花岗伟晶岩与花岗岩的关系

赵振华 ,  马林

地球科学 ›› 2025, Vol. 50 ›› Issue (12) : 4819 -4878.

PDF (21096KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (12) : 4819 -4878. DOI: 10.3799/dqkx.2025.018

花岗伟晶岩与花岗岩的关系

作者信息 +

Relationship between Granitic Pegmatite and Granite

Author information +
文章历史 +
PDF (21601K)

摘要

花岗伟晶岩是稀有金属的重要来源.近些年来的大量岩石地球化学研究成果表明,花岗伟晶岩与花岗岩的关系是较复杂的,可概括为4类:“父子关系”,花岗伟晶岩是花岗岩浆分异演化的晚期产物;“兄弟关系”,花岗伟晶岩与花岗岩是成分相似的岩浆同时或近于同时分别独立演化结晶的产物;“间接关系”,花岗伟晶岩由已存在的花岗岩经(多阶段)重熔形成;花岗伟晶岩与花岗岩无关,伟晶岩与花岗岩的形成存在显著时差和源区成分差异,由变沉积岩深熔形成的独立伟晶质岩浆结晶形成.岩浆储库的晶粥模型和穿地壳岩浆系统为探讨伟晶岩与花岗岩关系提供了重要依据.应注意继承矿物的识别和同质异位素对铪同位素组成的影响;加强标准物质研制和定年技术提高;开展非传统同位素分馏特点和机制研究;加强相关花岗岩复式岩体岩石地球化学和大比例尺填图研究.

Abstract

Many recent studies indicate that the relationship between granitic pegmatite and granite is complex and can be summarized simply into four types:“Father-son relationship”, i.e.granitic pegmatites are the late products of highly differentiated and evolved granitic magma; “Brotherly relationship”, granitic pegmatite and granite are the products of simultaneous or near-simultaneous independent crystallization of magma with similar compositions; “Indirect relationship”, formation of rare metal pegmatites through multi-stage partial melting of source granite; “No relationship between granitic pegmatite and granite”, relative big time-gap and different source materials for pegmatite and granite are displayed in many pegmatite fields, and anatectic individual pegmatite magma is a reasonable genetic model.Crystal mush reservoir and trans-crustal magmatic system are the important for understanding the relationship between pegmatite and granite.Inheritance (or detrital) minerals for dating and isobaric interference for analysis of hafnium isotopic composition should be pay more attention for the study on the relationship between pegmatite and granite.The establishment and development of techniques and reference materials for isotopic dating need to be enhanced.The study on characteristics and mechanism of non-traditional isotope fractionation during the differentiation and evolution of granitic magma should be strengthened.Petro-geochemical analysis and large-scale mapping of the granite batholith are suggested in order to give more valid evidences for the rare metal pegmatite exploration.

Graphical abstract

关键词

花岗伟晶岩与花岗岩 / 花岗岩重熔 / 独立伟晶岩岩浆 / 继承矿物 / 伟晶岩非传统同位素分馏特点和机制 / 岩石学.

Key words

pegmatite and granite / remelty of granite / anatectic individual pegmatite magma / inheritance mineral / mechanism of metal stable isotope fractionation / petrology

引用本文

引用格式 ▾
赵振华,马林. 花岗伟晶岩与花岗岩的关系[J]. 地球科学, 2025, 50(12): 4819-4878 DOI:10.3799/dqkx.2025.018

登录浏览全文

4963

注册一个新账户 忘记密码

伟晶岩,特别是花岗伟晶岩是备受世界各国广泛关注的Li、Be、Ta、Nb、Cs、Rb 等关键金属资源的重要来源, 成为研究热点之一.长期以来,关于花岗伟晶岩与花岗岩的关系一直存在争议,除了变质分异、混合岩化交代形成的伟晶岩外,大量产出的伟晶岩,特别是稀有金属花岗伟晶岩,传统认为是母体花岗岩岩浆结晶分异演化晚期在有流体参与下残余岩浆固结的产物.伟晶岩与花岗岩呈密切时空关系,常分布于母体花岗岩10 km半径范围内;两者形成时间基本相近、在岩石地球化学特征上相似并呈密切演化关系.
Jahns and Burnham(1969)提出花岗伟晶岩是在含水花岗岩岩浆液相线或略低于该液相线条件下,在花岗质熔体和富水流体共存的介质中平衡结晶形成.London(1992,2005)提出伟晶岩是从富挥发分、但未饱和的硅酸盐熔体中形成. Shearer et al.(1992)总结了成矿花岗岩和相关伟晶岩形成于均一的花岗质岩浆连续结晶模型、不同程度部分熔融模型和成分明显不同的源区的部分熔融(部分熔融程度相同)等3个端元模型.
随着大量稀有金属伟晶岩勘探开发,特别是岩浆岩同位素精确定年技术的快速发展,对伟晶岩与花岗岩关系的认识更加深入,发现许多伟晶岩,如欧洲奥地利阿尔卑斯山脉锂伟晶岩、瑞典西南和挪威南部伟晶岩省、法国中央高原西部伟晶岩及我国阿尔泰花岗伟晶岩与周围的花岗岩在形成时间上有显著时差,岩石地球化学特征也有明显差异,或者未发现与伟晶岩形成时间相近的花岗岩.据此认为伟晶岩与花岗岩无关(Stewart,1978; 张辉和刘宏,2013;Zagorsky et al.,2014Dill, 2015a,2015bSimmons et al., 2016Müller et al.,2017;杨富全等,2018;陈剑锋等,2018;Villaros and Pichavant,2019;张辉等,2019;丁建刚等,2020;赵振华等,2022;Knoll et al.,2023;赵振华和严爽,2023),提出伟晶岩是由源区变泥质岩深熔作用形成独立的伟晶岩岩浆,这种认识受到了广泛关注和接受.
笔者们(赵振华等,2022;赵振华和严爽,2023)讨论了花岗伟晶岩成矿的有关问题,其中部分涉及稀有金属伟晶岩与花岗岩的关系.例如,提出阿尔泰伟晶岩的形成,是由不同成分变沉积岩的低程度部分熔融(~10%)形成,而高程度(20%~40%)部分熔融形成成分不同花岗岩的母岩浆.
本文根据近些年来国内外伟晶岩,特别是稀有金属花岗伟晶岩的研究成果,概括总结了稀有金属花岗伟晶岩与花岗岩的关系,并讨论了主要控制因素.

1 伟晶岩形成的传统模型-花岗岩浆结晶分异形成

传统模型认为,伟晶岩是花岗岩浆高度结晶分异演化产生的富挥发分残余岩浆-热液结晶而成,花岗岩与伟晶岩可形象称为“父子关系”.这种成因关系被广泛接受的基础是观察到伟晶岩群通常出现在花岗岩穹顶或边缘(Černý, 1991a, 1991b; Černý and Ercit, 2005London, 2008,2018)、伟晶岩沿花岗岩体内外接触带成带状分布、伟晶岩形成年龄与花岗岩一致;岩石、矿物地球化学特征显示两者具有相同源区和明显的演化关系.与伟晶岩时空关系密切的花岗岩在分布形态上呈复式岩体 (岩基)或 “独立岩株”.

上述密切时空关系主要表现为以下特点.

1.1 伟晶岩围绕花岗岩复式岩体内、外接触带成群成带分布

伟晶岩围绕花岗岩内、外接触带成群成带分布是最常见的.LCT 型和NYF型伟晶岩矿床均与矿区内花岗岩有密切时空联系.在空间上,主要成矿作用发生在花岗岩的外接触带中,并受花岗质岩浆演化控制,形成典型水平成矿分带,伟晶岩挥发性元素浓度和分带复杂性向更高的结构水平增加(Černý,1991a,1992).LCT 型伟晶岩通常分布于以稀有金属花岗岩母岩为中心的成矿元素矿化水平分带中,由内向外的成矿元素典型分带为:Be→Be、Nb、Ta→Li、Be、Ta、Nb→Li、Cs、Be、Ta、Nb(Černý, 1991b),内接触带矿化弱或不成矿.根据花岗伟晶岩的演化与分带理论 (Černý, 1991a; London,2008),我国重要稀有金属成矿带(阿尔泰、幕阜山、白龙山、东秦岭)的矿化分带特征,往往呈现离母体花岗岩越远,伟晶岩演化程度越高,锂成矿出现在最远端的花岗伟晶岩.NYF 型伟晶岩通常分布于A 型花岗岩母岩边缘或周边不远的范围内,不显示区域分带.

例如,湖南仁里超大型花岗伟晶岩型钽铌矿床,围绕湘鄂赣三省交界的晚中生代幕阜山花岗岩复式岩体(面积约2 400 km2图1a; 李鹏等,2017)呈环状分布在岩基内、外接触带.稀有金属伟晶岩矿集区总体上呈“东部铍、北部铍铌钽、中部铌钽锂、西南部锂铍铌钽、西部未见明显矿化”的分布特征,以岩体外接触带西南部仁里-传梓源锂铍铌钽伟晶岩规模最大.岩体内分布为伟晶岩型铍矿带,距岩体0~3 km 为伟晶岩型铌钽矿带→3~5 km为伟晶岩型锂铌钽矿带→5~10 km为石英脉型铍矿带,它们集中分布在距岩体10 km范围内(图1b;文春华等,2019).

松潘-甘孜造山带中的西昆仑大红柳滩和白龙山稀有金属伟晶岩空间分布与之相似(见1.2).

加拿大 Superprovince(Ontario)、 Bernic Lake(Manitoba)地区的太古代伟晶岩(约 2 640 Ma),与花岗岩之间时空关系密切、物质组成上呈明显演化关系,伟晶岩在空间上可划分出不同类型的矿化带(Selway et al.,2005).该地区出露有二云母花岗岩、含电气石白云母花岗岩和电气石花岗岩,且各花岗岩体均有伟晶岩相伴生.

Černý(1991b)认为,稀有金属伟晶岩的空间分带的核心控制因素是伟晶岩相关母花岗岩体分异作用逐渐增强、挥发分逐渐富集及交代范围扩大.他给出了伟晶岩成矿元素空间分布与花岗岩关系的模型图(图2),由花岗岩岩体向外,成矿元素呈规律分布:不成矿→Be→Be、Nb、Ta→Li、Be、Nb、Ta→Li、Cs、Be、Ta、Nb.国外一些学者提出几乎所有暴露在地表的伟晶岩脉均与深部的花岗岩体有成因联系(Webster et al.,1997; Fuertes⁃Fuente et al., 2000).对同一区内没有母花岗岩存在的孤立伟晶岩,提出了其母花岗岩埋藏于深部的假设(Černý,1991b;London,2018).

1.2 伟晶岩与花岗岩具同时、同源、演化关系

幕阜山花岗岩由闪长岩、花岗闪长岩、黑云母二长花岗岩、二云母花岗岩和白云母花岗岩组成.闪长岩出露很少,分布在岩体内北部,锆石年龄154 Ma;花岗闪长岩年龄为153~149 Ma;黑云母二长花岗岩年龄为151~143 Ma;二云母二长花岗岩140~115 Ma(图1a,表1Wang et al.,2014;文春华等,2019;Xiong et al.,2020).仁里、断峰山、麦埚等伟晶岩中辉钼矿Re⁃Os 等时线年龄130.5 Ma、铌钽铁矿U⁃Pb 年龄133.0±2.6 Ma、138.4±1.6 Ma 和136.0±2.0 Ma;锆石U⁃Pb 年龄131.2±2.4 Ma~124.9±0.3 Ma(李鹏等,2017;文春华等,2019;姜

鹏飞等,2021;江小强,2020;李乐广等,2023).在岩基西南外围仁里-传梓源铌钽伟晶岩下盘发现隐伏粗中粒似斑状黑云母二长花岗岩,年龄146.2±0.2 Ma(李鹏等,2020).可见,伟晶岩(138~125 Ma)与岩基中二云母二长花岗岩(140~115 Ma)年龄相近,具有密切成因关系 (表1).幕阜山伟晶岩与花岗岩复式岩体中白云母的K/Rb 比值对Cs、Rb、Li、Nb/Ta 比值,以及Ta/Nb值对Li、Ta、TiO2 关系表明,伟晶岩与二云母花岗岩具有密切演化关系(Li et al.,2021).它们的 Nd 和 Hf 同位素组成相似,幕阜山伟晶岩Hf 同位素组成εHft)值为-8.3~-0.76(平均-7.3),黑云母二长花岗岩εHft)值为-10.8~-3.0(平均-7.2)(Li et al.,2020)(表1),显示了伟晶岩与岩基内二云母二长花岗岩形成时间相近,Hf同位素组成相似,具有共同源区(表1).Xiong et al.(2020)测定了围岩铌钽铁矿年龄为140.2±2.3 Ma,白云母二长花岗岩锆石年龄为140.7±2.2 Ma,认为仁里伟晶岩与之有关(Xiong et al.,2020).上述特点表明,由闪长岩、花岗闪长岩、黑云母二长花岗岩、晚期二云母花岗岩组成的花岗岩岩基的分异、演化,形成了以仁里为代表的伟晶岩型稀有金属矿床,是伟晶岩与花岗岩密切关系的典型实例.

与上述类似,松潘-甘孜造山带中的西昆仑大红柳滩和白龙山稀有金属伟晶岩,与大红柳滩花岗岩和白龙山花岗岩复式岩体时空关系密切.大红柳滩花岗岩岩基呈北西-南东向狭长带状展布,主体由黑云母二长花岗岩和二云母二长花岗岩组成,出露面积约341 km2Zhang et al.,2008).岩体具有明显的岩相分带:黑云母二长花岗岩和二长花岗岩位于岩体东部—东北部,二云母花岗岩位于岩体西南部(丁坤等,2020;孔会磊等,2023).大红柳滩黑云母二长花岗岩体的锆石U⁃Pb年龄介于217.5~214.0 Ma,二云母花岗岩209.6 Ma,属晚三叠世(Zhang et al.,2008;乔耿彪等,2015;魏小鹏等,2017;Ding et al.,2020;丁坤等,2020;谭克彬等,2021;唐俊林等,2022;孔会磊等,2023;夏永旗等,2024).大红柳滩伟晶岩年龄为213.5~211.0 Ma,εHft)=-9.49~-4.47(锡石、铌钽铁矿;李侃等,2019;Yan et al.,2022),康西瓦含绿柱石白云母伟晶岩锆石年龄为209 Ma(张泽等,2019).

白龙山花岗岩为复式岩体,位于大红柳滩花岗

岩岩基东南,其岩体中的闪长岩(文献中的黑云母花岗岩)锆石年龄216.8 Ma(唐俊林等,2022);石英闪长岩锆石年龄为216~212 Ma,εHft)为-5.78~-1.31(魏小鹏等,2018;王核等,2021);花岗闪长岩(文献中为黑云母花岗岩)锆石年龄为210~209 Ma,εHft)为-6.64~-2.72(Yan et al.,2022);石英闪长岩和黑云母花岗岩δ18O(‰)为7.3~9.4(Yan et al.,2022).二云母二长花岗岩年龄216 Ma(唐俊林等,2022);二云母花岗岩年龄208~209 Ma,εHft)为-14.12~-4.63;δ18O(‰)为10.11~13.46(魏小鹏等,2017;Yan et al.,2022).细晶钠长岗岩年龄为209 Ma(唐俊林等,2022).稀有金属伟晶岩的铌钽铁矿、锡石和独居石年龄为211~207 Ma,εHft)为-12.15~-5.4(Wang et al.,2021;唐俊林等,2022;Yan et al.,2022),δ18O(‰)为10.4 ~12.6(Yan et al.,2022)(表1).

西昆仑中部牧林场伟晶岩(206 Ma,铌钽铁矿),二云母花岗岩(208.4 Ma,锆石)、西部肖尔布隆和霍什塔什伟晶岩(205~204 Ma)与区内恰特二云母花岗岩(205.9±1.7 Ma)有关(表1).

上述特点综合表明,西昆仑稀有金属伟晶岩与大红柳滩-白龙山花岗岩复式岩体从石英闪长岩、花岗闪长岩向二云母花岗岩、细晶钠长花岗岩的演化有关,结合锆石δ18O值,上述伟晶岩与区内二云母花岗岩有关.

在东昆仑阿尔金造山带中段吐格曼地区,发现了早古生代(中奥陶世)中-大型锂铍伟晶岩矿床,伟晶岩分布在吐格曼花岗岩接触带及云母石英片岩中,花岗岩岩体出露面积约30 km2,由黑云母二长花岗岩、二云母花岗岩、白云母花岗岩和钠长花岗岩组成.伟晶岩赋存的吐格曼黑云母二长花岗岩锆石U⁃Pb 年龄为482~475 Ma,属阿尔金造山带早古生代岩浆活动高峰期.伟晶岩锆石、铌钽铁矿、锡石定年,成矿年龄为472~460 Ma,略晚于花岗岩,呈分异演化关系(表1;徐兴旺等,2019;李杭等,2020;Gao et al.,2021Li et al.,2023;详见5.6.3节).

1.3 伟晶岩与花岗岩复式岩体分异演化的花岗岩岩株时空关系密切

东秦岭地区是秦岭造山带稀有金属矿化规模最大、最丰富的伟晶岩区,在800 km2的范围内已发现花岗伟晶岩脉约7 000多条.与新疆阿尔泰和华南幕阜山花岗岩~伟晶岩分布区不同,本区以锡矿化和铀矿化伟晶岩为特色,新近在该区发现了火炎沟锡铌钽矿床(陈雷等,2023;刘新星等,2023).区内稀有金属伟晶岩形成于420~360 Ma(铌钽铁矿、锡石),属泥盆纪;铀伟晶岩形成于420~404 Ma,属早泥盆世.区内分布多个古生代花岗岩复式岩体和岩株,岩石类型包括两类,一类是具片麻状黑云母二长花岗岩类,呈复式岩体产出(灰池子、漂池、黄龙庙和宽坪),锆石年龄范围集中于中奥陶世-早志留世(467~434 Ma);岩株主要形成于早泥盆世(421~418 Ma),部分与复式岩体相近(452~449 Ma)(图3表1).

区内面积最大的灰池子花岗岩复式岩体面积340 km2,由蔡家沟、明朗河和淇河三个岩体组成,岩石类型主要有黑云母花岗闪长岩和黑云母二长花岗岩,黑云母花岗闪长岩锆石U⁃Pb 年龄455~432 Ma(李伍平等,2000;王涛等,2009;雷敏,2010;刘炳祥,2014; 袁峰等,2017;Chen et al.,2018).漂池花岗岩面积为145 km2,主要岩石类型为二云母二长花岗岩,锆石年龄495~436 Ma(王涛等,2009;雷敏,2010;刘炳祥,2014).宽坪黑云母二长花岗岩面积80 km2,锆石U⁃Pb 年龄453~442 Ma(张成立等,2013;王江波等,2015,2018;宋公社等,2018).黄龙庙黑云母花岗岩面积75 km2,锆石U⁃Pb 年龄为446~448 Ma(刘炳祥,2014;张帅等,2019).

在这些岩基中或其周缘产出两期花岗岩类岩株,一类为石英闪长岩、黑云母二长花岗岩,年龄与复式岩体相近,如黄伯岔、五剁山、枣园、安吉坪等年龄为452~449 Ma(刘炳祥,2014).另一类为含石榴石二长花岗岩类(淡色花岗岩类)或碱长花岗岩,空间上与花岗岩岩基相邻,锆石U⁃Pb 年龄409~420 Ma,属早泥盆世,明显晚于相邻花岗岩岩基,如灰池子花岗岩岩基(455~432 Ma)南缘大毛沟含石榴石花岗岩岩株,面积约6 km2,锆石U⁃Pb 年龄426~418 Ma(图3a;左文乾等,2010;袁峰等,2017;Chen et al.,2018Yuan et al.,2020);高山沟黑云母二长花岗岩岩株年龄为422.9±8.2 Ma(刘刚等,2017)(图3a),岩株与岩基时差约30 Ma.黄龙庙花岗岩复式岩体(448~446 Ma)南缘陈家庄含石榴石二长花岗岩锆石U⁃Pb 年龄为415.0±3.7 Ma 和419±2 Ma(图3b;赵如意等,2014;张帅等,2019).灰池子和黄龙庙花岗岩岩基与岩株时差均约30 Ma;宽坪片麻状黑云母二长花岗岩岩基中似斑状黑云母二长花岗岩年龄为421.4±2.5 Ma(王江波,2020);丹凤含石榴子石淡色花岗岩年龄为409.2±3.6 Ma(陆松年,2004),岩基与岩株时差为5~10 Ma.

东秦岭分布5个不同成矿类型的伟晶岩密集区:栾庄(Be⁃Nb)、官坡(Li⁃Be⁃Cs⁃Ta)、龙泉坪(Be)、商南(U,Li⁃Be⁃RE⁃Nb)和丹凤(U),它们围绕上述两类花岗岩复式岩体分布.官坡伟晶岩密集区长为43 km,分布伟晶岩约320条,主要包括火炎沟、南阳山、七里沟-前台和蔡家沟等矿区,分布在灰池子花岗岩复式岩体北西;龙泉坪密集区的铍矿化瓦窑沟伟晶岩矿区分布在灰池子花岗岩复式岩体东南.官坡稀有金属伟晶岩年龄418.0±7.4 Ma(锡石)、421.5±5.0 Ma(曾威等,2021)、447~384 Ma(铌钽铁矿;Zhou et al.,2021);商南伟晶岩铌钽铁矿年龄363±4 Ma和357±5 Ma(Che et al.,2015).铀矿(化)黑云母伟晶岩(二云母伟晶岩、白云母伟晶岩)以分别产出于商南密集区的光石沟、小花岔矿床和丹凤密集区的陈家沟矿床为代表,其中光石沟伟晶岩型大型铀矿产于大毛沟含石榴石花岗岩(正长花岗岩)岩株外接触带上,伟晶岩锆石U⁃Pb 年龄420~415 Ma(图3c;Chen et al.,2018;Yuan et al.,2020);中型小花岔伟晶岩型铀矿中伟晶岩年龄为417~413 Ma;(图 3d;刘刚等,2017);丹凤伟晶岩密集区的陈家庄伟晶岩小型铀矿产于黄龙庙花岗岩南缘含石榴石二长花岗岩岩株内接触带,伟晶岩锆石年龄为 404.3±1.4 Ma(图 3b;王江波等,2020;周起凤等,2021).

上述稀有金属伟晶岩和铀成矿伟晶岩(417~413 Ma)与灰池子、黄龙庙、宽坪等花岗岩复式岩体(平均444 Ma)成岩时差较大(~30 Ma),其中一些东秦岭伟晶岩密集区(如峦庄和官坡密集区)距离花岗岩体也较远(图3a).伟晶岩的Hf同位素组成与这些花岗岩岩基不同,如灰池子志留纪黑云母二长花岗岩εHft)为+5.3~+7.8,而官坡稀有金属伟晶岩变化范围为-8.7~-7.0(Yuan et al.,2020;曾威等,2021).这些特点表明伟晶岩与花岗岩复式岩体形成时差大、不同源,伟晶岩与花岗岩复式岩体无直接成因联系(雷敏,2010;Yuan et al.,2020;赵振华等,2023),仅在官坡伟晶岩密集区的七里沟钠长石锂辉石伟晶岩铌钽铁矿年龄为447~443 Ma,与灰池子花岗岩年龄相近(Zhou et al.,2021).这些特点表明,花岗岩体与稀有金属伟晶岩可能为同一熔融事件的产物(秦克章等,2019);凤永刚等(2024)认为东秦岭出露的花岗岩体并非众多稀有金属伟晶岩的母源花岗岩,秦岭岩群可能通过深熔形成官坡、商南一带稀有金属伟晶岩.

上述稀有金属伟晶岩和铀成矿伟晶岩与复式岩体黑云母花岗岩分异、演化、在边缘分布的泥盆纪含石榴石淡色花岗岩岩株形成年龄一致(420~415 Ma),Hf同位素组成也相似,如大毛沟含石榴石花岗岩εHft)为-1.4~+2.4,相关的光石沟铀黑云母伟晶岩εHft)为-2.8~+1.8.这些特点表明,东秦岭伟晶岩与泥盆纪花岗岩岩株密切相关,它们形成时间相近、同源(表1).

1.4 藏南片麻岩穹窿中稀有金属伟晶岩与淡色花岗岩岩株

藏南稀有金属伟晶岩与特提斯喜马拉雅和高喜马拉雅的淡色花岗岩带时空关系密切,主要分布在受藏南拆离系(STDS)、主中央逆冲断裂(MCT)和主边界逆冲断裂(MBT)控制的片麻岩穹窿中淡色花岗岩岩株周围或变质岩地层中,如然巴穹窿岩体主体边部含石榴石电气石伟晶岩(刘志超等,2020)、错那洞矽卡岩-伟晶岩型铍矿和脉状锡-钨-铍矿(Xie et al.,2020;夏祥标等,2022)、高喜马拉雅淡色花岗岩带琼嘉岗伟晶岩型锂矿(产于肉切村浅变质岩中,秦克章等,2021b)、喜马拉雅东段库曲锂辉石伟晶岩、绿柱石伟晶岩以及嘎波锂辉石伟晶岩等(赵俊兴等,2021;李光明等,2022;郭伟康等.2023;图4).上述淡色花岗岩均呈岩株产出,伟晶岩一般为简单伟晶岩类型,元素组合以Be、Nb⁃Ta(W⁃Sn)为主,呈岩脉穿插淡色花岗岩中(王汝成等,2017),或透镜体/囊状体独立产出在地层中.库曲花岗伟晶岩呈渐变接触或截然穿切分布于花岗岩体中,伟晶岩岩相呈囊状或细脉产出于二云母花岗岩、白云母花岗岩和电气石花岗岩内(周起凤等2024).初步同位素定年资料显示伟晶岩与淡色花岗岩形成年龄相近,如琼嘉岗锂辉石伟晶岩独居石和铌钽铁矿族矿物年龄25~24 Ma,与高喜马拉雅地区淡色花岗岩时代相近(赵俊兴等,2021);嘎波伟晶岩独居石的U⁃Pb年龄23~21 Ma,与区内次麦地区的白云母花岗岩年龄23.7±0.3 Ma一致(郭伟康等,2023).

西藏南部稀有金属伟晶岩展示了与穹隆状产出的淡色花岗岩时空关系,需进一步开展其控制因素(源区、岩浆演化、定位机制等)和成矿潜力的研究.

1.5 云南西部花岗伟晶岩

近些年来,在滇西相继发现大量与花岗伟晶岩相关的稀有金属矿床/矿化点,它们主要分布在保山和腾冲两个地块,如保山地块的绿茵沟、黄连沟、黄草坝、禾波、黑妈和培里等;腾冲地块的那俄、杞木寨、麻栗脑等.它们的矿化特色以铍为主,兼有锂、铌、钽、锡等.滇西伟晶岩稀有金属成矿区划分为高黎贡山、腾冲-梁河、西盟和凤庆-临沧等4个成矿带(余勇等,2022;何小虎等,2024),锆石、铌钽铁矿、独居石和锡石U⁃Pb定年为探讨伟晶岩与花岗岩关系提供了重要依据.

高黎贡山成矿带稀有金属伟晶岩矿体主要产出于中深变质岩的构造裂隙中,产状与区域构造线一致,应为高级变质成因(见4.3节),其他3个成矿带稀有金属伟晶岩与其附近的花岗岩有密切的时空关系,一般能够明确找到相关花岗岩.

腾冲地块晚白垩世-始新世(75~40 Ma)岩浆活动强烈,保山地块相对较弱,花岗岩总体可划分为3期(锆石年龄): 75~64 Ma、65~55 Ma 、55~40 Ma.单颗粒锆石、铌钽铁矿、独居石和锡石等矿物的精确定年显示区内稀有金属伟晶岩的成矿年龄也主要为晚白垩世-始新世(陶琰等,2015a,2015b;徐恒等,2023;何小虎等,2024),其年龄范围与区内划分的3期花岗岩一致:晚白垩世76~64 Ma(禾波、黑妈,锆石U⁃Pb定年);古新世65~54 Ma(黄连沟、黄草坝,铌钽铁矿、锡石、锆石U⁃Pb定年);始新世55~40 Ma(那俄、杞木寨、麻栗脑,铌钽铁矿、独居石U⁃Pb定年).

黄连沟含铍伟晶岩聚集于花岗岩体顶部及其与黑云母片岩、硅质角岩的内外接触带,铍矿储量已达中型,是目前滇西地区储量规模最大的伟晶岩型稀有金属矿床, 矿区共圈定2 390 条伟晶岩脉.矿区花岗岩主要为龙泉杂岩体,可进一步分为斑状角闪石黑云母花岗岩(第1期,蚌渺岩体)、中细粒角闪石黑云母花岗岩(第2期,桦桃林岩体)、中粒-不等粒二云母花岗岩(第3期)和中细粒白岗岩(第4期)等4期侵入体.黄连沟花岗伟晶岩空间上与桦桃林岩体相连(岩体锆石年龄为66.1~59.9 Ma;董美玲等,2013),伟晶岩铌钽铁矿和锡石年龄(66.0±0.3) Ma~(60.1±0.6) Ma(何小虎等2024),锆石59.9±2.7 Ma(陶琰等2015a),伟晶岩与花岗岩形成年龄一致,桦桃林岩体应是黄连沟花岗伟晶岩的潜在母岩体.此前,曾推断黄连沟花岗伟晶岩与龙泉杂岩体有关(陶琰等,2015a).昌宁东部临沧花岗岩岩基(主体为三叠纪)北部的绿茵塘地区发现了大量花岗伟晶岩脉侵入晚白垩世二长花岗岩中(徐恒等,2023),花岗伟晶岩的锆石U⁃Pb年龄75.8±0.3 Ma,略晚于寄主绿茵塘二长花岗岩76.8 Ma(45 km2)和同构造背景、同期二长花岗岩79.6 Ma成岩年龄.伟晶岩锆石εHft)值为-13.44~-6.63,与区内同期腾梁花岗岩(68~76 Ma,-13.0~-4.6;Xu et al.,2012)、大竹棚黑云母花岗岩(65.4 Ma,-14.6~-11.3;曹华文,2015)和高黎贡山群中江东黑云母二长花岗岩(51.4 Ma,-6.65~-5.3)及钾长花岗岩(58.9 Ma,-11.3~-9.3)(邹光富等,2013a)较一致,表明花岗伟晶岩是同期二长花岗岩演化的产物.

