剥蚀深度为3.45 km.前人根据流体包裹体得到的玉龙矿床成矿深度约在0.5~3.8 km(谢玉玲等, 2005; Hou et al., 2007Chang et al., 2018),如果以流体包裹体估算的成矿深度作为上限,结合本次热历史反演模拟计算得到的矿床剥蚀深度为3.45 km,说明部分矿体已被剥蚀掉,但还有几百米的矿体还未被剥蚀移除.然而,Chang et al.(2017)指出,由于玉龙矿床的流体包裹体已经历了显著改造,所估算的压力并不准确,不建议使用流体包裹体均一温度估算得到的成矿深度.因此为了谨慎起见,本研究仅采用前人运用新鲜的基质角闪石估算的成岩深度作为成矿深度的下限来约束目前矿床的保存程度.前人运用角闪石压力计估算得到的玉龙矿床的成岩深度为4~5 km(Huang et al., 2022Zhao et al., 2022),而前人研究也表明,经济型超大型斑岩矿床的侵位深度一般在4~5 km (Richards, 2022),因此,如果把4~ 5 km作为玉龙矿床成矿深度的下限,结合目前矿床被剥蚀的最大深度为3.45 km,那矿床深部至少还有0.5~1.5 km的找矿空间,而这一研究结果也与前人根据钻孔编录得到的玉龙矿床铜矿体深500 m的地质事实基本吻合(Hou et al., 2003).综上,本研究认为玉龙矿床深部还有较大的找矿空间.

5 结论

(1)玉龙矿床含矿二长花岗斑岩锆石U⁃Pb谐和年龄在41 Ma左右,锆石(U⁃Th)/He年龄在34.94~39.27 Ma,磷灰石裂变径迹年龄在(34.7±7.2)~(19.7±2.8) Ma,磷灰石(U⁃Th)/He年龄在(20.7±1.2)~(18.4±1.0) Ma.这些锆石(U⁃Th)/He年龄、磷灰石裂变径迹年龄、磷灰石(U⁃Th)/He年龄记录了矿化后的冷却和剥蚀历史.

(2)玉龙矿床在约34~30 Ma时经历了一个相对快速的冷却阶段,可能是与同期印度大陆与亚欧大陆持续碰撞引起的青藏高原快速隆升有关,在约30~21 Ma时经历了一个相对缓慢的冷却阶段,可能是因为碰撞活动的减弱导致的高原隆升速率减慢,随后在21~14 Ma左右又经历了一个相对快速的冷却过程,可能与期间北羌塘地体因地壳构造缩短或岩浆底垫造成的地壳增厚事件有关.

(3)热历史模拟法计算得到的玉龙矿床剥蚀深度为3.45 km,而前人运用基质角闪石计算得到的成矿深度为4~5 km,因此矿床深部应该还有0.5~1.5 km的找矿空间.

参考文献

[1]

Chang, J., Li, J. W., Audétat, A., 2018. Formation and Evolution of Multistage Magmatic⁃Hydrothermal Fluids at the Yulong Porphyry Cu⁃Mo Deposit, Eastern Tibet: Insights from LA⁃ICP⁃MS Analysis of Fluid Inclusions. Geochimica et Cosmochimica Acta, 232: 181-205. https://doi.org/10.1016/j.gca.2018.04.009

[2]

Chang, J., Li, J. W., Selby, D., et al., 2017. Geological and Chronological Constraints on the Long⁃Lived Eocene Yulong Porphyry Cu⁃Mo Deposit, Eastern Tibet: Implications for the Lifespan of Giant Porphyry Cu Deposits. Economic Geology, 112(7): 1719-1746. https://doi.org/10.5382/econgeo.2017.4527

[3]

Chen, J. L., Yin, A., Xu, J. F., et al., 2018. Late Cenozoic Magmatic Inflation, Crustal Thickening, and >2 km of Surface Uplift in Central Tibet. Geology, 46(1): 19-22. https://doi.org/10.1130/g39699.1

