玄武岩风化剖面P、Al元素的迁移与淋失及其对滇黔桂地区晚二叠世风化‒沉积成矿效应的指示意义
陈波 , 杨江海 , 任俊童 , 程亮 , 刘澳 , 张晓容 , 葛海莉 , 王敬富 , 黄庆 , 王彪
地球科学 ›› 2025, Vol. 50 ›› Issue (07) : 2720 -2734.
玄武岩风化剖面P、Al元素的迁移与淋失及其对滇黔桂地区晚二叠世风化‒沉积成矿效应的指示意义
Migration and Leaching of Phosphorus and Aluminum in Basalt Weathering Profile: Implications for Late Permian Weathering⁃Depositional Mineralization in Yunnan⁃Guizhou⁃Guangxi Region
,
,
磷(P)和铝(Al)分别作为生物限制性营养元素和重要金属元素而被广泛关注.在近地表环境中, 岩石风化是P和Al元素释放的重要途径. 玄武岩是一种富含磷酸盐矿物(如玄武质玻璃、磷灰石等)和铝硅酸盐矿物(如长石、辉石等)的岩石,是P和Al元素的重要岩石储库. 目前对于玄武岩风化过程中P、Al元素的活动规律还未有深入研究.为进一步理解玄武岩的化学风化作用,对峨眉山大火成岩省分布区的玄武岩风化剖面开展了矿物学、地球化学和磷组分研究, 并结合已报道的玄武岩风化剖面数据探讨物理侵蚀对Al、P元素风化淋失的控制机制, 分析晚二叠世相关的风化‒沉积成矿效应.黑石风化剖面下部为含有大量长石等原生矿物的半风化层,相对玄武质原岩其化学风化强度明显升高(CIA值分别为40和72~83),上部为含有石英、赤铁矿和黏土矿物的土壤层,呈现极端风化状态(化学风化指数CIA值为90~92).利用Ti的稳定性与原岩标准化计算来衡量元素的活动性,结果显示Na、Ca、Mg、P和Eu自下而上均发生不同程度的丢失,Fe、K和Ce在半风化层发生显著丢失而在土壤层中呈现相对富集,Al在土壤层相对亏损而Zr则相对富集.土壤层中的高石英含量和低Ti/Zr比值, 可能指示了风成长英质粉尘输入的影响.基于黑石风化原岩和风成粉尘组成构建了二元混合曲线,发现风化剖面均具有相对较低的P/Ti比值,而Al/Ti比值仅在土壤层呈现降低的趋势.这一变化特征表明,P元素在早期风化阶段即发生大量(>50%)淋失,残余土壤中P的赋存状态也经历由原岩溶解态磷到弱吸附态磷再到强吸附态磷的转变;在极端风化条件下, Al元素可随酸性流体、富Al黏土矿物或络合物的渗流和淋洗作用而发生部分(>20%)迁移和丢失.地表风化状态取决于物理侵蚀与化学风化速率的相对大小,侵蚀速率较高时出露更多弱风化的岩石而有利于P的风化淋失,侵蚀速率较低时发育更多强烈风化的土壤层而有利于Al的风化淋失.综合华南西部晚二叠世玄武质泥岩的风化趋势,认为峨眉山大火成岩省的风化侵蚀状态是控制Al、P风化‒沉积富集的重要因素.
