玄武岩风化剖面P、Al元素的迁移与淋失及其对滇黔桂地区晚二叠世风化‒沉积成矿效应的指示意义

陈波 , 杨江海 , 任俊童 , 程亮 , 刘澳 , 张晓容 , 葛海莉 , 王敬富 , 黄庆 , 王彪

地球科学 ›› 2025, Vol. 50 ›› Issue (07) : 2720 -2734.

PDF (5083KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (07) : 2720 -2734. DOI: 10.3799/dqkx.2025.019

玄武岩风化剖面P、Al元素的迁移与淋失及其对滇黔桂地区晚二叠世风化‒沉积成矿效应的指示意义

作者信息 +

Migration and Leaching of Phosphorus and Aluminum in Basalt Weathering Profile: Implications for Late Permian Weathering⁃Depositional Mineralization in Yunnan⁃Guizhou⁃Guangxi Region

Author information +
文章历史 +
PDF (5204K)

摘要

磷(P)和铝(Al)分别作为生物限制性营养元素和重要金属元素而被广泛关注.在近地表环境中, 岩石风化是P和Al元素释放的重要途径. 玄武岩是一种富含磷酸盐矿物(如玄武质玻璃、磷灰石等)和铝硅酸盐矿物(如长石、辉石等)的岩石,是P和Al元素的重要岩石储库. 目前对于玄武岩风化过程中P、Al元素的活动规律还未有深入研究.为进一步理解玄武岩的化学风化作用,对峨眉山大火成岩省分布区的玄武岩风化剖面开展了矿物学、地球化学和磷组分研究, 并结合已报道的玄武岩风化剖面数据探讨物理侵蚀对Al、P元素风化淋失的控制机制, 分析晚二叠世相关的风化‒沉积成矿效应.黑石风化剖面下部为含有大量长石等原生矿物的半风化层,相对玄武质原岩其化学风化强度明显升高(CIA值分别为40和72~83),上部为含有石英、赤铁矿和黏土矿物的土壤层,呈现极端风化状态(化学风化指数CIA值为90~92).利用Ti的稳定性与原岩标准化计算来衡量元素的活动性,结果显示Na、Ca、Mg、P和Eu自下而上均发生不同程度的丢失,Fe、K和Ce在半风化层发生显著丢失而在土壤层中呈现相对富集,Al在土壤层相对亏损而Zr则相对富集.土壤层中的高石英含量和低Ti/Zr比值, 可能指示了风成长英质粉尘输入的影响.基于黑石风化原岩和风成粉尘组成构建了二元混合曲线,发现风化剖面均具有相对较低的P/Ti比值,而Al/Ti比值仅在土壤层呈现降低的趋势.这一变化特征表明,P元素在早期风化阶段即发生大量(>50%)淋失,残余土壤中P的赋存状态也经历由原岩溶解态磷到弱吸附态磷再到强吸附态磷的转变;在极端风化条件下, Al元素可随酸性流体、富Al黏土矿物或络合物的渗流和淋洗作用而发生部分(>20%)迁移和丢失.地表风化状态取决于物理侵蚀与化学风化速率的相对大小,侵蚀速率较高时出露更多弱风化的岩石而有利于P的风化淋失,侵蚀速率较低时发育更多强烈风化的土壤层而有利于Al的风化淋失.综合华南西部晚二叠世玄武质泥岩的风化趋势,认为峨眉山大火成岩省的风化侵蚀状态是控制Al、P风化‒沉积富集的重要因素.

Abstract

Phosphorus (P) and aluminum (Al) are respectively recognized as a critical nutrient limiting element for biological processes and a significant metallic element. Within the near-surface environment, rock weathering is the predominant mechanism facilitating the release of these elements. Basalt, featuring abundance of phosphate mineral minerals (including basaltic glass and apatite) and aluminosilicate minerals (such as feldspar and pyroxene), constitutes a substantial rock reservoir for both P and Al elements. Despite the importance of these elements, a comprehensive understanding of the behavior of P and Al during basalt weathering remains an area ripe for further investigation. To enhance the understanding of the chemical weathering process of basalt, this study undertook a detailed examination of the weathering profile within the Emeishan Large Igneous Province(ELIP), employing mineralogical, geochemical, and phosphorus form analyses.Additionally, by integrating published data on basalt weathering profiles, the study explores the control mechanisms of physical erosion on the weathering leaching of P and Al elements and analyzes the weathering-deposition mineralization effects related to the Late Permian period.The basal section of Heishi weathering profile is characterized by a semi-weathered layer that is rich in primary minerals, including a substantial quantity of feldspar. Relative to the basaltic parent rock, this layer exhibits a markedly enhanced degree of chemical weathering, as indicated by Chemical Index of Alteration (CIA) values of 40 for the parent rock and a range of 72 to 83 for the semi-weathered layer. The upper section of the profile comprises a soil layer that incorporates quartz, hematite, and various clay minerals, reflecting an advanced stage of weathering, with CIA values that extend from 90 to 92. Utilizing the stability of Ti and normalization to the parent rock for calculating the mobility of elements, the results indicate that there is a varying degree of loss of Na, Ca, Mg, P, and Eu from the bottom up. Fe, K, and Ce show significant depletion in the semi-weathered layer but are relatively enriched in the soil layer. Al is relatively depleted in the soil layer, while Zr is relatively enriched.The soil layer, characterized by high quartz content and a low Ti/Zr ratio, likely indicates the influence of aeolian input from feldspathic dust.A binary mixing curve was constructed based on the composition of the weathered black stone protolith and aeolian dust, revealing that the weathering profiles have relatively low P/Ti ratios, while the Al/Ti ratio only shows a decreasing trend in the soil layer. This pattern suggests that P is significantly (> 50%) leached during the early stages of weathering, and the state of phosphorus in the residual soil undergoes a transition from dissolved phosphorus in the protolith to weakly adsorbed phosphorus and then to strongly adsorbed phosphorus. Under extreme weathering conditions, Al can be partially (>20%) mobilized and lost through the percolation and leaching of acidic fluids, Al-rich clay minerals, or complexes. The degree of weathering at the surface is contingent upon the relative rates of physical erosion and chemical weathering. When erosion rates are high, a greater exposure of weakly weathered rocks occurs, which favors the weathering and leaching of P. Conversely, when erosion rates are low, a more extensive development of intensely weathered soil layers takes place, which favors the weathering and leaching of Al. Integrating the weathering trends of Late Permian basaltic mudstones in the western South China, it is posited that the weathering and erosion conditions of the ELIP are significant factors controlling the weathering-deposition enrichment of P and Al.

Graphical abstract

关键词

峨眉山大火成岩省 / 玄武岩风化剖面 / 元素行为 / 风尘输入 / 沉积成矿 / 矿物学 / 地球化学.

