广东莲花山断裂带北段中侏罗世褶皱及其构造意义

邓飞 ,  黄雨 ,  孙万财

地球科学 ›› 2025, Vol. 50 ›› Issue (05) : 1884 -1898.

PDF (7078KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (05) : 1884 -1898. DOI: 10.3799/dqkx.2024.153

广东莲花山断裂带北段中侏罗世褶皱及其构造意义

作者信息 +

Middle Jurassic Folds in Northern Lianhuashan Fault Zone in Guangdong Province and Its Tectonic Significance

Author information +
文章历史 +
PDF (7247K)

摘要

为限定华南东部沿海中生代褶皱的形成时代,研究其形成机制,以广东莲花山断裂带北段晚三叠世至中侏罗世地层褶皱为研究对象,进行了构造解析和相关地质体的年代学分析.地层产出的蕨类、篦羽叶和双壳类等化石,证实其晚三叠世至中侏罗世的沉积时代.NE向褶皱被晚侏罗世火山岩(锆石U-Pb年龄163~148 Ma)不整合覆盖,NW向褶皱被晚侏罗世花岗岩(锆石U-Pb年龄157~154 Ma)侵入,综合前人在地层中获取的碎屑锆石最新U-Pb年龄(171~173 Ma),分析显示褶皱于中侏罗世中晚期近同期形成.NE向褶皱为纵弯褶皱,形成于NW-SE向区域性挤压作用;NW向褶皱为剪切褶皱,受控于褶皱逆冲带中NW向横断层作用.广东莲花山断裂北段中侏罗世不同走向褶皱均是华南板块对古太平洋板块俯冲的响应.

Abstract

In order to limit the timing of Mesozoic folds in the eastern coast of South China and study the formation mechanism, in this paper it studies the folds of the Late Triassic to Middle Jurassic strata in the northern section and analyzes the geochronology of related geological bodies. Fossils of ferns,pinnules, bivalves found in the strata confirm the sedimentary age from the Late Triassic to the Middle Jurassic. The NE fold is invaded by the Late Jurassic volcanic rock (zircon U-Pb age at 163-148 Ma). The NW fold is invaded by the Late Jurassic granite (zircon U-Pb age at 157-154 Ma). Combined with the previous debris zircon U-Pb age obtained in the formation (171-173 Ma), comprehensive analysis indicates that the fold was formed in the middle and late Middle Jurassic. NE fold is longitudinal bending fold, which is the product of regional NW-SE extrusion; NW fold is formed by shear fold, which is the product of NW transverse fault in the fold reverse zone. The different trending Jurassic folds in the northern section of Lianhuashan fault, Guangdong, are the tectonic response of South China block to the subduction of the Paleo-Pacific plate.

Graphical abstract

关键词

形成机制 / 构造解析 / 地质年代学 / 中侏罗世褶皱 / 古太平洋板块俯冲 / 构造地质.

Key words

formation mechanism / structural analysis / geochronology / Middle Jurassic fold / Paleo⁃Pacific plate subduction / tectonics

引用本文

引用格式 ▾
邓飞,黄雨,孙万财. 广东莲花山断裂带北段中侏罗世褶皱及其构造意义[J]. 地球科学, 2025, 50(05): 1884-1898 DOI:10.3799/dqkx.2024.153

