深层碎屑岩储层特征及控储因素分析:以饶阳凹陷杨武寨地区为例

李熹微 , 蒋恕 , 史原鹏 , 王海燕 , 张霁潮 , 张丽 , 赵懿 , 刘辰 , 盛晨 , 杨柳青

地球科学 ›› 2025, Vol. 50 ›› Issue (07) : 2861 -2874.

PDF (9135KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (07) : 2861 -2874. DOI: 10.3799/dqkx.2025.012

深层碎屑岩储层特征及控储因素分析:以饶阳凹陷杨武寨地区为例

作者信息 +

Characterization and Genetic Mechanism of Deep Clastic Reservoirs: A Case Study of Yangwuzhai Block in Raoyang Sag

Author information +
文章历史 +
PDF (9353K)

摘要

为了明确深层有利储层发育特征及控制因素,以渤海湾盆地冀中坳陷饶阳凹陷杨武寨地区沙三下亚段储层为研究对象,通过储层沉积和成岩、薄片鉴定、扫描电镜、阴极发光、常规孔渗等技术方法,开展储层特征及储层差异成因研究.结果表明:沙三下亚段岩性以岩屑长石砂岩为主;孔隙度和渗透率均值分别为10.8%和8.79 mD,整体属于低孔‒特低渗储层;成岩阶段处于中成岩A2阶段,成岩复杂,包括压实、胶结和溶蚀作用.主要发育强胶结致密型、溶蚀孔改造型和原生孔保持型3种类型储层.强胶结致密型储层发育在席状朵叶微相中的厚度薄、砂泥互层频繁的砂体中,碳酸盐胶结强且致密;溶蚀孔改造型储层发育于重力流分支水道微相下的薄层砂体中,具有“中等压实‒强溶蚀”的成岩特征,晚期弱烃类充注,晚期碳酸盐胶结溶蚀不充分,储层孔隙性好但渗透率差;原生孔保持型储层发育于重力流水道微相下的厚层砂体中部,具有“绿泥石包壳‒中等压实‒弱碳酸盐胶结”的成岩特征,受晚期强烃类充注对碳酸盐胶结的抑制,储层孔隙性和渗透率均保持较好.该认识对杨武寨地区和类似地质背景地区的深层油气勘探具有指导意义.

Abstract

This study aims to reveal the development characteristics and controlling factors of deep favorable reservoirs in the Lower Third Member of the Shahejie Formation (Es3L) in the Yangwuzhai Block of the Raoyang Sag, Jizhong Depression, Bohai Bay Basin. The reservoir heterogeneous properties and the genetic mechanisms are investigated by an integrated approach combining sedimentological and diagenetic analysis, thin section petrography, scanning electron microscopy (SEM), cathodoluminescence (CL), and porosity-permeability measurements. The results indicate that the Es3L reservoirs are dominated by lithic arkose, with average porosity and permeability values of 10.8% and 8.79 mD, respectively, which are generally classified as low-porosity and ultra-low-permeability reservoirs. The reservoirs are at the middle diagenetic stage A2, with complex diagenetic processes including compaction, cementation, and dissolution. Three main reservoir types were identified: (1) tightly cemented reservoirs with strong carbonate cementation, (2) dissolution-enhanced reservoirs with secondary porosity, and (3) primary pore-preserved reservoir. The tightly cemented reservoirs are mainly developed in thin, sheet-like sand bodies of lobe microfacies, characterized by frequent interbedding of sand and shale, with intense carbonate cementation. The dissolution-enhanced reservoirs occur in thin-bedded sand bodies associated with distributary channels of gravity flows, showing a diagenetic sequence of moderate compaction followed by intense dissolution. These reservoirs exhibit high porosity but poor permeability, owing to weak late-stage hydrocarbon charging and limited carbonate dissolution. In contrast, the primary pore-preserved reservoirs are developed in the middle parts of thick sand bodies within gravity flow channel microfacies, and exhibit diagenetic features of chlorite grain-coating, moderate compaction and weak carbonate cementation. Strong late-stage hydrocarbon charging inhibited further carbonate cementation, resulting in relatively favorable reservoir quality. These findings provide valuable insights for deep hydrocarbon exploration in the Yangwuzhai area and other regions with similar geological settings.

Graphical abstract

关键词

深层碎屑岩 / 成岩过程 / 优质储层 / 饶阳凹陷 / 石油地质学.

Key words

deep clastic reservoir / diagenesis process / high⁃quality reservoir / Raoyang Sag / petroleum geology

引用本文

引用格式 ▾
李熹微,蒋恕,史原鹏,王海燕,张霁潮,张丽,赵懿,刘辰,盛晨,杨柳青. 深层碎屑岩储层特征及控储因素分析:以饶阳凹陷杨武寨地区为例[J]. 地球科学, 2025, 50(07): 2861-2874 DOI:10.3799/dqkx.2025.012