Key words

Emeishan Large Igneous Province / basalt weathering profile / element behavior / dust input / sedimentary mineralization / mineralogy / geochemistry

引用本文

引用格式 ▾
陈波,杨江海,任俊童,程亮,刘澳,张晓容,葛海莉,王敬富,黄庆,王彪. 玄武岩风化剖面P、Al元素的迁移与淋失及其对滇黔桂地区晚二叠世风化‒沉积成矿效应的指示意义[J]. 地球科学, 2025, 50(07): 2720-2734 DOI:10.3799/dqkx.2025.019

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

风化作用控制着地球表层系统中的元素释放和迁移,代表了元素生物地球化学循环的起点,在气候调节、营养物质循环和风化沉积成矿等方面发挥着重要作用(杨江海和马严,2017;Frings and Buss, 2019). P是重要的生物限制性营养元素,常与生产力发展密切相关, 而Al作为重要金属元素也被广泛关注,硅酸盐风化过程中的含磷矿物和含铝矿物的风化分解是地球表层系统中P、Al的重要来源(White and Brantley, 1995Filippelli, 2002).玄武岩作为一种富含Ca、Mg、Al、P的基性喷出岩,具有极快的化学风化速率, 在全球长期稳定碳循环中发挥着重要作用(Dessert et al., 2003). 随着玄武岩中铝硅酸盐、玄武质玻璃及磷酸盐矿物分解,其释放的P、K等营养元素可以提高海洋生产力(Horton, 2015), 并且在适宜气候条件下可以导致Al、REE等金属元素的富集,进而形成相关矿产资源(Allen, 1948Zhou et al., 2013).近年来,学界提出的增强岩石风化碳汇技术充分利用了玄武岩的易风化、快风化的特点,不仅促进碳汇还能有效地改善土壤肥力、有利于农作物生长(Goll et al., 2021).

通过风化剖面研究玄武岩的化学风化作用已成为理解大陆风化、矿物元素生物地球化学循环和海陆物质传输等重大问题的重要途径(Brantley et al., 2007). 现代玄武岩风化剖面中完整记录了岩石风化过程中的矿物转变(Eggleton et al., 1987Nesbitt and Wilson, 1992)、主微量元素迁移规律(Ma et al., 2007Babechuk et al., 2014)以及非传统稳定同位素的分馏机制(Bai et al., 2023)等信息. 然而, 对于玄武岩风化过程中Al、P元素的地球化学行为还未有深入研究, 对其在化学风化过程中的活动性还认识不足. 为进一步理解玄武岩风化过程的物质转变及元素活动性, 本文对峨眉山LIP东部的黑石玄武岩风化剖面开展了较系统的矿物学、地球化学和磷组分分析, 分析了玄武岩风化侵蚀状态对Al、P等元素的活动规律的控制, 并结合沉积记录探讨了峨眉山LIP晚二叠世风化‒沉积体系的Al、P迁移和富集效应.

1 区域地质和研究剖面

峨眉山LIP主体位于川滇黔西南三省境内,部分位于越南北部区域,呈菱形分布(图1a),其覆盖面积>2.5×105 km2,厚度在几百米到5 000 m,平均厚度约700 m(Chung et al., 1998Xu et al., 2004).峨眉山LIP以大规模的溢流玄武岩为主, 并含有基性‒超基性侵入岩体(苦橄岩、辉长岩、辉绿岩等)和少量流纹岩、花岗岩及火山碎屑岩(Chung et al., 1998; Xu et al., 2004).溢流玄武岩按化学组成可分为高Ti和低Ti两类,前者在峨眉山LIP全区内均可见,而后者仅分布于西部且下伏于高Ti玄武岩之下(Xu et al., 2004).通过高精度锆石U⁃Pb年代学研究,前人确定了峨眉山LIP整体形成于~260 Ma(Zhong et al., 2014Yang et al., 2018Huang et al., 2022).本文的研究区位于峨眉山LIP东部的高Ti玄武岩分布区(图1a).区域上的玄武岩呈黑绿色, 致密块状,具杏仁构造,杏仁体由石英、绿泥石组成,矿物组成以斜长石、辉石为主,含有少量磁铁矿等副矿物,局部发生绿泥石化蚀变.

研究的黑石风化剖面位于贵州省毕节市威宁地区(103°58′34″E, 26°46′36″N).该区域属于亚热带季风湿润性气候,年均气温为10~12 ℃,年均降水量为950 mm.风化剖面出露厚度为2.5 m,由于颜色和组成结构不同具有明显的分带性,可分为上部(0~1.9 m)土壤层和下部(1.9~2.5 m)半风化层.风化剖面顶部0~0.25 m为红色、红棕色富含植物根茎的腐殖层,呈松散土状并含有大量植物根系;上部0.25~1.90 m为红棕色、黄色的土壤层,该层中植物根系减少,含少量风化的玄武岩碎块,土壤团结成块状.风化剖面下部2.0~2.5 m为黑绿色半风化层,发育残留的玄武岩块状构造,以球形风化为主,原始柱状节理被破坏(图1c).去除了30~50 cm的表面土后,对该风化剖面每间隔20~30 cm进行采样,共采集样品11件,每件样品重约500 g.其中,样品HS21⁃1采自剖面底部半风化块状玄武岩球形风化核部,并将其作为风化剖面的玄武质原岩.

2 方法

对采集的风化剖面样品进行了pH值、XRD(X射线粉晶衍射)矿物组成、元素地球化学和磷组分分析.首先,在中国地质大学(武汉)沉积物质循环实验室将采集的样品用玛瑙研钵研磨至200目后,随后按体积比1∶2.5与超纯水混合,并利用电位法测定其pH值, 结果列于附表1中.利用Thermo Scientific FlashSmart元素分析仪测定样品中总有机碳(TOC)和总氮(TN)的含量, 单次测量使用约 20 mg样品, 燃烧温度设定为950 ℃. 对每个样品进行两次重复测试分析, TOC和TN的重现性优于5%. TOC和TN含量采用两次测量的平均值.XRD矿物组成分析在中国地质大学(武汉)地质过程与成矿预测全国重点实验室采用XPA Nalytical X’pert Pro仪进行测试,最后使用X⁃Rayrun和Jade 6.0软件对测试结果进行矿物相和半定量分析,分析误差为5%.主量元素在广州澳实矿物实验室采用X射线荧光光谱仪分析,所有结果的分析精度均优于5%,不确定度均小于5%,检测限为0.01%.微量元素在中国地质大学(武汉)地质微生物与环境全国重点实验室利用电感耦合等离子质谱仪(ICP⁃MS)进行测试,分析精密度和准确度一般优于5%.不同磷组分含量分析在中科院地球化学研究所环境地球化学国家重点实验室完成,分别利用纯水、0.3 mol/L NaHCO3、0.1 mol/L NaOH和 1 mol/L HCl这四种不同溶剂连续提取样品中不同溶解度的无机磷,其中磷含量采用钼蓝法测定.

本文利用化学蚀变指数(CIA; Nesbitt and Young, 1982)来估算玄武岩风化剖面的化学风化强度,计算方法如下:

CIA=100×Al2O3/(Al2O3+CaO*+ Na2O+K2O) ,

其中,每种氧化物代表其摩尔百分数,CaO*代表去除磷酸钙后的硅酸盐矿物中的Ca含量, CaO*=molCaO-molP2O5×10/3(Fedo et al., 1995).

