四川盆地中部地区寒武系洗象池组油气充注特征

李纯泉 , 陈红汉 , 韩广金 , 汪泽成 , 姜华

地球科学 ›› 2025, Vol. 50 ›› Issue (06) : 2227 -2238.

PDF (11070KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (06) : 2227 -2238. DOI: 10.3799/dqkx.2025.017

四川盆地中部地区寒武系洗象池组油气充注特征

作者信息 +

Hydrocarbon Charging Characteristics of Cambrian Xixiangchi Formation in Central Area of Sichuan Basin

Author information +
文章历史 +
PDF (11334K)

摘要

洗象池组是四川盆地油气勘探的潜在目的层,但其储集空间成岩矿物充填特征及油气充注特征鲜有详细刻画.基于24块岩心样品,通过开展详尽的薄片镜下观察、阴极发光测试、微观烃类痕迹检测及流体包裹体系统分析,对四川盆地中部地区寒武系洗象池组储集空间及其油气充注特征进行了解剖.结果表明,洗象池组以溶蚀孔(洞)、粒(晶)间孔及裂缝为主要储集空间,充填了白云石、方解石、石英等多种、多期次成岩矿物及沥青.沥青及成岩矿物中的(含)沥青包裹体、天然气包裹体等微观痕迹记录了油气活动多期性及调整改造过程.油气充注特征总体表现为印支早期(早三叠世)发生古油藏形成,印支晚期至燕山早期(晚三叠世至早-中侏罗世)发生大规模油裂解成气形成第一期天然气充注,燕山中期(晚侏罗世至早白垩世)发生剩余油裂解成气形成第二期天然气充注,燕山晚期(中-晚白垩世)发生调整改造形成第三期天然气充注.

Abstract

The Xixiangchi Formation is a potential target for oil and gas exploration in the Sichuan basin, yet detailed descriptions of its reservoir space diagenetic mineral filling characteristics and hydrocarbon charging features are scarce. Based on 24 core samples, in this study it dissects the reservoir spaces and hydrocarbon charging characteristics of the Cambrian Xixiangchi Formation in the central area of the Sichuan basin through detailed thin-section microscopic observations, cathodoluminescence testing, microscopic hydrocarbon trace detection, and systematic fluid inclusion analysis. The results indicate that the Xixiangchi Formation primarily comprises dissolution pores (vugs), interparticle (intercrystalline) pores, and fractures as its reservoir spaces, which are filled with multiple types and stages of diagenetic minerals such as dolomite, calcite, and quartz, as well as bitumen. Microscopic traces such as bitumen filled in reservoir spaces, bitumen or bitumen-bearing inclusions and natural gas inclusions trapped in diagenetic minerals record multiple stages of hydrocarbon activities and the process of adjustment and modification. The overall hydrocarbon charging characteristics show that ancient oil reservoirs were formed in the early Indosinian period (Early Triassic). Large-scale oil cracking into gas occurred from the late Indosinian to early Yanshanian periods (Late Triassic to Early-Middle Jurassic), forming the first stage of natural gas charging. Residual oil cracking into gas occurred in the middle Yanshanian period (Late Jurassic to Early Cretaceous), forming the second stage of natural gas charging. Adjustment and modification took place in the late Yanshanian period (Middle-Late Cretaceous), forming the third stage of natural gas charging.

Graphical abstract

关键词

储集空间 / 成岩矿物充填序列 / 流体包裹体 / 油气充注 / 洗象池组 / 四川盆地 / 石油地质.

Key words

reservoir space / diagenetic mineral filling sequence / fluid inclusion / hydrocarbon charging / Xixiangchi Formation / Sichuan basin / petroleum geology

引用本文

引用格式 ▾
李纯泉,陈红汉,韩广金,汪泽成,姜华. 四川盆地中部地区寒武系洗象池组油气充注特征[J]. 地球科学, 2025, 50(06): 2227-2238 DOI:10.3799/dqkx.2025.017

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

四川盆地具有多类型盆地叠合、多个含油气系统叠置、常规-非常规资源共生、天然气资源占主导等地质特征,是一个超级含油气盆地(Fryklund and Stark,2020;刘树根等,2020;戴金星等,2021;汪泽成等,2022).盆地内的油气勘探总体上体现出海相与陆相层系、深层与超深层、常规与非常规共同发展的特点,近年来已进入天然气发展的黄金时期(马新华,2017),并不断在多区域、多层系的常规和非常规天然气勘探中取得重大突破(杨雨等,2022,2023a,2023b;何贵松等,2023),展示出巨大的油气勘探潜力.