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

华南中生代广泛发育多组不同走向的褶皱,包括近E⁃W向、NE⁃SW向、NW⁃SE向和近S⁃N向褶皱(徐先兵等, 2009;张岳桥等, 2009; 柏道远等, 2012; Shi et al., 2015; 胡斯敏等, 2021, 2023; Wang et al., 2021Li et al., 2023; Xu, 2023).已有研究对不同走向褶皱的形成时代和动力学仍存在不同认识:(1)近E⁃W向褶皱形成于印支期南北向陆‒陆碰撞造山作用,而NE⁃SW向褶皱是燕山期古太平洋板块西向俯冲作用的产物(徐先兵等, 2009;张岳桥等, 2009; Shi et al., 2015Li et al., 2023; Xu, 2023);(2)近E⁃W向褶皱和NE⁃SW向褶皱分别形成于印支早期和印支晚期,是华南板块遭受多陆块围限的产物(柏道远等, 2012; Wang et al., 2021);(3)NE向紧闭褶皱形成于印支早期古太平洋俯冲作用,近E⁃W向褶皱是印支晚期南北向陆‒陆碰撞造山作用,而NE向宽缓褶皱是燕山期古太平洋板块西向俯冲作用的产物(胡斯敏等, 2021, 2023).华南板块在中生代经历了从古特提斯构造域向古太平洋构造域的转换(张岳桥等, 2012;Wang et al., 2013),导致早期E⁃W向褶皱和晚期NE向褶皱发生叠加.加之后期变形的改造,使得华南地区褶皱样式变得十分复杂.

褶皱构造的方位解析,有助于古应力场和构造事件的恢复.褶皱地层的沉积时代、侵入体的结晶年龄和角度不整合上覆地层的沉积时代可以共同约束褶皱发育的地质时代.本文以广东莲花山断裂带北段中生代褶皱为研究对象,通过构造解析和年代学分析,以期厘定主要方向褶皱的形成时代并探讨其形成机制和动力学.

1 区域地质背景

莲花山断裂带位于华南板块东南部,被认为是政和‒大埔断裂带向南延伸段,长约200 km.在广东省内,断裂带总体呈NE⁃SW向展布,主要由两条相间约50 km的大致平行的断裂束,即北西侧梅县‒五华‒深圳断裂与南东侧大埔‒揭西‒海丰断裂和次级断裂及夹持于其间的一系列疏密相间略作等距式多字型展布的断裂构造带、复式褶皱带、岩浆岩带和断裂变质带组成(邱元禧等, 1991; 邹和平等, 2000; Li et al., 2020).莲花山断裂带北段主要位于广东省梅州市境内,发育NE向边界断裂及其间的NE向次级断层(图1a).NW向(走向300°左右)断裂切割NE向断裂,且与NE向断裂近正交,其构造性质以张扭性为主,控制了NW向大埔县一带小型白垩纪断陷盆地.晚侏罗世‒早白垩世花岗岩类广泛发育,呈岩基状侵入晚三叠世至中侏罗世地层.

该区地层主要发育晚三叠世至中侏罗世陆源碎屑岩与晚侏罗世至早白垩世中酸性火山岩(图1b).晚三叠世为滨浅海环境,上三叠统小坪组(T3x)主要由粉砂岩和泥岩组成,含煤线,其底部为复成分砾岩.早侏罗世青坑村组(J1q)、吉水门组(J1js)和长埔组(J1c)砂岩泥岩建造,为晚三叠世海盆沉积的继续和发展,向上演变为桥源组(J1qy)三角洲、泻湖、潮坪等过渡相含煤碎屑岩建造.漳平组(J2z)代表了一套内陆湖泊相沉积,主要是由长石石英砂岩、石英砂岩、粉砂岩和泥岩组成的碎屑岩建造.中‒晚侏罗世的吉岭湾组(J2jl)和热水洞组(J3r)均为陆相火山岩系,是东南沿海巨型火山喷发岩带的一部分,岩性以火山熔岩及碎屑岩为主,其上可被含植物、双壳类、介形类及鱼类等淡水生物的晚侏罗世末水底山组(J3sd)内陆火山盆地相(破火山口)沉积不整合覆盖.