[4]

Chen, Q., Wang, C., Bagas, L., et al., 2021. Time Scales of Multistage Magma⁃Related Hydrothermal Fluids at the Giant Yulong Porphyry Cu⁃Mo Deposit in Eastern Tibet: Insights from Titanium Diffusion in Quartz. Ore Geology Reviews, 39: 104459. https://doi.org/10.1016/j.oregeorev.2021.104459

[5]

Chew, D. M., Spikings, R. A., 2015. Geochronology and Thermochronology Using Apatite: Time and Temperature, Lower Crust to Surface. Elements, 11(3): 189-194. https://doi.org/10.2113/gselements.11.3.189

[6]

Corti, G., Bonini, M., Conticelli, S., et al., 2003. Analogue Modelling of Continental Extension: A Review Focused on the Relations between the Patterns of Deformation and the Presence of Magma. Earth⁃Science Reviews, 63(3-4): 169-247. https://doi.org/10.1016/S0012⁃8252(03)00035⁃7

[7]

Dai, S., 2005. Early Tectonic Uplift of the Northern Tibetan Plateau. Chinese Science Bulletin, 50(15): 1642. https://doi.org/10.1360/03wd0255

[8]

Danišík, M., McInnes, B. I. A., Kirkland, C. L., et al., 2017. Seeing is Believing: Visualization of He Distribution in Zircon and Implications for Thermal History Reconstruction on Single Crystals. Science Advances, 3(2): e1601121. https://doi.org/10.1126/sciadv.1601121

[9]

Donelick, R. A., 2005. Apatite Fission⁃Track Analysis. Reviews in Mineralogy and Geochemistry, 58(1): 49-94. https://doi.org/10.2138/rmg.2005.58.3

[10]

Farley, K. A., 2000. Helium Diffusion from Apatite: General Behavior as Illustrated by Durango Fluorapatite. Journal of Geophysical Research: Solid Earth, 105(B2): 2903-2914. https://doi.org/10.1029/1999JB900348

[11]

Farley, K. A., Wolf, R. A., Silver, L. T., 1996. The Effects of Long Alpha⁃Stopping Distances on (U‐Th)/He Ages. Geochimica et Cosmochimica Acta, 60(21): 4223-4229. https://doi.org/10.1016/S0016⁃7037(96)00193⁃7

[12]

Fitzgerald, P. G., Baldwin, S. L., Webb, L. E., et al., 2006. Interpretation of (U⁃Th)/He Single Grain Ages from Slowly Cooled Crustal Terranes: A Case Study from the Transantarctic Mountains of Southern Victoria Land. Chemical Geology, 225(1-2): 91-120. https://doi.org/10.1016/j.chemgeo.2005.09.001

[13]

Flowers, R. M., Ketcham, R. A., Shuster, D. L., et al., 2009. Apatite (U⁃Th)/He Thermochronometry Using a Radiation Damage Accumulation and Annealing Model. Geochimica et Cosmochimica Acta, 73(8): 2347-2365. https://doi.org/10.1016/j.gca.2009.01.015

[14]

Galbraith, R. F., 1981. On Statistical Models for Fission Track Counts. Journal of the International Association for Mathematical Geology, 13(6): 471-478. https://doi.org/10.1007/BF01034498

[15]

Gallagher, K., 2012. Transdimensional Inverse Thermal History Modeling for Quantitative Thermochronology. Journal of Geophysical Research: Solid Earth, 117(B2):408. https://doi.org/10.1029/2011JB008825

[16]

Gautheron, C., Tassan⁃Got, L., Barbarand, J., et al., 2009. Effect of Alpha⁃Damage Annealing on Apatite (U⁃Th)/He Thermochronology. Chemical Geology, 266(3-4): 157-170. https://doi.org/10.1016/j.chemgeo.2009.06.001

[17]

