沉积碎屑岩断裂带结构特征、渗透性及流体运移规律

宫亚军 ,  张奎华 ,  王金铎 ,  王千军 ,  王建伟 ,  曾治平 ,  郭瑞超 ,  牛靖靖 ,  范婕 ,  刘慧 ,  闵飞琼

地球科学 ›› 2025, Vol. 50 ›› Issue (05) : 1968 -1986.

PDF (2181KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (05) : 1968 -1986. DOI: 10.3799/dqkx.2024.154

沉积碎屑岩断裂带结构特征、渗透性及流体运移规律

作者信息 +

Structure, Permeability and Fluid Flow in Sedimentary Clastic Rock Fault Zone

Author information +
文章历史 +
PDF (2233K)

摘要

断裂生长过程中形成复杂断裂带,占地壳极小体积的断裂带对壳内流体运移有重要影响,断裂带与地层流体之间流固相互作用研究具有重要地质及工程意义.以近30年来沉积碎屑岩断裂带结构、渗透性及流体运移等方面取得的多学科研究进展为重点,总结断裂带结构类型及其几何学特征,系统梳理了断裂带渗透率数据,分析了渗透性变化规律,阐述了包括优势路径、渗流特征、幕式过程、临界条件以及多场耦合渗流机制等在内的断裂带流体运移规律.研究表明,断裂带划分为二元、三级结构体系,具有“分段幂律”发育规律,断裂带渗透率变化主要受3类因素控制,不同要素相互竞争控制的渗透性变化形成断裂带流体的幕式运移过程,其运移渗流规律是应力‒温压‒渗流‒化学等多场耦合结果.通过多学科综合研究,以期加深对断裂‒流体‒成藏(矿)这一复杂过程的理解,断裂带非线性、多相态、多场渗流规律需深入研究.

Abstract

During the fault growth process, a fault zone with complex three-dimensional structure is formed. The fault zones occupying a very small volume in the Earth’s crust have a significant impact on the migration of fluids within the crust. The study of the interaction between fluids and solids in these fault zones is of great geological and engineering importance. Over the past 30 years, multidisciplinary research has been conducted on the characteristics of fault zones, permeability, and fluid migration patterns in sedimentary clastic rock. However, there is a lack of understanding and efforts in systematically comparing and comprehensively explaining the findings across different disciplines. In this paper, it summarizes the types, formation mechanisms, and geometric characteristics of fault zone. It systematically reviews data on the permeability of fault zones, analyzes three categories of factors influencing permeability changes, and elucidates the fluid migration behavior within fault zones, including dominant pathways, migration velocity, periodic frequencies, critical conditions, and multi-field coupled migration mechanisms. By summarizing the research progress over the past 30 years, in this paper it is expected to deepen our understanding of the complex geological processes of fault-fluid-mineralization. It is important to note that further interdisciplinary collaboration is needed to conduct more in-depth research on the fluid migration within fault zones.

Graphical abstract

关键词

断裂 / 断裂带结构 / 断裂带渗透性 / 流体运移 / 研究进展 / 构造地质 / 石油地质.

Key words

fault / fault zone structure / fault zone permerbility / fluid migration / review / tectonics / petroleum geology

引用本文

引用格式 ▾
宫亚军,张奎华,王金铎,王千军,王建伟,曾治平,郭瑞超,牛靖靖,范婕,刘慧,闵飞琼. 沉积碎屑岩断裂带结构特征、渗透性及流体运移规律[J]. 地球科学, 2025, 50(05): 1968-1986 DOI:10.3799/dqkx.2024.154

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

断裂是壳内流体运移重要通道,断裂生长过程中广泛形成具有复杂结构的三维地质体,构成流体运移网络体系及储集空间(Sibson, 1977Caine et al., 1996),对油气等地质流体的运移聚集具有重要控制作用(Balsamo et al., 2010).断裂和伴生破碎带共同构成的地质单元称为断裂带(图1),近年来油气勘探发现了大量断裂相关油气藏,如鄂尔多斯盆地致密砂体“断缝体”油气藏(杨桂林等,2022)、塔里木盆地碳酸盐岩“断溶体”油气藏(马德波等,2019),断裂带具有“控输、控储、控富”多重控藏作用,陈红汉(2023)系统总结了我国大型克拉通盆地走滑构造与油气聚集研究进展,相关研究极大推动了盆地深层‒超深层领域油气勘探.

断裂带结构与地质流体之间流固作用是认识断裂控藏(矿)的关键和基础.近30年来,学者们从理论研究(Caine et al.,1996Fossen et al., 2007,2018;孙同文等,2012;Choi et al., 2016)、露头详查(Cappa et al., 2007Childs et al., 2009Faulkner et al., 2010Torabi and Berg,2011;宫亚军等,2019,2021) 、地震地球物理与化学(段庆宝等,2015;李映涛等,2023)、水文地质(Berkowitz, 2002Bense et al., 2013)及数值模拟(Luo,2011;于贺等,2011;Ingebritsen and Manga, 2019)等方面开展了多方法技术与多学科研究,并在断裂带结构及其控流体运移等方面取得诸多进展,但各学科彼此间缺乏了解,系统对比和综合解释依然不充分.

笔者深感各学科内容之丰富,观点多种多样,为更好展示相关研究成果,成文过程遵循以下原则:①为避免论述看起来像不同观点的罗列,本次注重了相关研究基础数据的系统梳理,重点关注了研究较充分、数据积累丰富、对比性强的沉积碎屑岩断裂带;②注重多学科借鉴,以不同学科高被引用的共识性规律总结为主,本文聚焦了断裂带结构、渗透性及其流体运移3个主要方面;③相关研究已有综述性介绍的,本次仅做了引述,未做详细论述,例如,相关断裂构造 (Storti et al., 2003Faulkner et al., 2010;李世愚等,2010;Fossen and Rotevatn, 2016)、断裂启闭性评价(Berkowitz, 2002;孙同文等,2012;Pei et al., 2015;苏圣民和蒋有录,2021)等综述介绍.结合笔者对于准噶尔盆地断裂带解剖工作,立足断裂带结构与地层流体相互作用这一核心,以期从多学科角度加深对“断裂‒流体‒成矿(藏)”这一复杂地质过程的理解,指导找矿等工程地质实践.

1 断裂带结构类型及其成因机制

断裂带是由高应变的核部和低应变的裂缝带组成的三维地质体(Sibson,1977).近来研究表明,断裂带结构更为复杂,如弱固结岩石的核部可分为中心核和远端核(Berg and Skar, 2005),孔隙砂体的核部与裂缝带之间常发育混合带(Evans and Bradbury, 2004Bauer et al., 2015),压扭性走滑裂缝带划分出两个次级裂缝带(宫亚军等,2019),大规模断裂带核部和裂缝带往往重复出现(Faulkner et al., 2010).关于断裂带有多种划分方案(Caine et al., 1996),综合来看,可归结为“二元、三级”划分体系,即核部与裂缝带构成断裂带一级变形单元,各类断层岩和裂缝带及其伴生构造为二级变形单元,进一步细分为三级亚类变形单元(图1),详见下述.

1.1 断裂核部

断裂核部是指位于围绕主滑动面发育的各类断层岩构成的高应变带,其宽度从毫米到数十米级别,宽度较大的核部一般有多个滑动面.由于核部吸收了大部分形变和断距,故其主要由变形强烈的断层岩构成(图1),如泥岩涂抹、断层泥、碎裂岩、断层角砾岩及透镜体等,也包括滑移面、裂缝、变形带及缝合线等次级构造(Sibson, 1977Manzocchi et al., 2002Wibberley et al., 2008Braathen et al., 2009Caine et al., 2010).

断层岩及相关构造的形成主要受两类因素控制,一是岩性、断层位移、应变率、活动程度、流体及温压条件等宏观因素(Sibson, 1977Sperrevik et al., 2002Wibberley et al., 2008);二是微观变形机制,如孔隙坍塌、碎裂化或细粒化、硅质涂抹、泥岩涂抹、压溶和重结晶等(夏宗国,1983;Sperrevik et al., 2002Fossen et al., 2018) .受两类因素耦合控制,断裂核部最终分化为不同类断层岩(二级),如高应力较低温压条件下,孔隙砂岩通常形成碎裂岩(Fossen et al., 2007),而泥岩则形成泥岩涂抹(Sperrevik et al., 2000),强应力高温压下,形成各类断层角砾岩,可细分亚类(三级),如断层角砾岩细分为:磨圆化角砾、基质支撑角砾、颗粒支撑角砾、张裂缝角砾等,不同亚类断裂岩指示了其形成与渗流环境特征(Caine et al., 2010).