2 褶皱构造特征

莲花山断裂带北段内褶皱主要发育在晚三叠世‒中侏罗世陆源碎屑岩之中,构造线方向主要为NE⁃SW向和NW⁃SE向.NE⁃SW向褶皱是由早中侏罗世地层构成的复式向斜,自五华县东部延伸至梅县东北部松口镇一带,走向延伸超过60 km,出露宽度为10~30 km.在梅县南部五华县东部,褶皱核部为中侏罗统漳平组,北西翼为下侏罗统桥源组,南东翼地层为下侏罗统青坑村组、吉水门组、长埔组和桥源组,表现为复式向斜,包括十余处次级组内褶皱,轴向与主褶皱轴向平行或近于平行,次级褶皱波长200~1 000 m不等(图2).在梅县东北部松口镇东侧,褶皱地层为中侏罗统漳平组之中,翼间角中等,次级褶皱转折端清晰.NW⁃SE向褶皱主要发育在大埔县一带近30 km宽的NW走向构造带中,主要表现为以上三叠统为核部,早中侏罗世地层为两翼的背斜构造(图1b).褶皱与明显成NW向展布的晚侏罗世‒早白垩世花岗岩体平行排列,显然受NW向深部构造控制.

系统的层理产状统计表明(图3),晚三叠 世‒中侏罗世陆源碎屑岩的层面走向主要表现为NE⁃SW向和NW⁃SE向(图4a),指示其中既发育NE⁃SW向褶皱,又发育NW⁃SE向褶皱.其中,NE向层面以倾向NW为主,倾向SE为辅,倾角大小相当.π图解(图4b)指示NE⁃SW向褶皱枢纽向NE46º倾伏,倾伏角近水平(1º).因此,NE⁃SW向褶皱在位态分类中属于直立水平褶皱.

NW⁃SE向层面以倾向SW为主,倾向NE为辅,倾角大小相当.π图解(图4c)指示NW⁃SE向褶皱枢纽向SE143º倾伏,倾伏角近水平(4º).因此,NW⁃SE向褶皱在位态分类中也属于直立水平褶皱.褶皱形成后,未受到后期斜向挤压的强烈改造.

3 褶皱地层、花岗岩及火山岩的年代学分析

莲花山断裂带北段,晚三叠世至中侏罗世地层为一套浅海相‒过渡相‒湖相沉积,动植物化石丰富,陆源碎屑充足.热水洞组(J3r)喷发不整合在中侏罗世碎屑岩之上,在区域上基本平缓产出(倾角10°左右).大埔县北西侧坪沙花岗岩侵位于褶皱的上三叠统至中侏罗统之中.通过地层古生物化石、碎屑锆石年代学以及与岩浆岩的接触关系,能够准确限定卷入变形的地层时代,并精确限定褶皱形成的地质年代.

3.1 晚三叠世‒中侏罗世陆源碎屑岩的沉积时代

本次工作在大埔县一带晚三叠世至中侏罗世地层中采集了大量古生物化石,能够准确限定地层的沉积时代.小坪组中主要发育蕨类和篦羽叶等植物化石(图5),包括连平奇叶蕨相似种 Thaumatopteria cf. lianpingensis Liu和日本篦羽叶相似种Ctenis cf. japonica Oishi等,指示其沉积于晚三叠世(图6).下侏罗统碎屑岩中可见蕨类植物化石和双壳类动物化石(图7),包括裂页爱博拉契蕨相似种Eboracia cf. lobifolia(Phillips)Thomas和卵型湖南蛤Hunanella ovata Xiong et Wang、楔形醴陵蛤相似种Lilingella cf. cuneata Wu等,指示其形成于早侏罗世(图6).

3.2 晚侏罗世至早白垩世岩浆岩的形成时代

本次工作在坪沙花岗岩和热水洞组(J3r)火山岩中采集样品,在中国地质大学(武汉)地球科学学院实验中心采用Agilent 7900型LA⁃ICP⁃MS分别进行了结晶锆石的U⁃Pb测年(数据见表1).采用外标91500,用于同位素比值漂移和分馏校正.对分析数据的离线处理采用软件ICPMS Data Cal完成(Liu et al.,2010a,2010b).

采自坪沙花岗岩的两件样品D6208和D6203,锆石U⁃Pb加权平均年龄分别为(157.0±1.0)Ma(图8a)和(154.3±1.5/3.1)Ma(图8b),指示坪沙花岗岩形成于约157~154 Ma,属于晚侏罗世花岗岩.采自热水洞组(J3r)的英安岩和流纹斑岩的两件样品LHS⁃06和LHS⁃07,锆石U⁃Pb加权平均年龄分别为(147.6±0.9/1.4)Ma(图8c)和(150.0±0.7/1.4)Ma(图8d),指示热水洞组(J3r)火山岩形成于约150~148 Ma,属于晚侏罗世火山岩.