Glorie, S., Otasevic, A., Gillespie, J., et al., 2019. Thermo⁃Tectonic History of the Junggar Alatau within the Central Asian Orogenic Belt (SE Kazakhstan, NW China): Insights from Integrated Apatite U/Pb, Fission Track and (U⁃Th)/He Thermochronology. Geoscience Frontiers, 10(6): 2153-2166. https://doi.org/10.1016/j.gsf.2019.05.005

[18]

Guenthner, W. R., Reiners, P. W., Ketcham, R. A., et al., 2013. Helium Diffusion in Natural Zircon: Radiation Damage, Anisotropy, and the Interpretation of Zircon (U⁃Th)/He Thermochronology. American Journal of Science, 313(3): 145-198. https://doi.org/10.2475/03.2013.01

[19]

Guo, L. G., Liu Y. P., Xu W., et al., 2006. Constraints to the Mineralization Age of the Yulong Porphyry Copper Deposit from SHRIMP U⁃Pb Zircon Data in Tibet. Acta Petrologica Sinica, 22(4): 1009-1016 (in Chinese with English abstract).

[20]

Hasebe, N., Barbarand, J., Jarvis, K., et al., 2004. Apatite Fission⁃Track Chronometry Using Laser Ablation ICP⁃MS. Chemical Geology, 207(3-4): 135-145. https://doi.org/10.1016/j.chemgeo.2004.01.007

[21]

Hou, Z. Q., Ma, H. W., Zaw, K., et al., 2003. The Himalayan Yulong Porphyry Copper Belt: Product of Large⁃Scale Strike⁃Slip Faulting in Eastern Tibet. Economic Geology, 98(1): 125-145. https://doi.org/10.2113/gsecongeo.98.1.125

[22]

Hou, Z. Q., Xie, Y. L., Xu, W. Y., et al., 2007. Yulong Deposit, Eastern Tibet: A High⁃Sulfidation Cu⁃Au Porphyry Copper Deposit in the Eastern Indo⁃Asian Collision Zone. International Geology Review, 49: 235-258.

[23]

Hou, Z. Q., Zeng, P. S., Gao, Y. F., et al., 2006. Himalayan Cu⁃Mo⁃Au Mineralization in the Eastern Indo⁃Asian Collision Zone: Constraints from Re⁃Os Dating of Molybdenite. Mineralium Deposita, 41(1): 33-45. https://doi.org/10.1007/s00126⁃005⁃0038⁃2

[24]

Hou, Z. Q., Zhong, D. L., Deng, W. M., 2004. A Tectonic Model for Porphyry Copper⁃Molybdenum⁃Gold Metallogenic Belts on the Eastern Margin of the Qinghai⁃Tibet Plateau. Geology in China, 31(1): 1-14 (in Chinese with English abstract).

[25]

Huang, M. L., Bi, X. W., Hu, R. Z., et al., 2019. Geochemistry, In⁃Situ Sr⁃Nd⁃Hf⁃O Isotopes, and Mineralogical Constraints on Origin and Magmatic⁃Hydrothermal Evolution of the Yulong Porphyry Cu⁃Mo Deposit, Eastern Tibet. Gondwana Research, 76: 98-114. https://doi.org/10.1016/j.gr.2019.05.012

[26]

Huang, M. L., Bi, X. W., Hu, R. Z., et al., 2024. Linking Porphyry Cu Formation to Tectonic Change in Postsubduction Settings: A Case Study from the Giant Yulong Belt, Eastern Tibet. Economic Geology, 119(2): 279-304. https://doi.org/10.5382/econgeo.5052

[27]

Huang, M. L., Zhu, J. J., Bi, X. W., et al., 2022. Low Magmatic Cl Contents in Giant Porphyry Cu Deposits Caused by Early Fluid Exsolution: A Case Study of the Yulong Belt and Implication for Exploration. Ore Geology Reviews, 141: 104664. https://doi.org/10.1016/j.oregeorev.2021.104664

[28]