1.2 裂缝带

裂缝带是指围绕核部发育的以脆性裂缝为特征的地质体,亦称诱导裂缝带或破碎带,包括次级断层、脉体及褶皱等相关构造(图1).Choi et al.(2016)综合考虑裂缝带的几何特征、所处位置及破裂模式,将其分为3类2级变形单元(图2a):穿断层裂缝带、断尖裂缝带和顺断层裂缝带(Kim et al., 2004Choi et al., 2016).

穿断层裂缝带即为一般意义上的二维断裂带(图2b),断裂两盘裂缝带往往具有不同的破裂与衰减特征,区分为主动盘裂缝带和被动盘裂缝带,主动盘裂缝密度及宽度通常较被动盘大,故两盘断裂带常表现出不对称性(Chester and Logan, 1986Faulkner et al., 2010;宫亚军等, 2019).同一盘裂缝带可区分出次级结构带,如外裂缝带和内裂缝带,其裂缝密度随距主滑移面距离的增加而幂率衰减(Evans and Bradbury, 2004).

断尖裂缝带是发育在断层末端的次生破裂构造(图2c),依据裂缝滑动方向与断层主走向的角度关系,区分出3个亚类(三级):Ⅱ型、Ⅲ型以及Ⅱ和Ⅲ混合型,其中,Ⅱ型的滑动方向平行于断层主走向,属滑开型破裂,多见于平行走滑断层末端(Flodin and Aydin, 2004Kim et al., 2004);Ⅲ型的滑动方向垂直于断层主走向,属于撕开型破裂,多发育在未完全贯穿断层的末端(Choi et al., 2016),混合型是最为常见的断尖裂缝带.

顺断层裂缝带分为3个亚类(三级):末端裂缝带、连接裂缝带和断壁裂缝带(图2d).其中,末端裂缝带是断层断尖生长的结果;连接裂缝带是断层间相互连接而产生的挤压(C)或拉张裂缝带(D);断壁裂缝带是指沿断层的裂缝带,是断层连接生长过程中被放弃的末端裂缝.

裂缝带发育与断裂生长传播密切相关,被广泛应用于断裂生长过程分析.如随断层的贯穿,连接断裂带逐步演变为断壁断裂带(Cowie and Shipton, 1998Kim et al., 2004;Choi et al., 2016).裂缝带概念已从一般意义上的二维剖面拓展到了整个裂缝带体系,并被赋予了成因意义(王朝等,2024;曾联波等,2024).

1.3 变形带

在高孔隙砂岩或未成岩‒弱成岩的沉积物中,形成与裂缝有显著区别的一类特殊形变构造‒变形带(Aydin and Johnson, 1978Fossen et al., 2007).Aydin(1978)首次在位于犹他州圣拉斐尔沙漠地区的孔隙砂岩中报道了变形带构造,并依据动力环境,将变形带分为4类:扩张变形带、剪切变形带、挤压变形带及混合变形带(Aydin et al., 2006).Fossen et al. (2007,2018)依据变形带颗粒的旋转、滚动、滑动、碎裂及压溶等微观机制,将变形带分为4类:颗粒旋转重排主导的解聚变形带(图3a)、层状硅酸盐涂抹变形带(图3b)、颗粒破裂细粒化主导的碎裂变形带(图3c)、以及溶蚀和胶结变形带(图3d).严格意义上,变形带不属于断裂带二级变形构造,但鉴于其对地层流体渗透的重要影响,故单列叙述.

不同动力环境或形变机制形成的变形带对母岩渗透性会产生极大影响(Fossen et al., 2018).大部分变形带发育在剪压环境中(Fossen et al., 2007,2018),随着剪压程度增强,由于颗粒碎裂化、旋转、摩擦滑动以及压溶胶结作用,变形带渗透率相对原岩可降低达6个数量级;纯剪环境多形成以颗粒旋转滑动为主的非碎裂化变形带,其孔渗性变化不大;纯张环境中的变形带多出现在浅层未固结砂岩中,渗透性可增大,而纯压环境变形带仅在大孔隙砂岩(35%)中发现,渗透率减小(图3e).

2 断裂带的几何学特征

基于断裂带的“核部和裂缝带”二元模型,过去二三十年,断裂带几何学特征被充分研究(Cowie and Scholz, 1992Bonnet et al., 2001Childs et al., 2009Torabi and Berg, 2011),本文汇编了已公开发表的不同岩性、性质和规模的断裂带几何学特征数据,得到了包括断裂长度(L)、断距(D)、核部宽度(W)、裂缝带宽度(T)及裂缝密度(ρ)等在内的断裂带几何要素幂律关系模型(式1):

N=λS-a,

其中,N、S. 断距、断层长度及断裂带裂缝密度等参数;λ. 常数,无量纲;a. 断层指数,无量纲.

2.1 断裂长度与断距

在双对数坐标中,断层长度与断距呈分段的幂律正相关,式(1)中的幂指数a在1~2,常数λ在105~100(Torabi and Berg, 2011).在0.0 001~ 100 000 m断距范围内,以1 m、1 000 m为界,分为3个区间(图4):断距<1 m,L/D沿10∶1~100∶1区间分布;1 m<断距<1 000 m,L/D突增至10∶1~ 1 000∶1的区间,但趋势变缓;断距>1 000 m,L/D减小至10∶1~11的区间,且趋于平缓,即断层长度不再显著增加.总体上,小尺度和大尺度断距的L/D相对较小,而中尺度断距的L/D较大,即中尺度上,断层长度增长快,这反映了断层的连接生长多发生在1~1 000 m尺度上.

正断层、逆断层以及走滑断层L/D重合度较高(图4)(Kim and Sanderson, 2005Childs et al., 2009Bense et al., 2013),反映了三类断层生长的相似性,断层性质及规模相近而岩性不同时,L/D有所不同,如硅质碎屑岩和非硅质碎屑岩的正断层.统计上分段特征说明断层的连接生长特征.

2.2 核部宽度与断距

Childs et al. (2009) 区分断层性质统计了核部宽度与断距相关性,正断层、逆断层及走滑断层数据重合度较高,基本沿着W/D比值为0.01∶1的趋势线上分布.进一步区分断裂规模和岩性来看,W/D在对数坐标中呈分段线性正相关,以断距0.1和100 m为分段点,分为3个尺度区间(图5).当断 距<0.1 m,W/D位于1∶1~0.01∶1的区间;0.1<段距<100 m,W/D减小至0.1∶1~0.001的区间;当断距>100 m,W/D向0.01~0.0 001的区间偏移变小,表明核部宽度的增加随断距增大而减缓.区分岩性统计,砂岩的W/D整体上沿0.01∶1等值线上分布,而压扭断层未成岩砂岩及正断层泥岩等弱能干性地层,其W/D均较大,这预示着弱能干性地层在小断距范围内更易成核,核部较发育,而强能干性地层更难成核,以裂缝发育为特征.综上说明,一定应力背景和断裂规模尺度下,核部发育受岩石力学性质影响大.

2.3 裂缝带宽度与断距

不同性质和规模断层的断距与裂缝带厚度也呈分段正相关,分段点断距为10 m、10 000 m,与断裂带(核部与裂缝带)厚度与断距的关系较为接近(Savage and Brodsky, 2011).裂缝带宽度与断距的比值(T/D)主要在100∶1~0.01∶1,T/D整体趋势线通过原点(Beach et al., 1999),这预示着断裂的形成始于裂缝.以数据最为完善的正断层为例,进一步区分岩性统计(图6),砂砂对接地层的T/D比值较砂泥对接地层的大,表明相同断距时,砂岩比泥岩有更宽的裂缝带.另外也注意到,相同断距情况下,断裂带宽度变化达2~4个数量级,几乎没有统计上的线性正相关,这可能是由于该组数据中包含了断距小而宽度大的砂岩变形带(Fossen et al., 2018).另有研究表明,只有断距>2 m,T/D才符合线性正相关(Shipton and Cowie, 2001).