四川盆地继安岳震旦系灯影组发现原油裂解气特大型气田后,川中高石梯-磨溪地区寒武系龙王庙组也已建成特大型气田(杜金虎等,2014;邹才能等,2014),而同样具有良好油气成藏条件的寒武系洗象池组却迄今未有大的发现.但是,洗象池组在川中地区高石16井、磨溪23井、南充1井的测试过程中获得工业气流,其显示出了良好的油气勘探前景,并被作为四川盆地增储上产的接替勘探领域得到更多重视.前人针对全盆地或局部地区的洗象池组开展了大量工作,主要集中在层序地层与岩相古地理(李伟等,2019;谷明峰等,2020;白壮壮等,2021;文华国等,2022)、沉积相(井攀等,2016;刘鑫等,2018;贾鹏等,2021)、储层特征与主控因素(周磊等,2014;李文正等,2016;林怡等,2017;石书缘等,2020;邓成昆等,2022;石书缘等,2022)、有利勘探区带预测(李文正等,2020;文华国等,2022)等方面,而在油气成藏的主控因素(林怡等,2020;孙自明等,2021)以及成藏过程或模式(李英强等,2022;高键等,2023;李纯泉等,2023)方面仅作了有限的探讨,更是缺乏对储层油气充注特征方面的直接刻画和研究.本文将对洗象池组钻井岩心开展手标本观察以及薄片镜下鉴定,在储集空间及其充填特征刻画基础上,结合微观烃类检测及流体包裹体系统分析,详细阐述四川盆地中部地区寒武系洗象池组油气充注特征,以进一步明确其油气勘探潜力.

1 区域地质概况

四川盆地是一个在上扬子克拉通基础上发展起来的大型叠合盆地,经历过多期构造运动的改造(何登发等,2011),可划分为6个二级构造单元,其中部地区在构造上属于川中平缓构造带(图1a),包含高石梯、磨溪、龙女寺、广安、合川等构造.

四川盆地寒武系洗象池组整体为一套镶边碳酸盐台地沉积(谷明峰等,2020;贾鹏等,2021),岩性以浅灰色、灰色、灰黄色白云岩、泥质白云岩为主,局部含砂质,夹鲕粒白云岩及硅质条带或结核.洗象池组发育滩相白云岩规模储层(石书缘等,2022),存在多种颗粒滩沉积组合模式(章学刚等,2022;邓成昆等,2022),且储层的形成与分布主要受沉积相、准同生溶蚀作用和表生岩溶作用的共同控制(谷明峰等,2020).洗象池组与下伏高台组和上覆下奥陶统桐梓组整体上均呈整合接触,纵向上可分为3段(图1b).四川盆地中部地区以川中古隆起为核心,其形成整体表现为一同沉积隆起,在后期多构造旋回中,又经历了继承性隆升、整体沉降及调整定型等过程(魏国齐等,2015;苏桂萍等,2020).由于川中古隆起的形成与继承性隆升,地层整体遭受抬升剥蚀,洗象池组在平面上形成一个中部宽、南北两侧窄的环状地层剥蚀带,而且有利的颗粒滩相储层也主要沿川中古隆起斜坡呈带状分布(图1c).

2 样品和方法

在岩心观察基础上,采集24块洗象池组岩心样品,系统开展镜下岩石薄片鉴定、铸体薄片观察、阴极发光测试、微观烃类痕迹检测以及流体包裹体系统分析等工作,揭示四川盆地中部地区洗象池组储集空间成岩矿物充填及油气充注特征.样品采自位于洗象池组剥蚀带内的磨溪39井和位于剥蚀带外的广探2井(图1c),分别采集样品6块和18块(表1).上述所有的镜下观察和测试分析工作均在中国地质大学(武汉)构造与油气资源教育部重点实验室完成.

常规的岩石薄片鉴定、铸体薄片观察在德国Leica DM2700P偏光显微镜下完成,阴极发光测试利用英国CITL CL8200 MK5型阴极发光仪开展.微观烃类痕迹检测以及流体包裹体系统分析综合利用英国Renishaw RM-1000型激光拉曼光谱仪,以及配备有美国Ocean Optics Maya2000 Pro分光计和英国Linkam THMSG600型地质专用冷热台以及100倍长焦工作物镜的Nikon 80i双通道荧光显微镜进行.激光拉曼光谱仪使用532 nm波长Ar+激光器,能有效获取沥青和烃类气体成分信息;冷热台进行了合成流体包裹体校准,并分级控制升温速率,以确保流体包裹体显微测温获得测试精度为0.1 ℃的可靠均一温度.

