江南造山带西段北侧边界厘定:来自黔东大坪捕虏花岗岩的证据
王坤 , 张嘉玮 , 向璐 , 石磊 , 叶太平 , 李海波 , 陈建书 , 代雅然 , 张婷婷 , 朱昱桦
地球科学 ›› 2025, Vol. 50 ›› Issue (11) : 4370 -4386.
江南造山带西段北侧边界厘定:来自黔东大坪捕虏花岗岩的证据
Demarcation of North Boundary for Western Jiangnan Orogen: Evidence from Granitic Xenolith in Daping Area, East Guizhou
,
幔源岩浆可作为获取地球深部物质信息的“岩石探针”.对黔东大坪晚奥陶世(449 Ma)钾镁煌斑岩中首次发现的花岗岩捕虏体展开了锆石U-Pb年代学、Lu-Hf同位素以及锆石微量元素分析.结果表明,捕虏花岗岩锆石U-Pb谐和年龄为(833±2.6) Ma(MSWD=1.3, n=26),其锆石εHf(t)值和亏损地幔模式年龄(TDM)分别为-11.4~-2.30和2 457~1 893 Ma,锆石REE、U、Th、Pb、Nb、Hf等微量元素表明该捕虏体为造山作用相关S型花岗岩.花岗岩捕虏体与梵净山地区出露的新元古代花岗岩在结晶年龄、锆石Hf同位素组成上一致,暗示二者可能在深部共同构成一巨大花岗岩基,该花岗岩基为厘定江南造山带西段北侧边界提供了重要的物质证据.提出江南造山带西段北侧与扬子地块的边界应以张家界‒贵阳断裂为界.
Mantle-derived magmas can serve as a “lithoprobe” for acquiring information about deep Earth materials. In this study, a newly discovered granite xenolith from the Late Ordovician (449 Ma) lamproite at Daping, East Guizhou, was investigated. Zircon U-Pb geochronology, Lu-Hf isotope, and trace element analyses were conducted on the granite xenolith. The results indicate that the concordant zircon U-Pb age of the granite xenolith is (833±2.6) Ma (MSWD=1.3, n=26). The εHf(t) values range from -11.4 to -2.30, and the depleted mantle model ages (TDM) vary from 2 457 to 1 893 Ma. The trace element compositions of zircon, including REEs, U, Th, Pb, Nb, and Hf, suggest that the granite xenolith is an S-type granite related to orogenic processes. The similarity in crystallization ages and Hf isotopic compositions between this granite xenolith and the Neoproterozoic granites exposed in the Fanjingshan region implies that they may collectively form a large granitic batholith at depth. This batholith provides crucial evidence for delineating the northern boundary of the western segment of the Jiangnan Orogen. It is proposed that the boundary between the northern side of the western Jiangnan Orogen and the Yangtze Block should be defined by the Zhangjiajie-Guiyang fault.
扬子地块 / 新元古代 / 岩石探针 / 捕虏体 / 造山带边界 / 花岗岩基 / 同位素 / 地质年代学.
Yangtze Block / Neoproterozoic / lithoprobe / xenolith / boundary of orogen belt / granitic batholith / isotopes / geochronology
| [1] |
Amelin, Y., Lee, D. C., Halliday, A. N., 2000. Early⁃ Middle Archaean Crustal Evolution Deduced from Lu⁃Hf and U⁃Pb Isotopic Studies of Single Zircon Grains. Geochimica et Cosmochimica Acta, 64(24): 4205-4225. https://doi.org/10.1016/S0016⁃7037(00)00493⁃2 |
| [2] |
Belousova, E., Griffin, W., O’Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602-622. https://doi.org/10.1007/s00410⁃002⁃0364⁃7 |
| [3] |
Boyd, F. R., Gurney, J. J., 1986. Diamonds and the African Lithosphere. Science, 232(4749): 472-477. https://doi.org/10.1126/science.232.4749.472 |
| [4] |
Carley, T. L., Bell, E. A., Miller, C. F., et al., 2022. Zircon⁃Modeled Melts Shed Light on the Formation of Earth’s Crust from the Hadean to the Archean. Geology, 50(9): 1028-1032. https://doi.org/10.1130/g50017.1 |
| [5] |
Cawood, P. A., Hawkesworth, C. J., Dhuime, B., 2013. The Continental Record and the Generation of Continental Crust. Geological Society of America Bulletin, 125(1-2): 14-32. https://doi.org/10.1130/b30722.1 |
| [6] |
Cawood, P. A., Krner, A., Collins, W. J., et al., 2009. Accretionary Orogens through Earth History. Geological Society, London, Special Publications, 318(1): 1-36. https://doi.org/10.1144/SP318.1 |
| [7] |
Cawood, P. A., Strachan, R. A., Pisarevsky, S. A., et al., 2016. Linking Collisional and Accretionary Orogens during Rodinia Assembly and Breakup: Implications for Models of Supercontinent Cycles. Earth and Planetary Science Letters, 449: 118-126. https://doi.org/10.1016/j.epsl.2016.05.049 |
| [8] |