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

进入21世纪以来,随着全球含油气盆地勘探开发的深入,中、浅层油气资源开发程度趋于成熟和饱和,深层油气资源成为了国内外油气勘探开发的重要接替领域.近年来,全球范围内的深层油气资源的勘探开发取得长足进展(张光亚等, 2015; 操应长等, 2022a),除美洲的墨西哥湾、委内瑞拉、巴西等国家外,中亚的阿塞拜疆、哈萨克斯坦以及地中海东部及印度东部地区都实现了深层油气资源的有效开发(张光亚等, 2015).由于国内外勘探实例的地质和国情差异导致对深层的定义也存在差异,我国学者将深度在3 500~4 500 m的东部盆地定义为“深层”,将深度为4 500~ 6 000 m的西部盆地定义为“深层”(张光亚等, 2015; 贾承造, 2023).至今,四川盆地、塔里木盆地、准噶尔盆地、松辽盆地、渤海湾盆地等都已成为深层油气资源的重点开发区域(刘佳庚等, 2023; 单祥等, 2023).深层勘探开发技术和科研成果的突破推动并成就了深层油气资源的开发.同时,物源及供烃的多源条件、高温高压、深层流体、深层成岩及多期改造的复杂环境都是深度认识、研究和开发深层油气藏需要直面的挑战.

冀中坳陷剩余石油地质资源量共13.84亿吨,中深层剩余资源量11.8亿吨,占比85.3%,其中深层为5.23亿吨,剩余天然气资源量4 364.2亿方,深层天然气剩余资源量为3 473.15亿方,占比79.6%(李志军等, 2024).经历几十年的勘探开发,针对中、深层碎屑岩已取得丰富的地震、钻井取芯、录井、测井、试油、地层测试、物性、压汞、薄片鉴定等资料,且前人对冀中坳陷古近系进行过大量研究,在沉积体系地质建模与空间分布预测、储层地质模型表征与有效储层定量评价、成因机制探讨与优质储层预测等方面形成了一批研究成果,为冀中深层油气勘探提供了支撑.“十四五”期间,饶阳凹陷南部杨武寨地区部署深层井位q104x井获日产油88.58方的自然产能,累计产油1.6万吨的成绩,开辟了饶阳凹陷深层勘探新层系,为整个渤海湾盆地深层碎屑岩储层勘探开发提供了重要的地质信息.但要实现对该区深层碎屑岩油气的有效勘探尚有许多课题需要深入研究,比如:研究区沉积微相缺少深入划分,对深层优质储层成因机制认识不足.本文通过薄片鉴定、扫描电镜、阴极发光、常规孔渗等技术方法,结合前人沉积领域的研究成果,从岩石学特征、物性特征及孔隙结构特征等多个方面,探讨了沉积作用和成岩作用对饶阳凹陷杨武寨地区深部储层储集性能的影响,旨在明晰该地区储层发育的控制因素,为下一步寻找深层有利储层发育区提供研究支撑.

1 区域地质概况

冀中坳陷位于渤海湾盆地西北部,太行山隆起和沧县隆起之间地带(图1).杨武寨地区位于冀中坳陷饶阳凹陷南部,是东邻献县凸起、西邻蠡县斜坡和留存‒深泽低凸起带、南邻孙虎构造带之间的复杂构造带.西部断阶带、中央隆起带、东部洼槽带和武强断阶带共同组成了杨武寨构造带.杨武寨古近系自下而上发育孔店组(Ek)、沙河街组(Es)和东营组(Ed),沙河街组分为沙四段、沙三段、沙二段、沙一段,其中沙三段又分为上、中、下三个亚段,沙三下亚段是本文研究层段.前人研究认为在区域拉张断裂的构造背景下,环洼槽区存在三处物源供给,分别为西部刘村低凸起、南部新河凸起、东部沧县隆起.在丰富的物源供给下,沙三下亚段沉积地层厚度达300 m.沙三下亚段整体为三角洲‒湖底扇沉积背景,发育河口坝、水下分流河道、重力流水道沉积微相.国内外研究表明深水背景下的重力流水道是非常有利的潜在储层(蒋恕等,2008).沙三下亚段烃源岩是研究区的主力烃源岩之一,生排烃中心在杨武寨断层东部的东部洼槽带内.烃源岩TOC大于2%,S1+S2最大达31.05 mg/g,Tmax在430~455 ℃之间,Ro为0.5%~1.02%,处于低成熟‒成熟阶段.

2 储层基本特征

2.1 岩石学特征

杨武寨构造带深层沙三下亚段为挠曲‒断裂坡折带控制下的三角洲‒湖底扇沉积,储层粒度偏细,以细砂岩和极细砂岩为主,部分为中粒、中细粒及不等粒砂岩.储层岩石类型主要为岩屑长石砂岩,其次是长石岩屑砂岩(图2a).陆源碎屑颗粒中石英、长石、岩屑含量平均值分别为52%、29%和18%.岩屑主要为酸性喷出岩和石英岩岩屑.碎屑颗粒分选中等‒好,分选系数在1.26~1.73之间,磨圆以次棱‒次圆为主,呈颗粒支撑结构.储层内部填隙物平均值为11%,以胶结物和泥质杂基为主,平均含量分别为7.7%和3.7%(图2b).胶结物中碳酸盐胶结物占93%以上,以方解石和白云石胶结物为主,平均值分别为4.9%和2.5%.整体上储层具有粒度细、石英含量高、填隙物含量低、成分成熟度和结构成熟度高的岩石学特征.