梁河县芒东镇那俄铍多金属矿床,含绿柱石花岗伟晶岩分布于勐养岩体北西缘,区内广泛分布有细-中粒二长花岗岩、中粗粒黑云母二长花岗岩、片麻状细粒二长花岗岩、细粒花岗闪长岩、片麻状中粒英云闪长岩等.勐养岩体侵位年代为(127.9±1.0) Ma~(115.2±1.1) Ma(丛峰等,2010;李再会等,2012;邹光富等,2013b),那俄铍多金属伟晶岩独居石年龄为45.8±0.4 Ma(何小虎等2024),显然那俄伟晶岩与勐养花岗岩无关,推测其母花岗岩隐伏于勐养花岗岩下面(明添学等,2025).

高黎贡山培里发现最年轻的稀有金属锂伟晶岩,铌钽铁矿年龄18.4±0.3 Ma,锡石17.5±1.2 Ma,与相邻高黎贡山东坡花岗岩124~126 Ma相差很大,与区内淡色花岗岩(53~18 Ma)相近,可能为喜马拉雅稀有金属成矿带成矿时间一致,或为变质重熔产物,或是淡色花岗岩进一步结晶分异的产物,为喜马拉雅成矿带的南延部分(闫庆贺,等2024).

2 伟晶岩与花岗岩呈“兄弟关系”

早在1979年,《华南花岗岩类地球化学》(中国科学院地球化学研究所,1979)一书中就指出: 同为富 Nb、Ta 的钠化花岗岩和花岗伟晶岩应是在花岗岩岩浆演化的同一阶段而在不同的外部条件(压力、裂隙等)下的形成物,即是相类似的两份熔体溶液在不同条件下的产物.Dill(2015a)认为“将花岗岩作为伟晶岩母源太武断了.伟晶岩与花岗岩很相似,它们象兄弟,只是都不能作为对方的父亲”.

与传统伟晶岩形成模型类似,这类伟晶岩与花岗岩也具有密切时空关系,与伟晶岩呈“兄弟关系”的花岗岩出露面积一般都<10 km2,小于与伟晶岩呈“父子关系”的花岗岩.如阿尔泰阿斯卡尔特花岗岩面积5 km2,甲基卡马颈子二云母花岗岩5.3 km2元素地球化学特点相似,伟晶岩形成与花岗岩近于同时或略晚,花岗岩一般不成矿,或只呈现稀有金属矿化;但有一类伟晶岩和时空密切的花岗岩均形成稀有金属矿床.这类伟晶岩与花岗岩可称为“兄弟关系”.最典型的实例是新疆阿尔泰阿斯喀尔特花岗岩和伟晶岩、川西甲基卡花岗细晶岩和伟晶岩.

这种关系可分为3种情况.

2.1 似伟晶岩分布在稀有金属花岗岩顶部、边部

江西宜春雅山锂云母钠长石钽铌花岗岩顶部的稀有金属矿化似伟晶岩,江西葛源黄山铌钽花岗岩、内蒙巴尔哲稀土-铌-铍-锆花岗岩顶部都分布铌-钽似伟晶岩;内蒙古加不斯天河石锂云母花岗岩及湖南香花岭地区癞子岭、尖峰岭钠长石花岗岩铌钽矿床等的顶部或边部,都有似伟晶岩分布(Zhu et al.,2015;郭春丽等,2024;图5a~5c),由于挥发分仍较富集,难以形成冷凝边.广西栗木水溪庙层状含锡石、铌钽铁矿伟晶岩-细晶岩岩脉发育于隐伏钠长石黄玉花岗岩脊部两侧,伟晶岩-细晶岩岩脉具有明显的对称韵律分层特征.靠近底板部位以钠铝质细晶岩为主,靠近顶板部位以硅钾质伟晶岩为主,其中间部位则以上述两种岩石的韵律式层状规律交替为特征.岩脉中细晶岩和伟晶岩的总体体积比例约为1∶l(图5d;朱金初等,1996;张玲和梁磊,2018;详见2.2.2节叙述).阿尔金吐格曼似伟晶岩分布于细晶岩中.这些似伟晶岩一般规模不大,呈现稀有金属矿化,石英、长石常呈UST⁃单向固结结构.花岗岩主要以小岩株产出,从深部(或核部)向顶部(或边部)呈渐变的岩相分带,形成稀有金属矿床.

含锂花岗岩岩体顶部发育成矿和不成矿伟晶岩,其中成矿伟晶岩的形成过程可能类似于伟晶岩型锂矿,其形成时间晚于下部钠长石花岗岩;而不成矿伟晶岩的形成应早于其下部钠长石花岗岩和云英岩(郭春丽等2024).

郭春丽等(2024)依据产状将上述伟晶岩划分为3种类型:(1)呈连续或不连续(似)层状伟晶岩壳产于稀有金属花岗岩岩体最顶部,包括 江西宜春414、松树岗、姜坑里、茅坪、内蒙加不斯矿床;(2)呈脉状、透镜状出现在岩体上部和顶部,形状受张性断裂或者裂隙带控制,包括江西九岭白水洞、黄山、海罗岭、上坪、浒坑、小江;广东深坑、一六、良源、中坝;广西栗木;浙江河桥;江苏善安浜;云南新歧;内蒙赵井沟、石灰窑;河北麻地、汉儿庄及甘肃国宝山矿床.其中,既有伟晶岩壳也有伟晶岩脉的是栗木、善安浜、赵井沟和石灰窑等4个矿床;(3)比较少见的情况是伟晶岩夹在两种具有不同结构特征岩相的接触部位,例如:九岭白水洞矿床的伟晶岩脉夹在黑鳞云母-白云母花岗岩与含锂云母碱长花岗之间,加不斯矿床的伟晶岩脉夹在锂云母钠长石花岗岩与黑云母花岗岩之间.

幕阜山复式岩体中各阶段花岗岩侵入体均有伟晶岩伴生,伟晶岩壳分布于晚期花岗岩补体的顶部(李鹏等,2017).

江西大湖塘地区是江南造山带中段九岭矿集区内近年查明的世界级超大型钨矿产地,白钨矿体主要呈细脉浸染状缓倾于中粗粒黑云母花岗闪长岩中.位于区内一矿带的成矿母岩顶部发育完好的似伟晶岩壳,壳层的组构特征明显,由母岩向含矿围岩,依次为似斑状黑云母花岗岩→长英质细晶岩→石英长石似伟晶岩→长石石英似伟晶岩→含白钨矿黑云母花岗闪长岩.综合研究表明,大湖塘矿带似伟晶岩壳是初始含矿岩浆流体出溶的产物,其形成过程中动态的物理化学条件促进了成矿元素W由母岩向围岩搬运富集(张智宇等,2015).

似伟晶岩是岩浆体系进入到岩浆-热液过渡阶段的岩相学标志(Bakker et al.,2006).似伟晶岩石英中发现的熔融包裹体和熔体-流体包裹体与气液包裹体共生现象,为这一观点提供了直接证据.石英中的微量元素Li/Al值随着结晶温度的降低而增加,石英脉的Li/Al值跨度较大(0.16~0.50),指示石英脉总体上呈岩浆—热液过渡的特征.似伟晶岩壳中的石英总体上为岩浆成因,部分点位为岩浆-热液过渡成因或热液成因.

似伟晶岩壳形成对稀有金属花岗岩成矿具有重要意义,由于这层壳的阻隔,岩浆房中Li、P、F、H2O等易扩散组分难以迁移进入围岩;伟晶岩壳形成的封闭体系会促进流体形成自上而下和自下而上的双对流系统,岩浆的充分分异成为可能(林仟同和龚萍,2002;Butler and Torvela,2018;毛禹杰等,2021;郭春丽等,2024).

2.2 花岗岩与伟晶岩均成矿

花岗岩与伟晶岩成矿可能存在制约关系.对于与花岗岩具有时空或成因关系的伟晶岩,当花岗岩形成稀有金属矿化或成矿时,伟晶岩一般不成矿;而花岗岩不成矿,或成矿很弱时,伟晶岩一般形成稀有金属矿床.幕府山花岗岩与伟晶岩、东秦岭花岗岩与伟晶岩是典型实例(表1).

伟晶岩分布在花岗岩的顶部,花岗岩与伟晶岩同时出现稀有金属成矿,并且均具有一定规模,这种实例是少见的.典型实例是阿尔泰阿斯喀尔特大型花岗岩-伟晶岩型Be⁃Nb⁃Mo矿床(图5a)、甲基卡花岗细晶岩-伟晶岩型锂辉石矿床.

2.2.1 阿斯喀尔特大型花岗岩-伟晶岩型Be⁃Nb⁃Mo矿床

目前在阿尔泰发现的、具有传统的花岗岩-伟晶岩成岩成矿系统特点的实例以阿斯喀尔特Be⁃Nb⁃Mo为典型,伟晶岩和花岗岩形成我国典型的大型花岗岩-伟晶岩型铍矿床(图5a).赋矿二云母花岗岩露头面积约5 km2,条带状伟晶岩与矿化白云母钠长石花岗岩呈渐变过渡关系,分布在岩体顶部或边部,二者的矿物组成基本一致.赋矿花岗岩与伟晶岩年龄一致(秦克章等,2013;王春龙等,2015;丁欣等,2016;张亚峰等,2015): 锆石年龄(247.5±2.2)Ma,白云母钠长花岗岩(231.4±2.0)~(216.7±2.8)Ma;伟晶岩锆石年龄(220.6±1.6)~(218.2±3.9)Ma,辉钼矿Re⁃Os 模式年龄为(218.6±1.3) Ma、(214.9±1.2)Ma 和(228.7±7.1)Ma.花岗岩与伟晶岩Hf 同位素组成也相似:白云母钠长花岗岩εHft)值为-0.72~1.33;矿化白云母钠长花岗岩为-0.36~1.99;条带状伟晶岩为-0.45~0.38和-1.50~+1.69(刘文政等,2015;王春龙等,2015)(表2),显示花岗岩和伟晶岩具有类似的Hf 同位素组成.

2.2.2 花岗细晶岩-伟晶岩型锂辉石矿床

在花岗伟晶岩研究中,与伟晶岩有密切时空关系的(花岗)细晶岩(aplite)常常被忽略了.Dill(2015b)将伟晶岩与其岩石化学成分上相似、但结构不同的细晶岩一同研究,认为花岗岩系列处于两者之间过渡,提出了伟晶岩的CMS分类系统:化学成分-矿物组合-构造地质精细分类方案.

在稀有金属花岗伟晶岩的结构分带中,(花岗)细晶岩常分布在外带,其岩石化学成分和矿物组成与花岗伟晶岩相似,例如,著名的阿尔泰三号伟晶岩岩脉边部与变辉长岩接触处,一般都能见到一层厚度为0~3 m的细粒钠长石花岗岩或细晶岩边,有时呈条带状,其主要成分为钠长石、石英、白云母及少量钾长石和石榴子石等,呈粒状花岗结构,简称边壳带(朱金初等,2000),伟晶岩岩脉上盘和下盘均发育层状细晶岩(图6a;张辉和李国胜,2024).东秦岭蔡家沟、南阳山伟晶岩产出层状伟晶岩,秦克章等(2021a)称为分层细晶岩.西昆仑白龙山五○九道班西Ⅴ区段伟晶岩脉分带明显,在梳状-文象结构带外为细晶岩带、黑云母花岗岩与伟晶岩互层带,最后向南进入含电气石二云母花岗岩(图6b,6c;王核等,2021).西昆仑白龙山锂辉石伟晶岩带的白龙山花岗岩复式岩体,岩体由石英闪长岩、花岗闪长岩(文献中称黑云母花岗岩)、二云母二长花岗岩、二云母花岗岩和细晶钠长花岗岩组成,其中的细晶钠长花岗岩形成时间最晚,锆石年龄209.5±1.2 Ma,黑云母花岗岩→二云母二长花岗岩→细晶花岗岩的形成是连续分异演化(图6;唐俊林等,2022).朱金初等(2000)认为,阿尔泰三号脉伟晶岩结构带中细晶花岗岩实际上是一种细粒钠长石花岗岩,它主要呈巢状,分布在Ⅰ、Ⅲ带的不同部位,应该是岩浆结晶产物.其形成机制,可能与世界上多地分带层状岩脉中钠长细晶岩和钾长伟晶岩周期性地从岩浆中交替晶出相类似.张辉和李国胜(2024)认为,细晶岩是伟晶岩的组成部分,是过冷条件下高黏度的伟晶岩岩浆非平衡结晶的产物.

东秦岭官坡伟晶岩密集区中具有分层结构的锂矿化伟晶岩由下至上产出似文象伟晶岩、钠长石-石英-锂辉石-微斜长石块体和钠质细晶岩;锂云母亚型由下至上产出锂电气石-锂云母-钠质细晶岩(图6d,6e;周起凤等,2021).

阿尔金山古生代伟晶岩成矿与细晶花岗岩也呈现密切关系,吐格曼和塔什萨依锂伟晶岩矿床分带中均有细晶花岗岩带(详见5.6.3节).

广西栗木地区伟晶岩-细晶岩与花岗岩共生呈3种空间分布形式(图4d;张玲和梁磊,2018):第1种是伟晶岩-细晶岩呈脉状(或透镜状)陡倾斜产出在花岗岩体的顶上带(外带)围岩中;第2种是呈似层状在岩体顶部的上伟晶下细晶非对称结构的伟晶岩-细晶岩组合,俗称“似伟晶岩壳”,底部与花岗岩呈整合接触关系;第4种伟晶岩-细晶岩在花岗岩体内中上部呈“层状”产出,成群分布,集合规模比前两者要大得多,其中多数情况是细晶岩发育而伟晶岩不发育,只有少数具有完整的上伟晶岩下细晶岩的非对称结构.

张玲和梁磊(2018)认为,栗木共生的伟晶岩与细晶岩具有同一级的母岩浆,称之为伟晶-细晶质岩浆,即细晶岩是伟晶-细晶质岩浆发生气液分异形成的残余熔体相就地过冷却结晶的结果,而伟晶岩是伟晶-细晶质岩浆发生气-液分异形成的残余气流体相在上面缓慢结晶的结果.

川西甲基卡花岗细晶岩-伟晶岩型锂辉石矿床是花岗细晶岩与伟晶岩密切关系的典型代表.传统认为,甲基卡稀有金属矿床属花岗伟晶岩型,是马颈子二云母花岗岩浆固结晚期分异作的产物,这主要依据在地表广泛出露的赋矿脉体为伟晶岩(表2).

在甲基卡矿田东南部鸭柯柯矿区,发现深部的锂矿体并非完全是伟晶岩型,矿石中锂辉石、微斜长石等主要矿物的粒度从地表的3~10 cm 转变为小于10 mm,相当数量的锂矿石中锂辉石、微斜长石、钠长石、石英等主要矿物的粒度<1 mm.这些矿物呈非常典型的花岗结构,完全是全晶质的.杨岳清等(2020)认为,它们应属于花岗岩类.根据锂辉石在岩石中是否构成造岩矿物,它们明显可分成2类:锂辉石碱长花岗岩和不含锂辉石碱长花岗岩.经钻探证实,这种微-细粒花岗岩型锂矿石在一些矿床或矿段已构成矿体的主体.花岗伟晶岩型锂矿和碱长花岗岩型锂矿床(段)在同一矿脉中叠加产出,在一些脉体中,碱长花岗岩型矿体中的锂储量还明显大于花岗伟晶岩型锂,这是国内首次发现的复合型同矿种矿床(刘善宝等,2019;杨岳清等2020).

与甲基卡超大型伟晶岩锂辉石矿床相关的马颈子二云母花岗岩以岩株产出,面积约为5.3 km2.伟晶岩产在花岗岩外接触带中,呈典型水平分带.稀有金属伟晶岩集中在以花岗岩为核部、三叠纪变质沉积岩为幔部的片麻岩穹隆之中.产于花岗岩外接触带的花岗伟晶岩脉体形态较规则,规模较大,而内接触带的脉体形态较复杂,规模小.脉状的长宽比相差较大,多为不规则脉状,次为透镜状,串珠状,岩盘状,岩盆状,团块状等(杨岳清等,2020).

付小方等(2021,2023)指出,甲基卡的大部分伟晶岩矿脉并没有发育出与新疆可可托海三号脉和美国南达科他州的Etta矿相似的典型结构带特征,而是出现大量花岗细晶岩型和花岗伟晶岩型锂矿的共存交织结构.该矿床中的细晶花岗岩型锂矿多数不发育对称分带,而是发育韵律式结构条带、黑色斑点状矿囊,锂矿石类型以细晶花岗岩型锂矿为主,并与伟晶岩型锂矿共存等特点;锂辉石呈微晶(2.5 mm)-细晶(2.5~5.0 mm)-梳状-巨晶状(3~10 cm)4种自然类型,不同于结晶分异成因(图7);部分伟晶岩岩浆分异存在异常,二云母花岗岩和伟晶岩稀土元素含量和微量元素特征值具有跳跃性的变化,不同类型伟晶岩和不同结构锂辉石矿石之间稀土和微量元素特征值呈现振荡性变化特征.上述特点用结晶分异成因难以解释,说明伟晶岩并非完全是二云母花岗岩直接分异结晶作用的产物,伟晶岩之间也并非完全连续结晶分异系列.

甲基卡各类伟晶岩岩石化学、稀土和微量元素与二云母花岗岩具有相似的特点,伟晶岩与二云母花岗岩的δEu和 δCe均为负异常,说明各类伟晶岩与二云母花岗岩具有一定的渊源.二云母花岗岩与伟晶岩之间K/Rb、Ba/Rb、Ba/Sr、Zr/Hf比值呈现跳跃性的突变,伟晶岩稀土总量与马颈子花岗岩相比也具有突然大幅降低特征,说明花岗岩和伟晶岩并非由同一母岩浆连续结晶分异作用形成.甲基卡的成矿作用主要为花岗岩浆-多中心底辟穹隆,不混溶Li⁃F花岗质岩浆,半开放裂隙系统的脉动式多期充填-交代作用,是形成细粒花岗岩型锂矿为主体,并与伟晶岩型锂矿共存的主要成因(付小方等2021).

2020-2022实施了甲基卡伟晶岩型锂矿科学钻探,钻孔深分别为3 211 m、1 000 m和1 000 m,揭示了与甲基卡伟晶岩锂矿有密切成因关系的马颈子花岗岩体并非传统所认为的是一个地表出露面积约5.3 km2、具有深根(15 km)的花岗岩基,而是由若干“无根”的穹状花岗岩席与岩席之间的变质岩及侵入其中的含矿伟晶岩群组成的“多层三明治”结构(图8),许志琴等(2023)据此提出了甲基卡伟晶岩型锂矿的“多层次穹状花岗岩席”控矿理论:多层次穹状花岗岩岩席是甲基卡富锂伟晶岩的控矿母岩;伟晶岩型锂矿的形成过程经历230~190 Ma生成花岗岩席岩浆库、以及围岩中伴随巴罗-巴肯式变质作用,造成在多期岩浆-热液作用下的伟晶岩成矿过程;提出锂矿区的下部类似丹巴式深地壳混合岩化基底的深熔作用是甲基卡花岗岩席的成因和岩浆源区的假设.伟晶岩的独居石U⁃Pb年龄揭示210~204 Ma(~2 568 m) 和193~192 Ma(3 100 m之下)两期岩浆活动,早期伟晶岩的(208~205 Ma)年龄与花岗岩的独居石一致;主、微量元素地球化学指示它们具有同时形成和温度接近的物理条件,两者之间可能是“兄弟”关系,而非以前认为的“父子”关系.高度演化的花岗质岩浆在甲基卡伟晶岩脉的形成中起了重要作用.流体包裹体和Li⁃B⁃Fe⁃Nd 同位素的研究,揭示伟晶岩形成经历岩浆高度结晶分异和流体不混溶等复杂岩浆-热液过程,含锂伟晶岩不是地壳深熔作用的直接产物(许志琴等,2023).这种模型应是对上述花岗伟晶岩型和碱长花岗岩型复合型锂矿床(杨岳清等,2020)和细粒花岗岩型锂矿为主体,并与伟晶岩型锂矿共存(付小方等2021)的合理解释.付小方等(2023)称之为花岗细晶岩-伟晶岩型.

Zhao et al.(2022)根据Nd⁃Sr⁃Li同位素和微量元素Li、Rb、Sr组成模拟,提出甲基卡马颈子二云母花岗岩的分离结晶难以解释区域伟晶岩的同位素和元素组成特征(见5.5节).

3 变沉积岩和花岗岩多阶段部分熔融形成伟晶岩

3.1 变沉积岩和花岗岩多阶段部分熔融形成富锂伟晶岩

Koopmans et al.(2024)提出了富锂伟晶岩通过花岗岩多阶段熔融形成的深熔成岩模型,解释无分带锂伟晶岩的形成以及为什么许多地体中有经济价值伟晶岩比推断的母源花岗岩更年轻.

LCT(锂-铯-钽)型伟晶岩是由高度演化的、源区加入了地壳物质的富挥发分长英质熔体结晶形成的.传统认为伟晶岩是由母花岗岩岩浆极端分离结晶、或由变质岩的低程度部分熔融(深熔作用)形成.基于锂矿石矿物的沉淀需要熔体中锂浓度超过5 000×10-6(上地壳锂丰度的250倍),Koopmans et al.(2024)利用岩石学模型量化了深熔起源情况下的锂富集,表明其主要是由残余黑云母和白云母在中高压(~0.8 GPa)和残余黑云母和堇青石在低压(~0.3 GPa)下的相对稳定性驱动的.一般富锂变质沉积岩源的深熔不能充分提高锂含量而形成具经济价值的矿床.然而,如果第1代熔体(已结晶为花岗岩壳)再次熔融,锂将充分集中在第2代熔体中,使锂矿石矿物结晶.该无水成因锂伟晶岩的成岩模型表明,一个区域至少经历两个阶段的部分熔融,才能最终产生富锂熔体,而不需要广泛的分离结晶.第1阶段是变沉积岩(锂含量125×10-6)深熔作用,形成Li=255×10-6~538×10-6的花岗岩熔体;第2阶段是这种花岗岩熔体结晶后发生第2次深熔,形成Li=3 590×10-6~7 496×10-6的富锂伟晶岩(图9).该模型表明,富锂伟晶岩不是花岗岩岩浆高程度分异结晶形成,而是花岗岩受变质事件或造山循环作用再次深熔形成,说明富锂伟晶岩形成与花岗岩是继承发展的间接关系.

3.2 新元古代九岭岩体中燕山期花岗岩-伟晶岩锂铌钽矿床

江西省西北部新元古代九岭花岗岩中燕山期特大型花岗岩-伟晶岩锂铌钽矿床(化)可作为花岗岩多阶段部分熔融成矿的实例.江南造山带中段江西九岭新元古代花岗岩复式岩体面积巨大(3 680 km2)、成岩时间较长,主体为新元古代晋宁期(锆石年龄808~833 Ma;Wang et al.,2013,2014c;段政等,2017;张福神等,2020),属江南造山带中段的幕阜山-九岭构造岩浆带,位于华南超大型花岗伟晶岩型钽铌矿床有关的幕阜山花岗岩复式岩体东南侧.九岭复式岩体由黑云母花岗闪长岩(锆石825 Ma)、黑云母二长花岗岩(827 Ma)和英云闪长岩(锆石818 Ma)组成,均含堇青石(2%~5%)和少量石榴子石,为典型的S型花岗岩.燕山期花岗岩(~150 Ma)由似斑状黑云母花岗岩、细粒花岗岩和花岗斑岩组成,主要分布于九岭复式岩体中的南部(甘坊岩体,图10b)和北部(大湖塘矿田,图10a;表3).

3.2.1 甘坊燕山期花岗岩、细晶岩和伟晶岩矿床(化)

本世纪初,在江西省西北部大湖塘和东北朱溪相继发现了钨(铜)超大型矿床(毛景文等,2020),实现了华南“南钨北扩”的找矿重大突破.近年来,在新元古代九岭花岗岩复式岩体南缘宜丰地区,燕山期花岗岩型锂铌钽矿找矿取得重大突破.相继发现了大港特大型和白水洞、茜坑大型花岗岩型锂矿床(吴学敏等2016;李仁泽等,2020;聂晓亮等,2022)、党田大型花岗细晶岩型锂铌钽矿(吴学敏等,2016),以及众多花岗伟晶岩型铍矿点,共同组成了稀有金属矿田(徐喆等,2024),成为江西省乃至全国范围内重要的锂铌钽稀有金属矿产地之一.花岗岩型和细晶岩型为主要矿床(化)类型、成矿为燕山早期和燕山晚期.早期为高演化稀有金属花岗岩,晚期则多发育为伟晶岩、细晶岩等岩脉(周建廷等,2011;秦程,2018).

上述稀有金属成矿主要与位于九岭岩体中部燕山期甘坊岩体有关(151~138 Ma),岩体出露于上富-甘坊-潭山镇一带,东西长约30 km,南北宽约16 km,出露面积约400 km2图10b;表3;周建廷等,2011).岩性呈由中粗粒斑状黑云母花岗岩→中粗粒斑状二云母花岗岩→中细粒含斑-斑状二云母花岗岩→中细粒白云母钠长花岗岩演变过渡趋势.

花岗岩型锂铌钽矿床以超大型大港锂矿为代表,白水洞、茜坑,白水洞、水南、茜坑、港口和狮子岭等锂矿床也达大型-超大型规模(图10;吴学敏 等2016;李仁泽等,2020;聂晓亮等,2022;龚敏等,2023),铌钽铁矿、锡石U⁃Pb年龄范围144.0~139.7 Ma(秦程,2018;Xie et al.,2019).细晶岩为甘坊岩体晚阶段岩浆演化的产物,与区内稀有金属成矿作用关系密切,主要分布在同安地区.党田花岗细晶岩型锂铌钽矿床为大型(吴学敏等2016),同安花岗细晶岩型锂铌钽矿床锡石U⁃Pb年龄138.3 Ma(曾闰灵等,2023)(表3).本区的锂矿物主要为富锂白云母、铁锂云母和锂云母.

甘坊复式岩体中古阳寨花岗岩区的伟晶岩脉主要分布在宜丰县潭山镇至同安乡一带,如藏龙洞、黄沙铍铷矿点、潭山乡杨毛洞铍矿点等多处伟晶岩矿(化)点,铍矿物主要为绿柱石,其中,黄沙铍铷矿点还含有铌钽铁矿.西起东庄,东至潭山镇茜槽约4 km2范围内,出露伟晶岩脉30余条(图10b).茜槽村一带的伟晶岩脉规模最大,两期铍矿化伟晶岩脉侵入于古阳寨中细粒含斑二云母二长花岗岩体,早期伟晶岩脉与岩体间发育花岗质细粒边,呈渐变过渡,晚期伟晶岩以藏龙洞铍矿化伟晶岩脉为代表,独居石 U⁃Pb 年龄为138.57±0.78 Ma,与区内稀有金属矿化花岗细晶岩锡石年龄138.3±4.4 Ma和138.3±2.3 Ma一致.伟晶岩脉侵入的中细粒含斑二云二长花岗岩,其锆石 U⁃Pb年龄147.0±2.0 Ma、146.0±1.2 Ma(Wang et al.,2017a),与区内稀有金属矿化白云母花岗岩年龄144~141 Ma相近(曾闰灵等,2023),表明伟晶岩应为古阳寨二云母二长花岗岩结晶分异而成(徐喆等,2024).白水洞花岗岩型锂铌钽矿床中似伟晶岩夹在黑鳞云母-白云母花岗岩与含锂云母碱长花岗岩之间.

3.2.2 大湖塘矿田燕山期花岗岩、细晶岩和伟晶岩矿床

九岭新元古代复式岩体中北部大湖塘田燕山期花岗岩主要呈岩株、岩瘤出露于北部石门寺和南部狮尾洞,主体隐伏(图10a).岩石类型主要为似斑状黑云母花岗岩、二云母花岗岩、细粒花岗岩和花岗斑岩,锆石年龄150~140 Ma(潘大鹏等,2017;Wei et al.,2018).主要成矿元素为W(超大型)、Cu(大型)多金属.矿田中大岭上矿区成矿母岩顶部发育完好的似伟晶岩壳(Gong et al.,2015;张智宇等2015),近几年来,矿田内发现含铌钽花岗斑岩,具有岩浆成因的铌铁矿族矿物、钨铌锰矿、锡锰钽矿、含铌钽黑钨矿、含铌钽金红石和富锂白云母.含铌钽花岗斑岩的锆石和铌钽铁矿同位素年龄分别为146±2 Ma和144±5 Ma,与含钨似斑状花岗岩的成岩成矿年龄(150~140 Ma)接近(刘莹等,2018).

大湖塘超大型钨矿内外接触带黑鳞云母、锂-多硅白云母和铁锂云母大量集聚,具有锂、铷等稀有金属元素富集成矿的潜力,其锂资源量规模达到超大型(张勇等,2020;陈祥云等2023),似伟晶岩壳是大湖塘钨矿区花岗质岩浆演化形成的特色标志层(张智宇等,2015).

3.3 九岭新元古代花岗岩燕山期熔融形成甘坊和大湖塘稀有金属矿床(化)

江南造山带是我国新近发现的重要的稀有多金属成矿带,在其中段赣北九岭地区陆续发现了大湖塘-朱溪钨铜多金属矿、甘坊稀有金属花岗岩、花岗伟晶岩型稀有金属矿床.许多研究认为,源区基底岩石中锂元素富集是该地区钨及锂等稀有金属成矿的物质基础,与成矿作用相关的花岗岩属S型,源于新元古代变质沉积岩(蒋少涌等,2015;王登红等,2017;毛景文等,2020).