Phosphorus (P) and aluminum (Al) are respectively recognized as a critical nutrient limiting element for biological processes and a significant metallic element. Within the near-surface environment, rock weathering is the predominant mechanism facilitating the release of these elements. Basalt, featuring abundance of phosphate mineral minerals (including basaltic glass and apatite) and aluminosilicate minerals (such as feldspar and pyroxene), constitutes a substantial rock reservoir for both P and Al elements. Despite the importance of these elements, a comprehensive understanding of the behavior of P and Al during basalt weathering remains an area ripe for further investigation. To enhance the understanding of the chemical weathering process of basalt, this study undertook a detailed examination of the weathering profile within the Emeishan Large Igneous Province(ELIP), employing mineralogical, geochemical, and phosphorus form analyses.Additionally, by integrating published data on basalt weathering profiles, the study explores the control mechanisms of physical erosion on the weathering leaching of P and Al elements and analyzes the weathering-deposition mineralization effects related to the Late Permian period.The basal section of Heishi weathering profile is characterized by a semi-weathered layer that is rich in primary minerals, including a substantial quantity of feldspar. Relative to the basaltic parent rock, this layer exhibits a markedly enhanced degree of chemical weathering, as indicated by Chemical Index of Alteration (CIA) values of 40 for the parent rock and a range of 72 to 83 for the semi-weathered layer. The upper section of the profile comprises a soil layer that incorporates quartz, hematite, and various clay minerals, reflecting an advanced stage of weathering, with CIA values that extend from 90 to 92. Utilizing the stability of Ti and normalization to the parent rock for calculating the mobility of elements, the results indicate that there is a varying degree of loss of Na, Ca, Mg, P, and Eu from the bottom up. Fe, K, and Ce show significant depletion in the semi-weathered layer but are relatively enriched in the soil layer. Al is relatively depleted in the soil layer, while Zr is relatively enriched.The soil layer, characterized by high quartz content and a low Ti/Zr ratio, likely indicates the influence of aeolian input from feldspathic dust.A binary mixing curve was constructed based on the composition of the weathered black stone protolith and aeolian dust, revealing that the weathering profiles have relatively low P/Ti ratios, while the Al/Ti ratio only shows a decreasing trend in the soil layer. This pattern suggests that P is significantly (> 50%) leached during the early stages of weathering, and the state of phosphorus in the residual soil undergoes a transition from dissolved phosphorus in the protolith to weakly adsorbed phosphorus and then to strongly adsorbed phosphorus. Under extreme weathering conditions, Al can be partially (>20%) mobilized and lost through the percolation and leaching of acidic fluids, Al-rich clay minerals, or complexes. The degree of weathering at the surface is contingent upon the relative rates of physical erosion and chemical weathering. When erosion rates are high, a greater exposure of weakly weathered rocks occurs, which favors the weathering and leaching of P. Conversely, when erosion rates are low, a more extensive development of intensely weathered soil layers takes place, which favors the weathering and leaching of Al. Integrating the weathering trends of Late Permian basaltic mudstones in the western South China, it is posited that the weathering and erosion conditions of the ELIP are significant factors controlling the weathering-deposition enrichment of P and Al.
峨眉山大火成岩省 / 玄武岩风化剖面 / 元素行为 / 风尘输入 / 沉积成矿 / 矿物学 / 地球化学.