4 讨论

4.1 褶皱形成时代

Xu et al.(2019)Zhang et al.(2019)在梅县‒大埔一带晚三叠世‒早中侏罗世地层中的碎屑锆石U⁃Pb年代学表明,小坪组发育~425 Ma、~975 Ma、~1 850 Ma和2 475 Ma的峰值年龄,其最年轻的3颗碎屑锆石年龄为205~208 Ma,指示其沉积年龄应不早于晚三叠世;下侏罗统中同样发育 ~425 Ma、~975 Ma、~1 850 Ma和2 475 Ma的峰值年龄,但其最年轻的1颗碎屑锆石年龄为~187 Ma,指示其沉积年龄应不早于早侏罗世;漳平组仅发育~250 Ma和~1 850 Ma的峰值,其最年轻的4颗碎屑锆石年龄为171~173 Ma,指示其应沉积于170 Ma之后,沉积年龄应不早于中侏罗世.在地质图面上,NE⁃SW向褶皱被晚侏罗世热水洞组(J3r)中酸性火山岩角度不整合覆盖,指示NE⁃SW向褶皱形成于晚侏罗世之前.结合本次工作,联系区域,热水洞组(J3r)火山岩的锆石U⁃Pb年龄集中在163~148 Ma(卓伟华等, 2011; Guo et al., 2012Li et al., 2020; 李瑞等, 2021; Xin et al., 2023).因此,NE⁃SW向褶皱应形成于中侏罗世中晚期,约170~163 Ma.

NW⁃SE向褶皱被晚侏罗世坪沙岩体(157~154 Ma)和晚侏罗世大埔岩体(144~139 Ma)(邸文等, 2017)所侵位,指示NW⁃SE向褶皱形成于 ~157 Ma之前.结合其发育在晚三叠世至中侏罗世陆源碎屑岩之中,NW⁃SE向应褶皱形成于中晚侏罗世之交,约170~157 Ma,与NE⁃SW向褶皱形成的时代基本一致.尽管图面分析表明,NE⁃SW向莲花山断裂带被NW⁃SE向断层所切(图1a),但年代学结果指示,NE⁃SW向和NW⁃SE向褶皱形成时代相同,指示二者形成于相同的构造体制.

4.2 大地构造意义

古太平洋板块向NW的俯冲,形成了横跨闽‒粤‒赣‒湘‒桂‒川几省,宽约1 300 km(Li and Li, 2007Li et al., 2018; 李建华等,2024),以一系列褶皱和逆冲断层组合形成的宽阔的NE⁃NNE⁃SN向变形带.研究认为NW⁃SE向挤压自中侏罗世持续至早白垩世(张岳桥等,2012;Shi et al.,2015Li et al.,2023)或晚侏罗世(Li et al., 2020).在雪峰‒江南一带以东的华南陆块东部,常见中下侏罗统被褶皱逆冲到古生代乃至中生代早期的沉积地层上,但并未卷入白垩纪红层(湖南省地质矿产局,1988;广东省地质矿产局,1988).在湘中南,侵入近S⁃N向褶皱的骑田岭岩体,限定了褶皱发生在中晚侏罗世之交(张岳桥等,2009).在研究区南部陆丰、普宁、潮州一带的下中侏罗统组成的复式褶皱,为一系列北东向延伸、短轴平缓状的次级褶皱组合而成,延伸可达200 km,被晚侏罗世、白垩纪花岗岩体侵入,上侏罗统火山岩平缓覆盖于褶皱之上(广东省地质矿产局,1988).在研究区北部福建地区,上古生界区域性复式褶皱宽缓,波长数十公里, 延伸上百公里,伴有走向NE分布局限的皱纹面理.胡斯敏等(2021)认为其形成于漳平组(J2z)沉积之后的中侏罗世末‒晚侏罗世初(关玉祥等,1989).在广东莲花山断裂北段,中侏罗世晚期‒晚侏罗世已明显受太平洋板块向北西方向低角度俯冲作用影响,其导致莲花山断裂带甚至华南板块中东部地区发育大规模的NE⁃SW向褶皱和NW⁃SE向的逆冲作用(Zhou and Li., 2000Li et al., 2020).强烈的挤压作用和地壳物质的不均衡导致NE⁃SW向断层发生错断,形成NW⁃SE向横断层.作为主褶皱逆冲带的伴生构造,横断层走向往往与最大主应力方向平行,与主逆冲断裂带近正交,二者同步形成、共同演化,这种组合关系在褶皱冲断带中普遍存在(王伟锋等,2018).横断层在张扭运动过程中,由于剪切牵引作用,可形成NW⁃SE向褶皱(尚鲁宁等,2024).这些NW向横断层,在早白垩世进一步活动,控制了大埔县百侯镇等地区NW向小规模断陷盆地的形成.