2.4 裂缝密度与断裂宽度

典型断裂带对比表明,断裂带裂缝密度随距核部距离的增加呈幂律衰减,式(1)中幂指数α一般在0.2~2.0,且存在最大值,α的变化与断裂带发育过程密切有关(Savage and Brodsky, 2011Valoroso et al., 2014).小断距断层裂缝密度小、衰减快,α较小,随断裂生长,裂缝密度和裂缝带宽度增大,α增大,当断裂带达到一定规模后,伴生断裂的存在使得裂缝带厚度增加快而裂缝密度衰减变慢,故α达到最大值后再次减小.上述规律很好解释了以下统计现象(图7):①断距为0.53~15 000 m的8条断裂中,α最大值为断距为3 500 m的红雁池断裂;②不同性质断层的裂缝衰减特征(α)有一定差异,相同性质断裂α较为接近,如依据α变化,区分出正断裂、逆断裂及走滑断裂3组;③进一步对比性质、规模及岩性相近的断裂,α更为接近,如乌尔禾沥青矿等4条小断距的泥岩正断层,其α在0.78~0.88.

3 断裂带渗透性及其影响因素

渗透率对断裂带流体运移至关重要,较早提出的岩性对接、泥岩涂抹及断层岩封堵定性评价了断裂带渗透性,直到“核部和裂缝带二元模型”的提出才真正奠定了断裂带渗透性分析的基本框架(Caine et al.,1996),特别是随着裂缝介质的渗透性测试水平提高,断裂带渗透率数据的不断积累,其渗透性研究逐步向定量方向发展.本次通过总结已发表的渗透率数据来看(图8),断裂带渗透率变化极大,主要与3类因素有关:①断层岩类型及其形成机制,②断层活动性及有效正应力,③断裂带溶蚀和胶结作用.

3.1 断层岩类型及其变形机制

断裂带发育多类断层岩(图1),不同变形机制产生断层岩是断裂带渗透性变化的基础.Bense et al.(2013)将断层岩分为减渗和增渗2类,前者如高孔砂岩变形带、泥岩涂抹对接及断层泥等,其渗透率相对于母岩减小1~4个数量级,后者如裂缝带、角砾化形成的角砾岩及未固结岩变形带、砂岩涂抹等,其渗透率可增大2~5个数量级,图8总结了砂岩等不同岩性及其断层岩渗透性对比特征.

统计表明,断裂带渗透率变化达10个数量级,特征如下:①原岩渗透性较好,其相应断层岩渗透性也较高,如砂岩>火山岩≥泥岩(图8).②相同岩性而不同变形机制形成的断层岩渗透性差异较大(图1图3),如砂岩相关断层岩渗透率变化达7个数量级(Jolley et al., 2007),其中,由颗粒旋转、重排等变形机制控制的未成岩砂岩解聚变形带渗透率增大,而孔隙坍塌变形机制控制的高孔砂岩变形带渗透率减小(Fossen, 2010),硅质涂抹层的渗透率更低至1~0.0 001×10-3 μm2Jolley et al., 2007).③裂缝带渗透性增大,核部渗透率减小,如由脆性破裂机制为主导的火山岩裂缝带渗透率较原岩增大2个数量级,而由碎裂化(或细粒化)机制主导的核部则相对变差(Walker et al., 2013).④平行于断层面渗透率显著高于垂向断层面的渗透率(Walker et al., 2013).另外,近来地下原位渗透实验表明(Brixel et al., 2020),除断层岩外,在地下三维裂缝体系中,围绕断裂发育的裂缝系统几何学及其连通性特征主控了断裂带宏观渗透性.

3.2 断层活动性及有效正应力

断层岩是断裂带渗透性变化的基础.同时,随断层活动性增强,断裂带渗透性增大,活动性减弱,渗流率也随之减小(Fischer et al., 2017).如汶川地震带观察表明,震后数十天,断裂带渗透率即可恢复到震前大小(Xue et al., 2013),这预示着断裂带渗透性对应力十分敏感.渗透性实验表明,正应力增大,裂缝闭合,而孔隙压力增加将阻止裂缝闭合,断裂带渗透率随有效正应力指数减小(式2)(Evans et al., 1997).

K=KoePe,

式中,K为渗透率,md;Ko为原始或有效应力为零时的渗透率,md,γ为常数,无量纲;Pe为有效应力,MPa.

地质条件下很少有纯压、纯张等正应力环境,多处于复合应力状态.研究指出,处于高剪应力的裂缝渗透性更大(Barton et al., 1995),断层水力活化实验表明,足够大的压力也可使断层成为渗漏通道,也即处于压‒应耦合的临界状态的裂缝渗透性更大(Yamaguchi et al., 2011),处于临界状态裂缝数量是高油气产量的良好标志(Hennings et al., 2012).由于断弯、断接等多处于临界状态(图2),故是流体优势通道 (Eichhubl et al., 2009Rotevatn and Bastesen, 2014),这一认识在近年来油气勘探中得到证实,如塔里木盆地压扭性走滑断裂(Deng et al., 2019;马德波等,2019)、渤海湾盆地张扭性走滑断裂(徐长贵,2016),临界条件见后文4.4节叙述.

3.3 胶结和溶蚀等水岩作用

断裂带溶蚀和胶结作用对渗透性的影响表现为3个方面:降渗、增渗以及增渗或降渗双重作用(Bense et al., 2013).成岩胶结被认为是震后断裂带渗透性降低及封堵的重要机制(Clemenzi et al., 2015Williams et al., 2017),石英质断层岩的高温压实验揭示,石英胶结导致断层岩渗透率随时间指数衰减(式3),其中,衰减速率正比于温度和差应力,而反比于粒径(Giger et al., 2007),这意味着在断裂带胶结愈合过程中,粒度更细、差应力更大的核部的胶结致密的速度要快于裂缝带,这使得裂缝带在断裂活动后一定时间内保持了相对高的渗透性(图10),这也得到露头区断裂带流体运移特征研究的证实(宫亚军等,2019).

K=Koe -rt,

式中,K为渗透率,md;Ko为原始渗透率,md; r为渗透率衰减率,s-1t为时间,s.

关于裂缝介质的溶蚀增渗作用研究较少,最新理论研究表明受裂缝内流体流动与相变的自加强机制控制,在不断溶蚀扩展的渗流通道内,渗透性仅随时间线性增大(Wang and Cardenas, 2017).实际上,沿断裂带的流体常在局部产生溶蚀而其他地方则形成沉淀,如压溶形成缝合线、溶蚀和胶结变形带等,故水岩作用具有增渗或减渗双重作用.另外,水岩作用也对断裂带产生负反馈影响,如胶结引起的断裂带力学性质由弱到强的转变,断裂带由持续渗流转变为周期性渗流(Williams et al., 2017).

4 断裂带流体运移规律

4.1 断裂带优势运移路径

尽管断裂带渗透性结构复杂(图1),但Caine et al. (1996)提出的“核部封堵、裂缝带输导”的渗透模型被广泛应用(图9a).该模型中裂缝带是优势运移路径,其连通性与裂缝密度、走向及长度等有关(Hestir and Long, 1990Ghosh and Mitra, 2009),故高渗透带仅限于裂缝带有限空间(图9a)(Berkowitz, 2002Faulkner et al., 2010),整个裂缝带渗透性正比于核部与裂缝带相对比例(Caine and Forster, 1999).