Jiang, Y. H., Jiang, S. Y., Ling, H. F., et al., 2006. Low⁃Degree Melting of a Metasomatized Lithospheric Mantle for the Origin of Cenozoic Yulong Monzogranite⁃Porphyry, East Tibet: Geochemical and Sr⁃Nd⁃Pb⁃Hf Isotopic Constraints. Earth and Planetary Science Letters, 241(3-4): 617-633. https://doi.org/10.1016/j.epsl.2005.11.023

[29]

Ketcham, R. A., Carter, A., Donelick, R. A., et al., 2007. Improved Modeling of Fission⁃Track Annealing in Apatite. American Mineralogist, 92(5/6): 799-810. https://doi.org/10.2138/am.2007.2281

[30]

Ketcham, R. A., Donelick, R. A., Carlson, W. D., 1999. Variability of Apatite Fission⁃Track Annealing Kinetics; III, Extrapolation to Geological Time Scales. American Mineralogist, 84(9): 1235-1255. https://doi.org/10.2138/am⁃1999⁃0903

[31]

Laslett, G. M., Kendall, W. S., Gleadow, A. J. W., et al., 1982. Bias in Measurement of Fission⁃Track Length Distributions. Nuclear Tracks and Radiation Measurements (1982), 6(2-3): 79-85. https://doi.org/10.1016/0735⁃245X(82)90031⁃X

[32]

Leng, C. B., Cooke, D. R., Hou, Z. Q., et al., 2018. Quantifying Exhumation at the Giant Pulang Porphyry Cu⁃Au Deposit Using U⁃Pb⁃He Dating. Economic Geology, 113(5): 1077-1092. https://doi.org/10.5382/econgeo.2018.4582

[33]

Li, J. X., Qin, K. Z., Li, G. M., et al., 2012. Petrogenesis and Thermal History of the Yulong Porphyry Copper Deposit, Eastern Tibet: Insights from U⁃Pb and U⁃Th/He Dating, and Zircon Hf Isotope and Trace Element Analysis. Mineralogy and Petrology, 105(3): 201-221. https://doi.org/10.1007/s00710⁃012⁃0211⁃0

[34]

Li, Y. Q., Rui, Z.Y., Cheng, L. X., 1981. Fluid Inclusion and Mineralization of the Yulong Porphyry Copper (Molybdenum) Deposit. Acta Geologica Sinica, 55(3): 216-231 (in Chinese with English abstract).

[35]

Liang, H. Y., Campbell, I. H., Allen, C., et al., 2006. Zircon Ce4+/Ce3+ Ratios and Ages for Yulong Ore⁃Bearing Porphyries in Eastern Tibet. Mineralium Deposita, 41(2): 152-159. https://doi.org/10.1007/s00126⁃005⁃0047⁃1

[36]

Liang, H. Y., Mo, J. H., Sun, W. D., et al., 2008. Study on the Duration of the Ore⁃Forming System of the Yulong Giant Porphyry Copper Deposit in Eastern Tibet, China. Acta Petrologica Sinica, 24(10): 2352-2358 (in Chinese with English abstract).

[37]

Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U⁃Pb Isotope and Trace Element Analyses by LA⁃ICP⁃MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434⁃010⁃3052⁃4

[38]

Ludwig, K. R., 2003. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 4:1-75.

[39]

McDowell, F. W., Keizer, R. P., 1977. Timing of Mid⁃ Tertiary Volcanism in the Sierra Madre Occidental between Durango City and Mazatlan, Mexico. Geological Society of America Bulletin, 88(10): 1479. https://doi.org/10.1130/0016⁃7606(1977)881479:tomvit>2.0.co;2

[40]

McInnes, B. I. A., 2005. Application of Thermochronology to Hydrothermal Ore Deposits. Reviews in Mineralogy and Geochemistry, 58(1): 467-498. https://doi.org/10.2138/rmg.2005.58.18

[41]