3 储集空间及其成岩矿物充填特征

3.1 储集空间类型

四川盆地寒武系洗象池组储层类型主要为裂缝-孔隙(洞)型(林怡等,2017),其储集空间类型可归纳为孔隙、溶洞和裂缝3大类共9小类(石书缘等,2020).本次的岩心手标本及镜下铸体薄片观察结果表明,四川盆地中部地区磨溪39井和广探2井洗象池组白云岩储层中的储集空间类型均以溶蚀孔(洞)为主,同时发育一定数量的粒间孔、晶间孔和裂缝(图2).

溶蚀孔(洞)在所有样品中均大量发育,并且在岩心手标本尺度即可见部分溶蚀孔(洞)半充填或全充填(图2a~2f).镜下薄片观察显示,溶蚀孔既可以粒间溶孔的形式发育于残余颗粒白云岩的粒间,又可以晶间溶孔的形式发育于晶粒白云岩的晶间(图2g~2k).就溶蚀孔(洞)的成因而言,既有表生溶蚀成因又有埋藏溶蚀成因,因此体现出溶蚀孔(洞)的形成具有多期性(李璐萍等,2022).

粒间孔主要是指除次生粒间溶孔以外的原生粒间孔隙,多表现为残余形式,发育在残余颗粒白云岩中.晶间孔主要是指除次生晶间溶孔以外的原生晶间孔隙,也多表现为残余形式,多发育于自形较好的晶粒白云岩中,通常被沥青部分充填.粒间孔和晶间孔多受后期成岩流体改造,进而形成粒间溶孔和晶间溶孔(图2g~2k),从而成为重要的油气储集空间.

裂缝主要包括构造缝、溶缝和缝合线(图2c、2e~2f、2k~2l).洗象池组经历了多期构造运动改造,因此构造缝的形成具有多期性,既有无任何充填物的构造缝,又有被白云石或方解石半充填的构造缝,甚或是被沥青充填的构造缝.溶缝多呈顺层发育,且整体上延展规模较小,多被白云石和沥青全充填(图2e).缝合线是中-深埋藏阶段压溶作用的产物,多具有沥青质残留,表明曾充当过有效的油气运移通道(图2f).

3.2 成岩矿物充填特征

磨溪39井和广探2井岩心手标本及镜下薄片观察表明,四川盆地中部地区洗象池组储层储集空间中普遍充填白云石、方解石、沥青,以及石英(图3).溶蚀孔(洞)和溶缝中最为常见的矿物充填序列为白云石→沥青(图3a),观察到最为全面的矿物充填序列是白云石I→沥青I→白云石II→沥青II+石英(图3f).白云石和沥青均显示出至少两期充填的特征.存在两期白云石充填时,早期充填的白云石通常为粉-细晶白云石,晚期充填的白云石通常为中-粗晶白云石,且多为热液成因鞍状白云石(图3e);存在两期沥青充填时,早期沥青通常位于孔隙壁或紧随粉-细晶白云石出现且量少,晚期沥青充填孔隙中央且量大,甚至完全填满整个孔隙空间(图3a、3d).石英通常位于矿物充填序列的末端,出现在残余孔隙中间或与晚期沥青一起全充填整个孔隙(图3c、3f),表现为晚期热液活动伴生矿物.此外,阴极发光显示方解石与石英局部成交代关系产出.各类成岩胶结矿物的充填降低了油气赋存空间,但以上矿物充填特征揭示了洗象池组储层曾经历过多期热液流体的改造,也会在一定程度上改善储层物性,而早期充填的油也因热液活动和深埋增温遭受破坏,逐步裂解成气并最终充注在各类储集空间中形成现今的气藏分布.

4 油气活动微观痕迹

储层中发生油气的渗流或充注成藏等活动会留下诸多微观痕迹.对磨溪39井和广探2井洗象池组储层样品的镜下薄片观察及微观烃类痕迹检测表明,除局部存在直观的油浸演变至沥青质残余的痕迹(尤其是在高渗透带更明显)(图3d)外,溶蚀孔(洞)、粒(晶)间孔和裂缝等储集空间中大量充填的沥青(图2~图3和图4a~4c)、充填于储集空间的成岩矿物中捕获的(含)沥青包裹体(图4d~4f)以及天然气包裹体(图5)是油气活动的直接证据.