传统认为本区W、Cu及Li、Be、Nb、Ta稀有金属成矿有关花岗岩源于区内前寒武纪基底新元古代变质沉积岩,主要为冷家溪群、双桥山群、溪口岩群和板溪群变质沉积岩.双桥山群主要分布于赣北的九岭地区,与冷家溪群对应,主要由千枚岩、凝灰质变质砂岩、板岩等组成,年龄范围815~830 Ma(Wang et al.,2013,2014cWei et al.,2018).刘英俊等(1982)发表了赣北铜鼓双桥山群(40个样)的W含量为11.82×10-6,Be含量为4.49×10-6,Cu含量为231×10-6.但激光剥蚀等离子体光谱的全岩分析新数据表明,双桥山群与成矿相关的微量元素平均含量并不高,例如,W含量为2.1×10-6~1.81×10-6,Be含量为2.67~2.23×10-6,Nb含量为11.0~13.8×10-6,Ta含量为0.84~0.99×10-6,Cu含量为 21.9~29.2×10-6.其泥质板岩和千枚岩含有较高的Li含量(61.8×10-6),而变质砂岩的Li含量较低(44.9×10-6)(段政等,2017;苟树林等,2023;刘冰琪等,2023;表4).其εHft)值很低,范围为-0.7~-37.7.这些元素含量与它们在上地壳含量分别为2×10-6、2.1×10-6、12×10-6、0.9×10-6和28×10-6Rudnick et al.,2003)相近.很多研究将双桥山群作为燕山期钨成矿花岗岩的源岩,是基于早期(刘英俊等,1982)发表的有关双桥山群W 、Cu数据,与最新发表的双桥山群数据相比显然偏高.此外,景德镇双桥山火山碎屑值凝灰岩锆石εHft)变化范围为-16.5~-2.6,平均为-11.1,εHft)值为-0.3~0.7(周效华等2012;霍海龙等2018);九岭岩体围岩双桥山群δ18O值很高,角页岩全岩δ18O值为12.67×10-3,石榴石黑云母片岩δ18O值为11.69×10-3,(变)砂岩则为10.72×10-3~11.88×10-3Wang et al.,2013).因此,仅将双桥山群新元古代沉积变质岩作为九岭燕山期成矿花岗岩源区的传统认识需重新审视,而将九岭地区燕山期花岗岩与新元古代花岗岩进行对比是必要的.

如上述,九岭新元古代花岗岩(面积3 680 km2)主要由黑云母花岗闪长岩(锆石825 Ma)、黑云母二长花岗岩(827 Ma)和英云闪长岩(锆石818 Ma)组成,花岗闪长岩为岩体主体,英云闪长岩面积最小.段政等(2017)将其划分为由早到晚3个序次的侵入体,依次为黑云母花岗闪长岩、英云闪长岩及黑云母二长花岗岩.3种岩石岩石化学的显著特点是过铝-强过铝,A/CNK主要在1.10~1.55,甚至>2.0,K2O/Na2O均>1,属高钾钙碱性系列.锆石饱和温度TZr范围661~888 ℃(Wang et al.,2013).其Li平均含量为64.3×10-6~362×10-6,W平均含量为13.8×10-6~51.3×10-6,Cu平均含量为81.5×10-6.黑云母花岗闪长岩、英云闪长岩和黑云母二长花岗岩锆石εHft)变化范围介于-0.8~+9.22,只有少数点为近于零的负值,173个点平均值为+4.03;锆石δ18O为6.79×10-3~11.99×10-3,平均值为8.22×10-3(39个分析),锆石核部普遍低于8×10-3,边部>8×10-3,个别点达11.99×10-3.全岩Nd同位素组成变化范围小,为近于零的负值(绝对值<10),εNdt)范围为-4.0~-1.30,平均为-2.9(Wang et al.,2013,2014c;段政等,2017;孙克克等,2017;Wei et al.,2018表3和4).

区内Li、Be、Nb、Ta稀有金属成矿与侵入到新元古代九岭岩体中心部位的甘坊燕山期花岗岩复式岩体(约400 km2)时空关系密切,其岩石类型为花岗闪长岩、中粗粒斑状黑云母花岗岩、中粗粒斑状二云母花岗岩、中细粒含斑-斑状二云母花岗岩和中细粒白云母钠长花岗岩岩株,年龄范围为151~138 Ma.岩石化学的显著特点过铝,A/CNK主要在1.11~1.48,细晶岩和富锂云母花岗岩较高,为1.28~1.88;K2O/Na2O均>1,属高钾钙碱性系列.锆石饱和温度TZr范围为664~806 ℃(Wang et al.,2017b).锆石εHft)平均值变化范围为-11.4~-7.5,平均为-7.6;全岩Nd同位素组成变化范围小,为近于零的负值,εHft)范围为-9.2~-6.4,平均为-7.7(Wang et al.,2017b表3).

燕山期钨、铜多金属成矿有关的石门寺和狮尾洞岩体主要为似斑状黑云母花岗岩、似斑状二云母花岗和花岗斑岩,锆石年龄150~140 Ma,含有典型的富铝矿物白云母(5%)、堇青石(1% ~5%),岩石化学的显著特点过铝,A/CNK范围为1.10~1.24,K2O/Na2O均>1,属高钾钙碱性系列,锆石饱和温度TZr范围为651~732 ℃(Fan et al.,2019).锆石εHft)变化范围为-10.00~+0.58,平均值为-5.22;锆石δ18O为6.64×10-3~8.87×10-3,平均7.47×10-3;全岩Nd同位素组成变化范围小,为近于零的低负值,εNdt)范围为-7.47~-7.78,平均为-7.6(Wei et al.,2018表3表4).这些特点明显与江西含钨花岗岩(西华山、淘锡坑、漂塘;Guo et al.,2012Yang et al.,2018)不同,它们的δ18O值高,范围为8×10-3~10×10-3εHft)低,范围为-15.0~-7.5.

花岗质岩浆系统中稀有金属元素含量的高低通常与源区丰度、部分熔融程度及熔体后续的分离结晶过程密切相关(Linnen et al.,2012).上述九岭甘坊和石门寺、狮尾洞燕山期花岗岩的岩石化学、成矿元素含量和同位素组成与九岭新元古代花岗岩对比,它们的主元素岩石化学均具有S型花岗岩的特点,但Nd、Hf和O同位素组成显示I型花岗岩特征,总体显示S-I过渡型.九岭燕山期花岗岩与新元古代花岗岩岩石地球化学特点很相似,特别是燕山期花岗岩的锆石Hf-O系统很相似,它们都投影在靠近地幔端元的壳-幔混合线上,远离地壳或S型花岗岩区(图11).此外,石门寺燕山期花岗岩中发现较多继承锆石,其年龄主要为817~824 Ma,且继承锆石与九岭花岗岩锆石具有相近的Hf同位素(εHft)值为+0.2~+10.9)和微量元素组成.所有这些特点均一致表明燕山期花岗岩源区中主要成分为新元古代九岭花岗闪长岩(Wang et al.,2017bWei et al.,2018;李宏伟等,2021).因此,W、Cu和Li的高含量及锆石Hf⁃O同位素组成,一致表明九岭新元古代花岗岩对本区W、Cu多金属和Li、Nb、Ta成矿燕山期花岗岩的重要控制作用,这指示燕山期花岗岩源区与九岭新元古代花岗岩具有亲缘关系,而与双桥山沉积变质岩有明显差别.彭花明(2015)认为,大湖塘钨矿花岗岩的主要源岩为双桥山群变沉积岩(70%)和变基性火山岩(30%)之混合源.Wei et al.(2018)认为九岭燕山期花岗岩源于双桥山变质岩和九岭新元古代花岗岩; 刘冰琪等(2023)根据部分熔融模拟,认为双桥山群沉积变质岩不能直接熔融出大湖塘晚中生代花岗岩的原始岩浆,中生代花岗岩的原始岩浆很可能是双桥山群中的变沉积岩和变玄武岩的混合物熔融形成,变质玄武岩约占20%;Fan et al.(2019)根据Wei et al.(2018)的Hf⁃O数据计算源区变质玄武岩的混合比例为41%~88%(平均为67.5%).

上述认识源于近些年来的花岗岩地球化学研究成果,越来越多的花岗岩同位素地球化学研究表明,许多S型花岗岩源区中有不同量的变火成岩物质,如S型花岗岩的命名地澳大利亚拉赫兰褶皱带中的3个典型S型花岗岩(Kemnay、Cove 和Nigg Bay;Appleby et al.,2010)、华南花岗岩(佛岗、清湖).幔源岩浆甚至可能参与了一些S型花岗岩的形成,如佛岗花岗岩锆石Hf⁃O同位素组成表明幔源岩浆的比例为10%~30%(图11;Kemps et al.,2006,2007;李献华等,2009;Wei et al.,2018).

对比九岭燕山期与新元古代花岗岩及新元古代双桥山组沉积-变质岩岩石地球化学特点,可以看出,燕山期花岗岩与新元古代九岭花岗岩成矿元素丰度、锆石Hf、O同位素组成等很相似,而与双桥山组沉积变质岩有较明显差异(图11),可以认为九岭地区晚侏罗世-早白垩世的钨铜及稀有金属成矿与九岭新元古代花岗岩在燕山期多阶段部分熔融密切相关.

华南陆块自元古代以来经历了多期构造岩浆作用,至中生代完成了古特提斯构造域向滨太平洋构造域动力体制的转换(李三忠等,2017).在华南超大型矿床研究中,赵振华等(1998,2000)注意到了区内燕山期侏罗纪(~170 Ma)基性岩浆活动并开展了岩石地球化学研究.如在湖南,沿新田-宁远-道县北东向分布有橄榄拉斑玄武岩、和碱性玄武岩;在柿竹园南分布有长城岭拉斑玄武岩岩群(白垩纪80 Ma).与柿竹园超大型钨多金属矿床形成有关的千里山花岗岩岩石地球化学呈现了华南较低的(87Sr/86Sr)iεNdt)和δ18O,较高的Cr、Ni、Co相容元素含量,一致表明在华南燕山期强烈的幔源岩浆作用(赵振华等,1998,2000;Zhao et al.,2000).与华南中生代岩浆作用强烈相似,位于江南造山带中部的幕阜山-九岭构造岩浆带燕山晚期花岗岩类活动强烈.郭春丽等(2024)指出,从时间上看,华南从印支中期一直到燕山晚期均有基性岩浆活动,早白垩世(145~100 Ma)是基性岩浆活动的高峰期,晚侏罗世(160~145 Ma)为次高峰期.地球物理证据也提供了华南地区下地壳下部有大量的幔源岩浆底侵,在九嶷山地区存在上地幔和中地壳的S波低速异常带,其中上地幔的低速异常显示了软流圈上涌以及对岩石圈的改造(He et al.,2021).Zhang et al.(2008)提出在华南地区中地壳的底部(~20 km)存在一层4~5 km厚的铁镁质岩石,这些铁镁质岩浆的侵位很可能是对晚侏罗世至早白垩世俯冲的古太平洋板块发生撕裂所引发的岩石圈伸展、软流圈上涌的积极响应.本文认为,这种区域性的动力学背景,使江南造山带穿地壳岩浆系统中富含W、Cu、Li和Ca等成矿所需元素的新元古代九岭岩体相关的晶状体(晶粥)岩浆房,在残余黑云母和白云母在中高压(~0.8 GPa)、和残余黑云母和堇青石在低压(~0.3 GPa)下的相对稳定性驱动发生熔融(Koopmans et al.,2024)、演化,形成花岗质岩浆、侵位和高度结晶分异,形成以甘坊花岗岩(400 km2)为代表的早白垩世(145 Ma)花岗岩相关的甘坊Li、Nb、Ta稀有金属和大规模大湖塘W、Cu多金属大规模成矿(讨论见5.2节).

4 伟晶岩与花岗岩无成因关系

被广泛接受的花岗伟晶岩与花岗岩的成因关系基础是伟晶岩群通常分布在花岗岩侵入体外接触带,少部分在内接触带(Černý,1991b;Černý and Ercit,2005);伟晶岩与花岗岩形成年龄近于同时或略晚;岩石地球化学呈现明显演化关系,源区物质相似.对同一区内没有母花岗岩存在的孤立花岗伟晶岩,提出了其母花岗岩埋藏于深部的假设(Černý 1991b;London,2018).Dill(2015a,2015b),认为用地球物理测量和钻孔样品可排除花岗质母岩埋藏在深部,如中欧的Hagendor⁃Pleystein伟晶岩田.世界范围内大多数伟晶岩的母岩并未得到证实,其中包括著名的加拿大 Tanco 伟晶岩、澳大利亚Greenbush 伟晶岩.伟晶岩由花岗岩浆演化形成的经典模型受到了深熔模型的挑战.

近些年来,随着精确定年技术的发展和应用,在分布约十万多条伟晶岩脉的阿尔泰造山带,发现多数伟晶岩与周围花岗岩很少是同期的,伟晶岩形成年龄与所赋存或相邻花岗岩存在显著时差或年龄间断,源区物质差异明显或脱偶.东秦岭、福建南平的伟晶岩也具有类似特点.据此,国内许多学者认为这些稀有金属伟晶岩的形成与围岩或相邻花岗岩无直接关系(张辉和刘宏,2013;陈剑锋等,2018;杨富全等,2018;丁建刚等,2020;赵振华等,2022,2023).类似的,瑞典西南和挪威南Sveconorwegian 伟晶岩省(Müller et al.,2017)、欧洲奥地利阿尔卑斯山脉锂伟晶岩(Knoll et al.,2023),也发现是由变质沉积岩部分熔融(深熔)形成的岩浆直接固结而成(Stewart,1978Simmons et al.,2016).深熔模型既可以解释世界范围内与花岗岩无关的伟晶岩成因以及局部地区出现的伟晶岩区域分带,也可以解释阿尔泰伟晶岩的多期次和多种矿化类型(Lü et al, 2018;张辉等2019).

Wise et al.(2022)将深熔成因伟晶岩分为3组:第1组,富Be、Nb、Ta、P、Li和B(如美国Oxford(Webber et al.,2019));第2组,富REE、U和Be(如挪威Evje⁃Iveland(Müller et al.,2017));第3组,富Al、Be和B(如南极东部Napier杂岩体内的太古宙伟晶岩).

4.1 新疆阿尔泰伟晶岩

新疆阿尔泰山10万余条伟晶岩脉集中分布在38个伟晶岩田内,如可可托海、柯鲁姆特-吉德克、卡鲁安-阿祖拜、库卡拉盖、群库尔和大喀拉苏等(邹天人和李庆昌,2006;张辉和刘宏,2013;刘锋等,2014;吕正航等,2015;马占龙等,2015;张辉等,2019;赵振华等,2022,2023).这些伟晶岩田大部分形成于晚三叠世(~210 Ma),部分形成于侏罗纪,围绕花岗岩基展布,对这些伟晶岩和花岗岩较系统的岩石地球化学研究,提供了独立伟晶岩岩浆的实例.

4.1.1 柯鲁姆特-吉德克、卡鲁安-阿祖拜和群库尔伟晶岩田

伟晶岩围岩花岗岩多形成于古生代,如柯鲁姆特-吉德克、卡鲁安-阿祖拜和群库尔伟晶岩田的围岩哈龙和吉德克黑云母花岗岩、二云母花岗岩.哈龙花岗岩近似呈 NNW-SSE 向的带状展布,规模较大,面积约为600 km2,岩性主要为黑云母花岗岩、二云母花岗岩,锆石年龄403~401 Ma,吉得克黑云母花岗岩年龄为455.6±5.4 Ma(马占龙等,2015;Zhang et al.,2016).

围绕哈龙花岗岩岩基发育约1万条伟晶岩脉,哈龙花岗岩体东柯鲁姆特大-特大型锂铍铌钽伟晶岩矿床锆石年龄238.3~188.0 Ma,赋矿吉得克黑云母花岗岩年龄为455.6±5.4 Ma,二云母花岗岩年龄为445.6±5.9 Ma,花岗岩与伟晶岩时差约200 Ma.Hf 同位素组成也明显不同:112号伟晶岩脉εHft)值为+0.03~ +2.35;二云母花岗岩、黑云母花岗岩εHft)值为-1.41~ +4.13(et al.,2012),Zhang et al.(2016)得出εHft)值为+9.9~+15.2(表5).

哈龙花岗岩岩体西南侧群库尔伟晶岩田中1号脉(铍-铌-钽矿床)锆石年龄为207.2±1.6 Ma,佳木开伟晶岩(碧玺矿)年龄为212.2±1.7 Ma,阿祖拜铍伟晶岩年龄为215~192 Ma,卡鲁安锂矿化伟晶岩锆石年龄为228~211 Ma;铌钽铁矿年龄为224~198 Ma;库卡拉盖伟晶岩年龄为227~211 Ma.这些伟晶岩年龄与哈龙花岗岩锆石年龄(408~401 Ma)时差约200 Ma.Hf 同位素组成也明显不同:哈龙黑云母和二云母花岗岩εHft)值为-1.43~+4.13;阿祖拜铍伟晶岩(215~192 Ma)εHft)值为-0.6~+6.3;佳木开铍-铌-钽矿化伟晶岩(212~192 Ma)εHft)值为+0.4~+3.3;卡鲁安锂矿化伟晶岩εHft)值为+0.65~+2.50;库卡拉盖伟晶岩εHft)值为-0.50~+1.79(马占龙等,2015;Feng et al.,2019)(表5).

秦克章等(2019)根据王春龙(2015)吉德克二云母花岗岩年龄,认为该区伟晶岩与花岗岩表现明显的化学演化继承趋势,可能为同一岩浆活动的产物.

4.1.2 可可托海伟晶岩田

可可托海伟晶岩矿田面积228 km2,分布有2 100多条伟晶岩脉(邹天人和李庆昌,2006),主要分布于可可托海周围花岗岩中.矿田中的三号伟晶岩脉世界著名,近几年来,该伟晶岩脉与周围花岗岩的关系成了学术讨论热点.

阿尔泰可可托海3号伟晶岩脉9个内部结构带的精确定年资料显示,其成矿作用时间从岩浆阶段演化到热液阶段延续了约35 Ma(220~186 Ma),主成矿期为205~220 Ma.

传统认为,分布在可可托海三号伟晶岩脉东北约15 km的阿拉尔花岗岩基或其周围的花岗岩是其母岩(栾世伟等,1995;朱永峰和曾怡善,2002;邹天人和李庆昌,2006),这主要基于伟晶岩传统成因模型及同位素年龄数据.例如,Wang et al.(2006)给出的阿拉尔花岗岩锆石SHIRMP年龄为211~232 Ma,该年龄范围与后来获得的三号脉伟晶岩精确年龄数据一致(锆石、铌钽铁矿、辉钼矿为220~206 Ma;刘锋等,2014;Che et al.,2015;陈剑锋等,2018).但系统的岩石地球化学研究发现,三号脉与周围花岗岩呈现复杂关系.首先,产于辉长岩(409Ma;Cai et al.,2012)中的三号脉的围岩花岗岩类(黑云母花岗闪长岩、黑云母花岗岩、二云母花岗岩)锆石年龄范围为409~388 Ma(图12;闫军武等,2020;Wang et al.,2006;刘锋等,2014),花岗岩与三号伟晶岩脉的时差近200 Ma,显然三号脉与这些花岗岩无关.越来越多的研究表明,与三号脉年龄一致的阿拉尔花岗岩分布、组成和年龄较为复杂(Wang et al.,2014b;彭素霞等,2015;张亚峰等,2015).首先是岩体出露范围,不同作者给出的出露面积差别很大,邹天人和李庆昌(2006)给出的面积为60×(20~25) km2,Wang et al.,(2014b)给出面积>2 000 km2,张辉和刘宏(2013)给出面积约1 400 km2,张亚峰等(2015)给出面积约1 300 km2,表明不同作者对该岩体所包括的范围明显不同.其次,岩石类型差异大,在1∶20 万地质图中,阿拉尔花岗岩体包括了阿尔沙特碱长花岗岩(CAL)、库吉尔特钾长花岗岩(CK)、诺尔特山黑云母花岗岩(PN)、别也萨麻斯钾长花岗岩(PB).不同岩性间界线不明显,相互过渡接触,界线难以圈定,总体可以划分出中心相、过渡相和边缘相(张亚峰等,2015).第三,岩体南部、中部的年龄较一致,如似斑状黑云母花岗岩年龄为218.7 Ma和218.4 Ma,中细粒似斑状黑云母花岗岩年龄为219 Ma,中细粒黑云母花岗岩年龄为218.7 Ma(刘宏,2013);似斑状黑云母花岗岩年龄为212 Ma,黑云母二长花岗岩年龄为211 Ma(Wang et al.,2014b);黑云母二长花岗岩年龄为210±5 Ma 和218.7±3.3 Ma(张亚峰等,2015).这些样品应均属阿尔沙特碱长花岗岩.岩体东北部琼胡钾长花岗岩锆石年龄为217.9 Ma(彭素霞等,2015).上述二长和钾长花岗岩年龄范围219~210 Ma.而在该区1∶25 万地质图中,阿尔沙特二云母花岗岩锆石年龄为195 Ma(彭素霞等,2015),可能是图中的阿斯喀尔特钾长花岗岩.岩体东北部的别也萨麻斯二云母花岗岩年龄为449.0 Ma(丁建刚等,2020).这些数据表明阿拉尔花岗岩是一复式岩基,在>1 000 km2 出露范围岩性主要为二长和钾长花岗岩,年龄至少涵盖了449~195 Ma(晚奥陶世-早侏罗世).因此,笼统、简单地讨论阿拉尔花岗岩基与面积为228 km2、2 100 多条伟晶岩脉的可可托海伟晶岩田之间关系是不恰当的.

部分阿拉尔花岗岩与可可托海3 号伟晶岩脉虽然年龄相近(花岗岩锆石U⁃Pb 年龄为232~211 Ma,伟晶岩年龄为220~204 Ma),但两者的空间距离约15 km,超出了理论模拟值范围(Baker,1998;见伟晶岩成因讨论),不支持两者之间存在成因联系(陈剑锋等,2018;张辉等,2019;赵振华等,2023).张辉和李国胜(2024)年提出,三号脉不可能是花岗岩分异的产物,具有变质深熔成因特征,其物源为新生地壳和古老地壳物质混合物,并将其称为可可托海式伟晶岩.

另外,阿拉尔花岗岩微量元素比值指示其不属稀有金属花岗岩(张辉和刘宏,2013);更重要的是其锆石εHft)值为-4.2~+4.9(Wang et al.,2014b),与可可托海三号伟晶岩脉εHft)值为+1.25~+2.39 明显不同,显示它们的岩浆源区物质差异较大,两者之间不存在成因联系(陈剑锋等,2018;张辉等,2019;赵振华等,2022).

Shen et al.(2022)测定了可可托海三号脉露天采坑西、南壁中白云母钠长石花岗岩的铌钽铁矿年龄为220 Ma,认为三号脉形成与花岗岩-伟晶岩成矿系统有关.此后提出在可可托海3号脉南面深处存在一个更大的、隐蔽的母花岗岩.但该年龄与我们课题组Han et al.(2023b)测定的同一花岗岩中铌钽铁矿年龄182.3±1.0 Ma和磷灰石184.9±4.3 Ma明显不同,后者明显晚于3号脉主形成年龄,属早侏罗世.张辉和李国胜(2024)认为上述相同的矿物(铌钽矿)相同定年方法,但年龄相差 ~40 Ma,不可能是分析误差所致,很可能反映分析样品的不同,推测 Shen et al.(2022)采集的样品很可能是三号脉中石英-白云母巢体带(IV带)中的铌钽矿;而基于低电阻率,提出在15 km深部发育残余岩浆房或局部熔融带,但缺少高精度重力数据支持,音频/宽频大地电磁测深(AMT/BMT)结果不足为信.周起凤等(2024)也认为Shen et al.(2022)的定年样品很可能属于3号脉边部的细粒伟晶岩带.赵振华等(2023)注意到,除三号脉的主成矿年龄(220~206 Ma)外,在内带的 V 和Ⅷ带出现早侏罗世年龄(198.7~183.0 Ma,锆石;Wang et al.,2017bZhou et al.,2015),在外带的Ⅱ带出现了187 Ma年龄,这些年龄与上述白云母钠长石花岗岩的铌钽铁矿和磷灰石年龄一致(Han et al.,2023b),是白云母钠长石花岗岩为代表的区内侏罗纪岩浆活动对三号脉成岩、成矿过程的叠加作用,使三号脉伟晶岩的岩浆、岩浆-热液活动从晚三叠世延续到早侏罗世,形成超大型稀有金属伟晶岩矿床(见5.6.3节).

可可托海镇西北55 km 沙依肯布拉克铍伟晶岩锆石年龄为201~202 Ma,矿区花岗闪长岩、中细粒花岗闪长岩锆石年龄分别为406 Ma、531 Ma(杨富全等,2018),伟晶岩与花岗岩时差300~200 Ma,伟晶岩与矿区的花岗岩无关.

与可可托海均位于中阿尔泰地体的阿勒泰市东北霍热木德克花岗岩,由细粒、中粗粒白云母二长花岗岩组成,面积54 km2,锆石年龄222.3±1.8 Ma;满克依顶萨依岩体面积32 km2锆石年龄217.9±2.3 Ma;由碱长花岗岩、正长花岗岩和二长花岗岩组成的辉腾阿尔善岩体面积110 km2, 锆石 U⁃Pb 年龄203.1±2.1 Ma 和202.3±2.2 Ma(陈有炘等,2017).这些花岗岩虽然与可可托海伟晶岩同属晚三叠世,但周围仅有零星、无稀有金属矿化的小型伟晶岩岩脉分布.

4.1.3 阿尔泰侏罗纪-花岗岩与伟晶岩

近些年来在阿尔泰地区陆续发现侏罗纪花岗岩和伟晶岩,如阿拉尔岩体东北别也萨麻斯锂-铍-铌-钽伟晶岩形成年龄为160~151 Ma(锆石、钽锰矿;吕正航等,2015;丁建刚等,2020;何晗晗等,2020),但其围岩二云母二长花岗岩年龄为449~430 Ma(吕正航等,2015;丁建刚等,2020),伟晶岩形成晚于花岗岩近300 Ma.Hf同位素组成也有差异,伟晶岩εHft)值为+0.02~+0.68和εHft)值+0.62~+1.30,平均为+0.93;二云母二长花岗岩εHft)值+8.6~+14.9 和εHft)值+1.35~+6.07,平均为+3.74(表4).很显然,侏罗纪别也萨马斯伟晶岩与围岩二云母二长花岗岩无关.

可可托海镇北库儒尔特伟晶岩锆石年龄180.7 Ma(任宝琴等,2011),花岗岩Rb⁃Sr等时线年龄173.1 Ma(王中刚等,1998).中-俄交界的友谊峰木孜他乌岩体由黑云母花岗岩、似斑状黑云母正长花岗岩和白云母正长花岗岩等组成,锆石年龄198.3± 3.8 Ma(蔺新望等,2017),未见有相关伟晶岩分布.阿勒泰尚克兰Be、W白云母钠长花岗岩锆石年龄181.6±3.8 Ma、203 Ma(Wang et al.,2014b)和195.8±2.6 Ma(陈祉让未发表数据),在岩体顶部内接触带有0.1~0.5 m厚似伟晶岩分布,外围未见伟晶岩.

上述特点表明,阿尔泰地区侏罗纪伟晶岩产出较少,同期相关花岗岩规模较小,花岗岩岩浆活动可能对成矿的三叠纪稀有金属伟晶岩形成了叠加富集作用.

综上所述,中阿尔泰地体三叠纪花岗岩分布规模不大,大量中生代伟晶岩与周围花岗岩形成时差大和(或)物源解耦,表明该区中生代伟晶岩不是该区花岗质岩浆分异演化晚期残余岩浆结晶的产物,而是造山后加厚的不成熟地壳物质在伸展减压背景下,发生小比例部分熔融(深熔)形成的独立伟晶岩岩浆的产物(et al.,2018;张辉等,2019), 赵振华等(2022)称之为阿尔泰型伟晶岩.

与上述晚三叠世伟晶岩类似情况,阿尔泰的二叠纪伟晶岩(274~253 Ma)与围岩花岗岩在形成时间有时差,源区也有一定差别(et al.,2021).例如大喀拉苏Be⁃Nb⁃Ta伟晶岩铌钽铁矿年龄为239.6~231.8 Ma,锆石年龄为272~258 Ma;εHft)值为+4.01~ +5.76(任宝琴等,2011;秦克章等2013;Zhou et al.,2019),相关黑云母碱长花岗岩锆石年龄为270.4~261.4 Ma,εHft)值为-7.0~+5.6(Liu et al.,2018;李强等,2019),显示二叠纪伟晶岩为深熔成因(et al.,2021).

4.2 福建南平伟晶岩

福建南平稀有金属伟晶岩有500 多条,分布面积为250 km2,伟晶岩年龄为378~343 Ma(锆石U⁃Pb)、391 Ma(铌钽铁矿U⁃Pb),εHft)值为-13.81~-11.60.其东侧的西芹钠铁闪石钾长花岗岩(A 型)面积为35 km2,锆石年龄为411.6±4.0 Ma~409.2±4.4 Ma,εHft)值为-3.1~-0.4.花岗岩早于伟晶岩为20~50 Ma,岩浆源区物质差异也明显,表明两者没有直接成因关系(表4Cai et al.,2017Tang et al.,2017).

4.3 滇西高黎贡混合岩中的伟晶岩

如前述,滇西花岗伟晶岩稀有金属矿化以铍为主,兼有锂、铌、钽、锡等,成岩成矿时间主要为喜山期,年龄范围65~15 Ma.滇西稀有金属伟晶岩的高黎贡山、腾冲-梁河、西盟和凤庆-临沧等4个成矿带中,高黎贡山成矿带伟晶岩主要呈顺层状产出于高黎贡山群及崇山群变质岩构造裂隙中,一般与围岩产状或区域构造线方向基本一致(柏万灵,1994;余勇等,2022).变质岩中泥质片麻岩锆石年龄22.5~21.6 Ma,淡色花岗岩脉22.7±0.8 Ma(Song et al.,2010),5个淡色花岗岩脉锆石年龄为68~40 Ma和24~21 Ma(唐渊等,2016).这些特点表明,高黎贡花岗岩脉形成早于或近于伟晶岩,两者均源于区内泥质片麻岩深熔作用,但形成机制不同,伟晶岩源于泥质片麻岩低程度部分熔融形成的岩浆,而淡色(含电气石)花岗岩源于泥质片麻岩中等部分熔融,两者无直接成因关系或为兄弟关系.不同的是腾冲-梁河地区伟晶岩与区内花岗岩时空密切相关(见上述1.5节).

4.4 国外与花岗岩无关伟晶岩

世界范围内大多数伟晶岩的母岩并未得到证实,如著名的加拿大 Tanco 伟晶岩、澳大利亚Greenbush 伟晶岩.与此类似的还有欧洲奥地利阿尔卑斯山脉锂伟晶岩(Knoll et al.,2023)、瑞典西南和挪威南Sveconorwegian 伟晶岩省(Müller et al.,2017).