Emeishan Large Igneous Province / basalt weathering profile / element behavior / dust input / sedimentary mineralization / mineralogy / geochemistry
附表见https://doi.org/10.3799/dqkx.2025.019.
| [1] |
Allen, V. T., 1948. Formation of Bauxite from Basaltic Rocks of Oregon. Economic Geology, 43(8): 619-626. https://doi.org/10.2113/gsecongeo.43.8.619 |
| [2] |
Arnold, E., Merrill, J., Leinen, M., et al., 1998. The Effect of Source Area and Atmospheric Transport on Mineral Aerosol Collected over the North Pacific Ocean. Global and Planetary Change, 18(3-4): 137-159. https://doi.org/10.1016/S0921⁃8181(98)00013⁃7 |
| [3] |
Babechuk, M. G., Widdowson, M., Kamber, B. S., 2014. Quantifying Chemical Weathering Intensity and Trace Element Release from Two Contrasting Basalt Profiles, Deccan Traps, India. Chemical Geology, 363: 56-75. https://doi.org/10.1016/j.chemgeo.2013.10.027 |
| [4] |
Bai, J. H., Luo, K., Wu, C., et al., 2023. Stable Neodymium Isotopic Fractionation during Chemical Weathering. Earth and Planetary Science Letters, 617: 118260. https://doi.org/10.1016/j.epsl.2023.118260 |
| [5] |
Barré, P., Montagnier, C., Chenu, C., et al., 2008. Clay Minerals as a Soil Potassium Reservoir: Observation and Quantification through X⁃Ray Diffraction. Plant and Soil, 302(1-2): 213-220. https://doi.org/10.1007/s11104⁃007⁃9471⁃6 |
| [6] |
Bédard, J.H., 2006. Trace Element Partitioning in Plagioclase Feldspar. Geochimica et Cosmochimica Acta, 70(14): 3717-3742. https://doi.org/10.1016/j.gca.2006.05.003 |
| [7] |
Beusen, A. H. W., Dekkers, A. L. M., Bouwman, A. F., et al., 2005. Estimation of Global River Transport of Sediments and Associated Particulate C, N, and P. Global Biogeochemical Cycles, 19(4): 2005GB002453. https://doi.org/10.1029/2005GB002453 |
| [8] |
Brantley, S. L., Goldhaber, M. B., Ragnarsdottir, K. V., 2007. Crossing Disciplines and Scales to Understand the Critical Zone. Elements, 3(5): 307-314. https://doi.org/10.2113/gselements.3.5.307 |
| [9] |
Brantley, S. L., Shaughnessy, A., Lebedeva, M. I., et al., 2023. How Temperature⁃Dependent Silicate Weathering Acts as Earth’s Geological Thermostat. Science, 379(6630): 382-389. https://doi.org/10.1126/science.add2922 |
| [10] |
Chadwick, O. A., Derry, L. A., Vitousek, P. M., et al., 1999. Changing Sources of Nutrients during Four Million Years of Ecosystem Development. Nature, 397(6719): 491-497. https://doi.org/10.1038/17276 |
| [11] |
Chen, L., Liu, L. W., Zhu, X. Y., et al., 2022. Identification of the Dust and Weathering Characteristics of the Soil Weathering from Basalt in Jiangsu and Anhui Provinces. Geological Journal of China Universities, 28(6): 838-848 (in Chinese with English abstract). |
| [12] |
Chung, S. L., Jahn, B. M., Wu, G. Y., et al., 1998. The Emeishan Flood Basalt in SW China: A Mantle Plume Initiation Model and Its Connection with Continental Breakup and Mass Extinction at the Permian⁃Triassic Boundary. In: Flower, M.F.J., Chung, S.L., Lo, C.H., et al.,eds.,Mantle Dynamics and Plate Interactions in East Asia. American Geophysical Union, Washington, D.C., 47-58. https://doi.org/10.1029/gd027p0047 |
| [13] |
Cohen, K. M., Finney, S. C., Gibbard, P. L., et al., 2013. The ICS International Chronostratigraphic Chart. Episodes, 36(3): 199-204. https://doi.org/10.18814/epiiugs/2013/v36i3/002 |
| [14] |
Craig, D. C., Loughnan, F. C., 1964. Chemical and Mineralogical Transformations Accompanying the Weathering of Basic Volcanic Rocks from New South Wales. Soil Research, 2(2): 218. https://doi.org/10.1071/sr9640218 |
| [15] |
Dessert, C., Dupré, B., Gaillardet, J., et al., 2003. Basalt Weathering Laws and the Impact of Basalt Weathering on the Global Carbon Cycle. Chemical Geology, 202(3-4): 257-273. https://doi.org/10.1016/j.chemgeo.2002.10.001 |
| [16] |
Eggleton, R. A., Foudoulis, C., Varkevisser, D., 1987. Weathering of Basalt: Changes in Rock Chemistry and Mineralogy. Clays and Clay Minerals, 35(3): 161-169. https://doi.org/10.1346/CCMN.1987.0350301 |