4.1 沥青及(含)沥青包裹体

沥青及(含)沥青包裹体是古油气遭受破坏留下的残余,直接揭示了曾经存在的油气运聚作用过程.研究区洗象池组白云岩储层中沥青及(含)沥青包裹体均大量存在(图4),对其开展的激光拉曼光谱分析也表现出具有明显的D峰和G峰特征.沥青普遍充填于溶蚀孔(洞)、晶间孔等储集空间内(图2g~2k,图4a~4c),且沥青至少发育两期(图3d~3f),在溶蚀孔(洞)壁附着的沥青表明了早期存在原油充注,晚期全充填或部分充填剩余溶蚀孔(洞)的沥青,揭示了原油的裂解成气过程.(含)沥青包裹体主要捕获在溶蚀孔(洞)充填的白云石、石英、方解石等不同类型、不同期次成岩胶结物中(图4d~4f),体现了原油的裂解也存在阶段性.

4.2 天然气包裹体

天然气包裹体是地质历史时期天然气的原始样本,是天然气活动的直接证据.在溶蚀孔(洞)、粒(晶)间孔及裂缝等充填的各类胶结物中,天然气包裹体大量发育(图5a~5e),且典型天然气包裹体的激光拉曼光谱揭示包裹体所捕获的天然气以甲烷为主(图5f).部分天然气包裹体的激光拉曼光谱中显示出沥青质的D峰和G峰特征,证明其成因与油裂解相关.

5 油气充注特征

5.1 流体包裹体显微测温结果

本次重点对溶蚀孔(洞)和裂缝充填成岩矿物中的流体包裹体开展了显微测温工作.综合磨溪39井和广探2井共10个样品的显微测温结果表明,溶蚀孔(洞)充填粉-细晶白云石中原生盐水包裹体均一温度主体分布在120~150 ℃,次生盐水包裹体存在两个主要分布范围,分别是140~150 ℃和155~180 ℃(图6a);中-粗晶白云石中原生盐水包裹体均一温度主要分布在140~155 ℃和170~185 ℃(图6b);方解石中原生盐水包裹体均一温度主要分布在180~200 ℃,少量次生盐水包裹体均一温度分布在170~185 ℃(图6c);石英中检测到两期原生盐水包裹体,均一温度范围分别为130~145 ℃和175~190 ℃,一期次生盐水包裹体均一温度范围为190~210 ℃(图6d).整体上,所观测的盐水包裹体几乎都与(含)沥青包裹体或天然气包裹体相共生,流体包裹体显微测温分析结果揭示了洗象池组存在多期次的油气充注成藏以及后期的调整改造过程.

5.2 油气充注期次及时期

通过流体包裹体均一温度与带热史演化的埋藏史图相结合,可有效确定出流体包裹体的捕获时间,从而间接地约束出油气成藏期次和时期.将磨溪39井和广探2井显微测温所获得的均一温度数据分别投影到各自对应的热史-埋藏史图中,即可获得一系列的包裹体捕获时间(图7a,7b).整体上可以看出,洗象池组在印支期早期(早三叠世)发生了一次快速的油气充注成藏,主要形成古油藏,伴随少量伴生气充注,包裹体记录的温度为126~142 ℃.该期油气主要来自二叠纪末期筇竹寺组烃源岩成熟高峰生烃,且海西晚期形成的走滑断裂及加里东期形成的走滑断裂的活化为油气进入洗象池组提供了通道,从而奠定了洗象池组的油气基础.印支晚期至燕山早期(晚三叠世至早-中侏罗世),洗象池组储层随埋深增大地温增加,达到原油裂解门限温度,古油藏中的原油大规模裂解形成第一期天然气充注,包裹体记录的温度为139~179 ℃.此一时期,由于局部走滑断裂的继承性活动,洗象池组同时也接受来自下部的天然气充注.燕山中期(晚侏罗世至早白垩世),洗象池组进一步深埋,地温进一步升高,剩余油完全裂解形成第二期天然气充注,包裹体记录的温度为177~202 ℃;燕山晚期(中-晚白垩世),随着地层的抬升剥蚀,洗象池组气藏遭受调整改造形成第三期天然气充注,包裹体记录的温度为197~219 ℃(图7c).

6 结论

(1)四川盆地中部地区上寒武统洗象池组储层孔隙空间以溶蚀孔(洞)、粒间孔、晶间孔及裂缝为主,普遍充填白云石、方解石和石英等成岩矿物以及沥青,且沥青和白云石至少存在两期充填.