Chen, C. X., Lü, Q. T., Chen, L., et al., 2022. Crustal Thickness and Composition in the South China Block: Constraints from Earthquake Receiver Function. Science China (Earth Sciences), 65(4): 698-713 (in Chinese). |
| [9] |
Chen, G. X., Kusky, T., Luo, L., et al., 2023. Hadean Tectonics: Insights from Machine Learning. Geology, 51(8): 718-722. https://doi.org/10.1130/g51095.1 |
| [10] |
Chen, L., Wang, Z. Q., Yan, Z., et al., 2018. Zircon and Cassiterite U⁃Pb Ages, Petrogeochemistry and Metallogenesis of Sn Deposits in the Sibao Area, Northern Guangxi: Constraints on the Neoproterozoic Granitic Magmatism and Related Sn Mineralization in the Western Jiangnan Orogen, South China. Mineralogy and Petrology, 112(4): 437-463. https://doi.org/10.1007/s00710⁃018⁃0554⁃2 |
| [11] |
Chu, N. C., Taylor, R. N., Chavagnac, V., et al., 2002. Hf Isotope Ratio Analysis Using Multi⁃Collector Inductively Coupled Plasma Mass Spectrometry: An Evaluation of Isobaric Interference Corrections. Journal of Analytical Atomic Spectrometry, 17(12): 1567-1574. https://doi.org/10.1039/b206707b |
| [12] |
Collins, W. J., 2002. Hot Orogens, Tectonic Switching, and Creation of Continental Crust. Geology, 30(6): 535. https://doi.org/10.1130/0091⁃7613(2002)0300535:hotsac>2.0.co;2 |
| [13] |
Collins, W. J., Richards, S. W., 2008. Geodynamic Significance of S⁃Type Granites in Circum⁃Pacific Orogens. Geology, 36(7): 559-562. https://doi.org/10.1130/G24658A.1 |
| [14] |
Dai, C. G., Qin, S. R., Chen, J. S., et al., 2013. Characteristics of Deep Concealed Faults in Guizhou. Geological Science and Technology Information, 32(6): 1-6, 13 (in Chinese with English abstract). |
| [15] |
Deng, T., Xu, D., Chi, G., et al., 2018. Revisiting the Ca. 845-820⁃Ma S⁃Type Granitic Magmatism in the Jiangnan Orogen: New Insights on the Neoproterozoic Tectono⁃Magmatic Evolution of South China. International Geology Review, 61(4): 383-403. https://doi.org/10.1080/00206814.2018.1426054 |
| [16] |
Dong, S. W., Zhang, Y. Q., Gao, R., et al., 2015. A Possible Buried Paleoproterozoic Collisional Orogen beneath Central South China: Evidence from Seismic⁃Reflection Profiling. Precambrian Research, 264: 1-10. https://doi.org/10.1016/j.precamres.2015.04.003 |
| [17] |
Downes, P. J., Griffin, B. J., Griffin, W. L., 2007. Mineral Chemistry and Zircon Geochronology of Xenocrysts and Altered Mantle and Crustal Xenoliths from the Aries Micaceous Kimberlite: Constraints on the Composition and Age of the Central Kimberley Craton, Western Australia. Lithos, 93(1-2): 175-198. https://doi.org/10.1016/j.lithos.2006.06.005 |
| [18] |
Drabon, N., Byerly, B. L., Byerly, G. R., et al., 2022. Destabilization of Long⁃Lived Hadean Protocrust and the Onset of Pervasive Hydrous Melting at 3.8 Ga. AGU Advances, 3(2): e2021AV000520. https://doi.org/10.1029/2021AV000520 |
| [19] |
Gao, J., Klemd, R., Long, L. L., et al., 2009. Adakitic Signature Formed by Fractional Crystallization: An Interpretation for the Neo⁃Proterozoic Meta⁃Plagiogranites of the NE Jiangxi Ophiolitic Mélange Belt, South China. Lithos, 110(1-4): 277-293. https://doi.org/10.1016/j.lithos.2009.01.009 |
| [20] |
Gao, L. Z., Dai, C. G., Ding, X. Z., et al., 2011. SHRIMP U⁃Pb Dating of Intrusive Alaskite in the Fanjingshan Group and Alaskite Basal Conglomerates: Constraints on the Deposition of the Xiajiang Group. Geology in China, 38(6): 1413-1420 (in Chinese with English abstract). |
| [21] |
Gardiner, N. J., Kirkland, C. L., Hollis, J. A., et al., 2020. North Atlantic Craton Architecture Revealed by Kimberlite⁃Hosted Crustal Zircons. Earth and Planetary Science Letters, 534: 116091. https://doi.org/10.1016/j.epsl.2020.116091 |
| [22] |