3 结果

3.1 风化剖面的总有机碳、总氮、pH值和矿物组成

黑石风化剖面的TOC和TN含量分别在0.02%~0.69%和0.041%~0.075%,均呈现由底到顶含量逐渐增加的趋势,表明土壤层富含有机质组分.pH值变化范围为5.9~6.6(附表1),整体处于弱酸性环境,且从半风化层(6.3~6.6)到土壤层(5.8~6.2)呈现酸性逐渐增强的趋势(图2).XRD分析结果显示(附表1),由于风化剖面上部土壤层中的黏土矿物结晶程度较低, 在XRD图谱中并未区分出具体黏土矿物相, 因此作为总黏土矿物进行计算, 且部分黏土矿物被定义为非晶质矿物. 如图2所示, 风化原岩样品HS21⁃1含有大量的斜长石(66%)和辉石(18%)以及少量石英(6%)和黏土矿物(11%, 包括绿泥石和蒙脱石),具有蚀变玄武岩的组成特征.半风化层的3件样品中,可见有大量的斜长石(67%~73%)和黏土矿物(27%~34%, 包括绿泥石和蒙脱石),且在半风化层顶部样品HS21⁃4中发现赤铁矿(7.8%).在土壤层8件样品中,均含有赤铁矿(11%~20%)和黏土矿物(29%~58%, 结晶程度较低, 无法区分,只显示黏土矿物共有峰、无特征衍射峰)以及非晶质矿物(9%~18%),同时也含有石英颗粒(15%~34%).

3.2 风化剖面的元素地球化学组成

黑石风化剖面的元素地球化学分析结果显示(附表2),半风化层和土壤层样品的SiO2、Al2O3、TiO2、Fe2O3T、Na2O、MgO、CaO、K2O和P2O5的含量分别为50.89%~37.78%、15.28%~21.56%、2.78%~4.22%、13.04%~26.96%、3.96%~0.13%、4.96%~1.03%、0.18%~0.12%、0.1%~1.62%和0.72%~0.17%.与玄武质原岩相比,风化剖面具有低Si、Na、Ca、P和高Al、Ti的特征,在微量元素组成上也具有较低的Sr含量和较高的Zr含量.风化剖面玄武质原岩的CIA值为40,半风化层的CIA值为72~83,从玄武质原岩到半风化层的样品在 A⁃CN⁃K(图3a;Nesbitt and Young, 1984)图中呈现平行A⁃CN边展布的特征,指示初始‒中等风化状态;土壤层具有相对较高的CIA值(90~92),在 A⁃CN⁃K图中偏离从原岩到半风化层的风化趋势,靠近A⁃K边界而表现出K元素的相对富集(图3a),指示了K交代作用的影响(Fedo et al., 1995).

玄武质原岩的Al/Ti、Ti/Zr和Th/Sc比值分别为5.3、83.5和0.10,半风化层具有轻微增大的Al/Ti、Ti/Zr和Th/Sc比值(6.2~6.6、84.3~ 85.9和0.10~0.12),土壤层则具有显著偏低的Al/Ti和Ti/Zr比值(3.2~4.5和36.9~47.0)和较大的Th/Sc比值(0.36~0.66).相对于玄武质原岩,半风化层具有较低的总稀土元素(ΣREE)含量(78.4×10-6~131.8×10-6),且呈现显著负Ce异常(Ce/Ce*为0.16~0.54)和重稀土轻微富集的稀土配分模式;土壤层含有较高的稀土总量(183.7×10-6~292.4×10-6),且呈现出轻微正Ce异常(Ce/Ce*为1.11~1.34)和轻稀土富集的稀土配分模式.半风化层具有微弱的负Eu异常(原岩标准化的Eu/Eu*值为0.93~0.95),土壤呈现较大的负Eu异常(Eu/Eu*值为0.84~0.93; 图3b).

3.3 风化剖面的无机磷组分

分别利用纯水、氢氧化钠、碳酸盐氢钠溶液和盐酸对样品中无机磷(Pi)进行连续提取,分别获得对应不同赋存状态的无机磷,即H2O⁃Pi、NaOH⁃Pi、NaHCO3⁃Pi和HCl⁃Pi(附表3).结果表明,风化原岩以HCl⁃Pi组分为主,其含量为46.59×10-6,占无机磷组分的97%,其他形态磷的含量均较低,H2O⁃Pi、NaOH⁃Pi和NaHCO3⁃Pi的含量分别为0.20×10-6、0.37×10-6和1.03×10-6;半风化层的HCl⁃Pi、NaOH⁃Pi、NaHCO3⁃Pi和H2O⁃Pi含量分别为(2.53~6.29)×10-6、(1.60~3.40)×10-6、(0.28~1.80)×10-6和(0.05~0.12)×10-6,其中HCl⁃Pi在总无机磷组分的占比为54%~56%;土壤层的HCl⁃Pi、NaOH⁃Pi、NaHCO3⁃Pi和H2O⁃Pi含量分别为(0.76~1.41)×10-6、(3.42~5.38)×10-6、(0.22~0.99)×10-6和(0~0.11)×10-6,其中HCl⁃Pi在总无机磷组分的占比为12%~26%.从玄武质原岩到半风化层,随着P含量的快速降低, HCl⁃Pi组分发生显著的减少.

4 讨论

4.1 玄武岩风化过程中的元素活动性

黑石风化剖面的玄武质原岩含有斜长石、辉石等矿物,具有低SiO2和高TiO2含量的特征,在A⁃CN⁃K图上也呈现与邻近峨眉山LIP高Ti玄武岩相似的矿物和地球化学特征(图3a).玄武岩具有极易风化的矿物组成(Eggleton et al., 1987; Nesbitt and Wilson, 1992),风化残余物以Al、Fe(氢)氧化物和黏土矿物为主, 保存在风化剖面中(Eggleton et al., 1987).在风化过程中, Ti、Zr等元素具有较强的稳定性(Nesbitt and Wilson, 1992Zhang et al., 2023),常被用来评估其他元素的迁移和富集特征(Nesbitt and Wilson, 1992Ma et al., 2007).本文利用Ti作为稳定元素来进行元素活动性迁移规律分析,识别出了3种主要变化趋势(图4).随化学风化强度的升高即CIA值的增大,Si/Ti、Na/Ti、Ca/Ti、Mg/Ti比值从原岩到土壤层呈现显著的降低趋势.这与辉石和斜长石等硅酸盐矿物的快速风化分解有关,矿物中的Si、Ca、Na、Mg元素从剖面浸出并随雨水迁移进入河流.稀土元素Eu在岩浆过程中可优先进入斜长石(Bédard, 2006),因此斜长石的风化分解也会导致Eu的淋失,这与观察到的负Eu异常逐渐增大(Eu/Eu*降低)的趋势一致(图4).