一些学者对中亚造山带俄罗斯阿尔泰(Zagorsky et al.,2014)、美国阿利根尼造山带(Simmons and Falster,2016)、欧洲海西造山带(Dill,2015a,2015b)和格林威尔造山带(Müller et al.,2016)、东阿尔卑斯(Knoll et al.,2023)稀有金属伟晶岩的研究表明,虽然伟晶岩和花岗岩矿物学和化学成分相似,但认为它们是两个不同的实体,伟晶岩为深熔成因.

4.4.1 挪威南部和瑞典西南部伟晶岩

挪威南部和瑞典西南部瑞典-挪威造山带(Sveconorwegian)发育5 000 多条NYF 型伟晶岩,这些伟晶岩产于高级变质岩中,与新元古代4 期构造-变质作用有关并可分为4期:1 094~1 064 Ma、1 041~1 030 Ma、992~984 Ma、922~901 Ma.将4期伟晶岩形成与区域变质事件进行比较,发现4期伟晶岩形成局限于1~2个构造变质域.伟晶岩是早期大陆/地体碰撞时高压变质,或造山伸展期间镁铁质岩浆底侵(高温)产生的深熔作用形成.这些NYF型伟晶岩不是由非造山的A型花岗岩岩浆作用形成,而是在与侵入体岩浆作用无关的挤压或伸展造山背景中形成.这些伟晶岩与花岗岩的空间关系及矿物和地球化学亲和性表明它们没有成因关系.年代学研究发现两者形成年龄相差较大(如Foland Gloserhei的Gloserhei 伟晶岩为1 060 Ma,相邻花岗岩为926 Ma;Evje⁃iveland伟晶岩为910~901 Ma,相邻Høvringsvantne花岗岩为981±6 Ma),这些伟晶岩与相邻花岗岩岩浆虽然分布在同一区域,但年龄间断51~122 Ma,显示两者无关.具有NYF亲和性的大量稀有金属伟晶岩不一定需要母岩花岗岩,而可能直接通过深熔形成(Müller et al.,2017).

Sveconorwegian造山带伟晶岩田的区域化学分带主要受大型构造的影响,而非花岗岩侵入体的影响.伟晶岩和花岗岩熔体形成在同一地区造山发育的不同阶段,这表明,压力、温度和源岩组成可能不是控制伟晶岩或花岗岩形成的唯一因素,岩浆的作用熔融的程度和熔体提取的方式可能也很重要(见5.1节;Müller et al.,2017).

4.4.2 东阿尔卑斯锂伟晶岩

Knoll et al.(2023)以奥地利东欧阿尔卑斯山脉为例,展示了从含十字石云母片岩熔融生成熔体到含锂辉石伟晶岩的连续演化过程.奥地利伟晶岩省形成于二叠纪岩石圈伸展时期,在白垩纪推覆层中可以找到二叠纪地壳的所有层次.对该推覆体进行了详细圈定和岩性地层细分,揭示了所研究的伟晶岩与大型富集的(fertile)花岗岩体在空间上和成因上都没有关系.地质年代学资料证明伟晶岩和淡色花岗岩体的侵位与围岩的高温-低压变质作用大致是同时期的.野外观察的证据表明,一方面是简单伟晶岩、演化的伟晶岩和钠长石锂辉石3类伟晶岩和淡色花岗岩体是同时、同成因的,另一方面是与赋存它们的亚固相或超固相线变沉积岩具有成因联系,对各类岩石及其矿物的主、微量元素调查证实了这些关系.源岩为富铝变泥质岩,相对于平均上大陆地壳富Li(70×10-6~270×10-6),主要的锂载体是锂含量高达3 000×10-6的十字石.伟晶岩和淡色花岗岩体形成于0.6 ~ 0.8 GPa,650~750 ℃,深度介于18~26 km.熔体形成过程中,夕线石形成反应消耗了十字石.随后,熔体在上升到较高地壳水平的过程中,通过石英和长石的分离结晶富集了锂.简单伟晶岩和不均匀淡色花岗岩形成于较低和中等水平,而演化和钠长石-锂辉石伟晶岩在0.3~ 0.4 GPa和500~570 ℃条件下,在高水平(深约12 km)结晶.Knoll et al.(2023)据此建立了一个地球化学模型,3类伟晶岩和淡色花岗岩代表了深熔熔体的连续结晶阶段,如果在熔融开始时十字石是稳定的或亚稳的,Li就可以从变沉积岩转移到深熔熔体中.这种熔体可含200×10-6到1 000 ×10-6的Li,石英和长石的分离结晶,熔体中Li可进一步富集到5 000×10-6到10 000×10-6,使锂辉石晶出.根据源岩组成、熔融情况和分配系数的不同,估计分离结晶度在81%~99%.因此,当富含锂、铝的沉积物首次融化时,它们是某些稀有元素的丰富来源.然而,熔体中元素的含量范围取决于不同条件.如果没有富集的母花岗岩可以识别,这种深熔模型为富锂伟晶岩的形成提供了另一种解释.

4.4.3 美国和澳大利亚伟晶岩

位于缅因州中部带(CMB)古生代混合岩(从绿片岩相到上角闪岩相)中Mt Mica 伟晶岩以产出宝石级电气石而闻名.LCT型稀有金属伟晶岩较普遍分布,研究程度较高的伟晶岩主要分布在Sabago 混合岩区中,伟晶岩与混合岩中淡色体呈渐变关系,两者平行展布.Sabago花岗岩U⁃Pb年龄 296±3 Ma.Simmons et al.(2016)对Mt Mica 伟晶岩进行了详细岩石地球化学研究,伟晶岩与混合岩的稀土组成相似,球粒陨石标准化呈平坦型式,无Eu异常,而Sabago花岗岩则明显富轻稀土,Eu明显负异常(图13a);微量元素原始地幔标准化蛛网图也明显不同(图13b).这些特点表明,Mt Mica伟晶岩与区内Sabago花岗岩无关,而是由变泥质岩平衡深熔作用形成(Simmons et al.,2016).

西澳大利亚超大型Greenbushes伟晶岩型锂(锡、钽)矿床,其成矿作用经历了包括2 527 Ma、2 430 Ma 和1 100 Ma 3个期次构造热活动,相关花岗岩年龄为2612±5 Ma,花岗岩与伟晶岩年龄相差85~50 Ma,两者之间不存在简单关系(Partington et al.,1995).法国中央高原西部海西期St⁃Sylvestre 伟晶岩与淡色花岗岩也无关(Villaros and Pichavant,2019;见5.3节).

综合上述,自然界存在与花岗岩无关的伟晶岩,这种伟晶岩是地壳变沉积岩低程度/小比例部分深熔的直接产物(DPA,direct products of anatexis).其产出的主要特点有:伟晶岩产出区未见花岗岩分布;伟晶岩与周围花岗岩形成有较大时间差或间断;两者源区物质有明显差异,或与时间相近的花岗岩分布距离大于10 km.

5 伟晶岩与花岗岩关系的控制因素探讨

5.1 伟晶岩与花岗岩的成因联系模型

20世纪上半叶,对伟晶岩成因的争论集中为硅酸盐残余熔体结晶和变质交代两方面,下半叶开始至今,则集中于残余熔体的形成和演化机制.稀有金属伟晶岩是否总是与大的富集(fertile)花岗岩体的分离结晶有关,或者是否也可以直接由深熔熔体分异富集形成,是争论的焦点.提出的形成伟晶岩主要模型概括如下:

(1)花岗质熔体和饱和水流体共存的介质中平衡结晶——J⁃B 模型(Jahns and Burnham,1969): 该模型认为水作为不相容组分,在结晶残余熔体中含量逐渐增加,熔体中水的饱和(挥发分)及其分离(流体)是花岗岩向伟晶岩转变、伟晶岩结构形成的开始.饱和水相的存在被认为是伟晶岩形成必不可少的因素,伟晶岩是在含水花岗岩浆液相线或略低于该液相线条件下,在花岗质熔体和富水流体共存的介质中平衡结晶形成的.

(2)熔体结晶峰前缘边界层组分分区提纯(constitutional zone⁃refining)的非平衡结晶——London 模型(London,1992,2005):依据高温高压实验,在一定的过冷却度下,不相容的助熔剂和挥发分聚集在结晶峰前缘的边界层中,随结晶作用进行,边界层逐渐富集助熔剂组分、水和其他不相容元素,这应是稀有金属伟晶岩成矿的重要控制因素.伟晶岩是从富挥发分、但未饱和的硅酸盐熔体中形成.

与上述J⁃B模型的差异是挥发分(特别是水)在伟晶岩结晶时是否饱和.J⁃B 模型强调水作用的熔体平衡分异结晶,London模型强调“组分分区提纯”的非平衡结晶.

(3)均一花岗质岩浆连续结晶、不同程度部分熔融和成分明显不同源区的部分熔融(部分熔融程度相同)的三端员模型:Shearer et al.(1992)总结了成矿花岗岩和相关伟晶岩形成,提出伟晶岩中稀有元素的极端富集可部分用富挥发分的岩浆中-高程度(70%~90%)分离结晶模拟,但部分熔融对控制明显不同岩浆类型的挥发分和不相容元素含量也很重要.

(4)造山带与岩体无关及造山带或非造山带与岩体有关的伟晶岩稀有金属成矿的控制因素(Müller et al.,2017图14):在造山带,镁铁质岩浆的底侵,在角闪岩相条件引发脱水熔融(25 km深处),在 20 km深处黑云母发生脱水熔融,形成富Nb、Y的伟晶岩深成熔体;在15 km深处发生白云母脱水熔融,形成Nb、Y或Nb、Y⁃LCT型伟晶岩.不同深度形成的深熔岩浆的部分熔融程度控制了无矿和稀有金属伟晶岩的形成.在与侵入体无关环境中形成的稀有金属伟晶岩缺少Li(CT代替LCT)或F(NY代替NYF).NYF型伟晶岩没有母花岗岩,可直接由深熔形成,与非造山带伸展背景的A型花岗岩无关.NYF型和LCT型伟晶岩的成因标志需重新评价.

(5)变质岩和花岗岩多阶段部分熔融形成富锂伟晶岩:详见Koopmans et al.(2024).

5.2 岩浆房晶粥模型和穿地壳岩浆系统

近20年来,对形成岩浆岩,特别是花岗岩类的岩浆房(岩浆储库)的认识取得了重要进展,经典的以熔体为主的大岩浆房模型受到挑战,晶粥模型逐渐被广泛接受,地壳内岩浆房的主要物质是“晶粥”(crystal mush)(图15Bachmann and Bergantz,2004Hildreth,2004).

随着晶粥体模型的建立和发展,人们对岩浆储库的认识也逐渐扩展到整个地壳尺度,建立了以晶粥体状态为主的长期存在的穿地壳岩浆系统(TCMS,transcrustal magmatic system),将不同深度的岩浆储库联通起来(Cooper and Kent,2014Cashman et al.,2017).复式岩体下方应该存在一个较长期的以晶粥体为主的穿地壳岩浆系统,是控制岩浆分异及成矿的重要因素.晶粥体状态下的晶体-熔体分离过程是造成花岗质岩浆成分变化的最主要机制之一,也可理解晶粥体岩浆房中花岗质岩浆的晶体-熔体分离机制、热液流体在花岗质岩浆演化和成矿稀有金属元素运移过程中的作用、花岗伟晶岩成因等.

晶粥岩浆房的晶体孔隙空间中活动性熔体流(reactive melt flow)流动造成低温或冷藏晶体重新活化,引起局部或总体成分变化(Jackson et al.,2018).更重要的是,岩浆房下软流圈上涌或下伏幔源岩浆底侵可提供充足热量,使岩浆房在热驱动机制下长期保持原地分异的内部高度分异作用,可称为热驱动分异(吴福元等,2023).正是由于高温幔源岩浆的长期加热,才使得岩浆房内的岩浆分异能够持续进行,导致晶粥体与残留熔体逐渐发生分离,并使残留熔体不断抽离上升,岩浆房内岩浆不断分异出热液,包括锂、铷,最终形成可被工业利用的稀有金属矿体.例如,华南稀有金属花岗岩和伟晶岩分布区下伏幔源岩浆活动(见3.3节).

晶粥岩浆房的热状态有3种:通常长期保持在“温暖的”,偶尔爆发的状态(>10万年)持续时间(Annen,2009Huber et al.,2012Gelman et al.,2013Barboni et al.,2016);一些作者更主张“冷”(近于固相线)、不活动的保存;更热、更多的镁质岩浆重新灌入再加热导致岩浆喷发(Cooper and Kent,2014Szymanowski et al.,2017).一般来讲,岩体形成的时间长短取决于侵入体的最终体积,几千米厚的侵入体和岩基的累积侵位时间会延续几十万年至数百万年(Glazner et al.,2004de Saint Blanquat et al.,2011).大陆壳中部分熔融岩浆体的最长持续时间变化范围从几十万年(Barboni et al.,2015Szymanowski et al.,2017)到几百万或更长时间(Coleman et al.,2004Grunder et al.,2008Matzel et al.,2006Claiborne et al.,2010).如幕阜山岩基,从闪长岩→花岗闪长岩→黑云母二长花岗岩→二云母花岗岩,年龄从154 Ma→151 Ma →148 Ma→129 Ma(137 Ma),岩浆成岩成矿持续约20 Ma(李鹏等,2017;文春华等,2019;赵振华等,2023).南岭侏罗纪花岗岩浆活动整体上大约经历了20 Ma,例如骑田岭岩体角闪黑云母二长花岗岩(峰值161 Ma)、中期中粗粒黑云母花岗岩(峰值157 Ma)、晚期细粒花岗岩(峰值149 Ma),更晚期黄玉流纹岩脉(150~147 Ma).骑田岭岩体似乎至少存在~160 Ma的钨矿和~155 Ma的锡矿的两期成矿作用,成岩成矿持续约5 Ma(吴福元等,2023).

上述伟晶岩与花岗岩的不同关系可以从晶粥体模型及穿地壳岩浆系统的特点找到答案.与稀有金属伟晶岩形成时空关系密切的花岗岩多为复式岩体(如幕阜山、白龙山),复式岩体通常由早期的“主体”和晚期的“补体”花岗岩构成,主体和补体花岗岩在相近的空间位置侵位从而形成复合岩体.复式岩体的形成并非由岩浆的一次侵位结晶形成,而是数千年甚至数百万年的时间范围内由多次岩浆的输运、添加、累积侵位而形成的(Coleman et al.,2004Matzel et al.,2006Michel et al.,2008).而补体或“体中体”则与晶状体岩浆房下部软流圈上涌或幔源岩浆底侵提供热和流体,导致晶粥体发生活化有关(马昌前和李艳青,2017;吴福元等,2017,2023;马昌前等,2020).而穿地壳岩浆系统将不同侵位的岩浆储库的链接,为成矿提供了充足的岩浆和流体.可见,大型侵入体是在数百万年甚至更长的时间内,岩浆多次侵位、反复堆垛、累计增生而成的(Petford et al.,2000Michel et al.,2008;马昌前和李艳青,2017;王涛等,2020).

另外,理论模拟计算表明,花岗岩与伟晶岩之间距离与伟晶岩分异程度成正比,即伟晶岩分异程度越高,两者相距越远,但伟晶岩与母岩体的距离不超过 10 km,且母岩体不应是小岩体.例如,LCT 型伟晶岩通常分布于以稀有金属花岗岩母岩为中心 10 km 半径范围内(Baker,1998).基于派生伟晶岩岩浆需要花岗质岩浆经历强烈结晶分异作用,且花岗质岩浆需要为伟晶岩岩浆分离迁出提供热量,模拟计算表明,如果母岩体的体积<5 km×5 km×5 km,或侧向延长>10 km×10 km,但厚度<5 km,由于快速冷却和接触带的高热梯度,很难溢出形成伟晶岩(Baker,1998).

5.3 形成独立伟晶岩岩浆的地壳岩石深熔作用

除了伟晶岩与花岗岩在空间上解耦的证据外,支持伟晶岩直接由地壳岩石部分熔融(深熔Anatexis)形成模型的证据还包括:在稀有矿化伟晶岩石英中发现较多含硅酸盐子晶的熔融包裹体,其成分与稀有矿化伟晶岩成分总体相当,表明自然界存在有一种特殊的、富含稀有金属的伟晶岩浆,如德国Erzgebirge、新疆阿尔泰三号脉伟晶岩(Webster et al.,1997;朱金初等,2000);某些伟晶岩的形成时代与区域变质作用时代耦合;在高级变质岩区,伟晶岩平行或近平行于混合岩的线理方向,混合岩的浅色体与伟晶岩过渡接触关系,有些混合岩的浅色体与伟晶岩形成时代相近,如滇西高黎贡变质岩区一些伟晶岩(见上述4.3节;唐渊等,2016;闫庆贺等,2024).Grew(1998)和周起凤等(2024)概括分析了深熔形成的伟晶岩的地质特征、影响因素和成因.

实验表明,在0.2~0.3 GPa(6.5~10.0 km)、(680±20) ℃(Tuttle and Bowen,1958)(花岗岩低共熔温度),或(700±50) ℃(London,2014)(伟晶岩液相线温度)水饱和条件下,泥质岩发生小比例部分熔融可直接形成独立的伟晶岩岩浆.深熔作用受源区可供利用的水控制,根据模拟实验资料,地壳物质的深熔作用主要有2种类型:注水熔融或水致熔融(fluid⁃fluxing/fluid present melting);脱水熔融(dehydration/fluid⁃absent melting),前者是在流体存在下的熔融,流体主要来自层间,后者是在流体缺乏条件下的熔融,流体主要来自含水矿物的脱水.

脱水熔融形成二云母/白云母花岗岩、电气石花岗岩和石榴石花岗岩等淡色花岗岩,而注水熔融形成的熔体成分为奥长花岗岩.与脱水熔融相比,注水熔融形成的熔体地球化学特点是 Ca、Sr、Ba、Zr、Hf、Th、LREE和 Zr/Hf较高,Rb、Nb、Ta、U和Rb/Sr、87Sr/86Sr、εHft)较低(Gao et al.,2017).

深熔过程受含水矿物的稳定性控制,如白云母、黑云母和角闪石的稳定性决定于压力和温度,它们的总量决定了形成熔体的体积(Clemens and Vielzeuf,1987; Vielzeuf and Schmidt,2001).源区的化学成分从两方面控制熔体成分,首先,主成分控制了哪种矿物相是稳定的,这影响了初期熔融的条件,最大量的熔体形成于含水矿物的完全消失.源区成分决定了熔融条件下的矿物组合.其次,源区成分不仅决定了哪些微量元素可用于熔体与残留体间再分配,也决定了在造岩矿物间的分配.例如,在含有白云母和黑云母的源区,熔融早期是白云母熔融(Clemens and Vielzeuf,1987),在白云母中含量高的元素再分配影响高于黑云母,而在黑云母中富集的元素,如Sn、W,不易再分配(Bea et al.,1994Yang and Rivers,2000).

Li、Be在白云母与过铝硅质熔体间的分配系数分别为0.80、1.35;而Li在黑云母与过铝质和高硅流纹质熔体间的分配系数分别为1.65、6.30;Be在黑云母与过铝质熔体间分配系数为0.39或0.46;堇青石中Be分配系数高达30.698,Li仅为0.44(Icenhower and London,1995Evensen and London,2003Padilla et al.,2016).对混合岩中淡色体和残留相黑云母Be分析结果显示,Be在黑云母与熔体中(淡色体)含量比达15.5±0.9,Li的含量比达45.4±2.3(Bea et al.,1994).上述数据表明,黑云母是Li 的重要储库,白云母和堇青石是Be 的重要储库(London et al.,1989Patiño Douce and Harris,1998London,2005,2008Simons et al.,2017).云母中不同元素的浓度及其在熔融反应中的行为,影响在不同温度下产生的熔体的组成及其成矿潜力.在0.4 GPa、750 ℃(640~740 ℃)以下白云母脱水分解、消失,黑云母在 850~900 ℃分解、消失.在同一样品中,Li、V、Co、Cs和Ta的浓度在黑云母中较高,而Be、In、Sn和W的浓度在白云母中较高.随着从次绿片岩(~400℃)到麻粒岩相条件(>900 ℃)的变沉积岩变质程度增加,白云母的In、W富集,Be、Sn、Cs亏损.在最高级变质(无白云母)样品中,超固体线黑云母显示出Li、Be、Sn和Cs的系统亏损和V和Co的富集.这些数据强调了高温熔融(>750 ℃)的重要性,特别是黑云母分解反应, Li,Be,Sn,Cs和W释放到地壳熔体中(Kunz et al.,2022).徐兴旺等(2024)认为,阿尔金中段锂铍花岗伟晶岩源于黑云母花岗岩的演化,成因与变泥砂岩在麻粒岩相变质过程黑云母脱水熔融形成的花岗岩浆结晶分异有关.

钨在富锂云母/熔体间分配系数D>22,为强相容元素,当富锂云母分离结晶时,熔体体系中将亏损钨.如果没有合适的成矿条件使得富锂云母发生分解,则很难形成大规模的钨矿化.这可很好解释为什么在一些高分异花岗岩或伟晶岩有关的稀有金属矿化中通常可见到Li⁃Sn⁃Nb⁃Ta(Be)的矿化组合,而未见到Li和W的大规模耦合成矿(Gao et al.,2024b).

Villaros and Pichavant(2019)用云母类矿物的高度不相容微量元素的矿物、液体间分配系数组合关系,提出法国中央高原西部海西期St⁃Sylvestre(SSLG)淡色花岗岩与其中的MAPF(Mont d'Ambazac pegmatitic field,)伟晶岩岩区伟晶岩无关.他们用云母的微量元素含量资料反映原始熔体成分和微量元素在结晶过程中的演化.用两个高度不相容微量元素i,j分别为横、纵坐标轴,模拟它们在花岗岩和伟晶岩在由不连续周期性部分熔融(同成因熔体和不同成因熔体)产生的分离结晶过程中的演化关系(图16),花岗岩和伟晶岩源于同成因熔体和不同成因熔体显示了完全不同的变化趋势,图中在原始成分Co和最终成分Cf 之间的液体分离结晶产生了具有不同矿物组合和含量比例及不相容元素富集的花岗岩和伟晶岩M1,M2,M3 和M4,简单线性关系指示了伟晶岩与花岗岩源于同成因熔体,而平行关系指示了它们源自不同成因熔体.据此判断海西期St⁃Sylvestre 伟晶岩与淡色花岗岩无关,它们源于不均一源区的部分熔融,伟晶岩不是花岗岩结晶作用的产物(图16c).图16中Co、Cf及分配系数的选择和计算方法详见该文献介绍.这种方法为探讨伟晶岩与花岗岩关系提供了判别标准。

5.4 伟晶岩与花岗岩形成年龄及源区对比问题

伟晶岩与花岗岩关系的探讨主要依据两者的形成年龄及源区对比.单颗粒矿物激光原位定年和稳定同位素测定方法建立、数据精确度不断提高和适合定年矿物种类的增加,为伟晶岩与花岗岩关系的探讨提供了更可靠资料.但随着研究的不断深入,同位素年龄和稳定同位素组成数据出现了较复杂情况,特别是继承(碎屑)矿物、纳米级矿物包裹体、矿物环带及同质异位素干扰等,使得在进行伟晶岩与花岗岩关系讨论时不能仅根据数据的异同简单进行判断.

5.4.1 源区中继承矿物问题

锆石:锆石以其稳定性和在高演化伟晶岩中的普遍存在而成为花岗岩与伟晶岩定年和同位素比值测定的一种典型矿物.应指出的是,在用同位素年龄和组成进行伟晶岩和花岗岩对比时,应注意区分继承(碎屑)和原生(岩浆、热液)结晶锆石,这在锆石研究中已有很多实例,继承矿物可提供源区部分信息,但不能作为形成年龄.而蜕晶作用产生的Pb丢失导致锆石的年龄变化.

锡石花岗岩浆中也存在继承的锡石,Neymark et al.(2021)研究了东西伯利亚贝加尔褶皱区北部Yazov含锡石花岗岩,其锆石的U⁃Pb年龄为新元古代719±15 Ma,一些锆石核为古元古代(1.89~1.81 Ga).该花岗岩中同一样品中锡石U⁃Pb一致年龄为1.84 Ga,表明花岗岩浆中存在继承锡石,显示了锡石的U⁃Pb系统与锆石中U⁃Pb同位素系统一样稳定.但在Yazov花岗岩中缺乏0.72 Ga的锡石,表明锡的富集是由继承锡石引起的,这意味着Yazov花岗岩与该地区的锡矿化无关.这个结论得到了空间上与Yazov密切的锡矿矿石中锡石的U⁃Pb年龄支持,该矿床矿石中锡石Pb⁃Pb等时线年龄为1.86~1.82 Ga,远高于上述新元古代Yazov花岗岩.这表明成矿作用与~1.85 Ga Chuya⁃Kodar含锡花岗岩有关,而与新元古代花岗岩岩浆作用无关.其他稀有金属或锡“花岗岩”也可能因继承了难熔锡石有关,这提示了产锡的岩石成因模式必须考虑碎屑锡石可作为锡的富集源.

电气石:Han et al.(2020,2023a)提出了伟晶岩和花岗岩中继承电气石识别问题,认为藏南错那洞淡色花岗岩的伟晶岩中存在捕获的电气石.藏南错那洞花岗岩(主体为二云母花岗岩)和伟晶岩的独居石定年均显示其形成于20 Ma,伟晶岩与花岗岩密切相关.但花岗岩中电气石电子背散射衍射(EBSD)特征显示,电气石随机生长排布,颗粒中也几乎见不到任何的亚颗粒边界,无任何定向性,颗粒内部的取向差极小(≤2),属于典型的岩浆岩结晶分异结晶的矿物;明显的嵌晶结构表明与二云母花岗岩同期.伟晶岩中电气石普遍被脉体穿插,电气石中具有广泛分布的裂隙和充填;伟晶岩中电气石Ar⁃Ar 年龄为45 Ma,表明电气石和伟晶岩不同期.伟晶岩和花岗岩中电气石的B 同位素组成不同,伟晶岩电气石δ11B为-9.76×10-3,花岗岩电气石δ11B为-7.65×10-3,据此提出“捕获电气石”的概念,即电气石与包含它的伟晶岩仅是空间上共生,伟晶岩中电气石为典型地壳来源,而花岗岩中电气石有镁铁质物质加入.伟晶岩中电气石可能是继承来源的,独立于高演化花岗岩系统之外.因此,不能简单地由电气石年龄否定错那洞伟晶岩与二云母花岗岩无关.

铌钽铁矿:铌钽铁矿越来越多地应用于伟晶岩成矿年龄测定,伟晶岩成矿经历了高程度分异演化,晚期热液流体加入或不同期岩浆作用的叠加,使其稀有金属矿物,如铌钽铁矿的成分也随之发生变化,使同一条稀有金属伟晶岩脉状的铌钽铁矿出现不同的年龄值.例如,阿尔金造山带吐格曼锂铍稀有金属伟晶岩脉中,一个铌钽铁矿颗粒中U⁃Pb年龄相差很大,472±8 Ma和415±8 Ma.另一个颗粒中出现475 Ma和432 Ma,同一颗粒中不同部位相差60~43 Ma.一些铌钽铁矿颗粒内年龄小者平行分布在年龄大者外缘,Nb、Ta、Fe、Mn含量呈渐变(图17a);另一些颗粒形态明显不同,年龄大者呈不规则状被包裹在年轻的颗粒中(类似于碎屑矿物),它们的Nb、Ta含量差别也大,年龄大的颗粒或部位富Nb贫Ta(图1717b;Gao et al.,2021),显示了同一脉体中不同期或叠加成矿作用.李杭等(2022)将该区花岗岩―稀有金属伟晶岩成矿划分为三期:468~454 Ma→436~434 Ma→415.4~414.7 Ma(图17c和17d).这应是上述穿地壳岩浆系统(TCMS)中岩浆房保持较长时间的实例.

当高演化的花岗岩和伟晶岩中的蜕晶锆石难以定年时,独居石、锡石、铌钽铁矿及磷钇矿等是更合适的U⁃Pb定年矿物(Li et al.,2013).由于稀有金属成矿过程的复杂性,矿物分选并不是微区测试分析的最佳方式,薄片中矿物直接测试是最理想的途径(杨岳衡等,2024).

5.4.2 Hf同位素组成对比源区

锆石Hf同位素组成是伟晶岩与花岗岩关系常采用的对比指标,但它们的锆石存在复杂情况,花岗岩,特别是温度较低的与伟晶岩时空关系密切的S型花岗岩常存在继承锆石,继承锆石与岩浆锆石具有不同的εHft)值,不能代表所探讨的花岗岩的年龄和Hf同位素组成;而稀有金属伟晶岩的锆石受U、Th高含量放射性损伤严重,极易发生蜕晶质化作用,难以获得可靠的U⁃Pb年龄.另一方面,岩浆高程度的分离结晶使锆石更富重稀土,特别是Yb,其176Yb和176Lu 对176Hf 的同质异位素干扰是锆石 Hf 同位素准确测定的最重要影响因素.同质异位素干扰主要来自176Yb 和176Lu,160Gd 和160Dy对176Hf干扰以及161Dy16O 对177Hf的影响.180Ta不仅会对180Hf 产生同质异位素干扰,其在低质量数端的强烈拖尾效应会显著影响179Hf 甚至178Hf.高分异花岗岩中锆石都具有很高的176Yb/177Hf比值(>0.2)(王浩等,2022),这影响Hf同位素组成的准确测定.温度较高时部分继承锆石可发生溶解,继承锆石中Hf缓慢扩散而转移到原生锆石(Villaros et al.,2012),蜕晶质锆石Hf同位素可发生较大变化范围.这些都对它们的Hf同位素组成造成影响(杨武斌,2012;Gao et al.,2021),使应用Hf同位素对比源区产生偏差.

由于Lu和Hf都是难熔的中等强不相容元素,使得Lu⁃Hf同位素体系与Sm⁃Nd体系类似,Hf与Nd同位素示踪原理相同而呈正相关(Vervoort and Patchet,1996),但在变质和岩浆(特别是高分异花岗岩岩浆)过程中εNdt)和εHft)并不常呈正相关,出现Nd⁃Hf同位素组成脱耦.例如,著名的江西宜春钽铌钠长石花岗岩矿床锆石εHf(t)值变化范围很大,在-14.8~0.68之间,εNdt)值为-10.7~-9.50(杨泽黎等,2014).