(2)储集空间中充填的沥青以及成岩矿物中捕获的大量(含)沥青包裹体和纯天然气包裹体是油气活动的直接证据,揭示了洗象池组储层经历了活跃的油气充注过程,且存在多期次.

(3)流体包裹体显微测温结果结合埋藏史约束四川盆地中部洗象池组存在一期古油藏形成和三期天然气充注成藏过程:古油藏的形成发生在印支早期(早三叠世);发生在印支晚期至燕山早期(晚三叠世至早-中侏罗世)和燕山中期(晚侏罗世至早白垩世)的两期天然气充注分别为大规模油裂解成气充注成藏和剩余油裂解成气充注成藏;而发生在燕山晚期(中-晚白垩世)的天然气充注成藏则是气藏调整改造的结果,最终造就了现今洗象池组天然气藏的分布特征.

参考文献

[1]

Bai,Z.Z.,Yang,W.,Xie,W.R.,et al.,2021.Sequence Stratigraphy of Cambrian Xixiangchi Group and Development Characteristics of Intra-Platform Bank in Central Sichuan Basin.Natural Gas Geoscience,32(2): 191-204 (in Chinese with English abstract).

[2]

Dai,J.X.,Ni,Y.Y.,Liu,Q.Y.,et al.,2021.Sichuan Super Gas Basin in Southwest China.Petroleum Exploration and Development,48(6): 1081-1088 (in Chinese with English abstract).

[3]

Deng,C.K.,Li,T.,Yang,W.Q.,et al.,2022.Characteristics and Main Controlling Factors of Shoal Reservoirs in the Middle-Upper Cambrian Xixiangchi Formation,Central Sichuan Basin.Journal of Palaeogeography,24(2): 292-307 (in Chinese with English abstract).

[4]

Du,J.H.,Zou,C.N.,Xu,C.C.,et al.,2014.Theoretical and Technical Innovations in Strategic Discovery of a Giant Gas Field in Cambrian Longwangmiao Formation of Central Sichuan Paleo-Uplift,Sichuan Basin.Petroleum Exploration and Development,41(3): 268-277 (in Chinese with English abstract).

[5]

Fryklund,B.,Stark,P.,2020.Super Basins:New Paradigm for Oil and Gas Supply.AAPG Bulletin,104(12): 2507-2519.https://doi.org/10.1306/09182017314

[6]

Gao,J.,Li,H.L.,He,Z.L.,et al.,2023.Multi-Stage Hydrocarbon Accumulation in Cambrian Xixiangchi Group,Pingqiao Area,Southeastern Sichuan and Its Implications for Hydrocarbon Exploration.Earth Science Frontiers,30(6): 263-276 (in Chinese with English abstract).

[7]

Gu,M.F.,Li,W.Z.,Zou,Q.,et al.,2020.Lithofacies Palaeogeography and Reservoir Characteristics of the Cambrian Xixiangchi Formation in Sichuan Basin.Marine Origin Petroleum Geology,25(2): 162-170 (in Chinese with English abstract).

[8]

He,D.F.,Li,D.S.,Zhang,G.W.,et al.,2011.Formation and Evolution of Multi-Cycle Superposed Sichuan Basin,China.Chinese Journal of Geology (Scientia Geologica Sinica),46(3): 589-606 (in Chinese with English abstract).

[9]

He,G.S.,He,X.P.,Gao,Y.Q.,et al.,2023.Discovery of Shale Gas of Permian Longtan Formation in Nanchuan Area,Southeast Sichuan Basin.Geology in China,50(3): 965-966 (in Chinese with English abstract).

[10]

Jia,P.,Huang,F.X.,Lin,S.G.,et al.,2021.Sedimentary Facies and Model Characteristics of Middle Upper Cambrian Xixiangchi Group in Sichuan Basin and Its Adjacent Areas.Geoscience,35(3): 807-818 (in Chinese with English abstract).

[11]

Jing,P.,Xu,F.G.,Xiao,Y.,et al.,2016.The Bank Facies Distribution of Upper Cambrian Xixiangchi Formation in the Southern Area of Central Sichuan Basin.Journal of Northeast Petroleum University,40(1): 40-50 (in Chinese with English abstract).

[12]

Li,C.Q.,Chen,H.H.,Tang,D.Q.,et al.,2023.Strike-Slip Faults Controlled “Floor Type” Hydrocarbon Accumulation Model in Gaoshiti-Moxi Area,Sichuan Basin: A Case Study of Sinian-Cambrian.Earth Science,48(6): 2254-2266 (in Chinese with English abstract).