随风化强度CIA值的增大,Fe/Ti、K/Ti和Ce/Ce*比值呈现先降低(从原岩到半风化层)、后升高(从半风化层到土壤层)的趋势.相对于Ca、Na元素,K元素主要形成钾长石而表现较高的稳定性,同时也具有较强的黏土吸附能力,因此不易从风化剖面淋失.但玄武岩风化实验模拟和风化剖面研究表明,玄武质玻璃组分的快速风化可优先释放出K+,导致早期风化阶段K的淋失(Eggleton et al., 1987Nesbitt and Wilson, 1992; 任俊童等, 2023).本文研究的玄武质原岩也含有非晶质组分,它们的快速风化分解可以解释半风化层中K的淋失,而随着黏土矿物在土壤层的不断累积可导致K的吸附和富集(Barré et al., 2008Hong et al., 2023).元素Fe和Ce对氧化还原条件较为敏感,其氧化态的Fe3+和Ce4+稳定性更强,在风化剖面的顶部可形成Fe和Ce的氧化物而富集.一般来说,在强烈风化的剖面中稀土元素可发生向下的移动,而Ce则可氧化形成方铈矿而滞留于顶部,从而导致剖面上部极端风化层相对于原岩呈现稀土元素亏损和正Ce异常的特征,剖面下部弱风化层相对原岩表现出稀土元素富集和负Ce异常的特征(Sanematsu et al.,2013;杨婉贞等,2025).然而,该研究剖面土壤层具有正Ce异常的同时没有表现显著的稀土元素亏损,半风化层出现负Ce异常的同时也未呈现明显的稀土元素富集(图3b).因此,半风化层Fe和Ce的淋失可能与还原条件下镁铁质矿物(如辉石、橄榄石等)、磷灰石、斜长石以及玄武质玻璃的风化分解有关,其释放出的Fe2+和Ce3+具有较强的活动能力, 其中稀土元素可以与地表水中所含的CO32-HCO3-PO43-Cl-以及少量的SO42-F-等无机酸根形成络合物、羟基配合物或以自由离子的形式迁移(马英军等, 2004;付伟等,2009;Lara et al., 2018).风化剖面中ΣREE与Fe2O3T呈正相关(R2=0.89),但与Al2O3无相关性(R2=0.01),表明稀土元素与Fe(氢)氧化物相结合是风化剖面土壤层富集稀土元素的主要机制(Ma et al., 2007),而非黏土矿物的吸附作用.

4.2 风化剖面的风尘输入

风化剖面起源于底部母质基岩风化,其化学和矿物组成应当具有母岩的特征属性, 而风化剖面上部容易受到外源物质输入影响, 使上部土壤层物质组成变得复杂, 其中外源物质来源主要包括两个来源: 近源岩石风化搬运以及远源风尘输入. 其中大陆风尘广泛影响了全球表层土壤的物质组成(Chadwick et al., 1999), 目前在全球表层土壤中都识别出了风尘信号, 即便是在远离风尘源区的区域同样如此(Simonson, 1995).大陆风尘通常由石英、伊利石(云母)、长石、高岭石等矿物组成, 石英含量一般低于20%(Arnold et al., 1998),其中石英和伊利石(云母)是识别玄武岩风化剖面中风尘物质的重要标志, 尤其在极端化学风化条件下仍能稳定存在的石英是识别风尘的最为特征矿物(Kurtz et al., 2001). 在研究程度较高的夏威夷玄武岩风化剖面中已经表明, 由于亚洲风尘的持续添加导致了上部土壤层中存在高达30%石英颗粒(Kurtz et al., 2001).同样黑石风化剖面的XRD矿物分析表明, 半风化层不存在石英颗粒, 这与玄武质原岩属性一致, 但土壤层检测到含量>15%的石英颗粒, 显示出不同于玄武岩原岩的特征. 从原岩到半风化层再到土壤层, Al/Ti和Ti/Zr比值也展示出先轻微增大再显著降低的趋势(图4). 元素Al、Zr跟Ti一样在化学风化中都具有较强的稳定性(Nesbitt and Markovics, 1997), Al/Ti和Ti/Zr比值也常用来指示沉积物源组成(Maynard, 1992; Yang et al., 2023). 在研究区, 峨眉山玄武岩可划分为12层(Qi and Zhou, 2008). 根据黑石风化剖面玄武质原岩和半风化层的Al/Ti和Ti/Zr比值, 该原岩应属于第9层玄武岩. 但是, 相比于该原岩组成, 风化剖面土壤层具有较低的Al/Ti和Ti/Zr比值.在玄武岩风化过程中, 随风化强度的增加,SiO2含量及pH值应具有降低的趋势(Ma et al., 2007; Babechuk et al., 2014), 但在研究的风化剖面, 土壤层Si/Ti比值和pH值的变化不明显, 或显示微弱的向上变大的趋势. 同时, 土壤层也具有较低的Ti/Zr比值和较高的Th/Sc比值,这些都表明存在外源长英质物质输入, 其中峨眉山LIP酸性火山岩主要分布在大火成岩省西部区域(Xu et al., 2004Yang et al., 2018), 在研究区并未出露酸性火山岩, 且风化原岩位于峨眉山玄武岩喷发序列中部(Qi and Zhou, 2008),该风化剖面是由玄武岩原位风化形成, 且研究区附近并未发现其他长英质物质来源.研究区位于中国西南部,主要受到由大陆高压系统控制的高纬度干燥寒冷冬季季风影响(Porter and An, 1995), 该季风系统沿青藏高原东缘向南移动, 控制中国南方的大气环流, 并从北方携带来大量的粉尘, 影响了中国南方广大地区的地表土壤组成及其地球化学过程(Li et al., 2021; 陈辽等, 2022). 即便在远离风尘源区的海南岛, 玄武岩风化剖面上部土壤层中也同样具有大陆风尘输入特征(Xiong et al., 2022).

本文选取粒径<20 μm的黄土组分(Hao et al., 2010)与风化剖面的原岩玄武岩构建Ti/Zr与Al/Ti和P/Ti比值的二元混合曲线(图5). 风尘输入可以较好地解释黑石风化剖面土壤层的高石英含量和低Ti/Zr比值. 半风化层不含有石英且具有与玄武质原岩相近的Ti/Zr比值, 表明风尘输入物质并没有影响土壤层之下的半风化层. 二元混合曲线显示, 这些长英质风尘的输入应导致更高的Al/Ti比值(图5a), 但土壤层反而具有比半风化层更低的Al/Ti比值, 这可能与Al相对于Ti的优先风化淋失有关(Nesbitt and Markovics, 1997Young and Nesbitt, 1998). 在Ti/Zr⁃P/Ti比值图中, 半风化层和土壤层均具有比二元混合曲线低的P/Ti比值, 表明P在化学风化过程中具有很强的活动性, 风化早期阶段即发生显著的淋滤作用(图5b).

4.3 玄武岩风化过程中P、Al的迁移和淋失

黑石风化剖面中各无机磷组分的赋存状态表明,随着风化程度增加,由强酸提取的矿物相Ca结合态无机磷(Ca⁃Pi)含量由玄武质原岩到半风化层迅速降低,并且到土壤层中降低速率减慢,而弱碱提取的弱吸附态磷在半风化层中达到最大值,并在土壤层中占比逐渐降低.风化剖面自下而上,强碱提取的强吸附态磷占比逐渐增加(附表3、图6b),并且土壤层中赤铁矿含量与NaOH⁃Pi含量呈正相关 (R2=0.70),表明Fe氧化物可能是土壤层中无机磷的主要载体.通常在玄武岩强烈风化成的土壤中,Ca⁃Pi组分应完全分解淋失(Gardner, 1990),但在黑石风化剖面土壤层中仍含有12%~26%的Ca⁃Pi,这可能与风尘输入的少量含P矿物有关.玄武岩的早期风化以玄武质玻璃、基性/超基性矿物的风化分解为主,产生大量的溶解P从风化剖面中迁出(Welch et al., 2002).而残留在风化剖面中的早期溶解态磷先转化为弱吸附态P,随着风化强度升高再转化为与Fe⁃Al氧化物(氢氧化物)结合的强吸附态P并固定在土壤中(Syers et al., 1970).这些强吸附态P可在生物化学作用下转变为生物可吸收的P,再次活化并参与到表层的P循环中.在黑石风化剖面, 随CIA值的增大, 玄武质原岩标准化的P/Ti比值呈现出两段式的变化特征, 即初始‒中等风化阶段的快速降低(CIA值<80)和强烈风化阶段的缓慢降低(CIA值>80)(图7a).在云南大理、澳大利亚Victoria和Galapagos等地的玄武质岩石风化剖面(Nesbitt and Wilson, 1992Hong et al., 2023Liu et al., 2023), P的风化淋失也随CIA值增大和化学风化增强显示出类似的两段式变化特征(图7a). 在CIA值<80的初始‒中等风化阶段, 玄武质原岩中>50%的P发生快速风化淋失;而在更高CIA值的强烈风化土壤层中, P应该主要为有机磷和难迁移无机磷, 其含量较低且趋于稳定.