地质条件下断裂带流体运移远比二元模型复杂.地表沿断裂的点状泄流特征表明断裂带存在优势通道(Berkowitz, 2002),露头调查表明油气显示厚度仅占断裂带厚度9%(宫亚军等,2019),裂缝介质的渗流实验说明宽缝对窄缝有极强流动屏蔽作用(康永尚等,2003),现场注水实验证实高达95%流体流动仅发生在断裂带10%裂缝空间(Evans et al., 2005),走滑断裂结构研究表明,断裂带内部结构渗透性差异对油气输导具有极强影响(罗群等,2023),只有高渗流率、高连通性的裂缝带是流体的优势路径(图9b)(Faulkner et al., 2010Seebeck et al., 2014).Cappa et al.(2007)通过对露头断裂的注水实验揭示,断裂带优势运移路径特征与“压力‒应变‒应力”耦合机制有关,即对断裂带注水加压过程中,渗透好的裂缝带压力增幅最大、增速最快,压力增加导致裂缝带裂缝面正应力减小、缝宽增大,而缝宽增加对核部产生压缩,核部渗透性变差,即正应力从裂缝向核部发生了传导(Cappa et al., 2007),这一机制决定了大部分流体在高渗透率优势路径运移.

4.2 断裂带流体渗流特征

断裂带流体运移属于典型的裂缝介质渗流问题,其研究远不及孔隙介质的深入(杨天鸿等,2016).目前,广泛应用的渗流公式有3种:立方公式、Izbash公式及Forchheimer公式(表1).

在著名的立方公式中,水流速率是缝宽平方与压力梯度的函数,单缝流量与缝宽立方线性成正比,大量实验已证明平行板裂隙立方定律的正确性(王媛和速宝玉,2002).同时,学者们不断丰富发展了适用于特定条件的非线性立方渗流模型.如,基于立方公式的粗糙裂隙、充填裂隙、非饱和裂隙以及受力裂隙的非线性渗流模型(王媛和速宝玉,2002;许光祥等,2003)、基于立方公式的超压驱动的渗流方程(Gudmundsson, 2001).许光详基于不同裂缝介质渗流特征总结,给出了立方公式的一般形式(许光祥等,2003).

Izbash方程中,流速与压力梯度幂率相关,幂(m)取值与渗透状态有关,当m=1则为达西方程,当m=2为高速纯紊流流动,1<m<2为过渡流态(杨天鸿等,2016).在Forcheimer方程中,流速与压力梯度符合二次方程,由于该方程并非针对特定介质,具有一定的通用性(杨天鸿等,2016).但目前尚未建立完善的断裂带渗流模型,描述断裂带绝对渗透率、相对渗透率、临界压力、饱和度等参数的本构关系多是直接引用达西公式或经验统计,断裂带流体多相渗流机理及模式尚不清楚(Manzocchi et al., 2002).

4.3 流体运移的幕式过程

断裂带流体运移具有幕式特点,断层活动被认为是运移通道的阀门,断层活动、流体幕式运移及其愈合过程分为3个阶段(郝芳等,2000;孙同文等,2012;段庆宝等,2015):同震活动期,断层活动摩擦升温产生热压效应,同震破裂提高断裂带渗透性,两者共同导致流体外泄;震后间隙期,随活动性减弱,断裂核部很快紧闭,流体主要在裂缝带运移;震后静止期,断裂带进入水岩作用主导阶段,矿物沉淀、胶结导致断裂带渗透率降低,流体再次压力积累(图10).断裂带流体运移往往是如上述的周期性质事件高频次地综合作用的结果,频率可通过断裂带累计L/D值除以单次活动的L/D值估算(Wells and Coppersmith,1994),其代表了断裂带流体事件的多少,周期可通过同震位移除以断层滑动速率计算(张培震等,2008),代表了每期流体运移持续时间的长短,年代学可通过成岩矿物同位素测年法确定,代表了流体事件的绝对年限.另一方面,断裂活动不仅体现为对流体幕式运移的阀门作用,高压流体的存在往往也导致断层弱化和引发地震,余震也被认为与震源体内流体溢出有关,甚至由于流体的参与可触发远程地震事件(李世愚等,2010).

4.4 流体运移的临界启闭条件

断裂带流体运移幕式特点主要是受断裂活化或再剪切的临界条件控制.前人系统总结了不同性质断裂活化的临界判断准则(表2)(付旭等,2011),当岩石强度、断层走向与主应力的夹角、摩擦系数、应力及流体压力等参数满足不同应力条件下的再剪切准则时(Cox, 2010),断裂开启,否则封堵.

Talwani et al.(2007)通过水力传导所诱发的断裂带渗流实例说明,当断裂带渗透率处于5×10-16~5×10-14 m2范围时,即所谓的地震诱发渗透率(Chen and Talwani, 2001Talwani et al., 2007),断裂带为周期性水力诱导的幕式渗流;小于该值,流体压力难扩散,断裂带无渗流;大于该值则为持续性高速非达西流,其渗流规律可用立方定律等描述(表1).临界渗透率的存在表明,断裂带流体幕式运移的本质上是临界判断准则中不同要素相互竞争控制的断裂带渗透性变化过程,从而表现为启闭双重性.以石油地质学中极为关注的断裂带含烃流体运移为例,依据断裂带流体运移的启闭临界条件(表2),可有效评价断裂启闭性,这也是目前众多关于断裂启闭性评价方法所遵循的基本原理,如,临界渗透率(Chen and Talwani, 2001)、临界流体压力(Hao et al., 2015)、临界活化角(付旭等,2011)、最大差应力(Cox, 2010)、裂缝带与核部相对比例(Caine and Forster,1999)、泥岩涂抹下限(范婕等,2017)、临界动力与阻力比值(宋明水等,2016)等.

4.5 典型断裂带流体运移实例

综合来看,断裂带流体运移是岩石破裂过程中“应力‒温压‒渗流‒化学”等多场耦合结果(杨天鸿等,2001,2016;姚约东和葛家理,2002;李世愚等,2010).目前研究多以前述的断裂结构模型、渗透率模型及其流体运移模式等为基础,结合断裂带方解石、石英及烃类等流体运移的岩矿学证据,利用多场耦合数值模拟技术,进而推断断裂带烃类等流体运移行为(Holdsworth et al., 2019).本次以准噶尔盆地南缘红雁池断裂带为例,围绕本文所涉及的断裂结构、渗透性及其流体运移等主要观点进行阐述(图11).

红雁池断裂带是一东西走向的压扭性碎屑岩断裂带,出露长度达30 km以上,水平断距约 3.5 km,断裂带宽度150 m左右(图11a),其L/DW/DT/D比值分别为10、0.004、0.04,裂缝符合幂律衰减规律(图11b),衰减指数(α)为1.78(图7).断裂带渗透性测试表明,裂缝带渗透性较核部大1~3个数量级,最大渗透率出现在靠近核部的上盘裂缝带(图11c),该高渗透性带见油气显示,其显示厚度约占断裂带厚度9%,表明断裂带流体优势运移特征(图9).断裂带成岩矿物组合及其流体包裹体均一温度证实,断裂结构与成岩胶结耦合导致流体幕式运移(宫亚军等,2019),即构造诱发的断裂带脆性破裂(地震)开启了流体的幕式运移,后期成岩胶结导致了断裂渗透率降低直至封堵,流体运移幕式周期与区域构造期次基本一致(图10).关于该断裂带流体运移速率尚缺少相关证据,但基于不同渗流模型(表3)的数值模拟显示,烃类沿断层运移速度范围在0.1~1 000 m/a(Zhang et al., 2009Smeraglia et al., 2022),Haney et al. (2005)通过地震监测证实,在墨西哥湾地区典型断裂带,烃类以平均速度140 m/a的呈脉冲式沿断裂带迁移.

5 未来研究方向的展望

本文从多学科角度回顾了断裂带结构、渗透性及其流体运移等方面的研究进展,这些研究极大促进对断裂‒流体‒成藏(矿)这一复杂地质过程理解.同时可以看到,断裂带结构的时空变化仍然知之甚少,复杂地质条件下断裂带渗透性更是难以预测,以断裂结构及其渗透性为基础的断裂带渗流理论研究尚不深入,各学科研究认识的工程实践意义需进一步挖掘.综上所述,断裂带流体运移研究呈现以下趋势.

(1)构建断裂带结构三维时空发育模型.基于断裂岩性、规模及性质等静态地质因素,完善“二元、三级”断裂带结构类型体系,同时考虑断裂动态演化及其影响因素变化,明确地质历史中断裂带时空发育规律,构建从宏观断裂系统到微观断裂结构在动力机制上相一致的发育模型.尤其是针对断裂带渗透性这一联系断裂结构与流体运移的关键环节,深化断裂结构(断层岩)、有效应力及溶蚀胶结等多要素控渗机制研究,明确复杂断裂带三维优势路径,为断裂“输、堵、储”等控藏(矿)作用分析奠定地质基础.