Grimes, C. B., John, B. E., Kelemen, P. B., et al., 2007. Trace Element Chemistry of Zircons from Oceanic Crust: A Method for Distinguishing Detrital Zircon Provenance. Geology, 35(7): 643. https://doi.org/10.1130/G23603A.1 |
| [23] |
Grimes, C. B., Wooden, J. L., Cheadle, M. J., et al., 2015. “Fingerprinting” Tectono⁃Magmatic Provenance Using Trace Elements in Igneous Zircon. Contributions to Mineralogy and Petrology, 170(5): 46. https://doi.org/10.1007/s00410⁃015⁃1199⁃3 |
| [24] |
Guo, L. H., Gao, R., 2018. Potential⁃Field Evidence for the Tectonic Boundaries of the Central and Western Jiangnan Belt in South China. Precambrian Research, 309: 45-55. https://doi.org/10.1016/j.precamres.2017.01.028 |
| [25] |
Han, R. B., Yang, D. H., Li, Q. S., et al., 2023. Structural Boundary and Deep Contact Relationship between the Yangtze and Cathaysia Blocks from Crustal Thickness Gradients. Frontiers in Earth Science, 10: 1065782. https://doi.org/10.3389/feart.2022.1065782 |
| [26] |
He, C. S., Dong, S. W., Santosh, M., et al., 2013. Seismic Evidence for a Geosuture between the Yangtze and Cathaysia Blocks, South China. Scientific Reports, 3: 2200. https://doi.org/10.1038/srep02200 |
| [27] |
Hou, Z. Q., Wang, T., 2018. Isotopic Mapping and Deep Material Probing (Ⅱ): Imaging Crustal Architecture and Its Control on Mineral Systems. Earth Science Frontiers, 25(6): 20-41 (in Chinese with English abstract). |
| [28] |
Hu, Z. C., Li, X. H., Luo, T., et al., 2021. Tanz Zircon Megacrysts: A New Zircon Reference Material for the Microbeam Determination of U⁃Pb Ages and Zr⁃O Isotopes. Journal of Analytical Atomic Spectrometry, 36(12): 2715-2734. https://doi.org/10.1039/D1JA00311A |
| [29] |
Huang, S. F., 2021. The Formation and Evolution of the Jiangnan Orogen: Implication from the Neoproterozoic Magmatic Rock (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). |
| [30] |
Huang, S. F., Wang, W., Zhao, J. H., et al., 2018. Petrogenesis and Geodynamic Significance of the ~850 Ma Dongling A⁃Type Granites in South China. Lithos, 318: 176-193. https://doi.org/10.1016/j.lithos.2018.08.016 |
| [31] |
Li, Q. W., Zhao, J. H., Dong, Y. L., et al., 2024. Large Granitoid Batholith Formed by Episodic Reworking of the Continental Basement. Precambrian Research, 413: 107568. https://doi.org/10.1016/j.precamres.2024.107568 |
| [32] |
Li, X. H., Li, Z. X., Ge, W. C., et al., 2001. U⁃Pb Zircon Ages of the Neoproterozoic Granitoids in South China and Their Tectonic Implications. Bulletin of Mineralogy, Petrology and Geochemistry, 20(4): 271-273 (in Chinese with English abstract). |
| [33] |
Li, X. L., Li, Z. W., Xia, X., et al., 2023. Crustal Structure and Tectonic Boundary Characteristics in South China: Constraints from Joint Tomography of Ambient Noise and Gravity. Chinese Science Bulletin, 68(24): 3221-3236 (in Chinese). |
| [34] |
Ling, X. X., Li, Q.L., Yang, C.A., et al., 2022. Zircon ZS-A Homogenous Natural Reference Material for U⁃Pb Age and O⁃Hf Isotope Microanalyses. Atomic Spectroscopy, 43(2): 134-144. https://doi.org/10.46770/as.2022.033 |
| [35] |
Liu, H., Zhao, J. H., 2018. Neoproterozoic Peraluminous Granitoids in the Jiangnan Fold Belt: Implications for Lithospheric Differentiation and Crustal Growth. Precambrian Research, 309: 152-165. https://doi.org/10.1016/j.precamres.2017.05.001 |
| [36] |
Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U⁃Pb Isotope and Trace Element Analyses by LA⁃ICP⁃MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434⁃010⁃3052⁃4 |
| [37] |
Lv, Z. H., Chen, J., Zhang, H., et al., 2021. Petrogenesis of Neoproterozoic Rare Metal Granite⁃Pegmatite Suite in Jiangnan Orogen and Its Implications for Rare Metal Mineralization of Peraluminous Rock in South China. Ore Geology Reviews, 128: 103923. https://doi.org/10.1016/j.oregeorev.2020.103923 |