2.2 成岩作用特征

通过显微观察、扫描电镜及阴极发光技术,笔者认为沙三下亚段深层储层成岩作用类型以压实作用、胶结作用和溶蚀作用为主.砂岩中黏土矿物以绿泥石、高岭石和伊蒙混层为主,其中伊蒙混层中蒙皂石占比为15%~30%,平均为18.4%;Ro值为0.5%~1.0%;Tmax值在403~506 ℃之间,平均为438.3 ℃(表1).沙三下亚段沉积期为淡水‒微咸水环境(纪友亮等, 2009),根据碎屑岩成岩阶段划分行业标准《碎屑岩成岩阶段划分》(SY/T 5477-2003),深层储层主要处于中成岩A2期.

2.2.1 压实作用

砂岩压实作用导致岩石骨架的压缩和孔隙总体积的减小,颗粒接触特征改变和塑性颗粒变形是压实改变砂岩储层的主要方式(Wilson and McBride, 1988).研究层埋深在 3 600~4 000 m之间,刚性颗粒之间接触方式以线接触为主(图3a),黏土化云母受压实变形(图3b).孔隙度趋势线体现了储层受到机械压实的影响(刘佳庚等, 2023).从约3 000 m开始储层物性趋势线随深度变化的斜率明显变小,说明机械压实效率变低,局部颗粒间接触更加紧密,呈现凹凸接触方式(图3e).

2.2.2 胶结作用

胶结作用主要为碳酸盐胶结,并且以方解石胶结为主,其次为白云石胶结和铁方解石胶结.方解石胶结是影响储层质量的主要胶结作用,在同生成岩期就已具备形成条件,在机械压实尚未进行完全之前方解石沉淀形成基底式胶结,使矿物间呈点‒漂浮接触(图3c).胶结产状主要为孔隙式胶结,发育于残余粒间孔和溶孔中(图3d、3e、3g).白云石胶结发育次之,形成时间晚,对方解石胶结有交代现象(图3e).硅质胶结、黄铁矿胶结和黏土胶结物发育少(图3f~3i),对储层的影响并不明显.石英次生加大边是主要的硅质胶结,加大边窄且不连续(图3g),形成于石英碎屑颗粒表面.黏土胶结物主要为高岭石、伊蒙混层、绿泥石.高岭石在扫描电镜下呈书页状、蠕虫状集合体填充原生粒间孔或次生溶孔(图3h),形成与杂基和长石溶蚀有关(Bjørkum and Gjelsvik, 1988);绿泥石主要以包壳的形式发育在颗粒表面(图3i),形成于碱性富铁富镁离子的流体环境(Grigsby, 2001Worden et al., 2020);伊蒙混层是蒙脱石向伊利石转变的中间产物,呈丝绒状、蜂窝状产出(图3j).

2.2.3 溶蚀作用

储层中溶蚀作用主要发生在长石及碳酸盐胶结物中.长石溶蚀发生在颗粒边缘或颗粒内部,长石溶蚀程度高时孔隙中会残留早期颗粒边缘的黏土膜(图3k、图4c).碳酸盐胶结物溶蚀程度不同,可观察到粒间早期的无铁方解石胶结溶蚀残余(图4a)和晚期含铁方解石、含铁白云石胶结溶蚀(图3l、图4e),这说明了不止一期酸性流体进入储层造成溶蚀.

2.3 储集空间及物性特征

储层实测物性表明,孔隙度主要分布在10%~15%之间,平均孔隙度为10.1%;渗透率主要分布在0.01~10 mD之间,平均渗透率为5.13 mD(图5c、5d).依据碎屑岩储层物性行业分类标准(SY/T 6285-2011),深层储层符合特低孔‒低孔和超低渗‒低渗的物性特征.

储集空间以孔隙为主,未见微裂缝发育.孔隙分为原生孔隙和次生孔隙,原生孔隙经长期压实,主要为残余原生粒间孔,次生孔隙主要是长石和胶结物溶蚀孔.不同样品孔隙类型存在明显差异:q104x井样品储集空间以原生孔隙为主,孔隙边缘较平直、几何形态明显,孔隙内部干净(图4a、4b).次生孔隙以长石溶孔较常见,溶孔呈蜂窝状(图4c),溶蚀程度高时形成铸模孔(图4d),常见于q104x和q75x井;其次为碳酸盐胶结溶孔,这在q2⁃81x样品中发育显著,孔隙中滞留未溶蚀胶结残余(图4e);岩屑溶孔少,板岩岩屑溶蚀程度高,溶蚀后产生晶间孔(图4f).通过 ImagePro Plus定量原生孔隙和次生孔隙的面孔率.结果表明,当总面孔率大于10%时,原生孔百分含量高于次生孔隙,储层由原生孔主导;总面孔率小于10%时,次生孔百分比高于70%,储集空间为原生孔‒次生孔组合或以次生孔隙为主.

3 储层类型及储层特征

沉积和成岩作用是影响深层孔隙发育的重要因素,尤其是深层储层成岩作用更易受原始碎屑颗粒组成影响.为了与开发相结合,从沉积环境、砂体特征、成岩特征及孔隙类型总结了主要储层类型的特征,共3种类型:原生孔保存型、溶蚀增孔型和强胶结致密型.