| [17] |
Fedo, C.M., Nesbitt, H.W., Young, G.M., 1995. Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance. Geology, 23(10): 921-924. https://doi.org/10.1130/0091⁃7613(1995)023<0921:UTEOPM>2.3.CO;2 |
| [18] |
Filippelli, G. M., 2002. The Global Phosphorus Cycle. Reviews in Mineralogy and Geochemistry, 48(1): 391-425. https://doi.org/10.2138/rmg.2002.48.10 |
| [19] |
Frings, P. J., Buss, H. L., 2019. The Central Role of Weathering in the Geosciences. Elements, 15(4): 229-234. https://doi.org/10.2138/gselements.15.4.229 |
| [20] |
Fu, W., Huang, X.R., Yang, M.L., et al., 2014. REE Geochemistry in the Laterite Crusts Derived from Ultramafic Rocks: Comparative Study of Two Laterite Profiles under Different Climate Condition. Earth Science, 39(6): 716-732 (in Chinese with English abstract). |
| [21] |
Gardner, L. R., 1990. The Role of Rock Weathering in the Phosphorus Budget of Terrestrial Watersheds. Biogeochemistry, 11(2): 97-110. https://doi.org/10.1007/BF00002061 |
| [22] |
Goll, D. S., Ciais, P., Amann, T., et al., 2021. Potential CO2 Removal from Enhanced Weathering by Ecosystem Responses to Powdered Rock. Nature Geoscience, 14(8): 545-549. https://doi.org/10.1038/s41561⁃021⁃00798⁃x |
| [23] |
Goudie, A. S., Viles, H. A., 2012. Weathering and the Global Carbon Cycle: Geomorphological Perspectives. Earth⁃Science Reviews, 113(1-2): 59-71. https://doi.org/10.1016/j.earscirev.2012.03.005 |
| [24] |
Hao, Q. Z., Guo, Z. T., Qiao, Y. S., et al., 2010. Geochemical Evidence for the Provenance of Middle Pleistocene Loess Deposits in Southern China. Quaternary Science Reviews, 29(23-24): 3317-3326. https://doi.org/10.1016/j.quascirev.2010.08.004 |
| [25] |
Hartmann, J., Moosdorf, N., Lauerwald, R., et al., 2014. Global Chemical Weathering and Associated P⁃ Release-The Role of Lithology, Temperature and Soil Properties. Chemical Geology, 363: 145-163. https://doi.org/10.1016/j.chemgeo.2013.10.025 |
| [26] |
He, B., Xu, Y. G., Huang, X. L., et al., 2007. Age and Duration of the Emeishan Flood Volcanism, SW China: Geochemistry and SHRIMP Zircon U⁃Pb Dating of Silicic Ignimbrites, Post⁃Volcanic Xuanwei Formation and Clay Tuff at the Chaotian Section. Earth and Planetary Science Letters, 255(3-4): 306-323. https://doi.org/10.1016/j.epsl.2006.12.021 |
| [27] |
Hong, H. L., Ji, K. P., Hei, H. T., et al., 2023. Clay Mineral Evolution and Formation of Intermediate Phases during Pedogenesis on Picrite Basalt Bedrock under Temperate Conditions (Yunnan, Southwestern China). CATENA, 220: 106677. https://doi.org/10.1016/j.catena.2022.106677 |
| [28] |
Horton, F., 2015. Did Phosphorus Derived from the Weathering of Large Igneous Provinces Fertilize the Neoproterozoic Ocean? Geochemistry, Geophysics, Geosystems, 16(6): 1723-1738. https://doi.org/10.1002/2015GC005792 |
| [29] |
Huang, H., Huyskens, M. H., Yin, Q. Z., et al., 2022. Eruptive Tempo of Emeishan Large Igneous Province, Southwestern China and Northern Vietnam: Relations to Biotic Crises and Paleoclimate Changes around the Guadalupian⁃Lopingian Boundary. Geology, 50(9): 1083-1087. https://doi.org/10.1130/G50183.1 |
| [30] |
Huang, W. H., Keller, W. D., 1972. Geochemical Mechanics for the Dissolution, Transport, and Deposition of Aluminum in the Zone of Weathering. Clays and Clay Minerals, 20(2): 69-74. https://doi.org/10.1346/ccmn.1972.0200203 |
| [31] |
Jiang, J., Wang, Y. P., Yu, M. X., et al., 2018. Soil Organic Matter is Important for Acid Buffering and Reducing Aluminum Leaching from Acidic Forest Soils. Chemical Geology, 501: 86-94. https://doi.org/10.1016/j.chemgeo.2018.10.009 |
| [32] |
Kurtz, A.C., Derry, L.A., Chadwick, O.A., 2001. Accretion of Asian Dust to Hawaiian Soils: Isotopic, Elemental, and Mineral Mass Balances. Geochimica et Cosmochimica Acta, 65(12): 1971-1983. https://doi.org/10.1016/S0016⁃7037(01)00575⁃0 |
| [33] |