| [38] |
Ma, T. Q., Chen, L. X., Bai, D. Y., et al., 2009. Zircon SHRIMP Dating and Geochemical Characteristics of Neoproterozoic Granites in Southeastern Hunan. Geology in China, 36(1): 65-73 (in Chinese with English abstract). |
| [39] |
Miao, Z., Zhao, Z. D., Lei, H. S., et al., 2020. Genesis of LREE⁃Enriched Zircons and Their Highly Radiogenic Hf Compositions: A Case Study from Zhuopan Alkaline Complex in Western Yunnan. Acta Petrologica Sinica, 36(9): 2765-2784 (in Chinese with English abstract). |
| [40] |
Pearce, J. A., Peate, D. W., 1995. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annual Review of Earth and Planetary Sciences, 23: 251-286. https://doi.org/10.1146/annurev.ea.23.050195.001343 |
| [41] |
Pearson, D. G., Canil, D., Shirey, S. B., 2003. Mantle Samples Included in Volcanic Rocks: Xenoliths and Diamonds. Treatise on Geochemistry, 2: 568. https://doi.org/10.1016/B0⁃08⁃043751⁃6/02005⁃3 |
| [42] |
Pearson, D. G., Wittig, N., 2014. The Formation and Evolution of Cratonic Mantle Lithosphere-Evidence from Mantle Xenoliths. Treatise on Geochemistry. Elsevier, Amsterdam,255-292. https://doi.org/10.1016/ b978⁃0⁃08⁃095975⁃7.00205⁃9 |
| [43] |
Rong, W., Zhang, S. B., Zheng, Y. F., et al., 2018. Mixing of Felsic Magmas in Granite Petrogenesis: Geochemical Records of Zircon and Garnet in Peraluminous Granitoids from South China. Journal of Geophysical Research: Solid Earth, 123(4): 2738-2769. https://doi.org/10.1002/2017JB014022 |
| [44] |
Rubatto, D., 2002. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U⁃Pb Ages and Metamorphism. Chemical Geology, 184(1-2): 123-138. https://doi.org/10.1016/S0009⁃2541(01)00355⁃2 |
| [45] |
Shu, L. S., Yao, J. L., Wang, B., et al., 2021. Neoproterozoic Plate Tectonic Process and Phanerozoic Geodynamic Evolution of the South China Block. Earth⁃Science Reviews, 216: 103596. https://doi.org/10.1016/j.earscirev.2021.103596 |
| [46] |
Sláma, J., Košler, J., Condon, D. J., et al., 2008. Plešovice Zircon—A New Natural Reference Material for U⁃Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1-2): 1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005 |
| [47] |
Su, J. B., Dong, S. W., Zhang, Y. Q., et al., 2017. Orogeny Processes of the Western Jiangnan Orogen, South China:Insights from Neoproterozoic Igneous Rocks and a Deep Seismic Profile. Journal of Geodynamics, 103: 42-56. https://doi.org/10.1016/j.jog.2016.12.004 |
| [48] |
Su, J. B., Zhang, Y. Q., Dong, S. W., et al., 2014. Geochronology and Hf Isotopes of Granite Gravel from Fanjingshan, South China: Implication for the Precambrian Tectonic Evolution of Western Jiangnan Orogen. Journal of Earth Science, 25(4): 619-629. https://doi.org/10.1007/s12583⁃014⁃0469⁃8 |
| [49] |
Sun, J. J., Shu, L. S., Santosh, M., et al., 2017. Neoproterozoic Tectonic Evolution of the Jiuling Terrane in the Central Jiangnan Orogenic Belt (South China): Constraints from Magmatic Suites. Precambrian Research, 302: 279-297. https://doi.org/10.1016/j.precamres.2017.10.003 |
| [50] |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19 |
| [51] |
Tang, Y. W., Chen, L., Zhao, Z. F., et al., 2020. Geochemical Evidence for the Production of Granitoids through Reworking of the Juvenile Mafic Arc Crust in the Gangdese Orogen, Southern Tibet. GSA Bulletin, 132(7-8): 1347-1364. https://doi.org/10.1130/b35304.1 |
| [52] |
Vermeesch, P., 2018. IsoplotR: A Free and Open Toolbox for Geochronology. Geoscience Frontiers, 9(5): 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001 |
| [53] |
Vervoort, J., 2014. Lu⁃Hf Dating: The Lu⁃Hf Isotope System. Encyclopedia of Scientific Dating Methods. Springer Netherlands, Dordrecht, 1-20. https://doi.org/10.1007/ 978⁃94⁃007⁃6326⁃5_46⁃1 |