3.1 原生孔保存型

原生孔保存型储层以中细砂岩和不等粒岩屑长石砂岩为主,无泥质杂基,胶结物含量低于5%,孔隙局部可见方解石胶结物.孔隙度范围为9.3%~14.5%,平均为12.3%,渗透率范围为1.56~70.5 mD,平均为16.9 mD.砂岩碳酸盐胶结减孔率为0.68%~4.19%,平均胶结减孔1.77%,压实减孔率为27.71%~36.17%,平均压实减孔29.6%,表现为弱压实、弱胶结特征.储层发育绿泥石包壳,对保持储层孔喉联通性产生了贡献.该类型储层主要位于厚层砂体中部,发育于水动力较强的重力流主水道中上部(图6).

3.2 次生孔改造型

次生孔改造型储层以细粒岩屑长石砂岩为主,泥质杂基小于5%,胶结物含量小于9%.镜下明显可见铁方解石、白云石溶蚀.孔隙度平均为12.28%,渗透率平均为1.98 mD.压实减孔率为28.83%~36.58%,平均为31.9%,胶结减孔率为0.67%~4.29%,平均为2.46%,平均溶蚀增孔率为8.44%.整体表现为压实作用强、溶蚀强的特征.主要发育在厚层砂体边缘顶部,颗粒较细,发育于水动力较弱的重力流分支水道微相(图6).

3.3 强胶结致密型

强胶结致密型储层以细粒、极细粒岩屑长石砂岩为主,碳酸盐胶结物含量在10%~28%之间,平均15%,典型样品方解石呈基底式胶结.储层孔隙度在4.8%~7.7%之间,平均为6%,渗透率不超过0.28 mD.胶结减孔率为10.1%~23.3%,整体表现为强胶结的特征.该类型储层主要发育在砂体薄、砂‒泥互层频繁的席状朵叶中(图6).

4 优质储层控储因素

4.1 沉积环境对物性的影响

原始沉积环境为储层形成提供物质基础,直接影响砂岩的粒度、分选、磨圆等结构特征以及矿物、杂基含量等组分特征,进而间接影响储层成岩作用和演化路径(Morad et al., 2000Bjørlykke, 2014; 罗威和倪玲梅, 2020).不同水动力的沉积环境中砂岩颗粒结构存在差异,粒度粗细和分选直接影响储层原始物性(Bearda and Wyle, 1973).水动力强的重力流主水道主要发育中粒砂岩,孔隙度总体大于9%,平均为12.27%,渗透率大于 1 mD,最大至70.4 mD,是物性最好的砂体;其次为重力流分支水道微相,孔隙度在5%~12%之间,平均孔隙度为8.4%,平均渗透率为3.75 mD;水动力弱的席状朵叶物性最差,孔隙度低于10%,平均孔隙度6.4%,平均渗透率为0.11 mD(图6图7a).粒度中值与物性呈正相关,分选系数与物性呈负相关(图7b~7e).粒度越细、分选越差的储层喉道连通性差,颗粒的渗透率更小,这也是许多细粒砂体在物性上表现为低渗储层的根本原因(刘丽等, 2015; 徐春强等, 2019; 陈一鸣等, 2021).

不同沉积环境的储层矿物组成存在差异.研究区刚性矿物包含石英、长石、火成岩岩屑和石英变质岩岩屑,塑性矿物包含凝灰质、砂泥质岩屑和云母.重力流主水道微相和重力流分支水道微相刚性颗粒超过79%,塑性矿物低于5%(图7f),颗粒间呈点‒线接触(图3a、3b),物性好;席状砂的刚性矿物变少,塑性矿物增加,孔隙度和渗透性变差.

4.2 成岩作用对物性的影响

成岩作用受沉积微相、岩矿组成、构造应力、埋藏史、地层流体化学及温度压力综合控制,使碎屑岩储层在沉积阶段的非均质性进一步加剧,促进了储集物性的分异(李易隆等, 2013; 陈刚等, 2019; 魏钦廉等, 2021).根据对储层物性的影响,成岩作用可分为:①破坏型成岩作用:压实作用和胶结作用等;②建设型成岩作用:溶蚀作用和绿泥石包壳等.

4.2.1 破坏型成岩作用

压实作用和胶结作用是埋藏过程中主要破坏储层的两种成岩类型.储层压实减孔率和胶结减孔率可定量表征压实作用和胶结作用对储层破坏的强度(Lundegard, 1992Ehrenberg, 1995).计算公式如下:

           COPL=OP- 100-OP×IGV100-IGV
           CEPL=OP-COPL×CEMIGV

COPLCEPL分别代表压实减孔率和胶结减孔率;OP、IGV分别代表原始孔隙度和粒间孔体积,OP=20.91+22.9/SoSo为Trask分选系数(Scherer, 1987);粒间孔体积为杂基含量、面孔率和粒间胶结物含量之和;CEM代表胶结物体积分数,由于该区主要为碳酸盐胶结物,所以胶结减孔率代表碳酸盐胶结物对孔隙的破坏作用.

计算结果表明,各井样品的平均压实减孔率在28%~33.6%之间(图8b),减孔率主要集中在压实区内(图8a),说明压实作用是破坏储层的主要成岩作用.压实作用贯穿埋藏过程始终,埋藏深度较浅时压实作用对储层物性破坏强度较大,导致储层中原生孔隙大量减少.3 000 m以下机械压实效率减弱,一定程度上为深层原生孔隙保存创造了有利环境(图5a、5b).