Cawood et al.(2012)认为沉积盆地的碎屑锆石年龄谱受构造环境的控制,可以通过绘制沉积物中单个锆石晶粒的结晶年龄(CA)与沉积物的沉积年龄(DA)之间的差异分布图来判别盆地构造环境.将Xu et al.(2019)和Zhang et al.(2019)在研究区获得的碎屑锆石U⁃Pb年龄数据投在其提出的盆地类别判别图上,累计频率曲线(图9)指示,上三叠统‒下侏罗统碎屑岩沉积于伸展盆地(Extensional Basin),中侏罗统碎屑岩沉积于挤压型陆内盆地(Collisional Basin),指示研究区在晚三叠至中侏罗世经历了伸展向挤压构造背景的转换.

NE⁃SW向褶皱的形成和盆地构造环境的转变,说明中侏罗世华南大陆由早侏罗世的N⁃S向伸展(Shu et al., 2009Gan et al., 2021)转换为NW⁃SE向的收缩构造体制(Chen, 1999;徐先兵等, 2009, 2010;张岳桥等, 2009; Shi et al., 2015Xu et al., 2021),产生了大规模的NE向褶皱变形带.广东莲花山断裂北段的上三叠统‒中侏罗统的褶皱形成,说明该区两大构造域的转换发生在晚三叠世至早侏罗世.该区古特提斯的构造体制,在早中侏罗世印支造山后期的中侏罗世已经结束,该区开始进入滨太平洋构造域.中侏罗世中晚期至晚侏罗世,华南板块处于转换挤压构造体制,属于中侏罗世挤压构造体制向早白垩世伸展构造体制的转换阶段(Xu et al., 2011,20162021Li et al., 2012,2020Wang et al.,2013; 王丹阳等,2024).

5 结论

(1)综合地层古生物化石、侵位岩体的锆石

U⁃Pb年龄以及前人在该区的碎屑锆石U⁃Pb年代学数据统计,确定广东境内莲花山断裂带北段强烈褶皱的浅海和海陆交互相沉积地层形成于晚三叠世‒早侏罗世,属于印支运动后期伸展盆地沉积产物.

(2)晚三叠世‒早侏罗世地层在该地区发育大规模的NE向褶皱和NW向褶皱,均形成于中侏罗世中晚期.前者形成于NW⁃SE向挤压所形成的褶皱冲断作用,后者应形成于同期NW向横断层张扭活动形成的剪切牵引作用.

(3)莲花山地区NE⁃SW向和NW⁃SE向褶皱均形成于古太平洋板块向NW方向俯冲的挤压构造环境,不同方向褶皱是褶皱逆冲带复杂断裂组合样式和运动方式的产物.

参考文献

[1]

Bai, D. Y., Jia, B. H., Zhong, X., et al., 2012. Study on the Deformation of Indosinian Movement in Southeastern Hunan. Geological Review, 58(1): 19-29 (in Chinese with English abstract).