[13]

Li,L.P.,Liang,J.T.,Liu,S.B.,et al.,2022.Diagenesis and Pore Evolution of Dolomite Reservoirs of Cambrian Xixiangchi Formation in Central Sichuan Basin.Lithologic Reservoirs,34(3): 39-48 (in Chinese with English abstract).

[14]

Li,W.,Fan,R.,Jia,P.,et al.,2019.Sequence Stratigraphy and Lithofacies Paleogeography of Middle-Upper Cambrian Xixiangchi Group in Sichuan Basin and Its Adjacent Area,SW China.Petroleum Exploration and Development,46(2): 226-240 (in Chinese with English abstract).

[15]

Li,W.Z.,Wen,L.,Gu,M.F.,et al.,2020.Development Models of Xixiangchi Formation Karst Reservoirs in the Late Caledonian in the Central Sichuan Basin and Its Oil-Gas Exploration Implications.Natural Gas Industry,40(9): 30-38 (in Chinese with English abstract).

[16]

Li,W.Z.,Zhou,J.G.,Zhang,J.Y.,et al.,2016.Main Controlling Factors and Favorable Zone Distribution of Xixiangchi Formation Reservoirs in the Sichuan Basin.Natural Gas Industry,36(1): 52-60 (in Chinese with English abstract).

[17]

Li,Y.Q.,Gao,J.,Li,S.J.,et al.,2022.Hydrocarbon Accumulation Model and Exploration Prospect of the Xixiangchi Group of Middle-Upper Cambrian in the Sichuan Basin.Natural Gas Industry,42(3): 29-40 (in Chinese with English abstract).

[18]

Lin,Y.,Chen,C.,Shan,S.J.,et al.,2017.Reservoir Characteristics and Main Controlling Factors of the Cambrian Xixiangchi Formation in the Sichuan Basin.Petroleum Geology & Experiment,39(5): 610-617 (in Chinese with English abstract).

[19]

Lin,Y.,Zhong,B.,Chen,C.,et al.,2020.Geological Characteristics and Controlling Factors of Gas Accumulation of Xixiangchi Formation in Central Sichuan Basin,China.Journal of Chengdu University of Technology (Science & Technology Edition),47(2): 150-158 (in Chinese with English abstract).

[20]

Liu,S.G.,Deng,B.,Sun,W.,et al.,2020.May Sichuan Basin be a Super Petroliferous Basin? Journal of Xihua University (Natural Science Edition),39(5): 20-35 (in Chinese with English abstract).

[21]

Liu,X.,Zeng,Y.Y.,Wen,L.,et al.,2018.Distribution Prediction on Favorable Sedimentary-Facies Belts of Xixiangchi Formation,Central Sichuan Basin.Natural Gas Exploration and Development,41(2): 15-21 (in Chinese with English abstract).

[22]

Ma,X.H.,2017.A Golden Era for Natural Gas Development in the Sichuan Basin.Natural Gas Industry,37(2): 1-10 (in Chinese with English abstract).

[23]

Shi,S.Y.,Hu,S.Y.,Wang,Z.C.,et al.,2022.Characteristics and Exploration Prospect of Dolograinstone Beach Reservoir in Xixiangchi Formation,Cambrian,Sichuan Basin.Petroleum Geology & Experiment,44(3): 433-447,475 (in Chinese with English abstract).

[24]

Shi,S.Y.,Wang,T.S.,Liu,W.,et al.,2020.Reservoir Characteristic and Gas Exploration Potential in Cambrian Xixiangchi Formation of Sichuan Basin.Natural Gas Geoscience,31(6): 773-785 (in Chinese with English abstract).

[25]

Su,G.P.,Li,Z.Q.,Ying,D.L.,et al.,2020.Formation and Evolution of the Caledonian Paleo-Uplift and Its Genetic Mechanism in the Sichuan Basin.Acta Geologica Sinica,94(6): 1793-1812 (in Chinese with English abstract).

[26]

Sun,Z.M.,Sun,W.,Lin,J.H.,et al.,2021.Hydrocarbon Accumulation Conditions and Main Controlling Factors of the Middle-Upper Cambrian Xixiangchi Group in the Eastern Sichuan Basin.Petroleum Geology & Experiment,43(6): 933-940 (in Chinese with English abstract).

[27]

Wang,Z.C.,Shi,Y.Z.,Wen,L.,et al.,2022.Exploring the Potential of Oil and Gas Resources in Sichuan Basin with Super Basin Thinking.Petroleum Exploration and Development,49(5): 847-858 (in Chinese with English abstract).