(2)发展断裂带非线性、多相态、多场耦合流体渗流理论.以断裂带为代表的裂缝介质的渗流规律研究远不及孔隙介质深入,建立断裂带复杂路径下压力与流速间非线性关系,探索裂缝介质流体运移的相对渗透率、临界压力及临界饱和度等参数之间的本构关系,从而有效描述断裂带多相态渗流行为,开展基于“应力‒温压‒渗流‒化学”等多因素耦合机制研究,综合考察断裂活动、流体流动、物质输运及溶解沉淀等地质过程,构建非线性、多相态、多场耦合渗流模型,为断裂带成藏(矿)预测奠定理论基础.

(3)融合多学科领域、多尺度研究技术方法.各学科针对“断裂带”的研究尺度不一、方法技术各有侧重,未来需甄别各学科已有技术的适用范围,综合现有基础数据,充分融合露头、测井、地震、数值模拟、物理模拟等多方法技术,建立科学的研究方法体系,向“断裂带流体运移学”方向发展.

(4)突出与地质工程实践的结合.多学科交叉研究为断裂带流体运移研究提供了基础理论认识,面对“断裂带”这一共同对象,需系统总结断裂带油气地质、水文地质及地震地质等领域的规律认识,发展现有理论模型,推动相关地质工程技术进步,以应对日益复杂的地质工程挑战.

6 结论

断裂带划分为二元、三级结构体系,一级为核部与裂缝带构成的二元结构单元,二级为各类断层岩和裂缝带及其伴生构造单元,三级为不同的亚类变形单元.在一级二元结构单元尺度上,断裂带具有统计上的“分段幂律”规律,该规律是分析断裂带生长过程重要工具.

断裂带渗透率变化达10个数量级,其大小变化主要与3类因素有关:①断层岩类型及其形成机制;②断层活动性及有效正应力;③断裂带溶蚀和胶结作用.

断裂带流体运移符合优势路径原则,遵循立方定律等渗流规律,是周期性高频次流‒固地质事件相互作用的综合反映.启闭临界条件是判断能否发生运移的基本准则,不同要素相互竞争控制的渗透性变化形成断裂带幕式运移过程,其运移渗流规律是应力‒温压‒渗流‒化学等多场耦合结果.

断裂带流体运移研究依然面临诸多问题,未来需聚焦4个主要方面:构建断裂带结构三维时空发育模型,奠定断裂“输、堵、储”等控藏(矿)作用分析基础;发展断裂带流体运移的非线性、多相态、多场渗流理论,为断裂带成藏预测奠定理论基础;融合多学科、多尺度技术,形成“断裂带流体运移学”研究方法体系;突出与地质工程实践结合,发展现有理论模型及工程技术,指导工程地质实践.

参考文献

[1]

Aydin, A., 1978. Small Faults Formed as Deformation Bands in Sandstone. Pure and Applied Geophysics, 116(4): 913-930. https://doi.org/10.1007/BF00876546

[2]

Aydin, A., Borja, R. I., Eichhubl, P., 2006. Geological and Mathematical Framework for Failure Modes in Granular Rock. Journal of Structural Geology, 28(1): 83-98. https://doi.org/10.1016/j.jsg.2005.07.008

[3]

Aydin, A., Johnson, A. M., 1978. Development of Faults as Zones of Deformation Bands and as Slip Surfaces in Sandstone. Pure and Applied Geophysics, 116(4): 931-942. https://doi.org/10.1007/BF00876547

[4]

Balsamo, F., Storti, F., Salvini, F., et al., 2010. Structural and Petrophysical Evolution of Extensional Fault Zones in Low⁃Porosity, Poorly Lithified Sandstones of the Barreiras Formation, NE Brazil. Journal of Structural Geology, 32(11): 1806-1826. https://doi.org/10.1016/j.jsg.2009.10.010

[5]

Barton, C. A., Zoback, M. D., Moos, D., 1995. Fluid Flow along Potentially Active Faults in Crystalline Rock. Geology, 23(8): 683. https://doi.org/10.1130/0091⁃7613(1995)0230683: ffapaf>2.3.co;2

[6]

Bauer, J. F., Meier, S., Philipp, S. L., 2015. Architecture, Fracture System, Mechanical Properties and Permeability Structure of a Fault Zone in Lower Triassic Sandstone, Upper Rhine Graben. Tectonophysics, 647: 132-145. https://doi.org/10.1016/j.tecto.2015.02.014

[7]

Beach, A., Welbon, A. I., Brockbank, P. J., et al., 1999. Reservoir Damage around Faults; Outcrop Examples from the Suez Rift. Petroleum Geoscience, 5(2): 109-116. https://doi.org/10.1144/petgeo.5.2.109

[8]

Bense, V. F., Gleeson, T., Loveless, S. E., et al., 2013. Fault Zone Hydrogeology. Earth⁃Science Reviews, 127: 171-192. https://doi.org/10.1016/j.earscirev.2013.09.008

[9]

Berg, S. S., Skar, T., 2005. Controls on Damage Zone Asymmetry of a Normal Fault Zone: Outcrop Analyses of a Segment of the Moab Fault, SE Utah. Journal of Structural Geology, 27(10): 1803-1822. https://doi.org/10.1016/j.jsg.2005.04.012

[10]

Berkowitz, B., 2002. Characterizing Flow and Transport in Fractured Geological Media: A Review. Advances in Water Resources, 25(8-12): 861-884. https://doi.org/10.1016/S0309⁃1708(02)00042⁃8

[11]

Bonnet, E., Bour, O., Odling, N. E., et al., 2001. Scaling of Fracture Systems in Geological Media. Reviews of Geophysics, 39(3): 347-383. https://doi.org/10.1029/1999rg000074

[12]

Braathen, A., Tveranger, J., Fossen, H., et al., 2009. Fault Facies and Its Application to Sandstone Reservoirs. AAPG Bulletin, 93(7): 891-917. https://doi.org/10.1306/03230908116

[13]

Brixel, B., Klepikova, M., Jalali, M. R., et al., 2020. Tracking Fluid Flow in Shallow Crustal Fault Zones: 1. Insights from Single⁃Hole Permeability Estimates. Journal of Geophysical Research: Solid Earth, 125(4): e2019JB018200. https://doi.org/10.1029/2019jb018200

[14]

Caine, J. S., Bruhn, R. L., Forster, C. B., 2010. Internal Structure, Fault Rocks, and Inferences Regarding Deformation, Fluid Flow, and Mineralization in the Seismogenic Stillwater Normal Fault, Dixie Valley, Nevada. Journal of Structural Geology, 32(11): 1576-1589. https://doi.org/10.1016/j.jsg.2010.03.004

[15]

Caine, J. S., Evans, J. P., Forster, C. B., 1996. Fault Zone Architecture and Permeability Structure. Geology, 24(11): 1025. https://doi.org/10.1130/0091⁃7613(1996)0241025: fzaaps>2.3.co;2

[16]

Caine, J. S., Forster, C. B., 1999. Fault Zone Architecture and Fluid Flow: Insights from Field Data and Numerical Modeling. Faults and Subsurface Fluid Flow in the Shallow Crust. American Geophysical Union, Washington, D. C., 101-127. https://doi.org/10.1029/gm113p0101

[17]

Cappa, F., Guglielmi, Y., Virieux, J., 2007. Stress and Fluid Transfer in a Fault Zone Due to Overpressures in the Seismogenic Crust. Geophysical Research Letters, 34(5): 2006GL028980. https://doi.org/10.1029/2006gl028980

[18]

Chen, H. H., 2023. Advances on Relationship between Strike⁃Slip Structures and Hydrocarbon Accumulations in Large Superimposed Craton Basins, China. Earth Science, 48(6): 2039-2066 (in Chinese with English abstract).