Morel, M. L. A., Nebel, O., Nebel⁃Jacobsen, Y. J., et al., 2008. Hafnium Isotope Characterization of the GJ⁃1 Zircon Reference Material by Solution and Laser⁃Ablation MC⁃ICPMS. Chemical Geology, 255(1-2): 231-235. https://doi.org/10.1016/j.chemgeo.2008.06.040

[42]

Paton, C., Woodhead, J. D., Hellstrom, J. C., et al., 2010. Improved Laser Ablation U⁃Pb Zircon Geochronology through Robust Downhole Fractionation Correction. Geochemistry, Geophysics, Geosystems, 11(3): Q0AA06. 10.1029/2009gc002618

[43]

Reiners, P. W., 2005. Past, Present and Future of Thermochronology. Reviews in Mineralogy and Geochemistry, 58(1): 1-18. https://doi.org/10.2138/rmg.2005.58.1

[44]

Reiners, P. W., Brandon, M. T., 2006. Using Thermochronology to Understand Orogenic Erosion. Annual Review of Earth and Planetary Sciences, 34: 419-466. https://doi.org/10.1146/annurev.earth.34.031405.125202

[45]

Reiners, P. W., Farley, K. A., 2001. Influence of Crystal Size on Apatite (U⁃Th)/He Thermochronology: An Example from the Bighorn Mountains, Wyoming. Earth and Planetary Science Letters, 188(3-4): 413-420. https://doi.org/10.1016/S0012⁃821X(01)00341⁃7

[46]

Reiners, P. W., Spell, T. L., Nicolescu, S., et al., 2004. Zircon (U⁃Th)/He Thermochronometry: He Diffusion and Comparisons with 40Ar/39Ar Dating. Geochimica et Cosmochimica Acta, 68(8): 1857-1887. https://doi.org/10.1016/j.gca.2003.10.021

[47]

Reiners, P., Zhou, Z., Ehlers, T., et al., 2003. Post⁃ Orogenic Evolution of the Dabie Shan, Eastern China, from (U⁃Th)/He and Fission⁃Track Thermochronology. American Journal of Science, 303(6): 489-518. https://doi.org/10.2475/ajs.303.6.489

[48]

Richards, J. P., 2022. Porphyry Copper Deposit Formation in Arcs: What are the Odds?. Geosphere, 18(1): 130-155. https://doi.org/10.1130/ges02086.1

[49]

Rui, Z.Y., Huang, C.K., Qi, G.M., et al., 1984. Porphyry Copper (Molybdenum) Deposits of China. Geological Publishing House, Beijing,350 (in Chinese).

[50]

Seedorff, E., Dilles, J. H., Proffett, J. M., et al., 2005. Porphyry Deposits: Characteristics and Origin of Hypogene Features. Economic Geology 100th Anniversary Volume, 251-298. https://doi.org/10.5382/AV100.10

[51]

Sillitoe, R. H., 2010. Porphyry Copper Systems. Economic Geology, 105(1): 3-41. https://doi.org/10.2113/gsecongeo.105.1.3

[52]

Spikings, R., Simpson, G., 2014. Rock Uplift and Exhumation of Continental Margins by the Collision, Accretion, and Subduction of Buoyant and Topographically Prominent Oceanic Crust. Tectonics, 33(5): 635-655. https://doi.org/10.1002/2013TC003425

[53]

Staisch, L. M., Niemi, N. A., Clark, M. K., et al., 2016. Eocene to Late Oligocene History of Crustal Shortening within the Hoh Xil Basin and Implications for the Uplift History of the Northern Tibetan Plateau. Tectonics, 35(4): 862-895. https://doi.org/10.1002/2015TC003972

[54]

Sun, J. B., Chen, W., Yu, S., et al., 2017. Study on Zircon (U⁃Th)/He Dating Technique. Acta Petrologica Sinica, 33(6): 1947-1956 (in Chinese with English abstract).