[28]

Wei,G.Q.,Yang,W.,Du,J.H.,et al.,2015.Tectonic Features of Gaoshiti-Moxi Paleo-Uplift and Its Controls on the Formation of a Giant Gas Field,Sichuan Basin,SW China.Petroleum Exploration and Development,42(3): 257-265 (in Chinese with English abstract).

[29]

Wen,H.G.,Liang,J.T.,Zhou,G.,et al.,2022.Sequence-Based Lithofacies Paleogeography and Favorable Natural Gas Exploration Areas of Cambrian Xixiangchi Formation in Sichuan Basin and Its Periphery.Lithologic Reservoirs,34(2): 1-16 (in Chinese with English abstract).

[30]

Yang,Y.,Wang,H.,Xie,J.R.,et al.,2023a.Exploration Breakthrough and Prospect of Permian Marine Shale Gas in the Kaijiang-Liangping Trough,Sichuan Basin.Natural Gas Industry,43(11): 19-27(in Chinese with English abstract).

[31]

Yang,Y.,Xie,J.R.,Cao,Z.L.,et al.,2023b.Forming Conditions and Key Technologies for Exploration and Development of Large Tight Sandstone Gas Reservoirs in Shaximiao Formation,Tianfu Gas Field of Sichuan Basin.Acta Petrolei Sinica,44(6): 917-932(in Chinese with English abstract).

[32]

Yang,Y.,Wen,L.,Song,Z.Z.,et al.,2022.Breakthrough and Potential of Natural Gas Exploration in Multi-Layer System of Penglai Gas Area in the North of Central Sichuan Paleo-Uplift.Acta Petrolei Sinica,43(10): 1351-1368,1394(in Chinese with English abstract).

[33]

Zhang,X.G.,Xiong,R.,Deng,Q.J.,et al.,2022.Sedimentary Characteristics and Controls of Reservoirs of the Shoals of Xixiangchi Formation in Sichuan Basin.Science Technology and Engineering,22(4): 1389-1398 (in Chinese with English abstract).

[34]

Zhou,L.,Kang,Z.H.,Liu,Z.,et al.,2014.Characteristics of Xixiangchi Group Carbonate Reservoir Space in Leshan-Longnvsi Palaeo-Uplift,Sichuan Basin.Journal of Central South University (Science and Technology),45(12): 4393-4401 (in Chinese with English abstract).

[35]

Zou,C.N.,Du,J.H.,Xu,C.C.,et al.,2014.Formation,Distribution,Resource Potential and Discovery of the Sinian-Cambrian Giant Gas Field,Sichuan Basin,SW China.Petroleum Exploration and Development,41(3): 278-293 (in Chinese with English abstract).

[36]

白壮壮,杨威,谢武仁,等,2021.川中地区寒武系洗象池群层序地层及台内滩发育特征.天然气地球科学,32(2): 191-204.

[37]

戴金星,倪云燕,刘全有,等,2021.四川超级气盆地.石油勘探与开发,48(6): 1081-1088.

[38]

邓成昆,黎霆,杨伟强,等,2022.川中地区中上寒武统洗象池组颗粒滩储集层特征及主控因素.古地理学报,24(2): 292-307.

[39]

杜金虎,邹才能,徐春春,等,2014.川中古隆起龙王庙组特大型气田战略发现与理论技术创新.石油勘探与开发,41(3): 268-277.

[40]

高键,李慧莉,何治亮,等,2023.川东南平桥地区寒武系洗象池群多元复合成藏过程及其勘探启示.地学前缘,30(6): 263-276.

[41]

谷明峰,李文正,邹倩,等,2020.四川盆地寒武系洗象池组岩相古地理及储层特征.海相油气地质,25(2): 162-170.

[42]

何登发,李德生,张国伟,等,2011.四川多旋回叠合盆地的形成与演化.地质科学,46(3): 589-606.

[43]

何贵松,何希鹏,高玉巧,等,2023.四川盆地东南部南川地区发现二叠系龙潭组页岩气.中国地质,50(3): 965-966.

[44]

贾鹏,黄福喜,林世国,等,2021.四川盆地及其邻区中上寒武统洗象池群沉积相与沉积模式特征研究.现代地质,35(3): 807-818.

[45]

井攀,徐芳艮,肖尧,等,2016.川中南部地区上寒武统洗象池组沉积相及优质储层台内滩分布特征.东北石油大学学报,40(1): 40-50.