元素Al在中性水体环境中溶解度极低,在风化或热液蚀变等过程中具有较稳定的化学性质(Pokrovsky et al., 2005),可用于评价其他元素的活动性(Hong et al., 2023).然而在极端风化的酸性土壤环境中,Al在土壤溶液中的溶解度增大,通过络合物、胶体或黏土等细粒物质的次表层侵蚀和渗流作用发生移动, 进而从风化剖面中淋失(Huang and Keller, 1972Young and Nesbitt, 1998).在澳大利亚Toorongo花岗质风化剖面,富Al黏土沿裂隙随流水向下迁移形成高Al/Ti比值的黏土条带(Nesbitt and Markovics, 1997),使得强烈风化的土壤层出现Al的亏损而具有较低的Al/Ti比值.黑石风化剖面的土壤层具有比玄武质原岩和半风化层低的Al/Ti比值,与混合曲线相比其Al/Ti比值的降低更加显著(图6a).在该土壤层,代表原岩组成的斜长石已经全部蚀变为黏土矿物,出现大量的Fe⁃Ti氧化物,也具有较高的CIA值和较低的pH值,指示酸性条件下的极端风化状态.由此可以推测,黑石剖面土壤层Al/Ti比值的降低反映Al相对于Ti具有更高的风化活动性(Nesbitt and Markovics, 1997Young and Nesbitt, 1998Zhang et al., 2023).并且土壤层中的TOC和TN含量增加以及pH值降低, 显示土壤层中有机质含量增加和酸性增大对应着微生物活动增强和Al/Ti比值降低, 表明在生物参与作用下形成土壤层的富有机质和酸性条件, 使得Al元素的活动性增加. 前人对海南岛玄武岩风化剖面的研究也认为, 土壤层中有机质和有机酸的增加可以促使Al的活动性增强(Ma et al., 2007).与黑石风化剖面类似,大理、Bathurst和Koloa等玄武岩风化剖面的强烈风化土壤层也具有较低的Al/Ti比值(Craig and Loughnan, 1964Patterson, 1971Hong et al., 2023).在初始‒中等风化阶段,这些风化剖面都呈现Al2O3与TiO2的正相关关系,而在极端风化阶段则表现出Al相对Ti的亏损趋势(图7b).

4.4 峨眉山大火成岩省晚二叠世的风化‒沉积成矿效应

综合黑石和其他地区玄武质岩石的风化数据可知, P在风化强度较低的初始‒中等风化阶段即发生快速淋失;在高风化强度的极端风化阶段, Ti可以锐钛矿等形式稳定保存于土壤中而具有更强的稳定性(Young and Nesbitt, 1998), 但Al可通过黏土或络合物等细粒物质的渗流和淋洗作用而具有较强的活动性. 因此, 玄武岩流域的P和Al化学活动性与表层岩石的风化侵蚀强度应具有很好的对应关系. 表层岩石的化学风化状态与温度、湿度、地形、坡度、植被、侵蚀等多种因素有关, 但在适宜气候条件下主要取决于物理侵蚀速率(Goudie and Viles, 2012). 尽管物理侵蚀与化学风化之间存在复杂联系, 但物理侵蚀对风化状态的控制可简单概括如下: 在物理侵蚀较强的地区, 地表岩石没有足够时间进行高强度的化学风化, 难以形成厚层土壤而多为初始‒中等风化状态; 在物理侵蚀较弱的地区, 地表岩石可进行较充分的化学风化, 有利于厚层土壤的发育而处于极端风化状态(Brantley et al., 2023).基于上述分析可知,较高的物理侵蚀速率可促进P的大量风化淋失(Filippelli, 2002Hartmann et al., 2014); 而较低物理侵蚀速率则有利于富Al黏土或络合物等细粒物质的选择性搬运(图7c、7d).与物理侵蚀产生的颗粒态P不同, 化学风化释放的溶解态P随流水进入地下或地表径流中并最终汇入海洋, 成为长时间尺度上限定生物生产力的重要营养元素(Filippelli, 2002Beusenet al., 2005). 在海洋的营养剖面中, 溶解态P呈现表层亏损而深层富集的特征, 并在海水与沉积物界面处发生有机P和Fe结合态P向溶解态P的转化, 而后者在沉积物顶部孔隙水中经成岩作用可形成自生磷灰石, 从而形成富P的海相泥质沉积物(Filippelli, 2002).不同于P, Al的较强稳定性使其通常随长石、黏土等含Al矿物的侵蚀而形成碎屑物质, 但在酸性土壤溶液中也存在溶解态Al(Jiang et al., 2018).前人研究认为Al的溶解性与土壤pH值密切相关(Huang and Keller, 1972), 同时土壤有机质通过络合作用也制约Al的溶解性, 溶液中的H+与Al3+具有显著的正相关(Jiang et al., 2018). 在地表风化过程中, 铝硅酸盐矿物可缓慢释放Al3+, 而厚层土壤的酸性环境可形成铝‒有机质络合物, 后者可快速释放Al3+至酸性溶液(Li and Johnson, 2016).酸性土壤中有机质常含有可溶性Al(Jiang et al., 2018), 但含铝流体运移距离较短, 通常在临近风化陆源区的高pH(4.1~4.5)的湖泊或者洼地环境条件下即可与OH-、SiO44-等阴离子结合形成三水铝石、勃姆石、高岭石等富Al沉积物(Huang and Keller, 1972Li and Johnson, 2016).

在晚二叠世时期, 我国滇黔桂地区发育一个大规模的玄武岩风化‒沉积体系, 以峨眉山LIP为物源区, 形成陆相宣威组、海陆交互相龙潭组和深水盆地相晒瓦组、领薅组等地层记录(He et al., 2007Yang et al., 2012,2014). 在该风化‒沉积体系中, 陆相宣威组下部含有厚层的Al质泥岩和多层铝土矿层(Zhou et al., 2013Yang et al., 2023); 龙潭组呈两段式岩性组成特征, 下部以河口相泥岩沉积为主, 而中‒上部含有较多砂岩层, 构成多个向上变粗的三角洲沉积旋回(Yang et al., 2023); 而深水盆地相发育有多旋回的砂、泥质浊流沉积, 且在中‒上部发育有多层高P2O5含量(3%~15%)的黑色致密状泥岩背景沉积. 基于龙潭组的泥岩风化地球化学的研究, Yang et al. (2022,2023)对峨眉山LIP源区的玄武岩侵蚀速率进行估算, 确定高化学风化强度(高化学风化系数CIA值, 图8)的龙潭组下部对应于较低的源区侵蚀速率(<200 t·km-2·a-1), 而较低化学风化强度(较低的CIA值, 图8)的龙潭组中‒上部则对应于较高的源区侵蚀速率(>280 t·km-2·a-1). 依据上文所阐述的Al、P风化迁移规律, 在晚二叠世早期, 峨眉山LIP剥蚀区应发育较厚的、强风化土壤层, 有利于Al的风化淋失和迁移; 而晚二叠世中‒晚期, 该剥蚀区应发育较薄的、中‒低风化强度的土壤层, 有利于P的风化淋失, 为海洋提供大的溶解P通量.这一推测与陆相宣威组下部出现富Al泥质岩和深水相领薅组上部发育富P泥质岩的沉积记录具有很好的一致性, 因此Al、P的风化淋失和迁移规律对认识滇黔桂地区晚二叠世玄武质沉积体系中Al、P的沉积富集机理具有重要意义.