此外,仅用Hf同位素组成有时不能有效限定地幔岩浆是否参与了花岗岩的形成(李献华等,2009),锆石U⁃Pb年龄和Hf⁃O同位素组成是限定花岗石形成最常用的手段.还应注意的是,锆石在花岗岩中结晶较早,且受“锆石Hf同位素效应”的影响(Patchett et al.,1984),导致锆石对花岗岩形成的记录缺失或存在多解性.

独居石是花岗岩中另一种常见的副矿物,其U⁃Th⁃Pb 体系的封闭温度(约750 ℃),仅次于锆石(Suzuki et al.,1994),在岩浆演化过程中的行为和性质与锆石具有互补性.岩浆锆石的Hf⁃O和独居石的Nd⁃O同位素组成记录了岩浆源区特点.锆石和独居石U⁃Pb和Hf⁃Nd/O同位素记录的耦合和解耦特点,可以用来更好精炼花岗质岩石的形成过程(Zhang et al.,2024).

用同位素组成对比花岗岩与伟晶岩源区时,还应注意花岗岩上升、分异演化形成伟晶岩过程中受地壳物质混染影响,造成Hf 同位素组成值降低.当伟晶岩εHft)值为从正值到负值时,应判断伟晶岩成岩过程是否受到地壳物质的混染,用O⁃Sr同位素协变关系是判断方法之一,陡倾斜关系指示地壳混染,出现这种情况时不能简单地认为伟晶岩与花岗岩无关(赵振华,2016).

5.5 非传统稳定同位素

非传统稳定同位素地球化学是相对于氢、碳、氧、硫等传统稳定同位素地球化学而言的,包括铁、铜、锌、钼、硒、汞、锂、镁、镍、银、镉、锑、锗、钡、钙、钛、钒等同位素体系,是20世纪以来同位素地球化学领域最具活力的方向.

目前,Li同位素组成越来越多地用于稀有金属花岗伟晶岩成岩成矿研究.Li的流体活动性较强,流体作用(水-岩反应)会造成Li同位素显著分馏(Lynton et al.,2005Wunder et al.,2007),7Li较6Li更容易进入流体相(Tomascake et al.,1999;Wunder et al.,2007,2011),地壳物质经部分熔融形成岩浆、分离结晶、气相出溶和缓慢冷却等过程都可以产生大的Li同位素分馏(Teng et al.,2006).因此,Li同位素组成具有示踪花岗伟晶岩岩浆演化与成矿作用过程的潜力.目前获得的初步认识是贫锂伟晶岩均比富锂伟晶岩具有更高的δ7Li值,即相对富重Li同位素,可作为锂辉石伟晶岩的成矿、找矿标志之一.

但Li同位素对伟晶岩与花岗岩关系的认识还存在分歧:Teng et al.(2006)发现,Tin Mountain 花岗岩的δ7Li 值与岩浆分异程度参数(SiO2、Rb和Li)无关,认为δ7Li值不受地壳深熔作用与花岗岩结晶作用的影响,而主要受控于其源岩组成.Deveaud et al.(2015)发现,法国中央高原地区的Montsd’ Ambazac伟晶岩云母矿物的δ7Li值(-3.6×10-3~+3.4×10-3)与岩浆分异趋势无关,不受分离结晶和地壳深熔过程影响,认为云母的低δ7Li值指示花岗岩和伟晶岩的源岩均为变沉积岩,不同类型伟晶岩的δ7Li反映了不同的地壳源岩.Chen et al.(2020)研究了阿尔泰青河贫Li伟晶岩的Li同位素组成,伟晶岩明显富集δ7Li(4.1×10-3~14.5×10-3),Li 含量低(3.6 ×10-6~50×10-6),与区内片岩、花岗岩及全球富Li伟晶岩明显不同.这表明贫Li伟晶岩源区以黑云母为主(超过白云母),贫助熔组分Li、Na、B、F、CO3-2和HCO3-1,为杂砂岩质或泥质岩,形成于贫水、富硅酸盐熔体;而富Li伟晶岩源区为富白云母的片岩,富含上述助熔组分,形成于富水、贫硅酸盐的超临界流体(侯江龙等,2018),青河贫Li伟晶岩不是花岗岩高程度分异演化的产物.

Zhao et al.(2022)根据Nd⁃Sr⁃Li同位素和微量元素Li、Rb、Sr组成模拟,四川甲基卡马颈子二云母花岗岩的分离结晶难以解释区域伟晶岩的同位素和元素组成特征,提出伟晶岩熔体不是花岗岩浆高度分异的产物,而是由提供了丰富蒸发层助溶剂和锂源的混合地壳源区(富锂黏土岩为主+西康群变质沉积岩)在角闪岩相中低级变质条件下,通过白云母脱水的低程度部分熔融(5%~20%)形成,富锂黏土岩在源岩中占60%~70%.

Gao et al.(2024a)认为,甲基卡伟晶岩和变质沉积岩围岩的δ7Li值存在较大差异,而与采自3 km深钻岩心二云母花岗岩具有相似的Nd同位素组成,Nd⁃Li同位素指示伟晶岩不是变质沉积岩部分熔融形成,而是二云母花岗岩岩浆的结晶分异作用形成的.

Barnes et al.(2012)认为,花岗岩岩浆演化后期的岩浆分异和流体出溶作用是Li富集的主要原因.而对其中变质沉积岩(片岩、板岩)和二云母花岗岩Li同位素组成的分析,发现变质沉积岩中Li含量和δ7Li变化较大,二云母花岗岩δ7Li值为-0.4×10-3,变质沉积岩的平均δ7Li值(-2.9×10-3)低于二云母花岗岩,这可能是富δ6Li石榴石在不一致熔融过程中进入残留相所致,推测Li同位素分馏可能发生在地壳深埋过程中,部分熔融作用使挥发物和稀有金属元素转移到花岗质熔体中,对Li矿化起着重要作用(Zhang et al.,2022).

陈洁和李建康(2024)认为,伟晶岩熔体结晶分异和流体出溶过程均会产生较明显的锂同位素分馏,伟晶岩锂同位素组成可能对于指示锂的来源作用有限,但可以较好地指示熔体结晶分异和流体出溶等地质过程,有助于揭示伟晶岩熔体-流体的演化过程,指示锂矿化机制.Lei et al.(2023)提出,晚期熔体和岩浆流体并不反映其原始熔体的锂同位素组成,其δ7Li更多反映了蚀变矿物而非源岩的同位素组成,需谨慎使用锂同位素组成示踪伟晶岩源区.

穿地壳岩浆系统模型(本文5.2节)认为,出溶自深部岩浆房的流体可以参与浅部岩浆-热液演化,同时可以携带流体活动性成矿元素.然而,利用常规地球化学指标,很难识别深部岩浆流体对浅部岩浆成分的影响及对稀有金属元素运移富集的贡献.Ba在花岗质岩浆演化过程中具有相容性和流体活动性,其在矿物-熔体-流体相之间存在键合环境差异,Ba同位素在上述过程中可能发生显著分馏,可以示踪穿地壳岩浆系统内以流体为介质的物质运移过程,具有很大的应用潜力.也是花岗质岩浆-热液演化过程、陆壳浅部的高分异花岗岩成分变化的重要原因和形成多种稀有金属(Sn、W、Nb、Ta、Mo等)矿床的关键步骤.Deng et al.(2024)对川西甲基卡伟晶岩的Ba同位素组成研究显示,伟晶岩Ba同位素分馏程度很大(-2.44×10-3~0.47×10-3).矿体中花岗岩与细晶岩虽然显示分异程度变化,但它们的δ138Ba/134Ba 变化较小,指示花岗伟晶岩样品之间显著的Ba同位素分馏应该是脉体内部演化过程的结果.大多数甲基卡伟晶岩具有比围岩和上陆壳平均值显著更低的δ138Ba/134Ba,这难以用围岩混染解释,也不支持富Li变沉积岩源区低程度部分熔融的成因模式.基于热液流体与硅酸盐熔体之间的Ba同位素分馏系数,这些极低的δ138Ba/134Ba最可能是伟晶岩系统中存在大量岩浆流体.结合瑞利分馏和质量平衡计算发现,大多数甲基卡伟晶岩的Ba元素和同位素组成特征需要其中含有10% ~40%的岩浆流体.

由上所述,非传统同位素在伟晶岩与花岗岩成岩成矿研究中的应用还处于资料积累阶段,今后应进一步加强其分馏机制的研究.

5.6 花岗岩复式岩体与伟晶岩

5.6.1 多期多阶段的花岗岩岩浆活动

与伟晶岩形成关系密切的花岗岩岩浆常呈多种多样、多期、多阶段活动特点.花岗岩岩基是花岗岩岩浆定位的主要形式之一.长期以来,对其特点的描述有不同术语,如复式岩体(中国科学院地球化学研究所,1979;刘家远,2003)、杂岩体(刘家远,2003)、补体(芮宗瑶,1962)及体中体(袁奎荣和邹近福;1992;裴荣富,1995;李鹏等;2017)等.

《华南花岗岩类的地球化学》(中国科学院地球化学研究所,1979)一书中认为,“复式岩体是指不同时代、不同期、不同次(或阶段)侵入活动或花岗岩化形成的花岗岩体”.莫柱孙等(1980)对南岭花岗岩地质研究及填图将花岗岩类按时代划分为古生代花岗岩加里东期,代号γ3,海西期γ4,中生代印支期花岗岩γ51、燕山期γ52和γ53等,在南岭其他地区的1∶20万地质填图中得到了广泛的应用.刘家远(2003)认为“复式岩体和杂岩体是花岗岩类岩体组合的两种基本形式.“复式岩体”系指不同时代花岗岩类岩体在空间上的共生,组成“复式岩体”的各部分彼此之间不存在必然的成因联系.“杂岩体”指来自同一岩浆房(或岩浆源地)的同源岩浆多次分离、上升和侵入定位所形成的岩体共生组合.吴福元等(2023)认为复式岩体是由不同时代或阶段以及不同岩性组成的岩体.

袁奎荣和邹近福(1992)基于对国内外一些隐伏成矿花岗岩的典型实例研究提出“体中体”,将其作为隐伏基岩的一类隐伏岩体.裴荣富(1995)认为补充岩体及成矿是共源岩浆补余分异作用(complementary differentiation)的结果.李鹏等(2017),将仁里超大型伟晶岩铌钽矿床有关的幕阜山花岗岩复式岩体划分为3个时代,20个侵入期次.早期的花岗岩多为花岗闪长岩、黑云母花岗岩,为复式花岗岩体的主体;晚期的花岗岩多为二云母花岗岩,颜色较浅,往往呈岩株、岩脉或岩枝等出露,面积较小,侵入在主体花岗岩的内部,为补充花岗岩体(简称补体).幕阜山复式花岗岩体中各岩体的侵入顺序为:花岗闪长岩→黑云母石英二长岩→黑云母二长花岗岩→二云母二长花岗岩→白云母二长花岗岩.幕阜山岩体的多期次活动和成矿可用复式岩体的“体中体”模式解释,由具有同源联系的多个单一侵入体先后相继侵位构成“体中体”,而成矿岩体则多为其中较 晚 期、较小规模 的岩体.仁里超大型伟晶岩铌钽矿床是大岩基地区多期次岩浆演化“共(源)岩浆补余分异”的结果(周芳春等,2019).

华南部分花岗岩类近几年精确同位素年代学综合研究发现,复式岩体的主体和补体并非同时形成,它们或是加里东期与燕山期,或是印支期与燕山期,甚至加里东期、印支期和燕山期的复合岩体.但绝大多数复式岩体的主体与补体成岩年龄一致,均属于燕山早期.大部分学者认为,主体与补体构成同源岩浆分异结晶关系,即补体是主体岩浆结晶分异作用的残余(李献华,2007;Guo et al.,2012).但有学者认为,主体与补体之间并不具有成因上的联系(汪洋,2008;陈斌等,2011;Chen et al.,2014,2021Wang et al.,2014a).陈斌等(2011)认为,晚期的补体是主体花岗岩源区部分熔融后又一次独立岩浆作用的产物.吴福元等(2023)认为主体与补体时代基本一致、Sr、Nd、Hf同位素组成无明显差异、稀土及挥发分呈化学演化,构成同源岩浆结晶分异关系.

5.6.2 花岗岩浆的高演化与高结晶分异

花岗岩与伟晶岩的关系及稀有金属成矿都涉及花岗岩岩浆的高演化或高分异问题.

《华南花岗岩类的地球化学》一书中(中国科学院地球化学研究所,1979),演化是华南花岗岩问题讨论的主线,认为“华南花岗岩体无论规模大小,基本都具有多期次或多阶段侵入的复式岩体特点.对于钠长石化稀有金属花岗岩与花岗伟晶岩的关系,指出分异交代作用形成钠长石化花岗岩及花岗伟晶岩,在一个不大的地质构造单元内,同时代的花岗岩浆,要么派生出花岗伟晶岩,要么是钠长石化花岗岩小岩株.也就是说,在有稀有金属矿的花岗伟晶岩广泛发育地区,见不到同时代的具有同样矿化规模的钠长石化花岗岩,正如在华南地区许多含钽的钠长石化花岗岩体附近只能见到一些“不像样”的似伟晶岩一样,这是因为二者的形成条件不同所致(尽管它们的成分很相似).但是,它们在下述特殊情况下是可以共生的:其一存在于钠长石化花岗岩与花岗伟晶岩过渡条件之中(如江西葛源花岗岩岩);其二是在钠长石化花岗岩形成过程中,构造条件发生变化,即转化为有利于花岗伟晶岩的生成条件时才有可能.基于钠长石化花岗岩与花岗伟晶岩之间物质成分上的类似,并都兼有结晶分异和交代作用的特征,它们(同为富 Nb、Ta 的钠化花岗岩和花岗伟晶岩)应是在花岗岩岩浆演化的同一阶段而在不同的外部条件(压力、裂隙等)下的形成物,即是相类似的两份熔体溶液在不同条件下的产物.富铌的钠长石花岗岩不可能是同样富铌的花岗伟晶岩的母岩,它所派生的花岗伟晶岩应该是相对富钽的,富钽的钠长石化花岗岩则不可能再派生出花岗伟晶岩.这种关系在现代被认为是“兄弟关系”,本文中有关阿尔泰阿斯卡尔特花岗岩与伟晶岩及甲基卡花岗细晶岩和伟晶岩均呈现颇具规模的稀有金属成矿可作为实例(见本文2节).

原地矿部南岭项目花岗岩专题组(1989)提出,南岭地区的花岗岩类岩浆只有经过充分的完善的分异作用才能形成成矿花岗岩及其矿床.

笔者根据华南稀有金属和钨锡矿化或成矿花岗岩的稀土组成,特别是它们具有典型的稀土四分组效应,提出并定量模拟了其花岗岩岩浆高程度分离结晶模式(赵振华,1988a,1988b;赵振华等,1992;Zhao et al.,2002).

吴福元等(2023)认为,高演化更多的是指较长时间内所发生的地质作用的演变情况,也包括岩体自身的结晶演化.高分异是指单个岩体在形成过程中所表现出的较高程度的岩浆结晶分异作用,使残留的熔体不断向富硅、富碱方向演化的过程.高分异也具有演化的含义,但一般更多地将其称之为高分异,而非高演化.

5.6.3 多期多阶段伟晶岩

越来越多的证据表明伟晶岩存在多期、多阶段成矿.阿尔金造山带位于青藏高原北缘,近年来在阿尔金阿中地块陆续发现了瓦石峡南锂矿、恰达克锂矿、吐格曼锂铍矿、阿亚克(吐格曼北)锂矿、库木萨依锂矿、沙梁西锂矿、塔什达坂锂矿等一批中型花岗伟晶岩锂矿床(徐兴旺等,2019,2020;李杭等,2020,2022; Hong et al.,2021Gao et al.,2021;王核等,2022;张焕等,2022;Ma et al.,2024),王核等(2023)在距离库木达坂东10 km的黄龙岭一带发现了十余条规模较大的含锂辉石矿化的伟晶岩脉群,Li潜在资源量达超大型规模.

阿尔金中地体区内主要产出早古生代花岗岩,分布于中元古界复理石建造中,主要岩石类型包括黑云母二长花岗岩、糜棱岩化黑云母花岗岩、角闪黑云母花岗岩、二云母钾长花岗岩、二云母二长花岗岩、白云母钠长花岗岩、白云母碱长花岗岩、电气石石榴子石钠长花岗岩和细晶花岗岩(徐兴旺等,2019,2024;李杭等,2022;Li et al.,2023).花岗岩锆石年龄属晚寒武世到志留纪,主期可分为:≥490 Ma、490~480 Ma、480~440 Ma 3组;数据显示还有一期白云母钠长花岗岩和细晶花岗岩为435~415 Ma.角闪黑云母花岗岩和黑云母花岗岩εHft)值为-12.0~-6.2(Li et al.,2023),显示了其源区为泥质变沉积岩.

区内阿克亚克锂铍伟晶岩锆石、铌钽铁矿和锡石U⁃Pb年龄测定表明,伟晶岩的年龄可分为3组:468~454 Ma、436~434 Ma和415 Ma,属中奥陶世-晚志留世.含铌钽铁矿白云母伟晶岩铌钽铁矿U⁃Pb年龄为464.1±2.7 Ma、414.7±3.0 Ma;白云母锡石伟晶岩锡石U⁃Pb年龄为468.0±8.7 Ma,锆石为458.7±2.3 Ma;白云母钠长石锂辉石伟晶岩锆石为454.7±4.0 Ma,铌钽铁矿为472±8 Ma、472±5 Ma.值得关注的是同一条脉的同一样品中一个颗粒的铌钽铁矿不同部位年龄差可达约60 Ma(见上述5.4.1节).如锆石、铌钽铁矿及独居石和铌钽铁矿U⁃Pb定年揭示塔什萨依伟晶岩也呈3期:473~471 Ma、434~429 Ma和425~416 Ma(徐兴旺等2024).

上述特点表明,本区几条典型代表性的伟晶岩脉定年资料显示了伟晶岩成矿的多期特征,如吐格曼北ρ87号脉主要包括3期成岩成矿作用:(1)石英带期;(2)含细粒浸染状铌钽铁矿细晶花岗岩期;(3)含长条状铌钽铁矿的铌钽铁矿-白云母伟晶岩期.ρ31号脉主要包括两期成岩成矿作用:锡石与锂辉石期;细晶白云母钠长花岗岩期.ρ38号脉也存在两期成岩成矿作用:锂辉石与钾长石期;细粒钠长花岗岩期.

区内塔什萨依花岗岩-伟晶岩区也显示了类似特点,其伟晶岩和细晶岩组成的γ02岩墙中铌钽铁矿、独居石和锆石的U⁃Pb定年显示3期:471.6±3.5 Ma(锂云母钠长石石英伟晶岩)、439.6±5.0 Ma(锂辉石钠长石伟晶岩)和416.3±4.8 Ma(细晶岩);花岗岩锆石年龄为:黑云母花岗岩473±15 Ma、伟晶-细晶岩440±3.0 Ma、白云母花岗岩417.7±2.7 Ma(Ma et al.,2024).

川西甲基卡花岗细晶岩-伟晶岩锂辉石矿床科学钻探在2 568 m和3 100 m伟晶岩分别获得了独居石210~204 Ma 和193~192 Ma年龄,揭示了甲基卡锂辉石的两期成矿作用(许志琴等,2023)

综合上述,本区伟晶岩的多期成矿与区内花岗岩的多期性密切相关,吐格曼北ρ87花岗伟晶岩脉包含12个岩相带,其中1、2和10、11带均为细晶花岗岩,伟晶岩脉中的石英带位于伟晶岩的边部和细晶钠长花岗岩的下侧.其中,含细粒浸染状铌钽铁矿细晶花岗岩被含长条状铌钽铁矿的铌钽铁矿-白云母-石英伟晶岩脉穿插.ρ38号脉锂辉石-钾长石伟晶岩和锂辉石-石英伟晶岩经历了被细粒钠长花岗岩交代.本区伟晶岩多期多阶段成矿特点显示出吐格曼北锂铍矿床的形成是多期岩浆-流体叠加的结果,花岗岩-伟晶岩成岩成矿时间延续约60 Ma(472~415 Ma;见5.4.1节).

新疆阿尔泰三号伟晶岩脉9 个内部结构带的精确定年资料显示,伟晶岩主成矿期为220~206 Ma,张辉和李国胜(2024)提出,三号脉岩浆-热液演化时限:岩浆阶段(219~211 Ma)、岩浆-热液过渡阶段(211~209 Ma)、热液阶段(209~204 Ma).本文4.1.2节指出,在内带的 V 和Ⅷ带出现早侏罗世年龄(198.7~183 Ma,锆石,;Wang et al.,2017bZhou et al.,2015表 2),在外带的Ⅱ带出现187 Ma.这些年龄与三号脉采坑底白云母钠长石花岗岩获得的铌钽铁矿和磷灰石侏罗纪年龄一致(Han et al.,2023b).这些数据将三号脉的岩浆和热液活动从220~204 Ma(持续约16 Ma)延续到183 Ma(持续37 Ma).笔者认为这是白云母钠长石花岗岩为代表的区内侏罗纪岩浆活动对三号脉成岩、成矿过程的叠加作用,使三号脉伟晶岩岩浆、岩浆-热液过渡到热液活动从晚三叠世延续到早侏罗世,形成超大型稀有金属伟晶岩矿床(赵振华和严爽,2023).

三号脉采坑底部出露的球状白云母钠长石花岗岩稀有金属含量、组合、稀土四分组效应、电气石B同位素特征和全岩的 Hf 同位素组成(花岗岩εHft)值为-0.11×10-3~+1.32×10-3)均与三号脉(εHft)值为+1.25×10-3~+2.39×10-3,δ11B值为-13.7×10-3~-12.8×10-3)相似.综合研究表明,该花岗岩可能是阿尔泰地区从北西到南东早、中侏罗世花岗岩(200~192 Ma、181 Ma和160~151 Ma;赵振华等,2022)岩浆活动的产物,促使三号脉深源富晶粥岩浆房活化,使得可可托海伟晶岩的演化持续较长的时间,形成三号脉演化时间超长(220~183 Ma)的岩浆系统,进而形成超大型稀有金属伟晶岩矿床.

类似的还有具有大-中型锂-铍-铌-钽成矿规模的阿尔泰柯鲁姆特112号伟晶岩脉,其6个内部结构带的锆石年龄和地球化学也显示了类似的特征(et al.,2012),成矿作用从岩浆阶段到热液阶段经历了约50 Ma(238.3~188.3 Ma)(见4.2节讨论).这些特点表明,阿尔泰伟晶岩三叠纪稀有金属成矿作用受到区内早侏罗世花岗岩岩浆作用的叠加,为形成超大型规模矿床提供了有利条件.

Mottram et al.(2024)对加拿大育空地区一个斑岩-浅成热液系统中的碳酸盐矿物进行了铀-铅定年,结合矿物学和岩石学分析发现该系统中的热液活动持续了长达5 000万年.该矿床又经历了多次浅成热液型矿化作用的叠加改造.这项新的研究表明,即使在岩浆活动结束后,热液活动仍可以在断层控制的有利构造环境中持续进行数千万年,并形成具有经济价值的矿床.

6 结语

(1)伟晶岩与花岗岩的关系可概括为:(a)伟晶岩与花岗岩时空关系密切,呈父(花岗岩)-子(伟晶岩)关系.其花岗岩呈“独立岩株”,或呈复式岩体.其中,稀有金属伟晶岩与所赋存的花岗岩复式岩体中晚期相(体中体)花岗岩有关,这些晚期花岗岩多呈岩株,与伟晶岩形成年龄相近,同位素(如Hf)组成也显示二者源区物质相似.多期多阶段花岗岩-伟晶岩成矿系统延续可达数十百万年.(b)伟晶岩与花岗岩近乎同时形成,即兄弟关系,主要以似伟晶岩产于高演化花岗岩顶部;或以细晶花岗岩-伟晶岩连续过渡共同产出.(c)伟晶岩由变沉积岩和花岗岩多阶段部分熔融形成.(d)伟晶岩与花岗岩无关,它们形成年龄明显不同,同位素(如Hf)组成差异明显,伟晶岩由变沉积岩低程度深熔作用形成的独立伟晶岩岩浆形成.

(2)锆石、铌钽铁矿、锡石、独居石、磷钇矿等副矿物微区同位素综合定年与示踪,对开展稀有金属伟晶岩成矿作用研究具有无可比拟的优点.应注意区分继承矿物.薄片中矿物原位微区测试、实验方法研发与标准物质研制是当前迫切需要解决的关键技术难题.

(3)伟晶岩多期、多阶段成矿作用是伟晶岩大规模成矿的重要控制因素.

(4)伟晶岩与花岗岩的关系研究,关系到伟晶岩的成岩、成矿作用核心问题,应综合开展岩石学、地球化学和地球物理研究,建立不同类型伟晶岩成岩成矿系统完整的地质、微量元素、同位素(特别是非传统稳定同位素)地球化学指标和模型.应进一步加强对相关花岗岩复式岩体开展以系统岩石类型、岩石地球化学(同位素精确定年、Hf 同位素组成)分析为重点内容的大比例尺填图,结合岩浆分异程度指示标志,揭示同源岩浆分异演化过程及其对稀有金属的控制作用,探讨花岗岩复式岩体与周缘伟晶岩的关系.

参考文献

[1]

Annen,C.,2009.From Plutons to Magma Chambers:Thermal Constraints on the Accumulation of Eruptible Silicic Magma in the Upper Crust.Earth and Planetary Science Letters,284(3-4):409-416.https://doi.org/10.1016/j.epsl.2009.05.006

[2]

Appleby,S.K.,Gillespie,M.R.,Graham,C.M.,et al.,2010.Do S⁃Type Granites Commonly Sample Infracrustal Sources? New Results from an Integrated O,U⁃Pb and Hf Isotope Study of Zircon.Contributions to Mineralogy and Petrology,160(1):115-132.https://doi.org/10.1007/s00410⁃009⁃0469⁃3

[3]

Bachmann,O.,Bergantz,G.W.,2004.On the Origin of Crystal-Poor Rhyolites:Extracted from Batholithic Crystal Mushes.Journal of Petrology,45(8):1565-1582.https://doi.org/10.1093/petrology/egh019

[4]

Bai,W,L.,1994.Gem Pegmatite in Gaoligongshan Area,Western Yunnan.Mineral Resources and Geology,8(4):281-286 (in Chinese with English abstract).

[5]

Baker,D.R.,1998.The Escape of Pegmatite Dikes from Granitic Plutons:Constraints from New Models of Viscosity and Dike Propagation.The Canadian Mineralogist,36(2):255-263.

[6]

Bakker,R,J.,Elburg,M,A.,2006.A Magmatic Hydrothermal Transition in Arkaroola (Northern Flinders Ranges,South Australia):From Diopside⁃Titanite Pegmatites to Hematite⁃Quartz Growth.Contribution to Mineralogy and Petrology,152(5):541-569.https://doi.org/10.1007/s00410⁃006⁃0125⁃0

[7]

Barboni,M.,Annen,C.,Schoene,B.,2015.Evaluating the Construction and Evolution of Upper Crustal Magma Reservoirs with Coupled U/Pb Zircon Geochronology and Thermal Modeling:A Case Study from the Mt.Capanne Pluton (Elba,Italy).Earth and Planetary Science Letter,432:436-448.https://doi.org/10.1016/j.epsl.2015.09.043

[8]

Barboni,M.,Boehnke,P.,Schmitt,A.K.,et al.,2016.Warm Storage for Arc Magmas.PNAS,113(49):13959-13964.https://doi.org/10.1073/pnas.1616129113

[9]

Barnes,E,M.,Weis,D.,Grouat,L,A.,2012.Significant Li Isotope Fractionation in Geochemical Evolved Rare Element⁃Bearing Pegmatites from the Little Mahanni Pegmatite Group,NWT,Canada.Lithos,132-133:21-36.https://doi.org/ 10.1016/j.lithos.2011.11.014

[10]

Bea,F.,Pereira,M.D.,Stroh,A.,1994.Mineral/Leucosome Trace⁃Element Partitioning in a Peraluminous Migmatite (a Laser Ablation⁃ICP⁃MS Study).Chemical Geology,117(1-4):291-312.https://doi.org/10.1016/0009⁃2541(94)90133⁃3

[11]

Butler,R.W.H.,Torvela,T.,2018.The Competition between Rates of Deformation and Solidification in Syn⁃Kinematic Granitic Intrusions:Resolving the Pegmatite Paradox.Journal of Structural Geology,117:1-13.https://doi.org/10.1016/j.jsg.2018.08.013

[12]

Cai,D.,W.,Tang,Y.,Zhang,H.,et al.,2017.Petrogenesis and Tectonic Setting of the Devonian Xiqin A⁃Type Granite in the Northeastern Cathaysia Block, SE China.Journal of Asian Earth Sciences,141(15):43-58.https://doi.org/10.1016/j.jseaes.2016.05.015

[13]

Cai,K.D.,Sun,M.,Yuan,C.,et al.,2012.Keketuohai Mafic⁃Ultramafic Complex in the Chinese Altai,NW China:Petrogenesis and Geodynamic Significance.Chemical Geology,294:26-41.https://doi.org/10.1016/j.chemgeo.2011.11.031

[14]

Cao,H,W.,2015.Research on Mesozoic⁃Cenozoic Magmatic Evolution and Its Relation with Metallogeny in Tengchong⁃Lianghe Tin Ore Belt,Western Yunnan (Dissertation).China University of Geosciences,Wuhan (in Chinese with English abstract).

[15]

Cashman,K.V.,Sparks,R.S.J.,Blundy,J.D.,2017.Vertically Extensive and Unstable Magmatic Systems:A Unified View of Igneous Processes.Science,355(6331):eaag3055.https://doi.org/10.1126/science.aag3055

[16]

Černý,P.,1991a.Rare⁃Element Granitic Pegmatites 1.Anatomy and Internal Evolution of Pegmatite Deposits.Geoscience Canada,18(2):49-67.

[17]

Černý,P.,1991b.Rare⁃Element Granitic Pegmatites.Part Ⅱ:Regional to Global Environments and Petrogenesis.Geoscience Canada,18(2):68-81.