[2]

Cawood, P. A., Hawkesworth, C. J., Dhuime, B., 2012. Detrital Zircon Record and Tectonic Setting. Geology, 40(10): 875-878. https://doi.org/10.1130/g32945.1

[3]

Chen, A., 1999. Mirror⁃Image Thrusting in the South China Orogenic Belt: Tectonic Evidence from Western Fujian, Southeastern China. Tectonophysics, 305(4): 497-519. https://doi.org/10.1016/S0040⁃1951(99)00036⁃0

[4]

Di, W., Li, R., Chen, J. F., et al., 2017. LA⁃ICP⁃MS Zircon U⁃Pb Age, Geochemistry and the Geological Significance of the Dapu Granite, Guangdong Province. Geological Science and Technology Information, 36(6): 148-157 (in Chinese with English abstract).

[5]

Gan, C. S., Zhang, Y. Z., Wang, Y. J., et al., 2021. Reappraisal of the Mesozoic Tectonic Transition from the Paleo⁃Tethyan to Paleo⁃Pacific Domains in South China. Geological Society of America Bulletin, 133(11/12): 2582-2590. https://doi.org/10.1130/B35755.1

[6]

Guan, Y. X., Huang, Y. M., Tao, J. H., 1989. A Preliminary Discussion on Nappe Structure in Fujian. Geology of Fujian, 8(1): 14-34 (in Chinese with English abstract).

[7]

Guangdong Provincial Bureau of Geology and Mineral Resources, 1988. Regional Geology of Guangdong Province. Geological Publishing House, Beijing (in Chinese).

[8]

Guo, F., Fan, W. M., Li, C. W., et al., 2012. Multi⁃Stage Crust⁃Mantle Interaction in SE China: Temporal, Thermal and Compositional Constraints from the Mesozoic Felsic Volcanic Rocks in Eastern Guangdong⁃Fujian Provinces. Lithos, 150: 62-84. https://doi.org/10.1016/j.lithos.2011.12.009

[9]

Hu, S. M., Shan, Y. H., Zheng, J., 2021. Characteristics and Implication of Polyphase Folds in Upper Paleozoic Strata, South of Ansha Reservoir, Southwestern Fujian Province. Geotectonica et Metallogenia, 45(2): 255-269 (in Chinese with English abstract).

[10]

Hu, S. M., Shan, Y. H., Zheng, J., et al., 2023. Characteristics of Middle⁃Late Triassic Structural Deformation in Central Southwestern Fujian. Geotectonica et Metallogenia, 47(3): 506-522 (in Chinese with English abstract).

[11]

Hunan Provincial Bureau of Geology and Mineral Resources, 1988. Regional Geology of Hunan Province. Geological Publishing House, Beijing (in Chinese).

[12]

Li, C. L., Wang, Z. X., Tan, Y. L., et al., 2023. Differential Fold Interference Patterns in an Intracontinental Orogen: Insights from Superposed Buckle Folding in Southern Jiangxi Province, South China Block. Journal of Structural Geology, 167: 104801. https://doi.org/10.1016/j.jsg.2023.104801

[13]

Li, J. H., Cawood, P. A., Ratschbacher, L., et al., 2020. Building Southeast China in the Late Mesozoic: Insights from Alternating Episodes of Shortening and Extension along the Lianhuashan Fault Zone. Earth⁃Science Reviews, 201: 103056. https://doi.org/10.1016/j.earscirev.2019.103056

[14]

Li, J. H., Dong, S. W., Cawood, P. A., et al., 2018. An Andean⁃Type Retro⁃Arc Foreland System beneath Northwest South China Revealed by Sinoprobe Profiling. Earth and Planetary Science Letters, 490: 170-179. https://doi.org/10.1016/j.epsl.2018.03.008

[15]

Li, J. H., Dong, S. W., Zhao, G. C., et al., 2024. Late Mesozoic Continental Deformation, Deep Processes, and Geodynamic Evolution of South China. Acta Geologica Sinica, 98(3): 829-861 (in Chinese with English abstract).