5 结论

黑石玄武岩风化剖面下部发育有中等风化强度的半风化层, 上部为具有极端风化强度的土壤层, 在矿物学、地球化学和磷组分上具有显著变化.基于Ti的元素风化活动性分析表明,Na、Ca、Mg、P和Eu自下而上均发生不同程度的丢失,Fe、K和Ce在半风化层发生显著丢失而在土壤层中呈现相对富集,Al在土壤层表现相对亏损而Zr则表现相对富集.相对于半风化层,土壤层的高石英含量和低Ti/Zr比值指示了可能受到大气风尘输入影响.基于黑石风化原岩和大气风尘组成,利用Ti和Zr的化学稳定性构建了二元混合曲线,发现风化剖面均具有相对较低的P/Ti比值,而Al/Ti比值仅在土壤层呈现降低的趋势.表明侵蚀速率较高时出露更多弱风化的岩石而有利于P的风化淋失,侵蚀速率较低时发育更多强烈风化的土壤层而有利于Al的风化淋失.结合晚二叠世宣威组、龙潭组和领薅组等的沉积记录, 本文认为风化侵蚀状态是控制峨眉山大火成岩省晚二叠世风化‒沉积成矿效应的重要控制因素.

--引用第三方内容--

附表见https://doi.org/10.3799/dqkx.2025.019.

参考文献

[1]

Allen, V. T., 1948. Formation of Bauxite from Basaltic Rocks of Oregon. Economic Geology, 43(8): 619-626. https://doi.org/10.2113/gsecongeo.43.8.619

[2]

Arnold, E., Merrill, J., Leinen, M., et al., 1998. The Effect of Source Area and Atmospheric Transport on Mineral Aerosol Collected over the North Pacific Ocean. Global and Planetary Change, 18(3-4): 137-159. https://doi.org/10.1016/S0921⁃8181(98)00013⁃7

[3]

Babechuk, M. G., Widdowson, M., Kamber, B. S., 2014. Quantifying Chemical Weathering Intensity and Trace Element Release from Two Contrasting Basalt Profiles, Deccan Traps, India. Chemical Geology, 363: 56-75. https://doi.org/10.1016/j.chemgeo.2013.10.027

[4]

Bai, J. H., Luo, K., Wu, C., et al., 2023. Stable Neodymium Isotopic Fractionation during Chemical Weathering. Earth and Planetary Science Letters, 617: 118260. https://doi.org/10.1016/j.epsl.2023.118260

[5]

Barré, P., Montagnier, C., Chenu, C., et al., 2008. Clay Minerals as a Soil Potassium Reservoir: Observation and Quantification through X⁃Ray Diffraction. Plant and Soil, 302(1-2): 213-220. https://doi.org/10.1007/s11104⁃007⁃9471⁃6

[6]

Bédard, J.H., 2006. Trace Element Partitioning in Plagioclase Feldspar. Geochimica et Cosmochimica Acta, 70(14): 3717-3742. https://doi.org/10.1016/j.gca.2006.05.003

[7]

Beusen, A. H. W., Dekkers, A. L. M., Bouwman, A. F., et al., 2005. Estimation of Global River Transport of Sediments and Associated Particulate C, N, and P. Global Biogeochemical Cycles, 19(4): 2005GB002453. https://doi.org/10.1029/2005GB002453

[8]

Brantley, S. L., Goldhaber, M. B., Ragnarsdottir, K. V., 2007. Crossing Disciplines and Scales to Understand the Critical Zone. Elements, 3(5): 307-314. https://doi.org/10.2113/gselements.3.5.307

[9]

Brantley, S. L., Shaughnessy, A., Lebedeva, M. I., et al., 2023. How Temperature⁃Dependent Silicate Weathering Acts as Earth’s Geological Thermostat. Science, 379(6630): 382-389. https://doi.org/10.1126/science.add2922

[10]

Chadwick, O. A., Derry, L. A., Vitousek, P. M., et al., 1999. Changing Sources of Nutrients during Four Million Years of Ecosystem Development. Nature, 397(6719): 491-497. https://doi.org/10.1038/17276

[11]

Chen, L., Liu, L. W., Zhu, X. Y., et al., 2022. Identification of the Dust and Weathering Characteristics of the Soil Weathering from Basalt in Jiangsu and Anhui Provinces. Geological Journal of China Universities, 28(6): 838-848 (in Chinese with English abstract).

[12]

Chung, S. L., Jahn, B. M., Wu, G. Y., et al., 1998. The Emeishan Flood Basalt in SW China: A Mantle Plume Initiation Model and Its Connection with Continental Breakup and Mass Extinction at the Permian⁃Triassic Boundary. In: Flower, M.F.J., Chung, S.L., Lo, C.H., et al.,eds.,Mantle Dynamics and Plate Interactions in East Asia. American Geophysical Union, Washington, D.C., 47-58. https://doi.org/10.1029/gd027p0047

[13]

Cohen, K. M., Finney, S. C., Gibbard, P. L., et al., 2013. The ICS International Chronostratigraphic Chart. Episodes, 36(3): 199-204. https://doi.org/10.18814/epiiugs/2013/v36i3/002

[14]

Craig, D. C., Loughnan, F. C., 1964. Chemical and Mineralogical Transformations Accompanying the Weathering of Basic Volcanic Rocks from New South Wales. Soil Research, 2(2): 218. https://doi.org/10.1071/sr9640218

[15]

Dessert, C., Dupré, B., Gaillardet, J., et al., 2003. Basalt Weathering Laws and the Impact of Basalt Weathering on the Global Carbon Cycle. Chemical Geology, 202(3-4): 257-273. https://doi.org/10.1016/j.chemgeo.2002.10.001

[16]

Eggleton, R. A., Foudoulis, C., Varkevisser, D., 1987. Weathering of Basalt: Changes in Rock Chemistry and Mineralogy. Clays and Clay Minerals, 35(3): 161-169. https://doi.org/10.1346/CCMN.1987.0350301

[17]

Fedo, C.M., Nesbitt, H.W., Young, G.M., 1995. Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance. Geology, 23(10): 921-924. https://doi.org/10.1130/0091⁃7613(1995)023<0921:UTEOPM>2.3.CO;2

[18]

Filippelli, G. M., 2002. The Global Phosphorus Cycle. Reviews in Mineralogy and Geochemistry, 48(1): 391-425. https://doi.org/10.2138/rmg.2002.48.10

[19]

Frings, P. J., Buss, H. L., 2019. The Central Role of Weathering in the Geosciences. Elements, 15(4): 229-234. https://doi.org/10.2138/gselements.15.4.229

[20]

Fu, W., Huang, X.R., Yang, M.L., et al., 2014. REE Geochemistry in the Laterite Crusts Derived from Ultramafic Rocks: Comparative Study of Two Laterite Profiles under Different Climate Condition. Earth Science, 39(6): 716-732 (in Chinese with English abstract).