[18]

Černý,P.,1992.Geochemical and Petrogenetic Features of Mineralization in Rare⁃Element Granitic Pegmatites in the Light of Current Research.Applied Geochemistry,7(5):393-416.https://doi.org/10.1016/0883⁃2927(92)90002⁃k

[19]

Černý,P.,Ercit,T.S.,2005.The Classification of Granitic Pegmatites Revisited.The Canadian Mineralogist,43(6):2005-2026.https://doi.org/10.2113/gscanmin.43.6.2005

[20]

Che,X.D.,Wu,F.Y.,Wang,R.C.,et al.,2015.In Situ U⁃Pb Isotopic Dating of Columbite⁃Tantalite by LA⁃ICP⁃MS.Ore Geology Reviews,65:979-989.https://doi.org/10.1016/j.oregeorev.2014.07.008

[21]

Chen,B.,Huang,C.,Zhao,H.,2020.Lithium and Nd Isotopic Constraints on the Origin of Li⁃Poor Pegmatite with Implications for Li Mineralization.Chemical Geology,551(6):119769.https://doi.org/10.1016/j.chemgeo.2020.119769

[22]

Chen,B.,Ma,X,H.,Wang,Z,Q.,et al.,2011.Genetic Relationship between the Early Main and Late Minorphase and It’s Metallogenetic Implications of the Qianlishan Composite Pluton in Nanling Region.Acta Mineralogica Sinica,31(Suppl.1):9-11 (in Chinese with English abstract).

[23]

Chen,B.,Ma,X.H.,Wang,Z.Q.,2014.Origin of the Fluorine⁃Rich Highly Differentiated Granites from the Qianlishan Composite Plutons (South China) and Implications for Polymetallic Mineralization.Journal of Asian Earth Sciences,93:301-314.https://doi.org/10.1016/j.jseaes.2014.07.022

[24]

Chen,J.,Li,J.K.,2024.Progress in Lithium Isotopic Study of Pegmatites and Its Application in Lithium Deposit.Acta Geologica Sinica,98(5):1600-1614 (in Chinese with English abstract).

[25]

Chen,J.F.,Zhang,H.,Zhang,J.X.,et al.,2018.Geochronology and Hf Isotope of Zircon for Koktokay No.3 Granitic Pegmatite in Xinjiang and Its Geological Implications.The Chinese Journal of Nonferrous Metals,28(9):1832-1844 (in Chinese with English abstract).

[26]

Chen,L.,Nie,X.,Liu,K.,et al.,2023.Mineralogical and Chronological Characteristics of the Huoyangou Pegmatite Sn (Nb⁃Ta) Deposit in Guanpo,Eastern Qinling.Earth Science Frontiers,30(5):40-58 (in Chinese with English abstract).

[27]

Chen,X.Y.,Wu,J.H.,Tang,W.X.,et al.,2023.Newly Found Giant Granite⁃Associated Lithium Resources in the Western Jiangxi Province,South China.Earth Science,48(10):3957-3960 (in Chinese with English abstract).

[28]

Chen,Y.J.,Chen,B.,Duan,X.X.,et al.,2021.Origin of Highly Fractionated Peraluminous Granites in South China:Implications for Crustal Anatexis and Evolution.Lithos,402:106145.https://doi.org/10.1016/j.lithos.2021.106145

[29]

Chen,Y.W.,Hu,R.Z.,Bi,X.W.,et al.,2018.Zircon U⁃Pb Ages and Sr⁃Nd⁃Hf Isotopic Characteristics of the Huichizi Granitic Complex in the North Qinling Orogenic Belt and Their Geological Significance.Journal of Earth Science,29(3):492-507.https://doi.org/10.1007/s12583⁃017⁃0906⁃6

[30]

Chen,Y.X.,Gao,F.,Pei,X.Z.,et al.,2017.Chronology,Geochemistry and Tectonic Implication of the Huiteng Granitic Pluton in the Altay Area,Xinjiang.Acta Petrologica Sinica,33(10):3076-3090 (in Chinese with English abstract).

[31]

Claiborne,L.L.,Miller,C.F.,Wooden,J.L.,2010.Trace Element Composition of Igneous Zircon:A Thermal and Compositional Record of the Accumulation and Evolution of a Large Silicic Batholith,Spirit Mountain,Nevada.Contributions to Mineralogy and Petrology,160(4):511-531.https://doi.org/10.1007/s00410⁃010-0491-5

[32]

Clemens,J.D.,Vielzeuf,D.,1987.Constraints on Melting and Magma Production in the Crust.Earth and Planetary Science Letters,86(2-4):287-306.https://doi.org/10.1016/0012⁃821x(87)90227⁃5

[33]

Coleman,D.S.,Gray,W.,Glazner,A.F.,2004.Rethinking the Emplacement and Evolution of Zoned Plutons:Geochronologic Evidence for Incremental Assembly of the Tuolumne Intrusive Suite,California.Geology,32(5):433-436.https://doi.org/10.1130/g20220.1

[34]

Cong,F.,Lin,S,L.,Tang,H,F.,et al.,2010.Trace Elements and Hf Isotope Compositions and U⁃Pb Age of Igneous Zircons from the Triassic Granite in Lianghe,Western Yunnan.Acta Geologica Sinica,84(8):1155-1164 (in Chinese with English abstract).

[35]

Cooper,K.M.,Kent,A.J.R.,2014.Rapid Remobilization of Magmatic Crystals Kept in Cold Storage.Nature,506:480-483.https://doi.org/10.1038/nature12991

[36]

de Saint Blanquat,M.,Horsman,E.,Habert,G.,et al.,2011.Multiscale Magmatic Cyclicity,Duration of Pluton Construction,and the Paradoxical Relationship between Tectonism and Plutonism in Continental Arcs.Tectonophysics,500(1-4):20-33.https://doi.org/10.1016/j.tecto.2009.12.009

[37]

Deng,G.,Jiang,D.,Li,G.,et al.,2024.Barium Isotope Evidence for a Magmatic Fluid⁃Dominated Petrogenesis of LCT⁃Type Pegmatites.Geochemical Perspectives Letters,31:14-20.https://doi.org/10.7185/geochemlet.2426

[38]

Deveaud,S.,Millot,R.,Villaros,A.,2015.The Genesis of LCT⁃Type Granitic Pegmatites,as Illustrated by Lithium Isotopes in Micas.Chemical Geology,411:97-111.https://doi.org/10.1016/j.chemgeo.2015.06.029

[39]

Dill,H.G.,2015a. The Hagendorf⁃Pleystein Province: The Center of Pegmatites in an Ensialic Orogeny. Springer International Publishing, Switzerland. https://doi.org/10.1007/978⁃3⁃319⁃18806⁃5

[40]

Dill,H.G.,2015b. Pegmatites and Aplites: Their Genetic and Applied Ore Geology.Ore Geology Reviews, 69: 417-561. https://doi.org/10.1016/j.oregeorev.2015.02.022

[41]

Ding,J.G.,Yang,C.D.,Yang,F.Q.,et al.,2020.Genetic Relationship between Ore⁃Bearing Pegmatite and the Surrounding Granite of Bieyesamasi Rare Metal Deposit in Altay of Xinjiang,China.Journal of Earth Sciences and Environment,42 (1):71-85 (in Chinese with English abstract).

[42]

Ding,K.,Liang,T.,Zhou,Y.,et al.,2020.Petrogenesis of Dahongliutan Biotite Monzogranite in Western Kunlun Orogen:Evidence from Zircon U⁃Pb Age and Li⁃Hf Isotope.Northwestern Geology,53(1):24-34 (in Chinese with English abstract).

[43]

Ding,X.,Li,J.K.,Ding,J.G.,et al.,2016.Molybdenite Re⁃Os Isochron Age and Geological Implication in Asikaerte Be-Nb⁃Mo Deposit of Xinjiang.Journal of Guilin University of Technology,36(1):60-65 (in Chinese with English abstract).

[44]

Dong,M.L.,Dong,G.C.,Mo,X.X.,et al.,2013.The Mesozoic-Cenozoic Magmatism in Baoshan Block,Western Yunnan and Its Tectonic Significance.Acta Petrologica Sinica,29(11):3901-3913 (in Chinese with English abstract).

[45]

Duan,Z.,Xing,G.F.,Liao,S.B.,et al.,2017.Compositional Difference from the Sources of Jiuling Neoproterozoic Granite Complex in Eastern Segment of the Jiangnan Orogen:Constraints from Geochemistry and Hf Isotope of Zircons.Acta Petrologica Sinica,33(11):3610-3634 (in Chinese with English abstract).

[46]

Evensen,J.M.,London,D.,2003.Experimental Partitioning of Be,Cs,and Other Trace Elements between Cordierite and Felsic Melt,and the Chemical Signature of S⁃Type Granite.Contributions to Mineralogy and Petrology,144(6):739-757.https://doi.org/10.1007/s00410⁃002⁃0426⁃x

[47]

Fan,X.K.,Mavrogenes,J.,Hou,Z.Q.,et al.,2019.Petrogenesis and Metallogenic Significance of Multistage Granites in Shimensi Tungsten Polymetallic Deposit,Dahutang Giant Ore Field,South China.Lithos,336:326-344.https://doi.org/10.1016/j.lithos.2019.04.001

[48]

Feng,Y.G.,Liang,T.,Cen,J.B.,et al.,2024.Metallogenetic Regularity of Rare⁃Metal Pegmatites in East Qinling.Acta Petrologica Sinica,40(9):2703-2728 (in Chinese with English abstract).

[49]

Feng,Y.G.,Liang,T.,Zhang,Z.,et al.,2019.Columbite U⁃Pb Geochronology of Kalu’an Lithium Pegmatites in Northern Xinjiang,China:Implications for Genesis and Emplacement History of Rare⁃Element Pegmatites.Minerals,9(8):456.https://doi.org/10.3390/min9080456

[50]

Fu,X.F,Liang,B.,Zou,F.G.,et al.,2021.Discussion on Metallogenic Geological Characteristics and Genesis of Rare Polymetallic Ore Fields in Western Sichuan,Acta Geologica Sinica,95(10):3054-3068 (in Chinese with English abstract).

[51]

Fu,X.F.,Huang,T.,Hao,X.F.,et al.,2023.Granitic⁃Aplite⁃Pegmatite Lithium Deposits in Western Sichuan:Ore⁃Bearing Property Evaluation and Geological Indicators.Earth Science Frontiers,30(5):227-243 (in Chinese with English abstract).

[52]

Fuertes⁃Fuente,M.,Martin⁃Izard,A.,Boiron,M.C.,et al.,2000.PT Path and Fluid Evolution in the Franqueira Granitic Pegmatite,Central Galicia,Northwestern Spain.The Canadian Mineralogist,38(5):1163-1175.https://doi.org/10.2113/gscanmin.38.5.1163

[53]

Gao,J.G.,Wei,G.Y.,Li,G.W.,et al.,2024a.Geochemical Constraints on the Origin of the Rare Metal Mineralization in Granite⁃Pegmatite,Evidence from Three⁃Kilometer Scientific Drilling Core in the Jiajika Li Deposit,Eastern Tibetan Plateau.Ore Geology Reviews,165:105852.https://doi.org/10.1016/j.oregeorev.2023.105852

[54]

Gao,L.,Zeng,L.S.,Asimow,P.D.,2017.Contrasting Geochemical Signatures of Fluid⁃Absent versus Fluid⁃Fluxed Melting of Muscovite in Metasedimentary Sources:The Himalayan Leucogranites.Geology,45(1):39-42.https://doi.org/10.1130/g38336.1

[55]

Gao,X.,Anne⁃Sophie Michaud,J.,Zhou,Z.H.,et al.,2024b.Trace Element (Be,Zn,Ga,Rb,Nb,Cs,Ta,W) Partitioning between Mica and Li⁃Rich Granitic Melt:Experimental Approach and Implications for W Mineralization.Geochimica et Cosmochimica Acta,375:1-18.https://doi.org/10.1016/j.gca.2024.05.004

[56]

Gao,Y.B.,Zhao,X.M.,Bagas,L.,et al.,2021.Newly Discovered Ordovician Li⁃Be Deposits at Tugeman in the Altyn-Tagh Orogen,NW China.Ore Geology Reviews,139:104515.https://doi.org/10.1016/j.oregeorev.2021.104515

[57]

Gelman,S.E.,Gutiérrez,F.J.,Bachmann,O.,2013.On the Longevity of Large Upper Crustal Silicic Magma Reservoirs.Geology,41(7):759-762.https://doi.org/10.1130/g34241.1

[58]

Glazner,A.F.,Bartley,J.M.,Coleman,D.S.,et al.,2004.Are Plutons Assembled over Millions of Years by Amalgamation from Small Magma Chambers? GSA Today,14(4):4-11.https://doi.org/10.1130/1052⁃5173(2004)0140004:apaomo>2.0.co;2

[59]

Gong,M.,Wu,J.H.,Ji,H.,et al.,2023.Occurrence of Lithium and Geochronology of Magmatism and Mineralization in Dagang Granite⁃Associated Lithium Deposit,West Jiangxi Province.Earth Science,48(12):4370-4386 (in Chinese with English abstract).

[60]

Gong,X.D.,Yan,G.S.,Ye,T.Z.,et al.,2015.A Study of Ore⁃Forming Fluids in the Shimensi Tungsten Deposit,Dahutang Tungsten Polymetallic Ore Field,Jiangxi Province,China.Acta Geologica Sinica (English Edition),89(3):822-835.https://doi.org/10.1111/1755⁃6724.12481

[61]

Gou,S.L.,Yu,J.H.,Cai,Y.F.,et al.,2023.Distribution and Enrichment Mechanism of Lithium in Meta⁃Sedimentary Rocks in the Jiangnan Orogen and Implications for Lithium Mineralization.Acta Geologica Sinica,97(11):3696-3724 (in Chinese with English abstract).

[62]

Granitoid Research Group of the Nanling Project,MGMR,1989.Geology of Granitoids of Nanling Region and Their Petrogenesis and Mineralization.Geological Publishing House,Beijing (in Chinese).

[63]

Grew,E,S.,1998.Boron and Beryllium Minerals in Granulite-Facies Pegmatites and Implications of Beryllium Pegmatites for the Origin and Evolution of the Archean Napier Complex of East Antactica.Memoirs of National Institute of Polar Research Special Issue,53:74-92.

[64]

Grunder,A.L.,Klemetti,E.W.,Feeley,T.C.,et al.,2008.Eleven Million Years of Arc Volcanism at the Aucanquilcha Volcanic Cluster,Northern Chilean Andes:Implications for the Life Span and Emplacement of Plutons.Transactions of the Royal Society of Edinburgh:Earth Sciences,97(4):415-436.https://doi.org/10.1017/s0263593300001541

[65]

Guo,C.L.,Chen,Y.C.,Zeng,Z.L.,et al.,2012.Petrogenesis of the Xihuashan Granites in Southeastern China:Constraints from Geochemistry and In⁃Situ Analyses of Zircon U⁃Pb⁃Hf⁃O Isotopes.Lithos,148:209-227.https://doi.org/10.1016/j.lithos.2012.06.014

[66]

Guo,C.L.,Zhang,B.W.,Zheng,Y.,et al.,2024.Granite⁃Type Lithium Deposits in China:Important Characteristics,Metallogenic Conditions,and Genetic Mechanism.Acta Petrologica Sinica,40(2):347-403 (in Chinese with English abstract).

[67]

Guo,W.K.,Li,G.M.,Fu,J.G.,et al.,2023.Metallogenic Epoch,Magmatic Evolution and Metallogenic Significance of the Gabo Lithium Pegmatite Deposit,Himalayan Metallogenic Belt,Tibet.Earth Science Frontiers,30(5):275-297 (in Chinese with English abstract).

[68]

Han,J,S.,Chen,H,Y.,Xu,H,J.,et al.,2023a.Identifying Xenocrystic Tourmaline in Himalaya Leucogranites.American Mineralogist,108(7-8):1289-1297.https://doi.org/10.2138/am⁃2022⁃8615

[69]

Han,J.S.,Hollings,P.,Jourdan,F.,et al.,2020.Inherited Eocene Magmatic Tourmaline Captured by the Miocene Himalayan Leucogranites.American Mineralogist,105(9):1436-1440.https://doi.org/10.2138/am⁃2020⁃7608

[70]

Han,J.S.,Zhao,Z.H.,Hollings,P.,et al.,2023b.A 50 m.y.Melting Model for the Rare Metal⁃Rich Koktokay Pegmatite in the Chinese Altai:Implications from a Newly Identified Jurassic Granite.Geological Society of America Bulletin,135(5-6):1467-1479.https://doi.org/10.1130/b36513.1

[71]

Hao,X. F., Fu, X. F., Liang, B., et al., 2015. Formation Ages of Granite and X03 Pegmatite Vein in Jiajika, Western Sichuan, and Their Geological Significance. Mineral Deposits, 34(6): 1199-1208 (in Chinese with English abstract).

[72]

He,H.H.,Arkin,T.,Wang,D.H.,et al.,2020.Mineralogical Characteristics and TIMS U⁃Pb Dating of Tantalite⁃(Mn) from the Bieyesamas Rare Metal Deposit,Xinjiang.Rock and Mineral Analysis,39(4):609-619 (in Chinese with English abstract).

[73]

He,L.P.,Sun,X.L.,Li,P.F.,et al.,2021.Lithospheric Structure near Jiuyishan,South China:Implications for Asthenospheric Upwelling and Lithospheric Modification.Geophysical Research Letters,48(24):e2021GL096572.https://doi.org/10.1029/2021gl096572

[74]

He,X.H.,You,Y.Y.,Ming,T.X.,et al.,2024.Late Cretaceous⁃Eocene Granitic Pegmatite Rare⁃Metal Mineralization Events in the Western Yunnan Province:Constraints from U⁃Pb Dating of Columbite,Monazite,and Zircon.Acta Petrologica Sinica,40(2):510-538 (in Chinese with English abstract).

[75]

Hildreth,W.,2004.Volcanological Perspectives on Long Valley,Mammoth Mountain,and Mono Craters:Several Contiguous But Discrete Systems.Journal of Volcanology and Geothermal Research,136(3-4):169-198.https://doi.org/10.1016/j.jvolgeores.2004.05.019

[76]

Hong,T.,Zhai,M.G.,Xu,X.W.,et al.,2021.Tourmaline and Quartz in the Igneous and Metamorphic Rocks of the Tashisayi Granitic Batholith,Altyn Tagh,Northwestern China:Geochemical Variability Constraints on Metallogenesis.Lithos,400:106358.https://doi.org/10.1016/j.lithos.2021.106358

[77]

Hou,J.L.,Li,J.K.,Zhang,Y.J.,et al.,2018.Li Isotopic Composition and Its Constrains on Rare Metal Mineralization of Jiajika Two⁃Mica Granite,Sichuan Province.Earth Science,43(6):2042-2054 (in Chinese with English abstract).

[78]

Huang,X.Q.,Li,P.,Zhang,L.P.,et al.,2021.Geochemical Characteristics and Metallogenic Age of No.36 Pegmatite in Renli Rare Metal Ore Field,Hunan Province,and Their Significance.Mineral Deposits,40(6):1248-1266 (in Chinese with English abstract).

[79]

Huber,C.,Bachmann,O.,Dufek,J.,2012.Crystal⁃Poor versus Crystal⁃Rich Ignimbrites:A Competition between Stirring and Reactivation.Geology,40(2):115-118.https://doi.org/10.1130/g32425.1

[80]

Huo,H,L.,Zhang,D.,Wu,G,G.,2018.Zircon U⁃Pb Ages and Hf Isotopes of the Volcanic Clastic Tuff from the Shuangqiaoshan Group in Jingdezhen,Northeastern Jiangxi Province.Bulletin of Mineralogy,Petrology and Geochemistry,37(1):103-110 (in Chinese with English abstract).

[81]

Icenhower,J.,London,D.,1995.An Experimental Study of Element Partitioning among Biotite,Muscovite,and Coexisting Peraluminous Silicic Melt at 200 MPa (H2O).American Mineralogist,80(11-12):1229-1251.https://doi.org/10.2138/am⁃1995⁃11⁃1213

[82]

Implications for the Origin of an LCT Type Pegmatite by Anatexis.The Canadian Mineralogist,54:1053-1070.https://doi.org/10.3749/canmin.1600017

[83]

Institute of Geochemistry,Chinese Academy of Sciences,1979.Geochemistry of the Granitoids in Southern China.Science Press,Beijing,403-421 (in Chinese).

[84]

Jackson,M.D.,Blundy,J.,Sparks,S.J.,2018.Chemical Differentiation,Cold Storage and Remobilization of Magma in the Earth’s Crust.Nature,564:405-409.https://doi.org/10.1038/s41586⁃018⁃0746⁃2

[85]

Jahns,R.H.,Burnham,C.W.,1969.Experimental Studies of Pegmatite Genesis; I,A Model for the Derivation and Crystallization of Granitic Pegmatites.Economic Geology,64(8):843-864.https://doi.org/10.2113/gsecongeo.64.8.843

[86]

Ji,W,B., Faure, M., L, Wei., et al., 2017., Multiple Emplacement and Exhumation History of the Late Mesozoic Dayunshan⁃Mufushan Batholith in Southeast China and Its Tectonic Significance:1. Structural Analysis and Geochronological Constraints. Journal of Geophysical Research: Solid Earth, 123:689-710.

[87]

Jiang,P.F.,Li,P.,Li,J.K.,et al.,2021.Zircon U⁃Pb Geochronology and Hf Isotopic Composition of Be⁃Pegmatites in Maiguo Deposit,Eastern Mufushan,and Their Geological Implications.Mineral Deposits,40(4):723-739 (in Chinese with English abstract).

[88]

Jiang,S.Y.,Peng,N.J.,Huang,L.C.,et al.,2015.Geological Characteristic and Ore Genesis of the Giant Tungsten Deposits from the Dahutang Ore⁃Concentrated District in Northern Jiangxi Province.Acta Petrologica Sinica,31(3):639-655 (in Chinese with English abstract).

[89]

Jiang,X,Q.,2021.Geochemical Characteristics and Petrogenesis Analysis of the Metallogenic Pluton of the Huangshan Nb⁃Ta Deposit in Jiangxi Province (Dissertation).Chengdu University of Technology,Chengdu(in Chinese with English abstract).

[90]

Kemp,A.I.S.,Hawkesworth,C.J.,Paterson,B.A.,et al.,2006.Episodic Growth of the Gondwana Supercontinent from Hafnium and Oxygen Isotopes in Zircon.Nature,439:580-583.https://doi.org/10.1038/nature04505

[91]

Kemp,A.S.,Hawkesworth,C.J.,Foster,G.L.,et al.,2007.Magmatic and Crustal Differentiation History of Granitic Rocks from Hf⁃O Isotopes in Zircon.Science,315(5814):980-983.https://doi.org/10.1126/science.1136154

[92]

Knoll,T.,Huet,B.,Schuster,R.,et al.,2023.Lithium Pegmatite of Anatectic Origin:A Case Study from the Austroalpine Unit Pegmatite Province (Eastern European Alps):Geological Data and Geochemical Modeling.Ore Geology Reviews,154:105298.https://doi.org/10.1016/j.oregeorev.2023.105298

[93]

Kong,H.L.,Ren,G.L.,Li,W.Y.,et al.,2023.Geochronology,Geochemistry and Their Geological Significances of Spodumene Pegmatite Veins in the Dahongliutandong Deposit,Western Kunlun,China.Northwestern Geology,54(2):61-79 (in Chinese with English abstract).

[94]

Koopmans,L.,Martins,T.,Linnen,R.,et al.,2024.The Formation of Lithium⁃Rich Pegmatites through Multi⁃Stage Melting.Geology,52(1):7-11.https://doi.org/10.1130/g51633.1

[95]

Kunz,B.E.,Warren,C.J.,Jenner,F.E.,et al.,2022.Critical Metal Enrichment in Crustal Melts:The Role of Metamorphic Mica.Geology,50(11):1219-1223.https://doi.org/10.1130/g50284.1

[96]

Lei,M.,2010.Petrogenesis of Granites and Their Relationship to Tectonic Evolution of Orogene in the East Part of Qinling Orogen Belt (Dissertation).Chinese Academy of Geological Sciences,Beijing(in Chinese with English abstract).

[97]

Lei,X.F.,Romer,R.L.,Glodny,J.,et al.,2023.Geochemical Significance of Lithium and Boron Isotopic Heterogeneity Evolving during the Crystallization of Granitic Melts.Geology,51(6):581-585.https://doi.org/10.1130/g50983.1

[98]

Li,G.M.,Fu,J.G.,Guo,W.K.,et al.,2022.Discovery of the Gabo Granitic Pegmatite⁃Type Lithium Deposit in the Kulagangri Dome,Eastern Himalayan Metallogenic Belt,and Its Prospecting Implication.Acta Petrologica et Mineralogica,41(6):1109-1119 (in Chinese with English abstract).

[99]

Li,H.,Hong,T.,Liu,S.K.,et al.,2023.Characteristics of Early Paleozoic Granite⁃Pegmatite and Associated Lithium⁃Beryllium Mineralization in the Tugeman Area,Altun Orogenic System,Northwestern China.Ore Geology Reviews,160:105603.https://doi.org/10.1016/j.oregeorev.2023.105603

[100]

Li,H.,Hong,T.,Yang,Z.Q.,et al.,2020.Comparative Studying on Zircon,Cassiterite and Coltan U⁃Pb Dating and 40Ar/39 Ar Dating of Muscovite Rare⁃Metal Granitic Pegmatites:A Case Study of the Northern Tugeman Lithium-Beryllium Deposit in the Middle of Altyn Tagh.Acta Petrologica Sinica36(9):2869-2892 (in Chinese with English abstract).

[101]

Li,H.,Hong,T.,Yang,Z.Q.,et al.,2022.Multi⁃Stage Magmatism⁃Mineralization and Tectonic Setting of the North Tugeman Granitic Pegmatite Lithium⁃Beryllium Deposit in the Middle of Altyn Tagh.Acta Petrologica Sinica,38(10):3085-3103 (in Chinese with English abstract).

[102]

Li,H,W.,Zhao,Z.,Chen,Z,Y.,et al.,2021.Genetic Relationship between the Two⁃Period Magmatism and W Mineralization in the Dahutang Ore⁃Field,Jiangxi Province:Evidence from Zircon Geochemistry.Acta Petrologica Sinica,37(5):1508-1530 (in Chinese with English abstract).

[103]

Li,K.,Gao,Y.B.,Teng,J.X.,et al.,2019.Metallogenic Geological Characteristics,Mineralization Age and Resource Potential of the Granite⁃Pegmatite⁃Type Rare Metal Deposits in Dahongliutan Area,Hetian County,Xinjiang.Northwestern Geology,52(4):206-221 (in Chinese with English abstract).

[104]

Li,L.G.,Wang,L.X.,Zhu,Y.X.,et al.,2023.Metallogenic Age and Process of Rare Metal⁃Bearing Pegmatites from the Northern Margin of Mufushan Complex,South China.Earth Science,48(9):3221-3244.https://doi.org/10.3799/dqkx.2022.141

[105]

Li,L.G.,Wang,L.X.,Zhu,Y.X.,et al.,2023.Metallogenic Age and Process of Rare Metal-Bearing Pegmatites from the Northern Margin of Mufushan Complex,South China.Earth Science,48(9): 3221-3244 (in Chinese with English abstract).

[106]

Li,P.,Li,J.K.,Chen,Z.Y.,et al.,2021.Compositional Evolution of the Muscovite of Renli Pegmatite⁃Type Rare⁃Metal Deposit,Northeast Hunan,China:Implications for Its Petrogenesis and Mineralization Potential.Ore Geology Reviews,138:104380.https://doi.org/10.1016/j.oregeorev.2021.104380

[107]

Li,P.,Li,J.K.,Liu,X.,et al.,2020.Geochronology and Source of the Rare⁃Metal Pegmatite in the Mufushan Area of the Jiangnan Orogenic Belt:A Case Study of the Giant Renli Nb-Ta Deposit in Hunan,China.Ore Geology Reviews,116:103237.https://doi.org/10.1016/j.oregeorev.2019.103237

[108]

Li,P.,Li,J.K.,Pei,R.F.,et al.,2017.Multistage Magmatic Evolution and Cretaceous Peak Metallogenic Epochs of Mufushan Composite Granite Mass:Constrains from Geochronological Evidence.Earth Science, 42(10):1684-1696 (in Chinese with English abstract).

[109]

Li,P.,Zhou,F.C.,Li,J.K.,et al.,2020.Zircon U⁃Pb Ages and Hf Isotopic Compositions of the Concealed Granite of Renli⁃Chuanziyuan Deposit,NE Hunan and Geological Significance.Geotectonica et Metallogenia,44(3):486-500 (in Chinese with English abstract).

[110]

Li,Q.,Yang,F.Q.,Yang,C.D.,2019.Geochronology and Geochemical Characteristics of Dakalasu Granite in Altay of Xinjiang,China and Their Tectonic Significance.Journal of Earth Sciences and Environment,41(4):396-413 (in Chinese with English abstract).

[111]

Li,Q.L.,Li,X.H.,Lan,Z.W.,et al.,2013.Monazite and Xenotime U-Th-Pb Geochronology by Ion Microprobe:Dating Highly Fractionated Granites at Xihuashan Tungsten Mine,SE China.Contributions to Mineralogy and Petrology,166(1):65-80.https://doi.org/10.1007/s00410⁃013⁃0865⁃6

[112]

Li,R.Z.,Zhou,Z.B.,Peng,B.,et al.,2020.A Discussion on Geological Characteristics and Genetic Mechanism of Dagang Superlarge Lithium⁃Bearing Porcelain Stone Deposit in Yifeng County,Jiangxi Province.Mineral Deposits,39(6):1015-1029 (in Chinese with English abstract).

[113]

Li,S,Z.,Zhang,Y,B.,Wang,P,C.,et al.,2017.Mesozoic Tectonic Transition in South China and Initiation of Paleo⁃Pacific Subduction.Earth Science Frontiers,24(4):213-225 (in Chinese with English abstract).

[114]

Li,W,P.,Wang,T.,Wang,X.,et al.,2000.Single Zircon Dating of the Huichizi Complex,North Qinling:Its Geological Significance.Regional Geology of China,19(2):172-174 (in Chinese with English abstract).