[19]

Chen, L., Talwani, P., 2001. Mechanism of Initial Seismicity Following Impoundment of the Monticello Reservoir, South Carolina. Bulletin of the Seismological Society of America, 91(6): 1582-1594. https://doi.org/10.1785/0120000293

[20]

Chester, F. M., Logan, J. M., 1986. Implications for Mechanical Properties of Brittle Faults from Observations of the Punchbowl Fault Zone, California. Pure and Applied Geophysics, 124(1): 79-106. https://doi.org/10.1007/BF00875720

[21]

Childs, C., Manzocchi, T., Walsh, J. J., et al., 2009. A Geometric Model of Fault Zone and Fault Rock Thickness Variations. Journal of Structural Geology, 31(2): 117-127. https://doi.org/10.1016/j.jsg.2008.08.009

[22]

Choi, J. H., Edwards, P., Ko, K., et al., 2016. Definition and Classification of Fault Damage Zones: A Review and a New Methodological Approach. Earth⁃Science Reviews, 152: 70-87. https://doi.org/10.1016/j.earscirev.2015.11.006

[23]

Clemenzi, L., Storti, F., Balsamo, F., et al., 2015. Fluid Pressure Cycles, Variations in Permeability, and Weakening Mechanisms along Low⁃Angle Normal Faults: The Tellaro Detachment, Italy. Geological Society of America Bulletin, 127(11-12): 1689-1710. https://doi.org/10.1130/b31203.1

[24]

Cowie, P. A., Scholz, C. H., 1992. Physical Explanation for the Displacement⁃Length Relationship of Faults Using a Post⁃Yield Fracture Mechanics Model. Journal of Structural Geology, 14(10): 1133-1148. https://doi.org/10.1016/0191⁃8141(92)90065⁃5

[25]

Cowie, P. A., Shipton, Z. K., 1998. Fault Tip Displacement Gradients and Process Zone Dimensions. Journal of Structural Geology, 20(8): 983-997. https://doi.org/10.1016/S0191⁃8141(98)00029⁃7

[26]

Cox, S. F., 2010. The Application of Failure Mode Diagrams for Exploring the Roles of Fluid Pressure and Stress States in Controlling Styles of Fracture‐ Controlled Permeability Enhancement in Faults and Shear Zones. Geofluids, 10(1-2): 217-233.

[27]

Deng, S., Li, H. L., Zhang, Z. P., et al., 2019. Structural Characterization of Intracratonic Strike⁃Slip Faults in the Central Tarim Basin. AAPG Bulletin, 103(1): 109-137. https://doi.org/10.1306/06071817354

[28]

Duan, Q.B., Yang, X.S., Chen, J.Y., 2015. Review of Geochemical and Petrophysical Responses to Fluid Processes within Seismogenic Fault Zones. Progress in Geophysics, 30(6): 2448-2462 (in Chinese with English abstract).

[29]

Eichhubl, P., Davatzes, N. C., Becker, S. P., 2009. Structural and Diagenetic Control of Fluid Migration and Cementation along the Moab Fault, Utah. AAPG Bulletin, 93(5): 653-681. https://doi.org/10.1306/02180908080

[30]

Evans, J.P., Bradbury, K.K., 2004. Faulting and Fracturing of Nonwelded Bishop Tuff, Eastern California. Vadose Zone Journal, 3(2): 602. https://doi.org/10.2136/vzj2004.0602

[31]

Evans, J. P., Forster, C. B., Goddard, J. V., 1997. Permeability of Fault⁃Related Rocks, and Implications for Hydraulic Structure of Fault Zones. Journal of Structural Geology, 19(11): 1393-1404. https://doi.org/10.1016/S0191⁃8141(97)00057⁃6

[32]

Evans, K. F., Genter, A., Sausse, J., 2005. Permeability Creation and Damage Due to Massive Fluid Injections into Granite at 3.5 km at Soultz: 1. Borehole Observations. Journal of Geophysical Research: Solid Earth, 110(B4): 2004JB003168. https://doi.org/10.1029/2004jb003168

[33]

Fan, J., Jiang, Y.L., Liu, J.D., et al., 2017. Relationship of Fault with Hydrocarbon Migration and Accumulation in Longfengshan Area, Changling Faulted Depression. Earth Science,42(10):1817-1829 (in Chinese with English abstract).

[34]

Faulkner, D. R., Jackson, C. A. L., Lunn, R. J., et al., 2010. A Review of Recent Developments Concerning the Structure, Mechanics and Fluid Flow Properties of Fault Zones. Journal of Structural Geology, 32(11): 1557-1575. https://doi.org/10.1016/j.jsg.2010.06.009

[35]

Faulkner, D. R., Mitchell, T. M., Jensen, E., et al., 2011. Scaling of Fault Damage Zones with Displacement and the Implications for Fault Growth Processes. Journal of Geophysical Research, 116(B5): B05403. https://doi.org/10.1029/2010jb007788

[36]

Fischer, T., Matyska, C., Heinicke, J., 2017. Earthquake⁃Enhanced Permeability-Evidence from Carbon Dioxide Release Following the ML 3.5 Earthquake in West Bohemia. Earth and Planetary Science Letters, 460: 60-67. https://doi.org/10.1016/j.epsl.2016.12.001

[37]

Fisher, Q. J., Haneef, J., Grattoni, C. A., et al., 2018. Permeability of Fault Rocks in Siliciclastic Reservoirs: Recent Advances. Marine and Petroleum Geology, 91: 29-42. https://doi.org/10.1016/j.marpetgeo.2017.12.019

[38]

Flodin, E. A., Aydin, A., 2004. Evolution of a Strike⁃Slip Fault Network, Valley of Fire State Park, Southern Nevada. Geological Society of America Bulletin, 116(1): 42. https://doi.org/10.1130/B25282.1

[39]

Fossen, H., 2010. Deformation Bands Formed during Soft⁃Sediment Deformation: Observations from SE Utah. Marine and Petroleum Geology, 27(1): 215-222. https://doi.org/10.1016/j.marpetgeo.2009.06.005

[40]

Fossen, H., Rotevatn, A., 2016. Fault Linkage and Relay Structures in Extensional Settings—A Review. Earth⁃Science Reviews, 154: 14-28. https://doi.org/10.1016/j.earscirev.2015.11.014

[41]

Fossen, H., Schultz, R. A., Shipton, Z. K., et al., 2007. Deformation Bands in Sandstone: A Review. Journal of the Geological Society, 164(4): 755-769. https://doi.org/10.1144/0016⁃76492006⁃036

[42]

Fossen, H., Soliva, R., Ballas, G., et al., 2018. A Review of Deformation Bands in Reservoir Sandstones: Geometries, Mechanisms and Distribution. Geological Society, London, Special Publications, 459(1): 9-33. https://doi.org/10.1144/sp459.4

[43]

Fu, X., Zhang, D.H., Yin, X.B., 2011. Deformation of Rock, Fluid Pressures and Hydrothermal Deposits. Geological Bulletin of China, 30(4): 595-604 (in Chinese with English abstract)..

[44]

Ghosh, K., Mitra, S., 2009. Structural Controls of Fracture Orientations, Intensity, and Connectivity, Teton Anticline, Sawtooth Range, Montana. AAPG Bulletin, 93(8): 995-1014. https://doi.org/10.1306/04020908115

[45]

Giger, S. B., Tenthorey, E., Cox, S. F., et al., 2007. Permeability Evolution in Quartz Fault Gouges under Hydrothermal Conditions. Journal of Geophysical Research: Solid Earth, 112(B7): 2006JB004828. https://doi.org/10.1029/2006jb004828

[46]

Gong, Y.J., Qin, F., Zhao, L.Q., et al., 2019. Fault Zone Structure and Fluid Flow Model of the Hongyanchi Fault in Southern Junggar Basin. Bulletin of Mineralogy, Petrology and Geochemistry, 38(4): 729-737 (in Chinese with English abstract).

[47]

Gong, Y.J., Zhang, K.H., Zeng, Z.P., et al., 2021. Origin of Overpressure, Vertical Transfer and Hydrocarbon Accumulation of Jurassic in Fukang Sag, Junggar Basin. Earth Science, 46(10): 3588-3600 (in Chinese with English abstract).