[16]

Li, J. H., Zhang, Y. Q., Dong, S. W., et al., 2012. Late Mesozoic⁃Early Cenozoic Deformation History of the Yuanma Basin, Central South China. Tectonophysics, 570: 163-183. https://doi.org/10.1016/j.tecto.2012.08.012

[17]

Li, R., Wang, J. R., Ling, K., et al., 2021. Division of Mesozoic Volcanic Cycles in the Fengshun Area, Eastern Guangdong Province. South China Geology, 37(1): 29-44 (in Chinese with English abstract).

[18]

Li, Z. X., Li, X. H., 2007. Formation of the 1 300⁃km⁃Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat⁃Slab Subduction Model. Geology, 35(2): 179. https://doi.org/10.1130/g23193a.1

[19]

Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010a. Continental and Oceanic Crust Recycling⁃Induced Melt⁃Peridotite Interactions in the Trans⁃North China Orogen: U⁃Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082

[20]

Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010b. Reappraisement and Refinement of Zircon U⁃Pb Isotope and Trace Element Analyses by LA⁃ICP⁃MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434⁃010⁃3052⁃4

[21]

Qiu, Y. X., Qiu, J. S., Li, J. C., et al., 1991. Deformational and Metamorphic Features of Lianhuashan Fault Zone during Meso⁃Cenozoic Time and Mechanism of Their Formation. Journal of Geomechanics, (14): 93-106 (in Chinese with English abstract).

[22]

Shang, L. N., Pan, J., Cao, R., et al., 2024. Structural Characteristics of the Binhai Fault Zone in Jiangsu Offshore—Implications from Gravity and Magnetic Data. East China Geology, 45(1): 101-114 (in Chinese with English abstract).

[23]

Shi, W., Dong, S. W., Zhang, Y. Q., et al., 2015. The Typical Large⁃Scale Superposed Folds in the Central South China: Implications for Mesozoic Intracontinental Deformation of the South China Block. Tectonophysics, 664: 50-66. https://doi.org/10.1016/j.tecto.2015.08.039

[24]

Shu, L. S., Zhou, X. M., Deng, P., et al., 2009. Mesozoic Tectonic Evolution of the Southeast China Block: New Insights from Basin Analysis. Journal of Asian Earth Sciences, 34(3): 376-391. https://doi.org/10.1016/j.jseaes.2008.06.004

[25]

Wang, D. Y., Li, M. X., Wang, Q., et al., 2024. Magmatic Response to Lithospheric Thinning of the North China Craton—Evidence from the Daqingshan Granite. East China Geology, 45(2): 173-186 (in Chinese with English abstract).

[26]

Wang, W. F., Wang, Q., Shan, X. J., 2018. Development Characteristics and Formation Mechanism of Transverse Faults along the Kuqa Thrust Belt. Geology in China, 45(3): 493-510 (in Chinese with English abstract).

[27]

Wang, Y. J., Fan, W. M., Zhang, G. W., et al., 2013. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 23(4): 1273-1305. https://doi.org/10.1016/j.gr.2012.02.019

[28]

Wang, Y. J., Wang, Y., Zhang, Y. Z., et al., 2021. Triassic Two⁃Stage Intra⁃Continental Orogensis of the South China Block, Driven by Paleotethyan Closure and Interactions with Adjoining Blocks. Journal of Asian Earth Sciences, 206: 104648. https://doi.org/10.1016/j.jseaes.2020.104648

[29]

Xin, Y. J., Li, J. H., Zhang, Y. Q., et al., 2023. Episodic Magmatism in the Lianhuashan Tectonic Belt: Implications for Late Mesozoic Crustal Reworking in SE South China. GSA Bulletin, 135(11-12):3043-3065. https://doi.org/10.1130/b36504.1

[30]

Xu, Q. J., Liu, S. F., Wang, Z. F., et al., 2019. Provenance of the East Guangdong Basin and Yong’an Basin in Southeast China: Response to the Mesozoic Tectonic Regime Transformation. Journal of Asian Earth Sciences, 185: 104024. https://doi.org/10.1016/j.jseaes.2019.104024

[31]