[115]

Li,X. F.,Tian,S. H.,Wang,D. H.,et al.,2020. Genetic Relationship between Pegmatite and Granite in Jiajika Lithium Deposit in Western Sichuan: Evidence from Zircon U-Pb Dating,Hf-O Isotope and Geochemistry. Mineral Deposits,39(2): 273-304 (in Chinese with English abstract).

[116]

Li,X.H.,Li,W.X.,Li,Z.X.,2007.On the Genetic Classification and Tectonic Implications of the Early Yanshanian Granitoids in the Nanling Range,South China.Chinese Science Bulletin,52(9):981-991 (in Chinese).

[117]

Li,X.H.,Li,W.X.,Wang,X.C.,et al.,2009.Role of Mantle⁃Derived Magma in Genesis of Early Yanshanian Granites in the Nanling Range,South China:In⁃Situ Zircon Hf⁃O Isotopic Constraints.Science in China (Series D),39(7):872-887 (in Chinese).

[118]

Li,Z,H.,Lin,S,L.,Cong,F.,et al.,2012.U⁃Pb Dating and Hf Isotopic Compositions of Quartz Diorite and Monzonitic Granite from the Tengchong⁃Lianghe Block,Western Yunnan,and It’s Geological Implications.Acta Geologica Sinica,86(7):1047-1062 (in Chinese with English abstract).

[119]

Lin,Q.T.,Gong,P.,2002.Discussion on the Mineralization of Mesozoic Era Granitoid in Northwestern Fujian.Geology of Fujian,21(2):74-84 (in Chinese with English abstract).

[120]

Lin,X.W.,Zhang,Y.F.,Wang,X.,et al.,2017.Zircon U⁃Pb Dating of the Muzitawu Plutons from the Friendship Peak Region in Altay,Xinjiang and Its Geological Significance.Northwestern Geology,50(3):83-91 (in Chinese with English abstract).

[121]

Linnen,R.L.,van Lichtervelde,M.,Cerny,P.,et al.,2012.Granitic Pegmatites as Sources of Strategic Metals.Elements,8(4):275-280.

[122]

Liu,B,Q.,Yu,J,H.,Jiang,W.,et al.,2023. Geochemistry of the Meta⁃Sedimentary Rocks of the Shuangqiaoshan Group and Their Genetic Link to Tungsten Mineralization in Northern Jiangxi,South China.Acta Geologica Sinica,97(2):433-447 (in Chinese with English abstract).

[123]

Liu,B,X.,2014.Magmatism and Crustal Evolution in the Eastern North Qinling Terrain (Dissertation).University of Science and Technology of China,Hefei(in Chinese with English abstract).

[124]

Liu,F.,Cao,F.,Zhang,Z.X.,et al.,2014.Chronology and Geochemistry of the Granite near the Keketuohai No.3 Pegmatite in Xinjiang.Acta Petrologica Sinica,30(1):1-15 (in Chinese with English abstract).

[125]

Liu,G.,Liu,J.J.,Yuan,F.,et al.,2017.The Magmatic Evolution and Its Constraints on Uranium Mineralization in the Xiaohuacha Uranium Deposit,Shaanxi Province.Geoscience,31(5):990-1005 (in Chinese with English abstract).

[126]

Liu,H,2013.Geochemical Study on Petrogenesis of Aral Granite and the Keketuohai No.3 Pegmatite Vein,Altay Xinjiang (Dissertation).Kunming University of Technology,Kunming(in Chinese with English abstract).

[127]

Liu,J.Y.,2003.Compound Massif and Complex Massif:The Two Basic Forms of the Massif Association of Granitoid and Their Significance.Contributions to Geology and Mineral Resources Research,18(3): 143-148 (in Chinese with English abstract).

[128]

Liu,S.B.,Yang,Y.Q.,Wang,D.H.,et al.,2019.Discovery and Significance of Granite Type Lithium Industrial Orebody in Jiajika Orefield,Sichuan Province.Acta Geologica Sinica,93(6):1309-1320 (in Chinese with English abstract).

[129]

Liu,W,Z.,Zhang,H.,Tang,H,F.,et al.,2015.Molybdenite Re⁃Os Dating of the Asikaerte Be⁃Mo Deposit in Xinjiang,China and Its Genetic Implications.Geochimica,44(2):145-154 (in Chinese with English abstract).

[130]

Liu,X.X.,Zhang,J.,Li,X.L.,et al.,2023.Metallogeny of the Longtangou⁃Huoyangou Sn Deposit in North Qinling Orogeny:Geochronological and Petrogeochemical Evidence from Sn⁃Bearing Granite⁃Pegmatite.Acta Petrologica Sinica,39(5):1484-1500 (in Chinese with English abstract).

[131]

Liu,Y,J.,Li,Z,L.,Ma,D,S.,1982.Geochemical Study of Tungsten⁃Bearing Structures in South China.Science in China (Ser. B),12(10):939-950 (in Chinese).

[132]

Liu,Y.,Xie,L.,Wang,R.C.,et al.,2018.Comparative Study of Petrogenesis and Mineralization Characteristics of Nb⁃Ta⁃Bearing and W⁃Bearing Granite in the Dahutang Deposit,Northern Jiangxi Province.Acta Geologica Sinica,92(10):2120-2137 (in Chinese with English abstract).

[133]

Liu,Z.C.,Wu,F.Y.,Liu,X.C.,et al.,2020.The Mechanisms of Fractional Crystallization for the Himalayan Leucogranites.Acta Petrologica Sinica,36(12):3551-3571 (in Chinese with English abstract).

[134]

London,D.,1992.The Application of Experimental Petrology to the Genesis and Crystallization of Granitic Pegmatites.In:Martin,R.F.,Černý,P.,eds.,Invited for Special Issue on Granitic Pegmatites.Canadian Mineralogist,30:499-540.

[135]

London,D.,2005.Granitic Pegmatites:An Assessment of Current Concepts and Directions for the Future.Lithos,80(1-4):281-303.https://doi.org/10.1016/j.lithos.2004.02.009

[136]

London,D.,2008.Pegmatites.Canadian Mineralogist Special Publication,Canada.

[137]

London,D.,2014.A Petrologic Assessment of Internal Zonation in Granitic Pegmatites.Lithos,184:74-104.https://doi.org/10.1016/j.lithos.2013.10.025

[138]

London,D.,2018.Ore⁃Forming Processes within Granitic Pegmatites.Ore Geology Reviews,101:349-383.https://doi.org/10.1016/j.oregeorev.2018.04.020

[139]

London,D.,Morgan,G.B.,Hervig,R.L.,1989.Vapor⁃Undersaturated Experiments with Macusani Glass+H2O at 200 MPa,and the Internal Differentiation of Granitic Pegmatites.Contributions to Mineralogy and Petrology,102(1):1-17.https://doi.org/10.1007/bf01160186

[140]

Lu,S.N.,2004.Comparison of the Pan⁃Cathaysian Orogeny with the Caledonian and Pan⁃African Orogenies.Regional Geology of China,23(S2):952-958(in Chinese with English abstract).

[141]

Luan,S.W.,Mao,Y.Y.,Fan,L.M.,et al.,1995.Mineralization and Prospection of Rare Metal in the Koktogay Area.Chengdu University of Science and Technology Press,Chengdu (in Chinese).

[142]

Lü,Z,H.,Zhang,H.,Tang,Y.,2015.The Study of Genetic Relationship between Bieyesamasi No.L1 Pegmatite Li⁃Nb⁃Ta Ore Deposits and Wall Rock Granites, Xinjiang. Acta Mineralogica Sinica,35(Suppl.1):323(in Chinese with English abstract).

[143]

Lü,Z.H., Zhang,H.,Tang,Y.,2021.Anatexis Origin of Rare Metal/Earth Pegmatites: Evidences from the Permian Pegmatites in the Chinese Altai.Lithos,380-381:105865.

[144]

Lü,Z.H.,Zhang,H.,Tang,Y.,et al.,2012.Petrogenesis and Magmatic-Hydrothermal Evolution Time Limitation of Kelumute No.112 Pegmatite in Altay,Northwestern China:Evidence from Zircon U-Pb and Hf Isotopes.Lithos,154:374-391.https://doi.org/10.1016/j.lithos.2012.08.005

[145]

Lü,Z.H.,Zhang,H.,Tang,Y.,et al.,2018.Petrogenesis of Syn⁃Orogenic Rare Metal Pegmatites in the Chinese Altai:Evidences from Geology,Mineralogy,Zircon U⁃Pb Age and Hf Isotope.Ore Geology Reviews,95:161-181.https://doi.org/10.1016/j.oregeorev.2018.02.022

[146]

Lynton,S.J.,Walker,R.J.,Candela,P.A.,2005.Lithium Isotopes in the System Qz⁃Ms⁃Fluid:An Experimental Study.Geochimica et Cosmochimica Acta,69(13):3337-3347.https://doi.org/10.1016/j.gca.2005.02.009

[147]

Ma,C.Q.,Li,Y.Q.,2017.Incremental Growth of Granitoid Plutons and Highly Crystalline Magmatic Differentiation.Acta Petrologica Sinica,33(5):1479-1488 (in Chinese with English abstract).

[148]

Ma,C.Q.,Zou,B.W.,Gao,K.,et al.,2020.Crystal Mush Storage,Incremental Pluton Assembly and Granitic Petrogenesis.Earth Sciences,45(12):4332-4351 (in Chinese with English abstract).

[149]

Ma,Y.C.,Xu,X.W.,Hong,T.,et al.,2024.Multiphase Evolution of a Li⁃Pegmatite Field from the Tashisayi Area,Altyn Tagh,NW China:Insights from a Petrological,Geochemical,and Geochronological Study.Mineralium Deposita,59(5):863-884.https://doi.org/10.1007/s00126⁃023⁃01237⁃0

[150]

Ma,Z.L.,Zhang,H.,Tang,Y.,et al.,2015.Zircon U⁃Pb Geochronology and Hf Isotopes of Pegmatites from the Kaluan Mining Area in the Altay,Xinjiang and Their Genetic Relationship with the Halong Granite.Geochimica,44(1):9-26 (in Chinese with English abstract).

[151]

Mao,J.W.,Wu,S.H.,Song,S.W.,et al.,2020.The World⁃Class Jiangnan Tungsten Belt:Geological Characteristics,Metallogeny,and Ore Deposit Model.China Science Bulletin,65(33):3746-3762 (in Chinese).

[152]

Mao,Y.J.,Shao,Y.J.,Xiong,Y.Q.,et al.,2021.Magmatic⁃Hydrothermal Metallogenic System in Nb⁃Ta⁃W⁃Sn⁃Pb⁃Zn Dengfuxian Orefield,Eastern Hunan:Constraint from U⁃Pb Geochronology of Columbite⁃Tantalite.Journal of Central South University (Science and Technology),52(9):2959-2972 (in Chinese with English abstract).

[153]

Matzel,J.E.P.,Bowring,S.A.,Miller,R.B.,2006.Time Scales of Pluton Construction at Differing Crustal Levels:Examples from the Mount Stuart and Tenpeak Intrusions,North Cascades,Washington.GSA Bulletin,118(11-12):1412-1430.https://doi.org/10.1130/b25923.1

[154]

Michel,J.,Baumgartner,L.,Putlitz,B.,et al.,2008.Incremental Growth of the Patagonian Torres Del Paine Laccolith over 90 k.y..Geology,36(6):459-462.https://doi.org/10.1130/g24546a.1

[155]

Ming,T.X.,He,X.H.,Tang,Z.,et al.,2025.Mineralization Timing and Fluid Inclusion Characteristics of Na’e Beryllium Deposit in the Tengchong Block.Acta Geologica Sinica,99(4):1238-1255 (in Chinese with English abstract).

[156]

Mo,Z,S.,Ye,B,D.,Pan,W,Z.,et al.,1980.Geology of the Nanling Granitoids.Geological Publishing House,Beijing (in Chinese).

[157]

Mottram,C.M.,Kellett,D.A.,Barresi,T.,et al.,2024.Tracking the Porphyry⁃Epithermal Mineralization Transition Using U⁃Pb Carbonate Dating.Geology,52(9):723-728.https://doi.org/10.1130/g52211.1

[158]

Müller,A.,Romer,R,L.,Szuszkiewicz,A.,et al.,2016.Can Pluton⁃Related and Pluton⁃Unrelated Granitic Pegmatites be Distinguished by Their Chemistry? Colorado:Second Eugene E.Foord Pegmatite Symposium:67-69.In:2nd Eugene,E.,Foord Pegmatite Symposium.Golden,Co.,67-69.

[159]

Müller,A.,Romer,R.L.,Pedersen,R.B.,2017.The Sveconorwegian Pegmatite Province—Thousands of Pegmatites without Parental Granites.The Canadian Mineralogist,55(2):283-315.https://doi.org/10.3749/canmin.1600075

[160]

Neymark,L.A.,Holm⁃Denoma,C.S.,Larin,A.M.,et al.,2021.LA⁃ICPMS U⁃Pb Dating Reveals Cassiterite Inheritance in the Yazov Granite,Eastern Siberia:Implications for Tin Mineralization.Mineralium Deposita,56(6):1177-1194.https://doi.org/10.1007/s00126⁃020⁃01038⁃9

[161]

Nie,X.L.,Wang,S.L.,Liu,S.,et al.,2022.Geological and Geochemical Characteristics of the Xikeng Lithium Deposit and the 40Ar/39Ar Chronology of Lepidolite of the Deposit in Jiangxi Province,China.Acta Mineralogica Sinica,42(3): 285-294 (in Chinese with English abstract).

[162]

Padilla,A.J.,Gualda,G.A.R.,2016.Crystal⁃Melt Elemental Partitioning in Silicic Magmatic Systems:An Example from the Peach Spring Tuff High⁃Silica Rhyolite,Southwest USA.Chemical Geology,440:326-344.https://doi.org/10.1016/j.chemgeo.2016.07.004.

[163]

Pan,D.P.,Wang,D.,Wang,X.L.,et al.,2017.Petrogenesis of Granites in Shimensi in Northwestern Jiangxi Province and Its Implications for Tungsten Deposits.Geology in China,44(1):118-135 (in Chinese with English abstract).

[164]

Partington,G.A.,McNaughton,N.J.,Williams,I.S.,1995.A Review of the Geology,Mineralization,and Geochronology of the Greenbushes Pegmatite,Western Australia.Economic Geology,90(3):616-635.https://doi.org/10.2113/gsecongeo.90.3.616

[165]

Patchett,P.J.,White,W.M.,Feldmann,H.,et al.,1984.Hafnium/Rare Earth Element Fractionation in the Sedimentary System and Crustal Recycling into the Earth’s Mantle.Earth and Planetary Science Letters,69(2):365-378.https://doi.org/10.1016/0012⁃821x(84)90195⁃x

[166]

Patiño Douce,A.E.,Harris,N.,1998.Experimental Constraints on Himalayan Anatexis.Journal of Petrology,39(4):689-710.https://doi.org/10.1093/petroj/39.4.689

[167]

Pei,R,F.,1995.Comagmatic Complementary Differentiation and Metallogeny.Mineral Deposits,14(4):376-379 (in Chinese with English abstract).

[168]

Peng,H.M.,2015.Petrogenesis of Late Meosozoic Granitoid Rocksin Dahutang Tungsten Ore Field,Jiangxi Province(Dissertation).China University of Geosciences,Beijing(in Chinese with English abstract).

[169]

Peng,S.X.,Cheng,J.X.,Ding,J.G.,et al.,2015.Relationship between the Sequences of Granite around Alar Biotite Granite and Pegmatite Causes,Altay,Xinjiang.Northwestern Geology,48(3):202-213 (in Chinese with English abstract).

[170]

Petford,N.,Cruden,A.R.,McCaffrey,K.J.W.,et al.,2000.Granite Magma Formation,Transport and Emplacement in the Earth’s Crust.Nature,408(6813):669-673.https://doi.org/10.1038/35047000

[171]

Qiao,G.B.,Zhang,H.D.,Wu,Y.Z.,et al.,2015.Petrogenesis of the Dahongliutan Monzogranite in Western Kunlun:Constraints from SHRIMP Zircon U⁃Pb Geochronology and Geochemical Characteristics.Acta Geologica Sinica,89(7):1180-1194 (in Chinese with English abstract).

[172]

Qin,C.,2018.Preliminary Study of Mineralization Potentiality of Shiziling Muscovite Granite,Jiangxi Province (Dissertation).China University of Geosciences,Beijing (in Chinese with English abstract).

[173]

Qin,K.Z.,Shen,M.D.,Tang,D.M.,et al.,2013.Types,Intrusive and Mineralization Ages of Pegmatite Rare⁃Element Deposits in Chinese Altay.Xinjiang Geology,31(Suppl.1):1-7(in Chinese with English abstract).

[174]

Qin,K.Z.,Zhao,J.X.,He,C.T.,et al.,2021b.Discovery of the Qongjiagang Giant Lithium Pegmatite Deposit in Himalaya,Tibet,China.Acta Petrologica Sinica,37(11):3277-3286 (in Chinese with English abstract).

[175]

Qin,K.Z.,Zhou,Q.F.,Tang,D.M.,et al.,2019.Types,Internal Structural Patterns,Mineralization and Prospects of Rare Element Pegmatites in East Qinling Mountain in Comparison with Features of Chinese Altay.Mineral Deposits,38(5):970-982 (in Chinese with English abstract).

[176]

Qin,K.Z.,Zhou,Q.F.,Tang,D.M.,et al.,2021a.The Emplacement Mechanism,Melt Fluid Evolution,Rare Element Metallogenesis and Puzzles of the Koktokay No.3 Pegmatite Rare Elemental Deposit,Altai.Acta Geologica Sinica,95(10):3039-3053 (in Chinese with English abstract).

[177]

Ren,B.Q.,Zhang,H.,Tang,Y.,et al.,2011.LA-ICPMS U-Pb Zircon Geochronology of the Altai Pegmatites and Its Geological Significance.Acta Mineralogica Sinica,31(3): 587-596 (in Chinese with English abstract).

[178]

Rudnick,R.L.,Gao,S.,2003.Composition of the Continental Crust.Treatise on Geochemistry.Elsevier,Amsterdam,1-64.https://doi.org/10.1016/b0⁃08⁃043751⁃6/03016⁃4

[179]

Rui,Z,Y.,1962.Petrological Characteristics of the Small Scale of Intrusives around in Gui⁃Chen⁃Yi Area of Southern Hunan Province.Journal of Chengdu College of Geology,2:11-32 (in Chinese).

[180]

Selway,J.B.,Breaks,F.W.,Tindle,A.G.,2005.A Review of Rare⁃Element (Li⁃Cs⁃Ta) Pegmatite Exploration Techniques for the Superior Province,Canada,and Large Worldwide Tantalum Deposits.Exploration and Mining Geology,14(1-4):1-30.https://doi.org/10.2113/gsemg.14.1⁃4.1

[181]

Shearer,C.K.,Papike,J.J.,Jolliff,B.L.,1992.Petrogenetic Links among Granites and Pegmatites in the Harney Peak Rare⁃Element Granite⁃Pegmatite System,Black Hills,South Dakota.The Canadian Mineralogist,30(3):785-809.

[182]

Shen,P.,Pan,H.D.,Li,C.H.,et al.,2022.Newly⁃Recognized Triassic Highly Fractionated Leucogranite in the Koktokay Deposit (Altai,China):Rare⁃Metal Fertility and Connection with the No.3 Pegmatite.Gondwana Research,112:24-51.https://doi.org/10.1016/j.gr.2022.09.007

[183]

Simmons,W.,Falster,A.,Webbe,K.,2016.Bulk Composition of Mt.Mica Pegmatite,Maine,USA.

[184]

Simon,L.,Lécuyer,C.,2005.Continental Recycling:The Oxygen Isotope Point of View.Geochemistry,Geophysics,Geosystems,6(8):1-10.https://doi.org/10.1029/2005gc000958

[185]

Simons,B.,Andersen,J.C.Ø.,Shail,R.K.,et al.,2017.Fractionation of Li,Be,Ga,Nb,Ta,In,Sn,Sb,W and Bi in the Peraluminous Early Permian Variscan Granites of the Cornubian Batholith:Precursor Processes to Magmatic⁃Hydrothermal Mineralisation.Lithos,278:491-512.https://doi.org/10.1016/j.lithos.2017.02.007

[186]

Song,G.S.,Xu,F.,Wang,M.Z.,et al.,2015.Occurrence State of Ziyugou Pegmatite Rubidium Mine in Danfeng Area,Shaanxi Province.Modern Mining,31(10):106-109 (in Chinese with English abstract).

[187]

Song,S.G.,Niu,Y.L.,Wei,C.J.,et al.,2010.Metamorphism,Anatexis,Zircon Ages and Tectonic Evolution of the Gongshan Block in the Northern Indochina Continent—An Eastern Extension of the Lhasa Block.Lithos,120(3-4):327-346.https://doi.org/10.1016/j.lithos.2010.08.021.

[188]

Stewart,D.B.,1978.Petrogenesis of Lithium⁃Rich Pegmatites.American Mineralogist,63(9-10):970-980.

[189]

Sun,K.K.,Chen,B.,Chen,J.S.,et al.,2017.The Petrogenesis of the Jiuling Granodiorite from the Dahutang Deposit,Jiangxi Province and Its Tectonic Implications.Acta Petrologica Sinica,33(3):907-924 (in Chinese with English abstract).

[190]

Suzuki,K.,Adachi,M.,Kajizuka,I.,1994.Electron Microprobe Observations of Pb Diffusion in Metamorphosed Detrital Monazites.Earth and Planetary Science Letters,128(3-4):391-405.https://doi.org/10.1016/0012⁃821x(94)90158⁃9

[191]

Szymanowski,D.,Wotzlaw,J.F.,Ellis,B.S.,et al.,2017.Protracted Near⁃Solidus Storage and Pre⁃Eruptive Rejuvenation of Large Magma Reservoirs.Nature Geoscience,10(10):777-782.https://doi.org/10.1038/ngeo3020

[192]

Tan,K.B.,Guo,Q.M.,Guo,Y.M.,2021.Age and Tectonic Significance of Granite in 509 Banxi Lithium Beryllium Polymetallic Deposit in Hetian,Xinjiang.Xinjiang Nonferrous Metals,44(2):6-10 (in Chinese with English abstract).

[193]

Tang,J.L.,Ke,Q.,Xu,X.W.,et al.,2022.Magma Evolution and Mineralization of Longmenshan Lithium⁃Beryllium Pegmatite in Dahongliutan Area,West Kunlun.Acta Petrologica Sinica,38(3):655-675 (in Chinese with English abstract).

[194]

Tang,Y.,Wang,D.B.,Liao,S.Y.,et al.,2016.Geochronological Characterization and Regional Tectonic Implication of the Leucogranites in the Southern Segment of Gaoligong Metamorphic Zone,Western Yunnan.Acta Petrologica Sinica,32(8):2347-2366 (in Chinese with English abstract).

[195]

Tang,Y.,Zhao,J.Y.,Zhang,H.,et al.,2017.Precise Columbite⁃(Fe) and Zircon U⁃Pb Dating of the Nanping No.31 Pegmatite Vein in Northeastern Cathaysia Block,SE China.Ore Geology Reviews,83:300-311.https://doi.org/10.1016/j.oregeorev.2016.10.040

[196]

Tao,Y.,Deng,X,Z.,Xiong,F.,2015a.U⁃Pb Age of Zircon Pegmatite from Huanglonggou,Longling.Acta Mineralogica Sinica,35(Suppl.1):344-345 (in Chinese with English abstract).

[197]

Tao,Y.,Xiong,F.,Deng,X,Z.,2015b.Geochemical Characteristics of Danzhu Pegmatite in Gongshan,Western Yunnan.Acta Mineralogica Sinica,35(Suppl.1):342-343 (in Chinese with English abstract).

[198]

Teng,F.Z.,McDonough,W.F.,Rudnick,R.L.,et al.,2006.Lithium Isotopic Systematics of Granites and Pegmatites from the Black Hills,South Dakota.American Mineralogist,91(10):1488-1498.https://doi.org/10.2138/am.2006.2083

[199]

Tomascak,P.B.,Carlson,R.W.,Shirey,S.B.,1999.Accurate and Precise Determination of Li Isotopic Compositions by Multi⁃Collector Sector ICP⁃MS.Chemical Geology,158(1-2):145-154.https://doi.org/10.1016/S0009⁃2541(99)00022⁃4

[200]

Tuttle,O.F.,Bowen,N.L.,1958.Origin of Granite in the Light of Experimental Studies in the System NaAl⁃Si3O8⁃KALSi3O8⁃SiO2⁃H2O.Memoir of Geological Society of America,74.https://doi.org/10.1130/mem74⁃p1

[201]

Vervoort,J.D.,Jonathan Patchett,P.,1996.Behavior of Hafnium and Neodymium Isotopes in the Crust:Constraints from Precambrian Crustally Derived Granites.Geochimica et Cosmochimica Acta,60(19):3717-3733.https://doi.org/10.1016/0016⁃7037(96)00201⁃3

[202]

Vielzeuf,D.,Schimidt,M,W.,2001.Melting Relations in Hydrous Systems Revisited:Application to Metapelites,Metagreywackes and Metabasalts.Contributions to Mineralogy and Petrology,141(3):251-267.https://doi.org/10.1007/s004100100237

[203]

Villaros,A.,Buick,I.S.,Stevens,G.,2012.Isotopic Variations in S⁃Type Granites:An Inheritance from a Heterogeneous Source? Contributions to Mineralogy and Petrology,163(2):243-257.https://doi.org/10.1007/s00410⁃011⁃0673⁃9

[204]

Villaros,A.,Pichavant,M.,2019.Mica⁃Liquid Trace Elements Partitioning and the Granite⁃Pegmatite Connection:The St⁃Sylvestre Complex (Western French Massif Central).Chemical Geology,52:119265.https://doi.org/10.1016/j.chemgeo.2019.07.040

[205]

Wang,C.L.,Qin,K.Z.,Tang,D.M.,et al.,2015.Geochronology and Hf Isotope of Zircon for the Arskartor Be⁃Nb⁃Mo Deposit in Altay and Its Geological Implications.Acta Petrologica Sinica,31(8):2337-2352 (in Chinese with English abstract).

[206]

Wang,D.,Wang,X.L.,Cai,Y.,et al.,2017a.Heterogeneous Conservation of Zircon Xenocrysts in Late Jurassic Granitic Intrusions within the Neoproterozoic Jiuling Batholith,South China:A Magma Chamber Growth Model in Deep Crustal Hot Zones.Journal of Petrology,58(9):1781-1810.https://doi.org/10.1093/petrology/egx074

[207]

Wang,R.C.,Wu,F.Y.,Xie,L.,et al.,2017b.A Preliminary Study of Rare⁃Metal Mineralization in the Himalayan Leucogranite Belts,South Tibet.Science China Earth Sciences,60(9):1655-1663.https://doi.org/10.1007/s11430⁃017⁃9075⁃8

[208]

Wang,D,H.,Wang,C,H.,Sun,Y.,et al.,2017.New Progresses and Discussion on the Survey and Research of Li,Be,Ta Ore Deposits in China.Goelogical Survey of China,4(5):1-8 (in Chinese with English abstract).

[209]

Wang,H.,Gao,H.,Wang,S,M.,et al.,2022.Zircon and Columbite⁃Tantalite U⁃Pb Geochronology and Hf Isotope Compositions of Li⁃Be Rare Metal Pegmatite and It’s Geological Significance in Muji Area,Weste Kunlun,China.Acta Petrologica Sinica,38(7):1937-1951 (in Chinese with English abstract).

[210]

Wang,H.,Li,P.,Ma,H.D.,et al.,2017.Discovery of the Bailongshan Superlarge Lithium-Rubidium Deposit in Karakorum,Hetian,Xinjiang,and Its Prospecting Implication.Geotectonica et Metallogenia,41(6): 1053-1062 (in Chinese with English abstract).

[211]

Wang,H.,Ma,H.D.,Zhang,S.,et al.,2023.Discovery of the Huanglongling Giant Lithium Pegmatite Deposit in Altyn Tagh,Xinjiang,China.Acta Petrologica Sinica,39(11):3307-3318 (in Chinese with English abstract).

[212]

Wang,H.,Xu,Y.G.,Yan,Q.H.,et al.,2021.Research Progress on Bailongshan Pegmatite Type Lithium Deposit,Xinjiang.Acta Geologica Sinica,95(10):3085-3098.https://doi.org/10.19762/j.cnki.dizhixuebao.2021083

[213]

Wang,H.,Yang,Y.H.,Yang,J.H.,2022.A Review of Progress in Microbeam Lu⁃Hf Isotopic Analysis on Minerals.Rock and Mineral Analysis,41(6):881-905 (in Chinese with English abstract).

[214]

Wang,J.B.,Hou,X.H.,Li,W.H.,et al.,2020.Metallogenic Characteristics and Metallogenic Model of the Pegmatite Type Uranium Deposit in Danfeng Area,Eastern Qinling Mountains.Earth Science,45(1):61-71 (in Chinese with English abstract).

[215]

Wang,J.B.,Li,W.H.,Zhang,L.,2015.The Geological Characteristics of Pegmatite on the North Side of the Shangdan Zone in the East Qinling and Their Relationship with Uranium Mineralization.Geological Review,61(Suppl.1):542-543 (in Chinese with English abstract).

[216]

Wang,J,B.,Qin,J,F.,Hu,P.,et al.,2018.Zircon U⁃Pb Ages and Geochemical Characteristics of the Two⁃Stage Granitic Magamtism from the Kuanping Pluton in the Northern Qinling Mountains:Petrogenesis and Tectonic Implication. Geological Review,64(1):127-140 (in Chinese with English abstract).

[217]

Wang,L.X.,Ma,C.Q.,Zhang,C.,et al.,2014a.Genesis of Leucogranite by Prolonged Fractional Crystallization:A Case Study of the Mufushan Complex, South China.Lithos,206:147-163.https://doi.org/10.1016/j.lithos.2014.07.026

[218]

Wang,T.,Hong,D.W.,Jahn,B.M.,et al.,2006.Timing,Petrogenesis,and Setting of Paleozoic Synorogenic Intrusions from the Altai Mountains,Northwest China:Implications for the Tectonic Evolution of an Accretionary Orogen.The Journal of Geology,114(6):735-751.https://doi.org/10.1086/507617

[219]

Wang,T.,Jahn,B.M.,Kovach,V.P.,et al.,2014b.Mesozoic Intraplate Granitic Magmatism in the Altai Accretionary Orogen,NW China:Implications for the Orogenic Architecture and Crustal Growth.American Journal of Science,314(1):1-42.https://doi.org/10.2475/01.2014.01

[220]

Wang,T.,Tong,Y.,Guo,L.,et al.,2020.Geological Survey and Mapping Methods of Intrusive Rocks.Geological Publishing House,Beijing(in Chinese).