| [54] |
Vervoort, J. D., Patchett, P. J., Gehrels, G. E., et al., 1996. Constraints on Early Earth Differentiation from Hafnium and Neodymium Isotopes. Nature, 379(6566): 624-627. https://doi.org/10.1038/379624a0 |
| [55] |
Wang, D., Wang, X. L., 2021. Dual Mixing for the Formation of Neoproterozoic Granitic Intrusions within the Composite Jiuling Batholith, South China. Contributions to Mineralogy and Petrology, 176(1): 7. https://doi.org/10.1007/s00410⁃020⁃01757⁃2 |
| [56] |
Wang, L., Zhang, J. W., Chen, G. Y., et al., 2020. Delineation of Concealed Intermediate⁃Acidic Pluton and Significance of Mineral Prospecting in Guizhou Province. Geology and Exploration, 56(2): 387-402 (in Chinese with English abstract). |
| [57] |
Wang, L. J., Zhang, K. X., Lin, S. F., et al., 2022. Origin and Age of the Shenshan Tectonic Mélange in the Jiangshan⁃Shaoxing⁃Pingxiang Fault and Late Early Paleozoic Juxtaposition of the Yangtze Block and the West Cathaysia Terrane, South China. GSA Bulletin, 134(1/2): 113-129. https://doi.org/10.1130/b35963.1 |
| [58] |
Wang, M., Dai, C. G., Wang, X. H., et al., 2011. In⁃Situ Zircon Geochronology and Hf Isotope of Muscovite⁃Bearing Leucogranites from Fanjingshan, Guizhou Province, and Constraints on Continental Growth of the Southern China Block. Earth Science Frontiers, 18(5): 213-223 (in Chinese with English abstract). |
| [59] |
Wang, Q., Zhu, D. C., Zhao, Z. D., et al., 2012a. Magmatic Zircons from I⁃, S⁃ and A⁃Type Granitoids in Tibet: Trace Element Characteristics and Their Application to Detrital Zircon Provenance Study. Journal of Asian Earth Sciences, 53: 59-66. https://doi.org/10.1016/j.jseaes.2011.07.027 |
| [60] |
Wang, X. L., Shu, L. S., Xing, G. F., et al., 2012b. Post⁃Orogenic Extension in the Eastern Part of the Jiangnan Orogen: Evidence from ca 800-760 Ma Volcanic Rocks. Precambrian Research, 222: 404-423. https://doi.org/10.1016/j.precamres.2011.07.003 |
| [61] |
Wang, T., Huang, H., Yang, L. Q., et al., 2022. The Methodological Framework for Deciphering 3⁃Demensional Material Architecture of the Lithosphere. Acta Geologica Sinica, 96(10): 3589-3618 (in Chinese with English abstract). |
| [62] |
Wang, X. L., Zhou, J. C., Chen, X., et al., 2017. Formation and Evolution of the Jiangnan Orogen. Bulletin of Mineralogy, Petrology and Geochemistry, 36(5): 714-735, 696 (in Chinese with English abstract). |
| [63] |
Wang, X. L., Zhou, J. C., Griffin, W. L., et al., 2014. Geochemical Zonation across a Neoproterozoic Orogenic Belt: Isotopic Evidence from Granitoids and Metasedimentary Rocks of the Jiangnan Orogen, China. Precambrian Research, 242: 154-171. https://doi.org/10.1016/j.precamres.2013.12.023 |
| [64] |
Wang, X. L., Zhou, J. C., Qiu, J. S., et al., 2006. LA⁃ICP⁃MS U⁃Pb Zircon Geochronology of the Neoproterozoic Igneous Rocks from Northern Guangxi, South China: Implications for Tectonic Evolution. Precambrian Research, 145(1-2): 111-130. https://doi.org/10.1016/j.precamres.2005.11.014 |
| [65] |
Wang, X. L., Zhou, J. C., Wan, Y. S., et al., 2013. Magmatic Evolution and Crustal Recycling for Neoproterozoic Strongly Peraluminous Granitoids from Southern China: Hf and O Isotopes in Zircon. Earth and Planetary Science Letters, 366: 71-82. https://doi.org/10.1016/j.epsl.2013.02.011 |
| [66] |
Wei, S. D., Liu, H., Zhao, J. H., 2018. Tectonic Evolution of the Western Jiangnan Orogen: Constraints from the Neoproterozoic Igneous Rocks in the Fanjingshan Region, South China. Precambrian Research, 318: 89-102. https://doi.org/10.1016/j.precamres.2018.10.006 |
| [67] |
Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U⁃Th⁃Pb, Lu⁃Hf, Trace Element and REE Analyses. Geostandards Newsletter, 19(1): 1-23. https://doi.org/10.1111/j.1751⁃908X.1995.tb00147.x |
| [68] |
Windley, B., 1992. Chapter 11 Proterozoic Collisional and Accretionary Orogens. Proterozoic Crustal Evolution. Elsevier, Amsterdam, 419-446. https://doi.org/10.1016/s0166⁃2635(08)70125⁃7 |
| [69] |
Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu⁃Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract). |
| [70] |
Wu, F. Y., Yang, Y. H., Xie, L. W., et al., 2006a. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U⁃Pb Geochronology. Chemical Geology, 234(1-2): 105-126. https://doi.org/10.1016/j.chemgeo.2006.05.003 |
| [71] |
Wu, R. X., Zheng, Y. F., Wu, Y. B., et al., 2006b. Reworking of Juvenile Crust: Element and Isotope Evidence from Neoproterozoic Granodiorite in South China. Precambrian Research, 146(3-4): 179-212. https://doi.org/10.1016/j.precamres.2006.01.012 |
| [72] |
Xia, Y., Xu, X. S., Niu, Y. L., et al., 2018. Neoproterozoic Amalgamation between Yangtze and Cathaysia Blocks: The Magmatism in Various Tectonic Settings and Continent⁃Arc⁃Continent Collision. Precambrian Research, 309: 56-87. https://doi.org/10.1016/j.precamres.2017.02.020 |
| [73] |
Xiang, L., Wang, R. C., Romer, R. L., et al., 2020. Neoproterozoic Nb⁃Ta⁃W⁃Sn Bearing Tourmaline Leucogranite in the Western Part of Jiangnan Orogen: Implications for Episodic Mineralization in South China. Lithos, 360: 105450. https://doi.org/10.1016/j.lithos.2020.105450 |
| [74] |
Xiang, L., Zheng, J. P., Siebel, W., et al., 2018. Unexposed Archean Components and Complex Post⁃Archean Accretion/Reworking Processes beneath the Southern Yangtze Block Revealed by Zircon Xenocrysts from the Paleozoic Lamproites, South China. Precambrian Research, 316: 174-196. https://doi.org/10.1016/j.precamres.2018.08.003 |
| [75] |
Xiang, L., Zheng, J. P., Zhai, M. G., 2022. Archean to Paleoproterozoic Crustal Evolution of the Southern Yangtze Block (South China): U⁃Pb Age and Hf⁃Isotope of Zircon Xenocrysts from the Paleozoic Diamondiferous Kimberlites. Precambrian Research, 374: 106651. https://doi.org/10.1016/j.precamres.2022.106651 |
| [76] |
Xin, Y. J., Li, J. H., Dong, S. W., et al., 2017. Neoproterozoic Post⁃Collisional Extension of the Central Jiangnan Orogen: Geochemical, Geochronological, and Lu⁃Hf Isotopic Constraints from the ca. 820-800 Ma Magmatic Rocks. Precambrian Research, 294: 91-110. https://doi.org/10.1016/j.precamres.2017.03.018 |
| [77] |
Xu, X. S., O’Reilly, S. Y., Griffin, W. L., et al., 2007. The Crust of Cathaysia: Age, Assembly and Reworking of Two Terranes. Precambrian Research, 158(1-2): 51-78. https://doi.org/10.1016/j.precamres.2007.04.010 |
| [78] |
Xu, X. S., Wang, X. L., Zhao, K., et al., 2020. Progresses and Tendencies of Granite Researches in Last Decade: A Review. Bulletin of Mineralogy, Petrology and Geochemistry, 39(5): 899-911, 1069 (in Chinese with English abstract). |
| [79] |
Xue, H. M., Ma, F., Song, Y. Q., et al., 2010. Geochronology and Geochemisty of the Neoproterozoic Granitoid Association from Eastern Segment of the Jiangnan Orogen, China: Constraints on the Timing and Process of Amalgamation between the Yangtze and Cathaysia Blocks. Acta Petrologica Sinica, 26(11): 3215-3244 (in Chinese with English abstract). |
| [80] |
Yan, C. L., Shu, L. S., Chen, Y., et al., 2021. The Construction Mechanism of the Neoproterozoic S⁃Type Sanfang⁃Yuanbaoshan Granitic Plutons in the Jiangnan Orogenic Belt, South China: Insights from Geological Observation, Geochronology, AMS and Bouguer Gravity Modeling. Precambrian Research, 354: 106054. https://doi.org/10.1016/j.precamres.2020.106054 |
| [81] |