碳酸盐胶结物堵塞孔隙空间和喉道,其含量与储层物性呈负相关(图8c),对储层具有破坏作用.成岩演化过程中的碳酸盐沉淀对储层具有潜在的有利影响:一方面早期的碳酸盐胶结占据原生孔隙,抑制压实过程中颗粒间紧密接触(图3c);另一方面酸性流体通过溶解早期碳酸盐胶结物形成大量次生孔隙,以改善深层储层物性(图3l、图4e).然而受化学热力学影响,在半封闭‒封闭的环境下长石更易受溶蚀而使碳酸盐胶结物保存完好,难以在后期转化为有利储层空间(Yuan et al., 2019; 宋来弟等, 2022),这解释了薄片中方解石胶结物发育而长石剧烈溶蚀的现象(图3g、图4c).

尽管黏土含量低,但孔隙内及边缘发育的黏土会对储层物性产生不同的影响(图9).高岭石与孔隙度呈弱负相关,其形成与长石溶蚀有关,由于深层流体流动受限,高岭石易就近沉淀,堵塞细粒砂岩孔隙空间(图3h).伊蒙混层和伊利石与孔隙度、渗透率均呈负相关(图9b~9d、9f~9h),其丝发状、纤维状结构切割了孔隙原有的结构,增加了孔喉迂曲度,对孔隙度和渗透率均造成不利影响(图3i、3j).

4.2.2 建设型成岩作用

溶蚀作用中长石、岩屑、碳酸盐胶结物溶蚀可以形成良好的储集空间(图4c~4e).基于铸体薄片图像,用计算机图像法框定次生孔面积和薄片面积可估算出溶蚀强度,计算公式如下:

           溶蚀强度= 次生溶孔面积总视域面 .

结果表明,研究区次生孔隙面孔率主要集中在1%~7%.各井的蚀程度不同:q104x平均次生面孔率为3.32%,次生孔占比25.5%,主要为方解石溶蚀(图3a);q2⁃81x平均次生面孔率为5.7%,次生孔占比57%,主要为铁方解石溶蚀及长石溶蚀(图3i、图4e);q75x平均次生面孔率为3.84%,次生孔隙占76.8%,主要为长石溶蚀(图4d).孔隙残留黏土及长石溶蚀残余,这与封闭条件下流体流动性有关.

绿泥石包壳的发育有利于深层孔隙的形成.包壳的形成依赖于高能沉积环境,因此通常发育在高能重力流主水道中的粒度较粗微相中.在成岩过程中,来自相邻泥岩中排出的Fe²⁺、Mg²⁺进入地层水,为早期黏土膜转化为绿泥石包壳提供了有利条件(朱颖等, 2017).绿泥石含量与储层孔隙度和渗透率呈正相关(图9a、9e),总体上有利于储层物性的保持.铸体薄片和扫描电镜显示绿泥石呈膜状覆盖于碎屑石英、长石等颗粒表面,在绿泥石包壳不发育的石英表面发育次生加大边,而绿泥石膜覆盖位置石英次生加大边不生长(图3f).绿泥石包壳能有效抑制石英次生加大,表现为石英次生加大边窄且不连续,进而保护了原生孔隙(兰叶芳等, 2011; 吴家洋等, 2020; 席敏红, 2023).但当绿泥石含量超过一定界限,过厚、过多的绿泥石会堵塞原生粒间孔,破坏储层物性(兰叶芳等, 2011; Dowey et al., 2012; 刘亚鹏等, 2016).

4.3 储层差异演化分析

根据自生矿物赋存特征,在盆地构造背景和沙三下亚段埋藏史及热史研究的基础上,讨论了储层成岩演化序列.在明确储层成岩演化序列、原始孔隙度和各成岩阶段的压实减孔量和胶结减孔量的基础上,通过“反演回剥”法及机械压实矫正(Beard and Wyle, 1973; 操应长等, 2013),恢复了沙三下亚段3种主要储层类型砂岩的孔隙成岩演化过程(图10).各类储层遭受成岩演化路径及成岩强度均不同,造成现今物性差异.

同生成岩阶段‒早成岩阶段(距今42~ 34 Ma):该阶段为沙三段沉积期,盆地由裂谷深沉降阶段转变为缓慢消亡阶段,研究区处于先伸展沉降、后沉降速率变缓时期.该时期沙三下亚段沉积结束,并持续埋深至约1 500 m,储层因松散碎屑颗粒由于压实逐渐变得紧密而致密,原生孔隙破坏剧烈,储层物性迅速下降,储层孔隙小于25%.快速压实中从泥岩排出的高盐度碱性富Ca2+、富Mg2+流体运移至砂体,碳酸盐胶结作用优先发生在流体盐度较高的邻近砂泥界面的砂岩中,低含铁的方解石胶结物呈基底式胶结充填于粒间孔隙,进而形成点接触或“漂浮”状接触的强胶结致密型的砂岩,该类砂岩在阶段末期孔隙度降至10%左右.对于原生孔保存型储层,颗粒粗、分选好,刚性矿物含量高,砂岩抗压能力强;同时储层距高盐度砂泥界面较远,方解石在颗粒间局部胶结,分担了部分岩石骨架应力,保存了原生孔隙,该时期孔隙度最小为15%.