[221]

Wang,T.,Tong,Y.,Jahn,B.M.,et al.,2007.SHRIMP U-Pb Zircon Geochronology of the Altai No.3 Pegmatite,NW China,and Its Implications for the Origin and Tectonic Setting of the Pegmatite.Ore Geology Reviews,32(1-2):325-336.https://doi.org/10.1016/j.oregeorev.2006.10.001

[222]

Wang,T.,Wang,X,X.,Tian,W.,et al.,2009.North Qinling Paleozoic Granite Association and Their Variation in Space and Time:Implications for Orogenic Processes in the Orogens of Central China.Science in China (Series D),39(7):1359-1381 (in Chinese).

[223]

Wang,X.L.,Zhou,J.C.,Griffin,W.L.,et al.,2014c.Geochemical Zonation across a Neoproterozoic Orogenic Belt: Isotopic Evidence from Granitoids and Metasedimentary Rocks of the Jiangnan Orogen,China.Precambrian Research,242:154-171.https://doi.org/10.1016/j.precamres.2013.12.023

[224]

Wang,X.L.,Zhou,J.C.,Wan,Y.S.,et al.,2013.Magmatic Evolution and Crustal Recycling for Neoproterozoic Strongly Peraluminous Granitoids from Southern China:Hf and O Isotopes in Zircon.Earth and Planetary Science Letters,366:71-82.https://doi.org/10.1016/j.epsl.2013.02.011

[225]

Wang,Y.,2008.Some Further Discussions on the Genetic Type of the Early Yanshanian (Jurassic) Granitoids in the Nanling Area,SE China.Geological Review,54(2):162-174 (in Chinese with English abstract).

[226]

Wang,Z.,Chen,B.,Ma,X.,2014.Petrogenesis of the Late Mesozoic Guposhan Composite Plutons from the Nanling Range,South China:Implications for W⁃Sn Mineralization.American Journal of Science,314(1):235-277.https://doi.org/10.2475/01.2014.07

[227]

Wang,Z,G.,Zhao,Z,H.,Zou,T,R.,et al.,1998.Geochemistry of Altay Granitoids.Science Press,Beijing (in Chinese).

[228]

Webber,K.L.,Simmons,W.B.,Falster,A.U.,et al.,2019.Anatectic Pegmatites of the Oxford County Pegmatite Field,Maine,USA.The Canadian Mineralogist,57(5):811-815.https://doi.org/10.3749/canmin.ab00028

[229]

Webster,J.D.,Thomas,R.,Rhede,D.,et al.,1997.Melt Inclusions in Quartz from an Evolved Peraluminous Pegmatite:Geochemical Evidence for Strong Tin Enrichment in Fluorine⁃Rich and Phosphorus⁃Rich Residual Liquids.Geochimica et Cosmochimica Acta,61(13):2589-2604.https://doi.org/10.1016/S0016⁃7037(97)00123⁃3

[230]

Wei,W.F.,Shen,N.P.,Yan,B.,et al.,2018.Petrogenesis of Ore⁃Forming Granites with Implications for W⁃Mineralization in the Super⁃Large Shimensi Tungsten⁃Dominated Polymetallic Deposit in Northern Jiangxi Province,South China.Ore Geology Reviews,95:1123-1139.https://doi.org/10.1016/j.oregeorev.2017.12.022

[231]

Wei,X.P.,Wang,H.,Hu,J.,et al.,2017.Geochemistry and Geochronology of the Dahongliutan Two⁃Mica Granite Pluton in Western Kunlun Orogen:Geotectonic Implications.Geochimica,46(1):66-80 (in Chinese with English abstract).

[232]

Wei,X.P.,Wang,H.,Zhang,X.Y.,et al.,2018.Petrogenesis of Triassic High⁃Mg Diorites in Western Kunlun Orogen and Its Tectonic Implication.Geochimica,47(4):363-379 (in Chinese with English abstract).

[233]

Wen,C.H.,Luo,X.Y.,Chen,J.F.,et al.,2019.Relationship between Yanshanian Magmatic Activity and Rare Metal Mineralization in Mufushan Area of Northeast Hunan.Geological Survey of China,6(6):19-28 (in Chinese with English abstract)..

[234]

Wise,M.A.,Müller,A.,Simmons,W.B.,2022.A Proposed New Mineralogical Classification System for Granitic Pegmatites.The Canadian Mineralogist,60(2):229-248.https://doi.org/10.3749/canmin.1800006

[235]

Wu,B,Q.,Zou,T,R.,1989.Discuss on the Genesis of Altai Pegmatite.Geology and Mineral Meposit of Xinjiang,1:60-70 (in Chinese with English abstract).

[236]

Wu,F.Y.,Guo,C.L.,Hu,F.Y.,et al.,2023.Petrogenesis of the Highly Fractionated Granites and Their Mineralizations in Nanling Range,South China.Acta Petrologica Sinica,39(1):1-36 (in Chinese with English abstract).

[237]

Wu,F.Y.,Liu,X.C.,Ji,W.Q.,et al.,2017.Highly Fractionated Granites:Recognition and Research.Science in China (Ser. D),47(7):745-765 (in Chinese).

[238]

Wu,X.M.,Zhou,M.J.,Luo,X.C.,et al.,2016.The Metallogenic Conditions and Prospecting Potential of Lithium and Rare Metals in Northwestern Jiangxi.East China Geology,37(4):275-283 (in Chinese with English abstract).

[239]

Wunder,B.,Meixner,A.,Romer,R.L.,et al.,2007.Lithium Isotope Fractionation between Li⁃Bearing Staurolite,Li⁃Mica and Aqueous Fluids:An Experimental Study.Chemical Geology,238(3/4):277-290.https://doi.org/10.1016/j.chemgeo.2006.12.001

[240]

Wunder,B.,Meixner,A.,Romer,R.L.,et al.,2011.Li⁃Isotope Fractionation between Silicates and Fluids:Pressure Dependence and Influence of the Bonding Environment.European Journal of Mineralogy,23(3):333-342.https://doi.org/10.1127/0935⁃1221/2011/0023⁃2095

[241]

Xia,X.B.,Li,G.M.,Zhang,L.K.,et al.,2022.Geological Characteristics of and Prospecting Strategy for the Xianglin Be⁃Sn Polymetallic Ore Deposit in the Cuonadong Gneiss Dome in Southern Tibet.Earth Science Frontiers,29(1):93-10 (in Chinese with English abstract).

[242]

Xia,Y.Q.,Tuo,M.J.,Li,N.,et al.,2024.Geochemical Characteristics and Geological Significance of Biotite in Granite of Dahongliutan Area in the West Kunlun Orogen.Chinese Journal of Geology,59(2):404-419 (in Chinese with English abstract).

[243]

Xie,L.,Liu,Y.,Wang,R.C.,et al.,2019.Li-Nb-Ta Mineralization in the Jurassic Yifeng Granite⁃Aplite Intrusion within the Neoproterozoic Jiuling Batholith,South China:A Fluid⁃Rich and Quenching Ore⁃Forming Process.Journal of Asian Earth Sciences,185:104047.https://doi.org/10.1016/j.jseaes.2019.10404

[244]

Xie,L.,Tao,X.Y.,Wang,R.C.,et al.,2020.Highly Fractionated Leucogranites in the Eastern Himalayan Cuonadong Dome and Related Magmatic Be-Nb-Ta and Hydrothermal Be-W-Sn Mineralization.Lithos,354:105286.https://doi.org/10.1016/j.lithos.2019.105286

[245]

Xiong,Y.Q.,Jiang,S.Y.,Wen,C.H.,et al.,2020.Granite-Pegmatite Connection and Mineralization Age of the Giant Renli Ta-Nb Deposit in South China:Constraints from U-Th-Pb Geochronology of Coltan,Monazite,and Zircon.Lithos,358:105422.https://doi.org/10.1016/j.lithos.2020.105422

[246]

Xu,C.,Li,J.K.,Shi,G.H.,et al.,2019.Zircon U-Pb Age and Hf Isotopic Composition of Porphyaceous Biotite Granite in South Margin of Mufushan and Their Geological Implications.Mineral Deposits,38(5): 1053-1068 (in Chinese with English abstract).

[247]

Xu,H.,Li,X.F.,Dou,S.,et al.,2023.Petrogenesis and Tectonic Setting of the Lüyintang Granite Pegmatites in Changning County,Westren Yunnan:Constraints from Geochemistry,Zircon U⁃Pb Age and Hf Isotopes.Geotectonica et Metallogenia,47(4):839-855 (in Chinese with English abstract).

[248]

Xu,X.W.,Hong,T.,Li,H.,et al.,2020.Concept of High⁃Temperature Granite-Pegmatite Li⁃Be Metallogenic System with a Primary Study in the Middle Altyn⁃Tagh.Acta Petrologica Sinica,36(12):3572-3592 (in Chinese with English abstract).

[249]

Xu,X.W.,Hong,T.,Zhang,P.,et al.,2024.Metallogeny and Resource Potential of Lithium⁃Beryllium Granites and Pegmatites in the Altyn Tagh.Acta Petrologica Sinica,40(9):2679-2702 (in Chinese with English abstract).

[250]

Xu,X.W.,Li,H.,Shi,F.P.,et al.,2019.Metallogenic Characteristics and Prospecting of Granitic Pegmatite⁃Type Rare Metal Deposits in the Tugeman Area,Middle Part of Altyn Tagh.Acta Petrologica Sinica,35(11):3303-3316 (in Chinese with English abstract).

[251]

Xu,Y.G.,Yang,Q.J.,Lan,J.B.,et al.,2012.Temporal-Spatial Distribution and Tectonic Implications of the Batholiths in the Gaoligong-Tengliang-Yingjiang Area,Western Yunnan:Constraints from Zircon U-Pb Ages and Hf Isotopes.Journal of Asian Earth Sciences,53:151-175.https://doi.org/10.1016/j.jseaes.2011.06.018

[252]

Xu,Z.,Zhang,F,S.,Zhang,F,R.,et al.,2024.U⁃Pb Dating of Monazite from the Beryllium Mineralized Pegmatite and Its Geological Significance in the Guyangzhai Area at the Southern Margin of Jiuling,Jiangxi.Journal of East China University of Technology (Natural Science),47(1):13-21 (in Chinese with English abstract).

[253]

Xu,Z.Q.,Zhu,W.B.,Zheng,B.H.,et al.,2023.New Ore⁃Controlling Theory of “Multilayered Domal Granitic Sheets” of the Jiajika Pegmatite⁃Type Lithium Deposit:The Major Discoveries of the “Jiajika Pegmatite⁃Type Lithium Deposit Scientific Drilling Project (JSD)”.Acta Geologica Sinica,97(10):3133-3146 (in Chinese with English abstract).

[254]

Yan,J.W.,Liu,F.,Shen,Y.,et al.,2020.Constraints on Timing of Magmatic Activity and Formation of Pegmatite in the Koktokay Pegmatite Field,Xinjiang.Acta Geoscientica Sinica,41(5):663-674 (in Chinese with English abstract).

[255]

Yan,Q.H.,Chen,C.,Ming,T.X.,et al.,2024.Discovery of the Peili Pegmatitic Lithium Deposit in Gaoligong Area,Western Yunnan Province and Its Implication.Acta Petrologica Sinica,40(2):539-552 (in Chinese with English abstract).

[256]

Yan,Q.H.,Wang,H.,Chi,G.X.,et al.,2022.Recognition of a 600⁃km⁃Long Late Triassic Rare⁃Metal (Li⁃Rb⁃Be⁃Nb⁃Ta) Pegmatite Belt in the Western Kunlun Orogenic Belt,Western China.Economic Geology,117(1):213-236.https://doi.org/10.5382/econgeo.4858

[257]

Yang,F.Q.,Zhang,Z.L.,Wang,R.,et al.,2018.Geological Characteristics and Metallogenesis of Rare Metal Deposits in Altay,Xinjiang.Geotectonia et Metallogenia,42(6):1010-1026 (in Chinese with English abstract).

[258]

Yang,J.H.,Kang,L.F.,Peng,J.T.,et al.,2018.In⁃Situ Elemental and Isotopic Compositions of Apatite and Zircon from the Shuikoushan and Xihuashan Granitic Plutons:Implication for Jurassic Granitoid⁃Related Cu⁃Pb⁃Zn and W Mineralization in the Nanling Range,South China.Ore Geology Reviews,93:382-403.https://doi.org/10.1016/j.oregeorev.2017.12.023

[259]

Yang,P.,Rivers,T.,2000.Trace Element Partitioning between Coexisting Biotite and Muscovite from Metamorphic Rocks,Western Labrador:Structural,Compositional and Thermal Controls.Geochimica et Cosmochimica Acta,64(8):1451-1472.https://doi.org/10.1016/S0016⁃7037(99)00425⁃1

[260]

Yang,W.B.,2012.Magmatic⁃Hydrothermal Evolution of Alkaline Granite and Rare Metal Mineralization:A Case Study of Balci Deposit in Inner Mongolia (Dissertation).University of Chinese Academy of Sciences,Beijing(in Chinese with English abstract).

[261]

Yang,Y.H.,Wu,S.T.,Che,X.D.,et al.,2024.In⁃Situ Isotopic Dating and Tracing of the Rare⁃Metal Minerals in Ore Deposit.Acta Petrologica Sinica,40(4):1023-1043 (in Chinese with English abstract)..

[262]

Yang,Y.Q.,Wang,D.H.,Liu,S.B.,et al.,2020.The Co⁃Occurrence Mechanism of Two Types of Spodumene Ore Bodies and Their Prospecting Significance in Jiajikan,Sichuan Province.Acta Geologica Sinica,94(1):287-302 (in Chinese with English abstract).

[263]

Yang,Z.L.,Qiu,J.S.,Xing,G.F.,et al.,2014.Petrogenesis and Magmatic Evolution of the Yashan Granite Pluton in Yichun,Jiangxi Province,and Their Constraints on Mineralization.Acta Geologica Sinica,88(5):850-868 (in Chinese with English abstract).

[264]

Yu,Y.,Li,Z.F.,Bai,L.A.,et al.,2022.Metallogenic Regularity and Prospecting Direction of Pegmatitic Rare⁃Mental Deposits in Western Yunnan.Acta Petrologica Sinica,38(7):2052-2066 (in Chinese with English abstract).

[265]

Yuan,F.,Jiang,S.Y.,Liu,J.J.,et al.,2020.Origin and Evolution of Uraniferous Pegmatite:A Case Study from the Xiaohuacha Granite-Pegmatite System and Related Country Rocks in the Shangdan Uranium Mineralization District of North Qinling Orogenic Belt,China.Lithos,356:105379.https://doi.org/10.1016/j.lithos.2020.105379

[266]

Yuan,F.Liu,J.J.,Lü,G.X.,et al.,2017.Zircon U⁃Pb Geochronology,Geochemistry and Petrogenesis of the Granites and Pegmatites from the Guangshigou Uranium Deposit in the Northern Qinling Orogen,China.Earth Science Frontiers,24(6):25-45 (in Chinese with English abstract).

[267]

Yuan,K.R.,Zou,J.F.,1992.Extending Progress in the Prediction of Hidden Granites and the Exploration of Deep Ore Deposits and It’s Prospect.Journal of Guilin University of Technology,12(3):227-234 (in Chinese with English abstract).

[268]

Zagorsky,V.Y.,Vladimirov,A.G.,Makagon,V.M.,et al.,2014.Large Fields of Spodumene Pegmatites in the Settings of Rifting and Postcollisional Shear⁃Pull⁃Apart Dislocations of Continental Lithosphere.Russian Geology and Geophysics,55(2):237-251.https://doi.org/10.1016/j.rgg.2014.01.008

[269]

Zeng,R.L.,Zhang,J.R.,He,L.,et al.,2023.Chronology and Genesis of the Tong’an Granitic Aplite in Yifeng,Jiangxi Province.Acta Geologica Sinica,97(11):3750-3765 (in Chinese with English abstract).

[270]

Zeng,W.,Zhou,H.Y.,Sun,F.Y.,et al.,2021.Cassiterite U⁃Pb Age of Rare Metal Pegmatites in Guanpo Area,North Qinling,China.Geological Bulletin of China,40(12):2179-2182 (in Chinese with English abstract).

[271]

Zhang,C.L.,Liu,L.,Wang,T.,et al.,2013.Granitic Magmatism Related to Early Paleozoic Continental Collision in North Qinling.Chinese Science Bulletin,58(23):2323-2329 (in Chinese).

[272]

Zhang,F.S.,Xu,J.,Zhang,J.,et al.,2020.Geochemical Characteristics,Zircon U⁃Pb Age and Geological Significance of New Proterozoic Granites in Jiuling Area,Jiangxi Province.Journal of East China University of Technology (Natural Science),43(1):12-20 (in Chinese with English abstract).

[273]

Zhang,H.,He,P.,Lu,X.Z.,et al.,2022.Discovery and Significance of Rare and Rare Earth Metal Deposits in the South of Washixia,Northern Margin of Altun.Modern Mining,38(1):34-36,87(in Chinese with English abstract).

[274]

Zhang,H.,Li,G.S.,2024.Metallogenic Mechanism of the Koktokay Pegmatite⁃Type Rare⁃Metal Deposit,Northwest China.Acta Petrologica Sinica,40(9):2769-2785 (in Chinese with English abstract).

[275]

Zhang,H.,Liu,H.,2013.The Pegmatite Vein No.3 in Keketuohai,Xinjiang is the Product of the Late Magma Evolution of Aral Granite? Acta Mineralogica Sinica,33(Suppl.2):279(in Chinese with English abstract).

[276]

Zhang,H.,Lü,Z,H.,Tang,Y.,2019.Metallogeny and Prospecting Model as Well as Prospecting Direction of Pegmatite⁃Type Rare Metal Ore Deposits in Altay Orogenic Belt,Xinjiang.Mineral Deposits,38(4):792-814 (in Chinese with English abstract).

[277]

Zhang,H.J.,Tian,S.H.,Wang,D.H.,et al.,2022.Lithium Isotopic Constraints on the Petrogenesis of the Jiajika Two⁃Mica Granites and Associated Li Mineralization.Ore Geology Reviews,150:105174.https://doi.org/10.1016/j.oregeorev.2022.105174

[278]

Zhang,L.,Liang,L.,2018.Genesis of Pegmatite and Aplite:Rare Metal Granite Study of Limu in Guangxi.Journal of Guilin University of Technology,38(2):175-188 (in Chinese with English abstract).

[279]

Zhang,S.,Liu,J.J.,Yuan,F.,et al.,2019.Zircon U⁃Pb Geochronology and Geochemistry of Granites and Pegmatites,and Metallogenesis of Related Uranium from the Chenjiazhuang Deposit,Shaanxi Province.Earth Science Frontiers,26(5):270-289 (in Chinese with English abstract).

[280]

Zhang,X.,Wu,Y.B.,Fu,B.,et al.,2024.Refining Granite Generation by Interrogation of Zircon and Monazite U⁃Th⁃Pb and Hf/Nd⁃O Isotopes.Chemical Geology,653:122051.https://doi.org/10.1016/j.chemgeo.2024.122051

[281]

Zhang,X.,Zhang,H.,Ma,Z.L.,et al.,2016.A New Model for the Granite-Pegmatite Genetic Relationships in the Kaluan-Azubai-Qiongkuer Pegmatite⁃Related Ore Fields,the Chinese Altay.Journal of Asian Earth Sciences,124:139-155.https://doi.org/10.1016/j.jseaes.2016.04.020.

[282]

Zhang,Y.,Pan,J.Y.,Ma,D.S.,2020.Lithium Element Enrichment and Inspiration for Prospecting for Rare⁃Metal Mineralization in the Dahutang Tungsten Deposit:Constraints from Mineralogy and Geochemistry of Hydrothermal Alteration.Acta Geologica Sinica,94(11):3321-3342 (in Chinese with English abstract).

[283]

Zhang,Y.F.,Lin,X.W.,Guo,Q.M.,et al.,2015.LA⁃ICP⁃MS Zircon U⁃Pb Dating and Geochemistry of Aral Granitic Plutons in Koktokay Area in the Southern Altay Margin and Their Source Significace.Acta Geologica Sinica,89(2):339-354 (in Chinese with English abstract).

[284]

Zhang,Z.,Liang,T.,Feng,Y.G.,et al.,2019.Geologicial Feature and Chronology Study of Kangxiwar Beryl⁃Bearing Muscovite Pegmatite in Weste Kunlun Orogen,Xinjiang.Northwestern Geology,52(1):75-88 (in Chinese with English abstract).

[285]

Zhang,Z.J.,Zhang,X.,Badal,J.,2008.Composition of the Crust beneath Southeastern China Derived from an Integrated Geophysical Data Set.Journal of Geophysical Research:Solid Earth,113(B4).https://doi.org/10.1029/2006JB004503

[286]

Zhang,Z.Y.,Hou,Z.Q.,Peng,H.M.,et al.,2015.Exsolution of Primary Fluids from Magma in the Superlarge Dahutang Tungsten Deposit of Jiangxi Province:Records from the Pegmatoid Shell.Geological Bulletin of China,34(S1):487-500(in Chinese with English abstract).

[287]

Zhao,H.,Chen,B.,Huang,C.,et al.,2022.Geochemical and Sr-Nd-Li Isotopic Constraints on the Genesis of the Jiajika Li⁃Rich Pegmatites,Eastern Tibetan Plateau:Implications for Li Mineralization.Contributions to Mineralogy and Petrology,177(1):4.https://doi.org/10.1007/s00410⁃021⁃01869⁃3

[288]

Zhao,J.X.,He,C.T.,Qin,K.Z.,et al.,2021.Geochronology,Source Features and the Characteristics of Fractional Crystallization in Pegmatite at the Qongjiagang Giant Pegmatite⁃Type Lithium Deposit,Himalaya,Tibet.Acta Petrologica Sinica,37(11):3325-3347 (in Chinese with English abstract).

[289]

Zhao,R.Y.,Li,W.H.,Jiang,C.Y.,et al.,2014.The LA⁃ICP⁃MS Zircon U⁃Pb Dating,Petro⁃Geochemical Characteristics of Huanglongmiao Monzogranite in Danfeng Area in Eastern Qinling MTS.and Their Geological Significance.Geological Review,60(5):1123-1132 (in Chinese with English abstract).

[290]

Zhao,Z.H.,1988a.Preliminary Report on the Discovery of Quadruple Distribution Effect of Rare Earth Elements in Granite.Geology Geochemistry,16(1):71-72(in Chinese).

[291]

Zhao,Z,H.,1988b.REE Tetrad Effects:An Important Geochemical Index for Fluit/Rock(Melt) Interaction.Symposium Abstract of Chinese Society for Mineralogy,Petrology and Geochemistry.Scientific and Technical Literature Press of China,Chongqing,47-49(in Chinese).

[292]

Zhao,Z.H.,2016.Geochemical Principles of Trace Elements(2nd ed.).Science Press,Beijing(in Chinese).

[293]

Zhao,Z.H.,Bao,Z.W.,Zhang,B.Y.,1998.Geochemical Characteristics of Mesozoic Basalts in Southern Hunan.Science in China (Series D),28(Suppl.2):7-14(in Chinese).

[294]

Zhao,Z.H.,Bao,Z.W.,Zhang,B.Y.,et al.,2000.The Crust⁃Mantle Interaction Background of Shizhuyuan Super⁃Large Tungsten Polymetallic Deposit. Science in China (Series D),30(Suppl.1):161-168(in Chinese).

[295]

Zhao,Z.H.,Chen,H.Y.,Han,J.S.,2022.Rare Metal Mineralization of the Mesozoic Pegmatite in Altay Orogeny,Northern Xinjiang.Acta Scientiarum Naturalium Universitatis Sunyatseni,61(1):1-26 (in Chinese with English abstract).

[296]

Zhao,Z.H.,Masuda,A.,Shabani,M.B.,1993.REE Tetrad Effects in Rare⁃Metal Granites.Chinese Journal of Geochemistry,12(3):206-219.https://doi.org/10.1007/bf02843360 (in Chinese).

[297]

Zhao,Z.H.,Xiong,X.L.,Han,X.D.,et al.,2002.Controls on the REE Tetrad Effect in Granites:Evidence from the Qianlishan and Baerzhe Granites,China.Geochemical Journal,36(6):527-543.https://doi.org/10.2343/geochemj.36.527

[298]

Zhao,Z.H.,Yan,S.,2023.Some Issues Relevant to Rare Metal Metallogeny of Granitic Pegmatites.Geotectonica et Metallogenia,47(1):1-41 (in Chinese with English abstract).

[299]

Zhao,Z.H.,Zeng,T.,Zeng,T.,1992.Tetrad Effects of Rare⁃Earth Elements in Rare⁃Metal Granites.Geochimica,21(3): 221-233 (in Chinese with English abstract).

[300]

Zhou,F.C.,Li,J.K.,Liu,X.,et al.,2019.Geochemical Characteristics and Genetic Significance of Ore Bodies in Renli Nb⁃Ta Deposit,Hunan Province.Acta Geologica Sinica,93(6):1392-1404 (in Chinese with English abstract).

[301]

Zhou,J.T.,Wang,G.B.,He,S.F.,et al.,2011.Diagenesis and Mineralization of Ganfang Rock in Yifeng,Jiangxi Province.Journal of East China Institute of Technology (Natural Science),34(4):345-351,358(in Chinese with English abstract).

[302]

Zhou,Q,F.,Qin,K,Z.,Tang,D,M.,et al.,2015.Formation Age and Evolution Time Span of the Koktokay No.3 Pegmatite,Altay,NW China:Evidence from U⁃Pb Zircon and 40Ar⁃39Ar Muscovite Ages.Resource Geology,65(3):210-231.

[303]

Zhou,Q.F.,Qin,K.Z.,Liu,Y.C.,et al.,2024.Cassiterite of the Kuqu Spodumene⁃Bearing Pegmatites in the Eastern Himalaya,Tibet,and Its Implication.Acta Petrologica Sinica,40(2):433-449 (in Chinese with English abstract).

[304]

Zhou,Q.F.,Qin,K.Z.,Tang,D.M.,2021.Mineralogy of Columbite⁃Group Minerals from the Rare⁃Element Pegmatite Dykes in the East⁃Qinling Orogen,Central China:Implications for Formation Times and Ore Genesis.Journal of Asian Earth Sciences,218:104879.https://doi.org/10.1016/j.jseaes.2021.104879.

[305]

Zhou,Q.F.,Qin,K.Z.,Tang,D.M.,et al.,2021.The Features of Geology and Rare⁃Elemental Enrichmentof the East Qinling Pegmatite District.Acta Geologica Sinica,95(10):3115-3126 (in Chinese with English abstract).

[306]

Zhou,X.,Zhou,Y.,Sun,B. W.,et al.,2021.Cassiterite U-Pb Dating of No.134 Pegmatite Vein in the Jiajika Rare Metal Deposit,Western Sichuan and Its Geological Significances.Rock and Mineral Analysis,40(1): 156-164 (in Chinese with English abstract).

[307]

Zhou,X.H.,Zhang,Y.J.,Liao,S.B.,et al.,2012.LA⁃ICP⁃MS Zircon U⁃Pb Geochronology of Volcanic Rocks in the Shuangqiaoshan Group at Anhui⁃Jiangxi Boundary Region and Its Geological Implication.Geological Journal of China Universities,18(4):609-622 (in Chinese with English abstract).

[308]

Zhu,J.C.,Li,R.K.,Zhou,F.Y.,et al.,1996.Genesis of Asymmetrically Layered Pegmatiteaplite Dykes of Shuiximiao Mine,Limu District,Guangxi.Geochimica,25(1):1-9 (in Chinese with English abstract).

[309]

Zhu,J.C.,Wu,C.N.,Liu,C.S.,et al.,2000.Magmatic⁃Hydrothermal Evolution and Genesis of Koktokay No.3 Rare Metal Pegmatite Dyke,Altai,China.Geological Journal of China Universities,6(1):40-52 (in Chinese with English abstract).

[310]

Zhu,Y.F.,Zeng,Y.S.,2002.Rb⁃Sr Isochron Age of Keketuohai No.3 Pegmatite.Mineral Deposits,21(Suppl.1):1110-1111 (in Chinese with English abstract).

[311]

Zhu,Z.Y.,Wang,R.C.,Che,X.D.,et al.,2015.Magmatic-Hydrothermal Rare⁃Element Mineralization in the Songshugang Granite (Northeastern Jiangxi,China):Insights from an Electron⁃Microprobe Study of Nb⁃Ta⁃Zr Minerals.Ore Geology Reviews,65:749-760.https://doi.org/10.1016/j.oregeorev.2014.07.021

[312]

Zou,G.F.,Mao,Y.,Lin,S.L.,et al.,2013a.Zircon U⁃Pb Age and Geochemistry of Mengyang Intrusion and Its Tectonic Implications in the Lianghe,Western Yunnan.Journal of Mineralogy and Petrology,33(1):87-99(in Chinese with English abstract).

[313]

Zou,G.F.,Mao,Y.,Zou,X.,et al.,2013b.Zircon U⁃Pb Age and Geochemistry of Jiangdong Intrusion and Its Tectonic Implications in the Mangshi,Western Yunnan.Acta Geologica Sinica,87(11):1635-1646(in Chinese with English abstract).

[314]

Zou,T.R.,Li,Q.C.,2006.Rare and Rare Earth Metallic Deposits in Xinjiang,China.Geological Publishing House,Beijing(in Chinese).

[315]

Zuo,W.Q.,Sha,Y.Z.,Chen,B.,et al.,2010.U⁃Pb Istopic Dating of Zircon from Damaogou Granite Stock of Guangshigou Uranium Deposit in Danfeng Area and It’s Significance.Uranium Geology,26(4):222-227 (in Chinese with English abstract).

基金资助

国家自然科学基金(42122022)

国家重点研发专项(2024YFC2909903)

AI Summary AI Mindmap
PDF (21096KB)

65

访问

0

被引

详细

导航
相关文章

AI思维导图

/