[55]

Sun, M. Y., Monecke, T., Reynolds, T. J., et al., 2021. Understanding the Evolution of Magmatic⁃Hydrothermal Systems Based on Microtextural Relationships, Fluid Inclusion Petrography, and Quartz Solubility Constraints: Insights into the Formation of the Yulong Cu⁃Mo Porphyry Deposit, Eastern Tibetan Plateau, China. Mineralium Deposita, 56(5): 823-842. https://doi.org/10.1007/s00126⁃020⁃01003⁃6

[56]

Sun, M. Y., Qu, H. C., Li, Q. Y., et al., 2015. Recognition of the Ore⁃Forming Porphyry in the Yulong Cu Deposit and Its Geological Significance. Acta Petrologica et Mineralogica, 34(4): 493-504 (in Chinese with English abstract).

[57]

Tang, J.X., 2003. The Study on Metallogeny and Localizing Forecast of Yulong Porphyry Copper⁃Molybdenum Mineralization, Tibet (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).

[58]

Tang, J. X., Wang, C. H., Qu, W. J., et al., 2009. Re⁃Os Isotopic Dating of Molybdenite from the Yulong Porphyry Copper⁃Molybdenum Deposit in Tibet and Its Metallogenic Significance. Rock and Mineral Analysis, 28(3): 215-218 (in Chinese with English abstract).

[59]

Tang, J. X., Zhang, L., Li, Z. J., et al., 2006. Porphyry Copper Deposit Controlled by Structural Nose Trap: Yulong Porphyry Copper Deposit in Eastern Tibet. Mineral Deposits, 25(6): 652-662 (in Chinese with English abstract).

[60]

Tang, R.L., Luo, H.S., 1995. The Geology of Yulong Porphyry Copper (Molybdenum) Ore Belt, Xizang (Tibet). Geological Publishing House, Beijing, 320 (in Chinese).

[61]

Vermeesch, P., 2009. Radial Plotter: A Java Application for Fission Track, Luminescence and Other Radial Plots. Radiation Measurements, 44(4): 409-410. https://doi.org/10.1016/j.radmeas.2009.05.003

[62]

Vermeesch, P., 2018. Isoplot R: A Free and Open Toolbox for Geochronology. Geoscience Frontiers, 9(5): 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001

[63]

Wang, C. H., Tang, J. X., Chen, J. P., et al., 2009. Chronological Research of Yulong Copper⁃Molybdenum Porphyry Deposit. Acta Geologica Sinica, 83(10): 1445-1455 (in Chinese with English abstract).

[64]

Wolf, R. A., Farley, K. A., Kass, D. M., 1998. Modeling of the Temperature Sensitivity of the Apatite (U⁃Th)/He Thermochronometer. Chemical Geology, 148(1-2): 105-114. https://doi.org/10.1016/S0009⁃2541(98)00024⁃2

[65]

Wu, L., Wang, F., Shan, J. N., et al., 2016. (U⁃Th)/He Dating of International Standard Durango Apatite. Acta Petrologica Sinica, 32(6): 1891-1900 (in Chinese with English abstract).

[66]

Wu, L. M., Min, K., Gao, J. F., et al., 2021. Principle, Experimental Process and Application of Fission Track LA⁃ICP⁃MS/FT Method. Geology and Resources, 30(1):75-84 (in Chinese with English abstract).

[67]

Xie, Y. L., Hou, Z. Q., Xu, J. H., et al., 2005. Evolution of Multi⁃Stage Ore⁃Forming Fluid and Mineralization: Evidence from Fluid Inclusions in Yulong Porphyry Copper Deposit, East Tibet. Acta Petrologica Sinica, 21(5): 1409-1415 (in Chinese with English abstract).

[68]

Yu, C., Yang, Z. M., Zhou, L. M., et al., 2019. Impact of Laser Focus on Accuracy of U⁃Pb Dating of Zircons by LA⁃ICPMS. Mineral Deposits, 38(1): 21-28 (in Chinese with English abstract).