中成岩A1期(距今34~26 Ma):该时期盆地由裂谷消亡期转变为裂谷扩张期,沙三下亚段底界深度达到2 800 m左右,沙三段底界温度接近120 ℃.随着温度的升高,沙三下泥岩有机质逐渐变为低熟,达到门限温度开始生烃(周磊, 2014).酸性流体进入储层,主要溶蚀长石和早期碳酸盐胶结物,溶蚀过程中压实持续进行.该过程结束后孔隙度最高达22%.而早期强胶结的储层中酸性流体影响小,溶蚀对孔隙度的影响十分微弱.

中成岩A2期(距今26 Ma至今):该时期盆地经历短暂抬升调整之后持续沉降至约4 000 m,这一阶段有机质逐渐成熟,是油向储层充注的高峰期(8~4 Ma)(周磊, 2014).由于温度高于120 ℃后有机酸热脱羧分解,地层酸浓度下降(Ronald et al., 1989),因此在26~21 Ma溶蚀作用持续进行.对于次生孔改造型储层而言,该阶段地层孔隙度达到22%,原生孔保持型储层孔隙度达到约16%.当温度超过120 ℃后,地层水向碱性变化,有利于碳酸盐胶结物的形成,这与有机酸热脱羧及沙四段膏岩层脱水有关(周磊, 2014; 操应长等, 2022b).该时期地层流体转为弱碱性,铁方解石和铁白云石沉淀于溶蚀孔中.该过程当地层温度接近140 ℃后逐渐停止,由于地层中二氧化碳量增加及碳酸盐根剩余,地层水变为弱酸性,产生含铁碳酸盐胶结物的溶解,储层孔隙度最终保持在14%左右.而砂体顶部的胶结有效抑制了碱性流体向厚层砂体中部的运移,加上绿泥石膜对孔喉连通性的保持,油充注砂体,抑制了晚期碳酸盐胶结的形成,使孔隙度保持在12%~15%之间.

5 结论

(1)渤海湾盆地冀中坳陷杨武寨地区沙三下亚段深层细粒碎屑岩储层发育于浅水三角洲‒深水重力流沉积环境中,岩石类型以岩屑长石砂岩为主.储层物性表现为特低孔‒低孔和超低渗‒低渗的背景,储集空间以残余原生粒间孔、粒间溶蚀孔为主.储层处于中成岩A2期,机械压实是主要的破坏型成岩作用,其次为方解石和白云石胶结作用;溶蚀和绿泥石包壳是主要的建设性成岩作用.

(2)沙三下亚段发育原生孔保存型、次生孔改造型和胶结致密型3种储层类型.其中胶结致密型储层在早成岩期因为方解石胶结而导致其致密,储层孔渗性差.次生孔改造型储层经历两期碳酸盐胶结和两期烃类充注,晚期含铁碳酸盐胶结强,烃类充注弱,溶蚀改造产生次生孔,储层孔隙性好、渗透率差.原生孔保存型储层富含刚性矿物,胶结物含量低,抗压实能力强,埋藏过程中压实减孔率低,且晚期烃类强充注,抑制晚期碳酸盐胶结,孔渗性好.

(3)沉积环境和成岩作用共同影响了储层的质量.弱水动力条件下沉积砂体薄、砂泥互层频繁,砂体整体易被胶结,储层致密;水动力较强的环境砂体厚度大,但是在砂体顶部经历了多期胶结和酸性流体溶蚀,孔隙性较好、渗透性较差;强水动力环境下(如重力流主水道)沉积砂体厚、粒度粗,在厚层砂体中部塑性矿物低,抗压实能力强,加上绿泥石包壳和烃类充注对胶结的抑制,储层经历成岩改造少,储层孔隙度和渗透率相对较高,这类储层是该区未来深层碎屑岩储层勘探开发的主要类型.

参考文献

[1]

Beard, D. C., Weyl, P. K., 1973. Influence of Texture on Porosity and Permeability of Unconsolidated Sand. AAPG Bulletin, 57(2): 349-369. https://doi.org/10.1306/819A4272⁃16C5⁃11D7⁃8645000102C1865D

[2]

Bjørkum, P. A., Gjelsvik, N., 1988. An Isochemical Model for Formation of Authigenic Kaolinite, K⁃Feldspar and Illite in Sediments. Journal of Sedimentary Research, 58(3): 506-511. https://doi.org/10.1306/212F8DD2⁃2B24⁃11D7⁃8648000102C1865D

[3]

Bjørlykke, K., 2014. Relationships between Depositional Environments, Burial History and Rock Properties. Some Principal Aspects of Diagenetic Process in Sedimentary Basins. Sedimentary Geology, 301: 1-14. https://doi.org/10.1016/j.sedgeo.2013.12.002

[4]

Cao, Y. C., Xi, K. L., Wang, Y. Z., et al., 2013. Quantitative Research on Porosity Evolution of Reservoirs in the Member 4 of Paleogene Shahejie Formation in Hexiwu Structural Zone of Langgu Sag, Jizhong Depression. Journal of Palaeogeography, 15(5): 593-604 (in Chinese with English abstract).

[5]

Cao, Y. C., Yuan, G. H., Yang, H. J., et al., 2022a. Current Situation of Oil and Gas Exploration and Research Progress of the Origin of High⁃Quality Reservoirs in Deep⁃Ultra⁃Deep Clastic Reservoirs of Petroliferous Basins. Acta Petrolei Sinica, 43(1): 112-140 (in Chinese with English abstract).