[21]

Gardner, L. R., 1990. The Role of Rock Weathering in the Phosphorus Budget of Terrestrial Watersheds. Biogeochemistry, 11(2): 97-110. https://doi.org/10.1007/BF00002061

[22]

Goll, D. S., Ciais, P., Amann, T., et al., 2021. Potential CO2 Removal from Enhanced Weathering by Ecosystem Responses to Powdered Rock. Nature Geoscience, 14(8): 545-549. https://doi.org/10.1038/s41561⁃021⁃00798⁃x

[23]

Goudie, A. S., Viles, H. A., 2012. Weathering and the Global Carbon Cycle: Geomorphological Perspectives. Earth⁃Science Reviews, 113(1-2): 59-71. https://doi.org/10.1016/j.earscirev.2012.03.005

[24]

Hao, Q. Z., Guo, Z. T., Qiao, Y. S., et al., 2010. Geochemical Evidence for the Provenance of Middle Pleistocene Loess Deposits in Southern China. Quaternary Science Reviews, 29(23-24): 3317-3326. https://doi.org/10.1016/j.quascirev.2010.08.004

[25]

Hartmann, J., Moosdorf, N., Lauerwald, R., et al., 2014. Global Chemical Weathering and Associated P⁃ Release-The Role of Lithology, Temperature and Soil Properties. Chemical Geology, 363: 145-163. https://doi.org/10.1016/j.chemgeo.2013.10.025

[26]

He, B., Xu, Y. G., Huang, X. L., et al., 2007. Age and Duration of the Emeishan Flood Volcanism, SW China: Geochemistry and SHRIMP Zircon U⁃Pb Dating of Silicic Ignimbrites, Post⁃Volcanic Xuanwei Formation and Clay Tuff at the Chaotian Section. Earth and Planetary Science Letters, 255(3-4): 306-323. https://doi.org/10.1016/j.epsl.2006.12.021

[27]

Hong, H. L., Ji, K. P., Hei, H. T., et al., 2023. Clay Mineral Evolution and Formation of Intermediate Phases during Pedogenesis on Picrite Basalt Bedrock under Temperate Conditions (Yunnan, Southwestern China). CATENA, 220: 106677. https://doi.org/10.1016/j.catena.2022.106677

[28]

Horton, F., 2015. Did Phosphorus Derived from the Weathering of Large Igneous Provinces Fertilize the Neoproterozoic Ocean? Geochemistry, Geophysics, Geosystems, 16(6): 1723-1738. https://doi.org/10.1002/2015GC005792

[29]

Huang, H., Huyskens, M. H., Yin, Q. Z., et al., 2022. Eruptive Tempo of Emeishan Large Igneous Province, Southwestern China and Northern Vietnam: Relations to Biotic Crises and Paleoclimate Changes around the Guadalupian⁃Lopingian Boundary. Geology, 50(9): 1083-1087. https://doi.org/10.1130/G50183.1

[30]

Huang, W. H., Keller, W. D., 1972. Geochemical Mechanics for the Dissolution, Transport, and Deposition of Aluminum in the Zone of Weathering. Clays and Clay Minerals, 20(2): 69-74. https://doi.org/10.1346/ccmn.1972.0200203

[31]

Jiang, J., Wang, Y. P., Yu, M. X., et al., 2018. Soil Organic Matter is Important for Acid Buffering and Reducing Aluminum Leaching from Acidic Forest Soils. Chemical Geology, 501: 86-94. https://doi.org/10.1016/j.chemgeo.2018.10.009

[32]

Kurtz, A.C., Derry, L.A., Chadwick, O.A., 2001. Accretion of Asian Dust to Hawaiian Soils: Isotopic, Elemental, and Mineral Mass Balances. Geochimica et Cosmochimica Acta, 65(12): 1971-1983. https://doi.org/10.1016/S0016⁃7037(01)00575⁃0

[33]

Lara, M.C., Buss, H.L., Pett⁃Ridge, J.C., 2018. The Effects of Lithology on Trace Element and REE Behavior during Tropical Weathering. Chemical Geology, 500: 88-102. https://doi.org/10.1016/j.chemgeo.2018.09.024

[34]

Li, J. W., Ren, Y. C., Zhang, F. F., et al., 2021. Contributions of Asian Dust to Subtropical Soils of Southeast China Based on Nd Isotope. Journal of Soils and Sediments, 21(12): 3845-3855. https://doi.org/10.1007/s11368⁃021⁃03053⁃3

[35]

Li, W., Johnson, C. E., 2016. Relationships among pH, Aluminum Solubility and Aluminum Complexation with Organic Matter in Acid Forest Soils of the Northeastern United States. Geoderma, 271: 234-242. https://doi.org/10.1016/j.geoderma.2016.02.030

[36]

Liu, X.M., Hanna, H.D., Barzyk, J.G., 2023. Impact of Weathering and Mineralogy on the Chemistry of Soils from San Cristobal Island, Galapagos.In: Walsh, S.J., Mena, C.F., Stewart, J.R., et al.,eds., Island Ecosystems, Social and Ecological Interactions in the Galapagos Islands. Springer International Publishing, Cham, 207-224. https://doi.org/10.1007/978⁃3⁃031⁃28089⁃4_15

[37]

Ma, J. L., Wei, G. J., Xu, Y. G., et al., 2007. Mobilization and Re⁃Distribution of Major and Trace Elements during Extreme Weathering of Basalt in Hainan Island, South China. Geochimica et Cosmochimica Acta, 71(13): 3223-3237. https://doi.org/10.1016/j.gca.2007.03.035

[38]

Ma, Y. J., Huo, R. K., Xu, Z. F., et al., 2004. REE Behavior and Influence Factors during Chemical Weathering. Advance in Earth Sciences, 19(1): 87-94 (in Chinese with English abstract).

[39]

Maynard, J.B., 1992. Chemistry of Modern Soils as a Guide to Interpreting Precambrian Paleosols. The Journal of Geology, 100(3): 279-289. https://doi.org/10.1086/629632

[40]

Nesbitt, H.W., Markovics, G., 1997. Weathering of Granodioritic Crust, Long⁃Term Storage of Elements in Weathering Profiles, and Petrogenesis of Siliciclastic Sediments. Geochimica et Cosmochimica Acta, 61(8): 1653-1670. https://doi.org/10.1016/S0016⁃7037(97)00031⁃8

[41]

Nesbitt, H. W., Wilson, R. E., 1992. Recent Chemical Weathering of Basalts. American Journal of Science, 292(10): 740-777. https://doi.org/10.2475/ajs.292.10.740

[42]

Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715-717. https://doi.org/10.1038/299715a0

[43]

Nesbitt, H. W., Young, G. M., 1984. Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48(7): 1523-1534. https://doi.org/10.1016/0016⁃7037(84)90408⁃3

[44]

Patterson, S.H., 1971. Investigations of Ferruginous Bauxite and Other Mineral Resources on Kauai and a Reconnaissance of Ferruginous Bauxite Deposits on Maui, Hawaii (Professional Paper No. 656), Professional Paper. US Government Printing Office.