[69]

Yang, F., Wen, Y. M., Jepson, G., et al., 2024. Prolonged Exhumation and Preservation of the Yuku Molybdenum Ore Field, East Qinling, China: Constraints from Medium⁃ to Low⁃Temperature Thermochronology. Ore Geology Reviews, 167: 105973. https://doi.org/10.1016/j.oregeorev.2024.105973

[70]

Yang, T. N., Ding, Y., Zhang, H. R., et al., 2014. Two⁃Phase Subduction and Subsequent Collision Defines the Paleotethyan Tectonics of the Southeastern Tibetan Plateau: Evidence from Zircon U⁃Pb Dating, Geochemistry, and Structural Geology of the Sanjiang Orogenic Belt, Southwest China. Geological Society of America Bulletin, 126(11-12): 1654-1682. https://doi.org/10.1130/b30921.1

[71]

Yang, T. N., Zhang, H. R., Liu, Y. X., et al., 2011. Permo⁃Triassic Arc Magmatism in Central Tibet: Evidence from Zircon U⁃Pb Geochronology, Hf Isotopes, Rare Earth Elements, and Bulk Geochemistry. Chemical Geology, 284(3/4): 270-282. https://doi.org/10.1016/j.chemgeo.2011.03.006

[72]

Yang, Z. M., Cooke, D. R., 2019. Porphyry Copper Deposits in China: Mineral Deposits of China. 1601 Mclean: Society of Economic Geologists, Special Publication, 22:133-187. https://doi.org/10.5382/SP.22.05

[73]

Zhai, Q. G., Jahn, B. M., Su, L., et al., 2013. Triassic Arc Magmatism in the Qiangtang Area, Northern Tibet: Zircon U⁃Pb Ages, Geochemical and Sr⁃Nd⁃Hf Isotopic Characteristics, and Tectonic Implications. Journal of Asian Earth Sciences, 63: 162-178. https://doi.org/10.1016/j.jseaes.2012.08.025

[74]

Zhang, K. J., Zhang, Y. X., Li, B., et al., 2006. The Blueschist⁃Bearing Qiangtang Metamorphic Belt (Northern Tibet, China) as an In Situ Suture Zone: Evidence from Geochemical Comparison with the Jinsa Suture. Geology, 34(6): 493. https://doi.org/10.1130/g22404.1

[75]

Zhang, Y. Q., Xie, Y. W., Liang, H. Y., et al., 1998. Shoshonitic Series: Geochemical Characteristics of Elements for Ore⁃Bearing Porphyry from Yulong Copper Ore Belt in Eastern Tibet. Geochemistry, 27(3): 236-243 (in Chinese with English abstract).

[76]

Zhao, H. S., Wang, Q. F., Li, W. C., et al., 2022. The Roles of Emplacement Depth, Magma Volume and Local Geologic Conditions in the Formation of the Giant Yulong Copper Deposit, Eastern Tibet. Ore Geology Reviews, 145: 104877. https://doi.org/10.1016/j.oregeorev.2022.104877

[77]

Zhao, J. X., Qin, K. Z., Xiao, B., et al., 2016. Thermal History of the Giant Qulong Cu⁃Mo Deposit, Gangdese Metallogenic Belt, Tibet: Constraints on Magmatic⁃ Hydrothermal Evolution and Exhumation. Gondwana Research, 36: 390-409. https://doi.org/10.1016/j.gr.2015.07.005

[78]

Zhong, D. L., Ding, L., 1996. Rising Process of the Qinghai⁃Xizang (Tibet) Plateau and Its Mechanism. Science in China (Series D: Earth Sciences), 39(4):369-379.

基金资助

西部地区铜金多金属成矿作用及找矿模型(2022YFC2903304)

中国地质调查局地质调查项目(DD20243512)

国家自然科学基金资助项目(42302113)

AI Summary AI Mindmap
PDF (12759KB)

22

访问

0

被引

详细

导航
相关文章

AI思维导图

/