[6]

Cao, Y. C., Yuan, G. H., Wang, Y. Z., et al., 2022b. Understanding of Relay Pore⁃Forming of Feldspar Dissolution in Deep Feldspar⁃Rich Clastic Reservoirs in Typical Oil⁃Gas⁃Bearing Basins and Its Petroleum Geological Significance. Scientia Sinica Terrae, 52(9): 1694-1725 (in Chinese).

[7]

Chen, G., Kan, H. G., Chen, D. Q., et al., 2019. Reservoir Characteristics and Differential Study of Shan 1 and Shan 23 Reservoirs in Yan113⁃Yan133 Well Blocks. Petroleum Geology and Engineering, 33(6): 1-4 (in Chinese with English abstract).

[8]

Chen, Y. M., Xie, M. Y., Sun, X. N., et al., 2021. Types and Geneses of Low Permeability Reservoirs in Zhu Ⅰ Depression, Pearl River Mouth Basin. Sino⁃Global Energy, 26(9): 38-44 (in Chinese with English abstract).

[9]

Dowey, P. J., Hodgson, D. M., Worden, R. H., 2012. Pre⁃Requisites, Processes, and Prediction of Chlorite Grain Coatings in Petroleum Reservoirs: A Review of Subsurface Examples. Marine and Petroleum Geology, 32(1): 63-75. https://doi.org/10.1016/j.marpetgeo.2011.11.007

[10]

Ehrenberg, S. N., 1995. Measuring Sandstone Compaction from Modal Analyses of Thin Sections; How to do It and What the Results Mean. Journal of Sedimentary Research, 65(2a): 369-379. https://doi.org/10.1306/D42680C7⁃2B26⁃11D7⁃8648000102C1865D

[11]

Grigsby, J. D., 2001. Origin and Growth Mechanism of Authigenic Chlorite in Sandstones of the Lower Vicksburg Formation, South Texas. Journal of Sedimentary Research, 71(1): 27-36. https://doi.org/10.1306/060100710027

[12]

Ji, Y. L., Zhao, X. Z., Shan, J. F., et al., 2009. Depositional Architecture of Paleogene System Tectonic Sequences and Evolvement of Sedimentary System in Jizhong Depression. Acta Sedimentologica Sinica, 27(1): 48-56 (in Chinese with English abstract).

[13]

Jia, C. Z., 2023. Key Scientific and Technological Problems of Petroleum Exploration and Development in Deep and Ultra⁃Deep Formation. Journal of China University of Petroleum (Edition of Natural Science), 47(5): 1-12 (in Chinese with English abstract).

[14]

Jiang, S., Wang, H., Weimer, P., 2008. Sequence Stratigraphy Characteristics and Sedimentary Elements in Deepwater. Earth Science, 33(6): 825-833 (in Chinese with English abstract).

[15]

Lan, Y. F., Huang, S. J., Liang, R., et al., 2011. Influence of Authigenic Chlorite on the Relationship of Porosity to Permeability in the Sandstone Reservoir: A Case Study from Chang⁃8 Oil⁃Bearing Formation of Triassic in Jiyuan⁃Huaqing Area, Ordos Basin. Journal of Chengdu University of Technology (Science & Technology Edition), 38(3): 313-320 (in Chinese with English abstract).

[16]

Li, Y. L., Jia, A. L., He, D. B., 2013. Control Factors on the Formation of Effective Reservoirs in Tight Sands: Examples from Guang’an and Sulige Gasfields. Acta Petrolei Sinica, 34(1): 71-82 (in Chinese with English abstract).

[17]

Li, Z. J., Xiao, Y., Tian, J. Z., et al., 2024. Potentials and Favorable Directions for New Fields, New Types of Oil⁃Gas Exploration in Jizhong Depression, Bohai Bay Basin. Acta Petrolei Sinica, 45(1): 69-98 (in Chinese with English abstract).

[18]

Liu, J. G., Wang, Y. Z., Cao, Y. C., et al., 2023. Factors Controlling the Development of Deep and Ultra⁃Deep Coarse⁃Grained Siliciclastic Reservoirs with High Quality in the Steep Slope Zone of the Minfeng Sub⁃Sag, Dongying Sag, Bohai Bay Basin. Oil & Gas Geology, 44(5): 1203-1217 (in Chinese with English abstract).

[19]

Liu, L., Zhao, Y. C., Wang, Y. J., et al., 2015. Genetic Mechanism of Ultra⁃Low Permeability Reservoir of Chang 63 Gravity Flow Deposits in B153 Block, Huaqing. Journal of Northeast Petroleum University, 39(6): 66-75, 5 (in Chinese with English abstract).

[20]

Liu, Y. P., Wen, H. G., Huang, J. L., et al., 2016. Characteristics of Authigenic Chlorite of Toutunhe Formation in the Northern Region of Fubei, Junggar Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 43(4): 487-496 (in Chinese with English abstract).

[21]

Lundegard, P. D., 1992. Sandstone Porosity Loss; A “Big Picture” View of the Importance of Compaction. Journal of Sedimentary Research, 62(2): 250-260. https://doi.org/10.1306/d42678d4⁃2b26⁃11d7⁃8648000102c1865d

[22]

Luo, W., Ni, L. M., 2020. Main Controlling Factors of Formation and Evolution of Effective Reservoir in Tight Sandstone: Taking Bashijiqike Formation Sandstone Reservoir in Kuqa Depression as an Example. Fault⁃Block Oil & Gas Field, 27(1): 7-12 (in Chinese with English abstract).