[48]

Gudmundsson, A., 2001. Fluid Overpressure and Flow in Fault Zones: Field Measurements and Models. Tectonophysics, 336(1-4): 183-197. https://doi.org/10.1016/S0040⁃1951(01)00101⁃9

[49]

Haney, M. M., Snieder, R., Sheiman, J., et al., 2005. A Moving Fluid Pulse in a Fault Zone. Nature, 437: 46. https://doi.org/10.1038/437046a

[50]

Hao, F., Zhu, W. L., Zou, H. Y., et al., 2015. Factors Controlling Petroleum Accumulation and Leakage in Overpressured Reservoirs. AAPG Bulletin, 99(5): 831-858. https://doi.org/10.1306/01021514145

[51]

Hao, F., Zou, H.Y., Jiang, J.Q., 2000. Dynamics of Petroleum Accumulation and Its Advances. Earth Science Frontiers, 7(3): 11-21 (in Chinese with English abstract).

[52]

Hennings, P., Allwardt, P., Paul, P., et al., 2012. Relationship between Fractures, Fault Zones, Stress, and Reservoir Productivity in the Suban Gas Field, Sumatra, Indonesia. AAPG Bulletin, 96(4): 753-772. https://doi.org/10.1306/08161109084

[53]

Hestir, K., Long, J. C. S., 1990. Analytical Expressions for the Permeability of Random Two⁃Dimensional Poisson Fracture Networks Based on Regular Lattice Percolation and Equivalent Media Theories. Journal of Geophysical Research: Solid Earth, 95(B13): 21565-21581. https://doi.org/10.1029/jb095ib13p21565

[54]

Holdsworth, R. E., McCaffrey, K. J. W., Dempsey, E., et al., 2019. Natural Fracture Propping and Earthquake⁃Induced Oil Migration in Fractured Basement Reservoirs. Geology, 47(8): 700-704. https://doi.org/10.1130/G46280.1

[55]

Ingebritsen, S. E., Manga, M., 2019. Earthquake Hydrogeology. Water Resources Research, 55(7): 5212-5216. https://doi.org/10.1029/2019wr025341

[56]

Jolley, S. J., Dijk, H., Lamens, J. H., et al., 2007. Faulting and Fault Sealing in Production Simulation Models: Brent Province, Northern North Sea. Petroleum Geoscience, 13(4): 321-340. https://doi.org/10.1144/1354⁃079306⁃733

[57]

Kang, Y.S., Guo, Q.J., Zhu, J.C., et al., 2003. Light Etched Physical Simulation Experiment on Oil Migration in Fractured Media. Acta Petrolei Sinica, 24(4): 44-47 (in Chinese with English abstract).

[58]

Kim, Y. S., Peacock, D. C. P., Sanderson, D. J., 2004. Fault Damage Zones. Journal of Structural Geology, 26(3): 503-517. https://doi.org/10.1016/j.jsg.2003.08.002

[59]

Kim, Y. S., Sanderson, D. J., 2005. The Relationship between Displacement and Length of Faults: A Review. Earth⁃Science Reviews, 68(3-4): 317-334. https://doi.org/10.1016/j.earscirev.2004.06.003

[60]

Knott, S. D., Beach, A., Brockbank, P. J., et al., 1996. Spatial and Mechanical Controls on Normal Fault Populations. Journal of Structural Geology, 18(2/3): 359-372. https://doi.org/10.1016/S0191⁃8141(96)80056⁃3

[61]

Kolyukhin, D., Torabi, A., 2012. Statistical Analysis of the Relationships between Faults Attributes. Journal of Geophysical Research (Solid Earth), 117(B5): B05406. https://doi.org/10.1029/2011JB008880

[62]

Li, S.Y., He, T.M., Yin, X.C., 2010. Introduction of Rock Fracture Mechanics. University of Science and Technology of China Press, Hefei (in Chinese).

[63]

Li, Y.T., Deng, S., Zhang, J.B., et al., 2023. Fault Zone Architecture of Strike⁃Slip Faults in Deep, Tight Carbonates and Development of Reservoir Clusters under Fault Control:A Case Study in Shunbei, Tarim Basin. Earth Science Frontiers, 30(6): 80-94 (in Chinese with English abstract).

[64]

Luo, Q., Wang, Q.J., Yang, W., et al., 2023. Internal Structural Units, Differential Characteristics of Permeability and Their Transport, Shielding and Reservoir Control Modes of Strike⁃Slip Faults. Earth Science, 48(6): 2342-2360 (in Chinese with English abstract).

[65]

Luo, X. R., 2011. Simulation and Characterization of Pathway Heterogeneity of Secondary Hydrocarbon Migration. AAPG Bulletin, 95(6): 881-898. https://doi.org/10.1306/11191010027

[66]

Ma, D.B., Wu, G.H., Zhu, Y.F., et al., 2019. Segmentation Characteristics of Deep Strike Slip Faults in the Tarim Basin and Its Control on Hydrocarbon Enrichment: Taking the Ordovician Strike Slip Fault in the Halahatang Oilfield in the Tabei Area as an Example. Earth Science Frontiers, 26(1): 225-237 (in Chinese with English abstract).

[67]

Manzocchi, T., Heath, A. E., Walsh, J. J., et al., 2002. The Representation of Two Phase Fault⁃Rock Properties in Flow Simulation Models. Petroleum Geoscience, 8(2): 119-132. https://doi.org/10.1144/petgeo.8.2.119

[68]

Neuzil, C. E., 1994. How Permeable are Clays and Shales? Water Resources Research, 30(2): 145-150. https://doi.org/10.1029/93WR02930

[69]

Nieto Camargo, J. E., Jensen, J. L., 2012. Analysis of Fault Permeability Using Mapping and Flow Modeling, Hickory Sandstone Aquifer, Central Texas. Natural Resources Research, 21(3): 395-409. https://doi.org/10.1007/s11053⁃012⁃9181⁃5

[70]

Pei, Y. W., Paton, D. A., Knipe, R. J., et al., 2015. A Review of Fault Sealing Behaviour and Its Evaluation in Siliciclastic Rocks. Earth⁃Science Reviews, 150: 121-138. https://doi.org/10.1016/j.earscirev.2015.07.011

[71]

Rotevatn, A., Bastesen, E., 2014. Fault Linkage and Damage Zone Architecture in Tight Carbonate Rocks in the Suez Rift (Egypt): Implications for Permeability Structure along Segmented Normal Faults. Geological Society, London, Special Publications, 374(1): 79-95. https://doi.org/10.1144/sp374.12

[72]

Savage, H. M., Brodsky, E. E., 2011. Collateral Damage: Evolution with Displacement of Fracture Distribution and Secondary Fault Strands in Fault Damage Zones. Journal of Geophysical Research, 116(B3): B03405. https://doi.org/10.1029/2010jb007665

[73]

Seebeck, H., Nicol, A., Walsh, J. J., et al., 2014. Fluid Flow in Fault Zones from an Active Rift. Journal of Structural Geology, 62: 52-64. https://doi.org/10.1016/j.jsg.2014.01.008

[74]

Shipton, Z. K., Cowie, P. A., 2001. Damage Zone and Slip⁃Surface Evolution over Μm to Km Scales in High⁃ Porosity Navajo Sandstone, Utah. Journal of Structural Geology, 23(12): 1825-1844. https://doi.org/10.1016/S0191⁃8141(01)00035⁃9

[75]

Sibson, R. H., 1977. Fault Rocks and Fault Mechanisms. Journal of the Geological Society, 133(3): 191-213. https://doi.org/10.1144/gsjgs.133.3.0191

[76]

Smeraglia, L., Fabbi, S., Billi, A., et al., 2022. How Hydrocarbons Move along Faults: Evidence from Microstructural Observations of Hydrocarbon⁃Bearing Carbonate Fault Rocks. Earth and Planetary Science Letters, 584: 117454. https://doi.org/10.1016/j.epsl.2022.117454

[77]

Song, M.S., Zhao, L. Q., Gong, Y.J., et al., 2016. Quantitative Assessment on Trap Oil⁃Bearing Property in Ultra⁃Denudation Zones at the Northwestern Margin of Junggar Basin. Acta Petrolei Sinica, 37(1): 64-72 (in Chinese with English abstract).