[45]

Pokrovsky, O. S., Schott, J., Kudryavtzev, D. I., et al., 2005. Basalt Weathering in Central Siberia under Permafrost Conditions. Geochimica et Cosmochimica Acta, 69(24): 5659-5680. https://doi.org/10.1016/j.gca.2005.07.018

[46]

Porter, S. C., An, Z. S., 1995. Correlation between Climate Events in the North Atlantic and China during the Last Glaciation. Nature, 375(6529): 305-308. https://doi.org/10.1038/375305a0

[47]

Qi, L., Zhou, M. F., 2008. Platinum⁃Group Elemental and Sr⁃Nd⁃Os Isotopic Geochemistry of Permian Emeishan Flood Basalts in Guizhou Province, SW China. Chemical Geology, 248(1-2): 83-103. https://doi.org/10.1016/j.chemgeo.2007.11.004

[48]

Ren, J. T., Yang, J. H., Cheng, L., et al., 2023. Weathering Carbon Storage in Emeishan Large Igneous Province: Experimental Study on Water⁃Rock Reaction of Basalt Powder. Acta Geologica Sinica, 97(9): 3087-3100 (in Chinese with English abstract).

[49]

Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Elliott, T., Spiegelman, M., eds., Treatise on Geochemistry.Elsevier, Amsterdam, 1-64. https://doi.org/10.1016/b0⁃08⁃043751⁃6/03016⁃4

[50]

Sanematsu, K., Kon, Y., Imai, A., et al., 2013. Geochemical and Mineralogical Characteristics of Ion⁃Adsorption Type REE Mineralization in Phuket, Thailand. Mineralium Deposita, 48(4): 437-451. https://doi.org/10.1007/s00126⁃011⁃0380⁃5

[51]

Simonson, R.W., 1995. Airborne Dust and Its Significance to Soils. Geoderma, 65(1-2): 1-43. https://doi.org/10.1016/0016⁃7061(94)00031⁃5

[52]

Syers, J. K., Williams, J. H., Walker, T. W., et al., 1970. Mineralogy and Forms of Inorganic Phosphorus in a Graywacke Soil⁃Rock Weathering Sequence. Soil Science, 110(2): 100-106. https://doi.org/10.1097/00010694⁃197008000⁃00004

[53]

Welch, S.A., Taunton, A.E., Banfield, J.F., 2002. Effect of Microorganisms and Microbial Metabolites on Apatite Dissolution. Geomicrobiology Journal, 19(3): 343-367. https://doi.org/10.1080/01490450290098414

[54]

White, A. F., Brantley, S.L., 1995. Chemical Weathering Rates of Silicate Minerals: An Overview.In: White, A. F., Brantley, S.L.,eds., Chemical Weathering Rates of Silicate Minerals.De Gruyter, Berlin, 1-22. https://doi.org/10.1515/9781501509650⁃003

[55]

Xiong, Y. W., Qi, H. W., Hu, R. Z., et al., 2022. Lithium Isotope Behavior under Extreme Tropical Weathering: A Case Study of Basalts from the Hainan Island, South China. Applied Geochemistry, 140: 105295. https://doi.org/10.1016/j.apgeochem.2022.105295

[56]

Xu, Y. G., He, B., Chung, S. L., et al., 2004. Geologic, Geochemical, and Geophysical Consequences of Plume Involvement in the Emeishan Flood⁃Basalt Province. Geology, 32(10): 917-920. https://doi.org/10.1130/G20602.1

[57]

Yang, J. H., Cawood, P. A., Condon, D. J., et al., 2022. Anomalous Weathering Trends Indicate Accelerated Erosion of Tropical Basaltic Landscapes during the Permo⁃Triassic Warming. Earth and Planetary Science Letters, 577: 117256. https://doi.org/10.1016/j.epsl.2021.117256

[58]

Yang, J. H., Cawood, P. A., Du, Y. S., et al., 2014. A Sedimentary Archive of Tectonic Switching from Emeishan Plume to Indosinian Orogenic Sources in SW China. Journal of the Geological Society, 171(2): 269-280. https://doi.org/10.1144/jgs2012⁃143

[59]

Yang, J.H., Cawood, P.A., Du, Y.S., et al., 2012. Detrital Record of Indosinian Mountain Building in SW China: Provenance of the Middle Triassic Turbidites in the Youjiang Basin. Tectonophysics, 574-575: 105-117. https://doi.org/10.1016/j.tecto.2012.08.027

[60]

Yang, J.H., Cawood, P.A., Du, Y.S., et al., 2018. Early Wuchiapingian Cooling Linked to Emeishan Basaltic Weathering? Earth and Planetary Science Letters, 492: 102-111. https://doi.org/10.1016/j.epsl.2018.04.004

[61]

Yang, J.H., Cawood, P.A., Yuan, X.P., et al., 2023. Enhanced Denudation of the Emeishan Large Igneous Province and Precipitation Forcing in the Late Permian. Journal of Geophysical Research: Solid Earth, 128(12): e2023JB027430. https://doi.org/10.1029/2023JB027430

[62]

Yang, J.H., Ma, Y., 2017. Paleoclimate Perspectives of Source to Sink Sedimentary Processes. Earth Science, 42(11):1910-1921 (in Chinese with English abstract).

[63]

Yang, W.Z., He, C., Wang, Y., et al., 2025. Genesis of Giant Shitouping Heavy Rare Earth Element Deposit, in Southern Jiangxi Province: Constraints from Mineralogy and Geochemistry of Regolith. Earth Science, 50(4): 1335-1352 (in Chinese with English abstract).

[64]

Young, G.M., Nesbitt, H.W., 1998. Processes Controlling the Distribution of Ti and Al in Weathering Profiles, Siliciclastic Sediments and Sedimentary Rocks. Journal of Sedimentary Research, 68(3): 448-455. https://doi.org/10.2110/jsr.68.448

[65]

Zhang, X., Bajard, M., Bouchez, J., et al., 2023. Evolution of the Alpine Critical Zone since the Last Glacial Period Using Li Isotopes from Lake Sediments. Earth and Planetary Science Letters, 624: 118463. https://doi.org/10.1016/j.epsl.2023.118463

[66]

Zhong, Y. T., He, B., Mundil, R., et al., 2014. CA⁃TIMS Zircon U⁃Pb Dating of Felsic Ignimbrite from the Binchuan Section: Implications for the Termination Age of Emeishan Large Igneous Province. Lithos, 204: 14-19. https://doi.org/10.1016/j.lithos.2014.03.005

[67]

Zhou, L. J., Zhang, Z. W., Li, Y. J., et al., 2013. Geological and Geochemical Characteristics in the Paleo⁃Weathering Crust Sedimentary Type REE Deposits, Western Guizhou, China. Journal of Asian Earth Sciences, 73: 184-198. https://doi.org/10.1016/j.jseaes.2013.04.011

基金资助

国家自然科学基金项目(42122015)

国家自然科学基金项目(42472148)

AI Summary AI Mindmap
PDF (5083KB)

120

访问

0

被引

详细

导航
相关文章

AI思维导图

/