Yan, J. Y., Lu, Q. T., Zhang, Y. Q., et al., 2022. The Deep Boundaries of Jiangnan Orogenic Belt and Its Constraints on Metallogenic: From the Understanding of Integrated Geophysics. Acta Petrologica Sinica, 38(2): 544-558 (in Chinese with English abstract). |
| [82] |
Yang, G. Z., Li, Y. G., Zhang, Y. L., et al., 2019. Distribution⁃Controlling Factors and Emplacement Mode of Lamproite in Southeastern Guizhou Province. Geological Bulletin of China, 38(1): 27-35 (in Chinese with English abstract). |
| [83] |
Yang, J. H., Cawood, P. A., Du, Y. S., et al., 2012. Large Igneous Province and Magmatic Arc Sourced Permian⁃Triassic Volcanogenic Sediments in China. Sedimentary Geology, 261: 120-131. https://doi.org/10.1016/j.sedgeo.2012.03.018 |
| [84] |
Yao, J. L., Cawood, P. A., Shu, L. S., et al., 2019. Jiangnan Orogen, South China: A ~970-820 Ma Rodinia Margin Accretionary Belt. Earth⁃Science Reviews, 196: 102872. https://doi.org/10.1016/j.earscirev.2019.05.016 |
| [85] |
Yao, J. L., Shu, L. S., Cawood, P. A., et al., 2016. Delineating and Characterizing the Boundary of the Cathaysia Block and the Jiangnan Orogenic Belt in South China. Precambrian Research, 275: 265-277. https://doi.org/10.1016/j.precamres.2016.01.023 |
| [86] |
Yao, J. L., Shu, L. S., Santosh, M., et al., 2014. Neoproterozoic Arc⁃Related Mafic⁃Ultramafic Rocks and Syn⁃Collision Granite from the Western Segment of the Jiangnan Orogen, South China: Constraints on the Neoproterozoic Assembly of the Yangtze and Cathaysia Blocks. Precambrian Research, 243: 39-62. https://doi.org/10.1016/j.precamres.2013.12.027 |
| [87] |
Yao, J. L., Shu, L. S., Zhao, G. C., et al., 2021. Ca. 835-823 Ma Doming Extensional Tectonics in the West Jiangnan Accretionary Orogenic Belt, South China: Implication for a Slab Roll⁃back Event. Journal of Geodynamics, 148: 101879. https://doi.org/10.1016/j.jog.2021.101879 |
| [88] |
Ye, T. Z., Huang, C. K., Deng, Z. Q., 2017. Spatial Database of 1: 2 500 000 Digital Geologic Map of People’s Republic of China. Geology in China, 44(S1): 19-24, 139-146 (in Chinese with English abstract). |
| [89] |
Yu, J. H., Wang, L. J., O’Reilly, S. Y., et al., 2009. A Paleoproterozoic Orogeny Recorded in a Long⁃Lived Cratonic Remnant (Wuyishan Terrane), Eastern Cathaysia Block, China. Precambrian Research, 174(3-4): 347-363. https://doi.org/10.1016/j.precamres.2009.08.009 |
| [90] |
Yu, Y., Huang, X. L., He, P. L., et al., 2016. I⁃Type Granitoids Associated with the Early Paleozoic Intracontinental Orogenic Collapse along Pre⁃Existing Block Boundary in South China. Lithos, 248: 353-365. https://doi.org/10.1016/j.lithos.2016.02.002 |
| [91] |
Zhai, M. G., Zhang, Q., Chen, G. N., et al., 2016. Adventure on the Research of Continental Evolution and Related Granite Geochemistry. Chinese Science Bulletin, 61(13): 1414-1420 (in Chinese). |
| [92] |
Zhang, H. F., Gao, S., 2012. Geochemistry. Geological Publishing House, Beijing (in Chinese). |
| [93] |
Zhang, J. W., Liao, M. Y., Santosh, M., et al., 2020. Middle Tonian Calc⁃Alkaline Picrites, Basalts, and Basaltic Andesites from the Jiangnan Orogen: Evidence for Rear⁃Arc Magmatism. Precambrian Research, 350: 105943. https://doi.org/10.1016/j.precamres.2020.105943 |
| [94] |
Zhang, J. W., Santosh, M., Zhu, Y. H., et al., 2023a. Constraining the Timing of Deep Magmatic Pulses from Diamondiferous Kimberlite and Related Rocks in the South China Continent and Implications for Diamond Exploration. Ore Geology Reviews, 154: 105328. https://doi.org/10.1016/j.oregeorev.2023.105328 |
| [95] |
Zhang, Z. Y., Hou, Z. Q., Lü, Q. T., et al., 2023b. Crustal Architectural Controls on Critical Metal Ore Systems in South China Based on Hf Isotopic Mapping. Geology, 51(8): 738-742. https://doi.org/10.1130/g51203.1 |