[78]

Sperrevik, S., Færseth, R. B., Gabrielsen, R. H., 2000. Experiments on Clay Smear Formation along Faults. Petroleum Geoscience, 6(2): 113-123. https://doi.org/10.1144/petgeo.6.2.113

[79]

Sperrevik, S., Gillespie, P.A., Fisher, Q. J., et al., 2002. Empirical Estimation of Fault Rock Properties.Norwegian Petroleum Society Special Publications,11(3):109-125. https://doi.org/10.1016/S0928⁃8937(02)80010⁃8

[80]

Storti, F., Holdsworth, R. E., Salvini, F., 2003. Intraplate Strike⁃Slip Deformation Belts. Geological Society, London, Special Publications, 210(1): 1-14. https://doi.org/10.1144/gsl.sp.2003.210.01.01

[81]

Su, S.M., Jiang, Y.L., 2021. Fault Zone Structures and Its Relationship with Hydrocarbon Migration and Accumulation in Petroliferous Basin. Journal of China University of Petroleum (Edition of Natural Science), 45(4): 32-41 (in Chinese with English abstract).

[82]

Sun,T.W., Fu,G., Lü,Y.F., et al., 2012. A Discussion on Fault Conduit Fluid Mechanism and Fault Conduit Form. Geological Review, 58(6): 1081-1090 (in Chinese with English abstract).

[83]

Talwani, P., Chen, L. Y., Gahalaut, K., 2007. Seismogenic Permeability, ks. Journal of Geophysical Research: Solid Earth, 112(B7): 2006JB004665. https://doi.org/10.1029/2006jb004665

[84]

Torabi, A., Berg, S. S., 2011. Scaling of Fault Attributes: A Review. Marine and Petroleum Geology, 28(8): 1444-1460. https://doi.org/10.1016/j.marpetgeo.2011.04.003

[85]

Valoroso, L., Chiaraluce, L., Collettini, C., 2014. Earthquakes and Fault Zone Structure. Geology, 42(4): 343-346. https://doi.org/10.1130/g35071.1

[86]

Walker, R. J., Holdsworth, R. E., Imber, J., et al., 2013. Fault Zone Architecture and Fluid Flow in Interlayered Basaltic Volcaniclastic⁃Crystalline Sequences. Journal of Structural Geology, 51: 92-104. https://doi.org/10.1016/j.jsg.2013.03.004

[87]

Wang, L. C., Cardenas, M. B., 2017. Linear Permeability Evolution of Expanding Conduits Due to Feedback between Flow and Fast Phase Change. Geophysical Research Letters, 44(9): 4116-4123. https://doi.org/10.1002/2017gl073161

[88]

Wang, Y., Su, B.Y., 2002. Research on the Behavior of Fluid Flow in a Single Fracture and Its Equivalent Hydraulic Aperture. Advances in Water Science, 13(1): 61-68 (in Chinese with English abstract).

[89]

Wang, Z. , Huang, L., Liu, C.Y., et al., 2024. Distribution of Strike⁃Slip Fault⁃Fracture Volume and Its Controlling Factors in the Southwestern Ordos Basin. Journal of China University of Mining & Technology, 53(4): 793-807 (in Chinese with English abstract).

[90]

Warren⁃Smith, E., Fry, B., Wallace, L., et al., 2019. Episodic Stress and Fluid Pressure Cycling in Subducting Oceanic Crust during Slow Slip. Nature Geoscience, 12: 475-481. https://doi.org/10.1038/s41561⁃019⁃0367⁃x

[91]

Wells, D. L., Coppersmith, K. J., 1994. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. The Bulletin of the Seismological Society of America, 84(4): 974-1002. https://doi.org/10.1785/BSSA0840040974

[92]

Wibberley, C. A., Yielding, G., Di Toro, G., 2008. Recent Advances in the Understanding of Fault Zone Internal Structure: A Review. Geological Society of London Special Publications, 299(1): 5-33. https://doi.org/10.1144/SP299.2

[93]

Williams, R. T., Goodwin, L. B., Mozley, P. S., 2017. Diagenetic Controls on the Evolution of Fault⁃Zone Architecture and Permeability Structure: Implications for Episodicity of Fault⁃Zone Fluid Transport in Extensional Basins. Geological Society of America Bulletin, 129(3/4): 464-478. https://doi.org/10.1130/B31443.1

[94]

Xia, Z.G., 1983. Classification, Identification and Formation Conditions of Fault Rocks. Geological Review, 29(6): 578-583 (in Chinese with English abstract).

[95]

Xu, C.G., 2016. Strike⁃Slip Transfer Zone and Its Control on Formation of Medium and Large⁃Sized Oilfields in Bohai Sea Area. Earth Science, 41(9): 1548-1560 (in Chinese with English abstract).

[96]

Xu, G.X., Zhang, Y.X., Ha, Q.L., 2003. Super⁃Cubic and Sub⁃Cubic Law of Rough Fracture Seepage and Its Experiments Study. Journal of Hydraulic Engineering, 34(3): 74-79 (in Chinese with English abstract).

[97]

Xue, L., Li, H. B., Brodsky, E. E., et al., 2013. Continuous Permeability Measurements Record Healing Inside the Wenchuan Earthquake Fault Zone. Science, 340(6140): 1555-1559. https://doi.org/10.1126/science.1237237

[98]

Yamaguchi, A., Cox, S. F., Kimura, G., et al., 2011. Dynamic Changes in Fluid Redox State Associated with Episodic Fault Rupture along a Megasplay Fault in a Subduction Zone. Earth and Planetary Science Letters, 302(3-4): 369-377. https://doi.org/10.1016/j.epsl.2010.12.029

[99]

Yang, G.L., Ren, Z.L., He, F.Q., 2022. Fault⁃Fracture Body Growth and Hydrocarbon Enrichment of the Zhenjing Area, the Southwestern Margin of the Ordos Basin. Oil & Gas Geology, 43(6): 1382-1396 (in Chinese with English abstract).

[100]

Yang, T.H., Shi, W.H., Li, S.C., et al., 2016. State of the Art and Trends of Water⁃Inrush Mechanism of Nonlinear Flow in Fractured Rock Mass. Journal of China Coal Society, 41(7): 1598-1609 (in Chinese with English abstract).

[101]

Yang, T.H., Tang, C.A., Zhu, W.C., et al., 2001. Coupling Analysis of Seepage and Stresses in Rock Failure Process. Chinese Journal of Geotechnical Engineering, 23(4): 489-493 (in Chinese with English abstract).

[102]

Yao, Y.D., Ge, J.L., 2003. New Pattern and Its Rules of Oil Non⁃Darcy Flow in Porous Media. Oil Drilling & Production Technology, 25(5): 40-42 (in Chinese with English abstract).

[103]

Yu, H., Li, S.J., Man, L.T., et al., 2011. Research Progress of Water Flow in Fractal Fracture Network System of Rock Mass. Journal of Harbin Institute of Technology, 43(S1): 94-99 (in Chinese with English abstract).

[104]

Zeng, L.B., Gong, L., Su, X.C., et al., 2024. Natural Fractures in Deep to Ultra⁃Deep Tight Reservoirs: Distribution and Development. Oil & Gas Geology, 45(1): 1-14 ( in Chinese with English abstract).

[105]

Zhang, P.Z., Xu, X.W., Wen, X.Z., et al., 2008. Slip Rates and Recurrence Intervals of the Longmen Shan Active Fault Zone and Tectonic Implications for the Mechanism of the May 12 Wenchuan Earthquake, 2008, Sichuan, China. Chinese Journal of Geophysics, 51(4): 1066-1073 (in Chinese with English abstract).

[106]

Zhang, Y., Gartrell, A., Underschultz, J. R., et al., 2009. Numerical Modelling of Strain Localisation and Fluid Flow during Extensional Fault Reactivation: Implications for Hydrocarbon Preservation. Journal of Structural Geology, 31(3): 315-327. https://doi.org/10.1016/j.jsg.2008.11.006

基金资助

中国石化股份公司重点科研攻关项目(P22128)

中国石化股份公司重点科研攻关项目(P24017)

中国石化股份公司重点科研攻关项目(P23244)

AI Summary AI Mindmap
PDF (2181KB)

415

访问

0

被引

详细

导航
相关文章

AI思维导图

/