Lara, M.C., Buss, H.L., Pett⁃Ridge, J.C., 2018. The Effects of Lithology on Trace Element and REE Behavior during Tropical Weathering. Chemical Geology, 500: 88-102. https://doi.org/10.1016/j.chemgeo.2018.09.024 |
| [34] |
Li, J. W., Ren, Y. C., Zhang, F. F., et al., 2021. Contributions of Asian Dust to Subtropical Soils of Southeast China Based on Nd Isotope. Journal of Soils and Sediments, 21(12): 3845-3855. https://doi.org/10.1007/s11368⁃021⁃03053⁃3 |
| [35] |
Li, W., Johnson, C. E., 2016. Relationships among pH, Aluminum Solubility and Aluminum Complexation with Organic Matter in Acid Forest Soils of the Northeastern United States. Geoderma, 271: 234-242. https://doi.org/10.1016/j.geoderma.2016.02.030 |
| [36] |
Liu, X.M., Hanna, H.D., Barzyk, J.G., 2023. Impact of Weathering and Mineralogy on the Chemistry of Soils from San Cristobal Island, Galapagos.In: Walsh, S.J., Mena, C.F., Stewart, J.R., et al.,eds., Island Ecosystems, Social and Ecological Interactions in the Galapagos Islands. Springer International Publishing, Cham, 207-224. https://doi.org/10.1007/978⁃3⁃031⁃28089⁃4_15 |
| [37] |
Ma, J. L., Wei, G. J., Xu, Y. G., et al., 2007. Mobilization and Re⁃Distribution of Major and Trace Elements during Extreme Weathering of Basalt in Hainan Island, South China. Geochimica et Cosmochimica Acta, 71(13): 3223-3237. https://doi.org/10.1016/j.gca.2007.03.035 |
| [38] |
Ma, Y. J., Huo, R. K., Xu, Z. F., et al., 2004. REE Behavior and Influence Factors during Chemical Weathering. Advance in Earth Sciences, 19(1): 87-94 (in Chinese with English abstract). |
| [39] |
Maynard, J.B., 1992. Chemistry of Modern Soils as a Guide to Interpreting Precambrian Paleosols. The Journal of Geology, 100(3): 279-289. https://doi.org/10.1086/629632 |
| [40] |
Nesbitt, H.W., Markovics, G., 1997. Weathering of Granodioritic Crust, Long⁃Term Storage of Elements in Weathering Profiles, and Petrogenesis of Siliciclastic Sediments. Geochimica et Cosmochimica Acta, 61(8): 1653-1670. https://doi.org/10.1016/S0016⁃7037(97)00031⁃8 |
| [41] |
Nesbitt, H. W., Wilson, R. E., 1992. Recent Chemical Weathering of Basalts. American Journal of Science, 292(10): 740-777. https://doi.org/10.2475/ajs.292.10.740 |
| [42] |
Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715-717. https://doi.org/10.1038/299715a0 |
| [43] |
Nesbitt, H. W., Young, G. M., 1984. Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48(7): 1523-1534. https://doi.org/10.1016/0016⁃7037(84)90408⁃3 |
| [44] |
Patterson, S.H., 1971. Investigations of Ferruginous Bauxite and Other Mineral Resources on Kauai and a Reconnaissance of Ferruginous Bauxite Deposits on Maui, Hawaii (Professional Paper No. 656), Professional Paper. US Government Printing Office. |
| [45] |
Pokrovsky, O. S., Schott, J., Kudryavtzev, D. I., et al., 2005. Basalt Weathering in Central Siberia under Permafrost Conditions. Geochimica et Cosmochimica Acta, 69(24): 5659-5680. https://doi.org/10.1016/j.gca.2005.07.018 |
| [46] |
Porter, S. C., An, Z. S., 1995. Correlation between Climate Events in the North Atlantic and China during the Last Glaciation. Nature, 375(6529): 305-308. https://doi.org/10.1038/375305a0 |
| [47] |
Qi, L., Zhou, M. F., 2008. Platinum⁃Group Elemental and Sr⁃Nd⁃Os Isotopic Geochemistry of Permian Emeishan Flood Basalts in Guizhou Province, SW China. Chemical Geology, 248(1-2): 83-103. https://doi.org/10.1016/j.chemgeo.2007.11.004 |
| [48] |
Ren, J. T., Yang, J. H., Cheng, L., et al., 2023. Weathering Carbon Storage in Emeishan Large Igneous Province: Experimental Study on Water⁃Rock Reaction of Basalt Powder. Acta Geologica Sinica, 97(9): 3087-3100 (in Chinese with English abstract). |
| [49] |
Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Elliott, T., Spiegelman, M., eds., Treatise on Geochemistry.Elsevier, Amsterdam, 1-64. https://doi.org/10.1016/b0⁃08⁃043751⁃6/03016⁃4 |
| [50] |