[46]

李纯泉,陈红汉,唐大卿,等,2023.四川盆地高石梯-磨溪地区走滑断裂控制下的“层楼式” 油气成藏模式: 以震旦系-寒武系为例.地球科学,48(6): 2254-2266.

[47]

李璐萍,梁金同,刘四兵,等,2022.川中地区寒武系洗象池组白云岩储层成岩作用及孔隙演化.岩性油气藏,34(3): 39-48.

[48]

李伟,樊茹,贾鹏,等,2019.四川盆地及周缘地区中上寒武统洗象池群层序地层与岩相古地理演化特征.石油勘探与开发,46(2): 226-240.

[49]

李文正,文龙,谷明峰,等,2020.川中地区加里东末期洗象池组岩溶储层发育模式及其油气勘探意义.天然气工业,40(9): 30-38.

[50]

李文正,周进高,张建勇,等,2016.四川盆地洗象池组储集层的主控因素与有利区分布.天然气工业,36(1): 52-60.

[51]

李英强,高键,李双建,等,2022.四川盆地中-上寒武统洗象池群油气成藏模式与勘探前景.天然气工业,42(3): 29-40.

[52]

林怡,陈聪,山述娇,等,2017.四川盆地寒武系洗象池组储层基本特征及主控因素研究.石油实验地质,39(5): 610-617.

[53]

林怡,钟波,陈聪,等,2020.川中地区古隆起寒武系洗象池组气藏成藏控制因素.成都理工大学学报(自然科学版),47(2): 150-158.

[54]

刘树根,邓宾,孙玮,等,2020.四川盆地是“超级”的含油气盆地吗?.西华大学学报(自然科学版),39(5): 20-35.

[55]

刘鑫,曾乙洋,文龙,等,2018.川中地区洗象池组有利沉积相带分布预测.天然气勘探与开发,41(2): 15-21.

[56]

马新华,2017.四川盆地天然气发展进入黄金时代.天然气工业,37(2): 1-10.

[57]

石书缘,胡素云,汪泽成,等,2022.四川盆地寒武系洗象池组滩相白云岩规模储层发育特征及勘探意义.石油实验地质,44(3): 433-447,475.

[58]

石书缘,王铜山,刘伟,等,2020.四川盆地寒武系洗象池组储层特征及天然气勘探潜力.天然气地球科学,31(6): 773-785.

[59]

苏桂萍,李忠权,应丹琳,等,2020.四川盆地加里东古隆起形成演化及动力学成因机理.地质学报,94(6): 1793-1812.

[60]

孙自明,孙炜,林娟华,等,2021.四川盆地东部中上寒武统洗象池群油气成藏条件与主控因素.石油实验地质,43(6): 933-940.

[61]

汪泽成,施亦做,文龙,等,2022.用超级盆地思维挖掘四川盆地油气资源潜力的探讨.石油勘探与开发,49(5): 847-858.

[62]

魏国齐,杨威,杜金虎,等,2015.四川盆地高石梯—磨溪古隆起构造特征及对特大型气田形成的控制作用.石油勘探与开发,42(3): 257-265.

[63]

文华国,梁金同,周刚,等,2022.四川盆地及周缘寒武系洗象池组层序-岩相古地理演化与天然气有利勘探区带.岩性油气藏,34(2): 1-16.

[64]

杨雨,汪华,谢继容,等,2023a.页岩气勘探新领域: 四川盆地开江—梁平海槽二叠系海相页岩气勘探突破及展望.天然气工业,43(11): 19-27.

[65]

杨雨,谢继容,曹正林,等,2023b.四川盆地天府气田沙溪庙组大型致密砂岩气藏形成条件及勘探开发关键技术.石油学报,44(6): 917-932.

[66]

杨雨,文龙,宋泽章,等,2022.川中古隆起北部蓬莱气区多层系天然气勘探突破与潜力.石油学报,43(10): 1351-1368,1394.

[67]

章学刚,熊冉,邓庆杰,等,2022.四川盆地洗象池组颗粒滩沉积组合特征及沉积控储机理.科学技术与工程,22(4): 1389-1398.

[68]

周磊,康志宏,柳洲,等,2014.四川盆地乐山—龙女寺古隆起洗象池群碳酸盐岩储层特征.中南大学学报(自然科学版),45(12): 4393-4401.

[69]

邹才能,杜金虎,徐春春,等,2014.四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现.石油勘探与开发,41(3): 278-293.

基金资助

国家重大科技专项项目(2016ZX05004-001)

AI Summary AI Mindmap
PDF (11070KB)

109

访问

0

被引

详细

导航
相关文章

AI思维导图

/