Xu, X. B., 2023. Late Triassic to Middle Jurassic Tectonic Evolution of the South China Block: Geodynamic Transition from the Paleo⁃Tethys to the Paleo⁃Pacific Regimes. Earth⁃Science Reviews, 241: 104404. https://doi.org/10.1016/j.earscirev.2023.104404

[32]

Xu, X. B., Liang, C. H., Xu, Y. D., 2021. Kinematic Analysis of Fault⁃Slip Data in the Nanling Tectonic Belt and Cretaceous to Paleogene Tectonic Evolution of the Central South China Block. Journal of Asian Earth Sciences, 221: 104951. https://doi.org/10.1016/j.jseaes.2021.104951

[33]

Xu, X. B., Tang, S., Lin, S. F., 2016. Paleostress Inversion of Fault⁃Slip Data from the Jurassic to Cretaceous Huangshan Basin and Implications for the Tectonic Evolution of Southeastern China. Journal of Geodynamics, 98: 31-52. https://doi.org/10.1016/j.jog.2016.03.013

[34]

Xu, X. B., Zhang, Y. Q., Jia, D., et al., 2009. Early Mesozoic Geotectonic Processes in South China. Geology in China, 36(3): 573-593 (in Chinese with English abstract).

[35]

Xu, X. B., Zhang, Y. Q., Jia, D., et al., 2010. Geochronology of Zircon LA⁃ICP⁃MS U⁃Pb and Muscovite 40Ar/39Ar: Constrains to Early Yanshanian Event in Southeast China. Geological Science and Technology Information, 29(2): 87-94 (in Chinese with English abstract).

[36]

Xu, X. B., Zhang, Y. Q., Jia, D., et al., 2011. U⁃Pb Dating of Volcanic Rocks and Granites along the Wuyishan Belt: Constraints on Tuning of Late Mesozoic Tectonic Events in Southeast China. Acta Geologica Sinica, 85(1): 130-144. https://doi.org/10.1111/j.1755⁃6724.2011.00385.x

[37]

Zhang, X. C., Wang, Y. J., Harris, R., et al., 2019. Discovery of Middle⁃Late Devonian and Early Permian Magmatic Events in East Asia and Their Implication for the Indosinian Orogeny in South China: Insights from the Sedimentary Record. GSA Bulletin, 131(9/10): 1519-1536. https://doi.org/10.1130/b35032.1

[38]

Zhang, Y. Q., Dong, S. W., Li, J. H., et al., 2012. The New Progress in the Study of Mesozoic Tectonics of South China. Acta Geoscientica Sinica, 33(3): 257-279 (in Chinese with English abstract).

[39]

Zhang, Y. Q., Xu, X. B., Jia, D., et al., 2009. Deformation Record of the Change from Indosinian Collision⁃Related Tectonic System to Yanshanian Subduction⁃Related Tectonic System in South China during the Early Mesozoic. Earth Science Frontiers, 16(1): 234-247 (in Chinese with English abstract).

[40]

Zhou, X. M., Li, W. X., 2000. Origin of Late Mesozoic Igneous Rocks in Southeastern China: Implications for Lithosphere Subduction and Underplating of Mafic Magmas. Tectonophysics, 326(3/4): 269-287. https://doi.org/10.1016/S0040⁃1951(00)00120⁃7

[41]

Zhuo, W. H., Zhang, Z. J., Wu, X. H., et al., 2011. New Progresses in 1: 50 000 Regional Geological Survey in Meizhou Area, Eastern Guangdong Province. Geology and Mineral Resources of South China, 27(4): 319-326 (in Chinese with English abstract).

[42]

Zou, H. P., Wang, J. H., Qiu, Y. X., 2000. 40Ar/39Ar Ages of the Nan’ao Shear Zone and the Lianhuashan Shear Zone in Guangdong Province and Their Geological Significance. Acta Geoscientica Sinica, 21(4): 356-364 (in Chinese with English abstract).

基金资助

广东省自然资源厅“广东1∶25万梅州市幅区域地质调查” 项目(2024⁃15)

AI Summary AI Mindmap
PDF (7078KB)

295

访问

0

被引

详细

导航
相关文章

AI思维导图

/