[23]

Morad, S., Ketzer, J. M., De Ros, L. F., 2000. Spatial and Temporal Distribution of Diagenetic Alterations in Siliciclastic Rocks: Implications for Mass Transfer in Sedimentary Basins. Sedimentology, 47(s1): 95-120. https://doi.org/10.1046/j.1365⁃3091.2000.00007.x

[24]

Ronald, C. S., Crossey, L. J., Hagen, E. S., et al., 1989. Organic⁃Inorganic Interactions and Sandstone Diagenesis. AAPG Bulletin, 73(1): 1-23. https://doi.org/10.1306/703C9AD7⁃1707⁃11D7⁃8645000102C1865D

[25]

Scherer, M., 1987. Parameters Influencing Porosity in Sandstones: A Model for Sandstone Porosity Prediction. AAPG Bulletin, 71(5): 485-491. https://doi.org/10.1306/94886ED9⁃1704⁃11D7⁃8645000102C1865D

[26]

Shan, X., Dou, Y., Liu, C. W., et al., 2023. Characteristics and Controlling Factors of Deep Buried Tight Conglomerate: A Case Study from the Permian Upper Urho Formation of Fukang Sag,Junggar Basin. Acta Sedimentologica Sinica, 1-18 (in Chinese with English abstract). https://doi.org/10.14027/j.issn.1000⁃0550.2023.097

[27]

Song, L. D., Li, M. R., Yu, H. P., et al., 2022. Selective Dissolution Process of Feldspar and Calcite Minerals under Different pH Conditions. Journal of Northeast Petroleum University, 46(3): 74-83, 10 (in Chinese with English abstract).

[28]

Wei, Q. L., Cui, G. X., Liu, M. R., et al., 2021. Reservoir Characteristics and Controlling Factors of Permian Lower He8 Member in Southwestern Ordos Basin. Lithologic Reservoirs, 33(2): 17-25 (in Chinese with English abstract).

[29]

Wilson, J. C., McBride, E. F., 1988. Compaction and Porosity Evolution of Pliocene Sandstones, Ventura Basin, California. AAPG Bulletin, 72(6): 664-681. https://doi.org/10.1306/703C8EFC⁃1707⁃11D7⁃8645000102C1865D

[30]

Worden, R. H., Griffiths, J., Wooldridge, L. J., et al., 2020. Chlorite in Sandstones. Earth⁃Science Reviews, 204: 103105. https://doi.org/10.1016/j.earscirev.2020.103105

[31]

Wu, J. Y., Lyu, Z. X., Qing, Y. H., et al., 2020. Genesis of Authigenic Chlorite in Tight Oil Reservoirs and Its Influence on Physical Properties: A Case Study of Shaximiao Formation in NE of Central Sichuan Basin. Lithologic Reservoirs, 32(1): 76-85 (in Chinese with English abstract).

[32]

Xi, M. H., 2023. Controlling Effect of Chlorite on Reservoir Development in the North⁃Central Xihu Depression. Offshore Oil, 43(4): 72-76 (in Chinese with English abstract).

[33]

Xu, C. Q., Zhang, X. T., Yao, C., et al., 2019. Characteristics and Physical Properties Controlling Factors of Low Permeability Reservoir of E3 d2 in BZ2⁃1 Oilfield of Bohai Sea. China Offshore Oil and Gas,31(1): 13-21 (in Chinese with English abstract).

[34]

Yuan, G. H., Cao, Y. C., Schulz, H. M., et al., 2019. A Review of Feldspar Alteration and Its Geological Significance in Sedimentary Basins: From Shallow Aquifers to Deep Hydrocarbon Reservoirs. Earth⁃Science Reviews, 191: 114-140. https://doi.org/10.1016/j.earscirev.2019.02.004

[35]

Zhang, G. Y., Ma, F., Liang, Y. B., et al., 2015. Domain and Theory⁃Technology Progress of Global Deep Oil & Gas Exploration. Acta Petrolei Sinica, 36(9): 1156-1166 (in Chinese with English abstract).

[36]

Zhou, L., 2014. Genetic Mechanism and Distribution Patterns of Medium⁃Deep High⁃Quality Clastic Reservoirs of Paleogene in Jizhong Depression (Dissertation). China University of Petroleum (Huadong),Qingdao (in Chinese with English abstract).

[37]

Zhu, Y., Ding, X. Q., Hu, X., 2017. Occurrence, Growth Mechanism and Distribution Law of Chlorite Clay in Yingcheng Formation of Longfengshan Gas Field. Journal of Northeast Petroleum University, 41(5): 62-69, 7-8 (in Chinese with English abstract).

基金资助

国家重点研发计划项目(2022YFF0801202)

国家重点研发计划项目(2022YFF0801200)

湖北省科技厅国际合作项目(2024EHA026)

国家科技重大专项课题(2024ZD1400104)

中国石油华北油田分公司项目(HBYT⁃2022⁃JS⁃347)

AI Summary AI Mindmap
PDF (9135KB)

127

访问

0

被引

详细

导航
相关文章

AI思维导图

/