| [96] |
Zhang, J. W., Ye, T. P., Dai, Y. R., et al., 2019. Provenance and Tectonic Setting Transition as Recorded in the Neoproterozoic Strata, Western Jiangnan Orogen: Implications for South China within Rodinia. Geoscience Frontiers, 10(5): 1823-1839. https://doi.org/10.1016/j.gsf.2018.10.009 |
| [97] |
Zhang, S. B., Zheng, Y. F., Wu, Y. B., et al., 2006. Zircon Isotope Evidence for ≥3.5 Ga Continental Crust in the Yangtze Craton of China. Precambrian Research, 146(1-2): 16-34. https://doi.org/10.1016/j.precamres.2006.01.002 |
| [98] |
Zhao, G. C., 2015. Jiangnan Orogen in South China: Developing from Divergent Double Subduction. Gondwana Research, 27(3): 1173-1180. https://doi.org/10.1016/j.gr.2014.09.004 |
| [99] |
Zhao, G. C., Cawood, P. A., 2012. Precambrian Geology of China. Precambrian Research, 222: 13-54. https://doi.org/10.1016/j.precamres.2012.09.017 |
| [100] |
Zhao, J. H., Zhou, M. F., Yan, D. P., et al., 2011. Reappraisal of the Ages of Neoproterozoic Strata in South China: No Connection with the Grenvillian Orogeny. Geology, 39(4): 299-302. https://doi.org/10.1130/G31701.1 |
| [101] |
Zhao, J. H., Zhou, M. F., Zheng, J. P., 2013. Constraints from Zircon U⁃Pb Ages, O and Hf Isotopic Compositions on the Origin of Neoproterozoic Peraluminous Granitoids from the Jiangnan Fold Belt, South China. Contributions to Mineralogy and Petrology, 166(5): 1505-1519. https://doi.org/10.1007/s00410⁃013⁃0940⁃z |
| [102] |
Zhao, T., Zhu, G., Wu, Q., et al., 2021. Evidence for Discrete Archean Microcontinents in the Yangtze Craton. Precambrian Research, 361: 106259. https://doi.org/10.1016/j.precamres.2021.106259 |
| [103] |
Zhao, Z. D., Liu, D., Wang, Q., et al., 2018. Zircon Trace Elements and Their Use in Probing Deep Processes. Earth Science Frontiers, 25(6): 124-135 (in Chinese with English abstract). |
| [104] |
Zhao, Z. H., 2016. Discrimination of Tectonic Settings Based on Trace Elements in Igneous Minerals. Geotectonica et Metallogenia, 40(5): 986-995 (in Chinese with English abstract). |
| [105] |
Zheng, J. P., Griffin, W. L., O’Reilly, S. Y., et al., 2006. Widespread Archean Basement beneath the Yangtze Craton. Geology, 34(6): 417. https://doi.org/10.1130/g22282.1 |
| [106] |
Zheng, Y.F., 2022. Does the Mantle Contribute to Granite Petrogenesis?. Earth Science, 47(10): 3765 (in Chinese with English abstract). |
| [107] |
Zheng, Y. F., Gao, P., 2021. The Production of Granitic Magmas through Crustal Anatexis at Convergent Plate Boundaries. Lithos, 402: 106232. https://doi.org/10.1016/j.lithos.2021.106232 |
| [108] |
Zheng, Y. F., Xiao, W. J., Zhao, G. C., 2013. Introduction to Tectonics of China. Gondwana Research, 23(4): 1189-1206. https://doi.org/10.1016/j.gr.2012.10.001 |
| [109] |
Zheng, Y. F., Zhang, S. B., Zhao, Z. F., et al., 2007. Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China: Implications for Growth and Reworking of Continental Crust. Lithos, 96(1-2): 127-150. https://doi.org/10.1016/j.lithos.2006.10.003 |
| [110] |
Zhu, D.C., Wang, Q., Weinberg, R. F., et al., 2023a. Continental Crustal Growth Processes Recorded in the Gangdese Batholith, Southern Tibet. Annual Review of Earth and Planetary Sciences, 51: 155-188. https://doi.org/10.1146/annurev⁃earth⁃032320⁃110452 |
| [111] |
Zhu, Q. B., Zhao, X. L., Hong, W. T., et al., 2023b. Geochronology, Hf Isotope and Trace Element of Zircon and Apatite for Neoproterozoic Granodiorites in the Eastern Jiangnan Orogen: Implications for the Neoproterozoic Tectonic Evolution. Lithos, 446: 107134. https://doi.org/10.1016/j.lithos.2023.107134 |
国家自然科学基金项目(42363006)
国家自然科学基金项目(41963006)
国家自然科学基金项目(41603039)
/
| 〈 |
|
〉 |