Sanematsu, K., Kon, Y., Imai, A., et al., 2013. Geochemical and Mineralogical Characteristics of Ion⁃Adsorption Type REE Mineralization in Phuket, Thailand. Mineralium Deposita, 48(4): 437-451. https://doi.org/10.1007/s00126⁃011⁃0380⁃5 |
| [51] |
Simonson, R.W., 1995. Airborne Dust and Its Significance to Soils. Geoderma, 65(1-2): 1-43. https://doi.org/10.1016/0016⁃7061(94)00031⁃5 |
| [52] |
Syers, J. K., Williams, J. H., Walker, T. W., et al., 1970. Mineralogy and Forms of Inorganic Phosphorus in a Graywacke Soil⁃Rock Weathering Sequence. Soil Science, 110(2): 100-106. https://doi.org/10.1097/00010694⁃197008000⁃00004 |
| [53] |
Welch, S.A., Taunton, A.E., Banfield, J.F., 2002. Effect of Microorganisms and Microbial Metabolites on Apatite Dissolution. Geomicrobiology Journal, 19(3): 343-367. https://doi.org/10.1080/01490450290098414 |
| [54] |
White, A. F., Brantley, S.L., 1995. Chemical Weathering Rates of Silicate Minerals: An Overview.In: White, A. F., Brantley, S.L.,eds., Chemical Weathering Rates of Silicate Minerals.De Gruyter, Berlin, 1-22. https://doi.org/10.1515/9781501509650⁃003 |
| [55] |
Xiong, Y. W., Qi, H. W., Hu, R. Z., et al., 2022. Lithium Isotope Behavior under Extreme Tropical Weathering: A Case Study of Basalts from the Hainan Island, South China. Applied Geochemistry, 140: 105295. https://doi.org/10.1016/j.apgeochem.2022.105295 |
| [56] |
Xu, Y. G., He, B., Chung, S. L., et al., 2004. Geologic, Geochemical, and Geophysical Consequences of Plume Involvement in the Emeishan Flood⁃Basalt Province. Geology, 32(10): 917-920. https://doi.org/10.1130/G20602.1 |
| [57] |
Yang, J. H., Cawood, P. A., Condon, D. J., et al., 2022. Anomalous Weathering Trends Indicate Accelerated Erosion of Tropical Basaltic Landscapes during the Permo⁃Triassic Warming. Earth and Planetary Science Letters, 577: 117256. https://doi.org/10.1016/j.epsl.2021.117256 |
| [58] |
Yang, J. H., Cawood, P. A., Du, Y. S., et al., 2014. A Sedimentary Archive of Tectonic Switching from Emeishan Plume to Indosinian Orogenic Sources in SW China. Journal of the Geological Society, 171(2): 269-280. https://doi.org/10.1144/jgs2012⁃143 |
| [59] |
Yang, J.H., Cawood, P.A., Du, Y.S., et al., 2012. Detrital Record of Indosinian Mountain Building in SW China: Provenance of the Middle Triassic Turbidites in the Youjiang Basin. Tectonophysics, 574-575: 105-117. https://doi.org/10.1016/j.tecto.2012.08.027 |
| [60] |
Yang, J.H., Cawood, P.A., Du, Y.S., et al., 2018. Early Wuchiapingian Cooling Linked to Emeishan Basaltic Weathering? Earth and Planetary Science Letters, 492: 102-111. https://doi.org/10.1016/j.epsl.2018.04.004 |
| [61] |
Yang, J.H., Cawood, P.A., Yuan, X.P., et al., 2023. Enhanced Denudation of the Emeishan Large Igneous Province and Precipitation Forcing in the Late Permian. Journal of Geophysical Research: Solid Earth, 128(12): e2023JB027430. https://doi.org/10.1029/2023JB027430 |
| [62] |
Yang, J.H., Ma, Y., 2017. Paleoclimate Perspectives of Source to Sink Sedimentary Processes. Earth Science, 42(11):1910-1921 (in Chinese with English abstract). |
| [63] |
Yang, W.Z., He, C., Wang, Y., et al., 2025. Genesis of Giant Shitouping Heavy Rare Earth Element Deposit, in Southern Jiangxi Province: Constraints from Mineralogy and Geochemistry of Regolith. Earth Science, 50(4): 1335-1352 (in Chinese with English abstract). |
| [64] |
Young, G.M., Nesbitt, H.W., 1998. Processes Controlling the Distribution of Ti and Al in Weathering Profiles, Siliciclastic Sediments and Sedimentary Rocks. Journal of Sedimentary Research, 68(3): 448-455. https://doi.org/10.2110/jsr.68.448 |
| [65] |
Zhang, X., Bajard, M., Bouchez, J., et al., 2023. Evolution of the Alpine Critical Zone since the Last Glacial Period Using Li Isotopes from Lake Sediments. Earth and Planetary Science Letters, 624: 118463. https://doi.org/10.1016/j.epsl.2023.118463 |
| [66] |
Zhong, Y. T., He, B., Mundil, R., et al., 2014. CA⁃TIMS Zircon U⁃Pb Dating of Felsic Ignimbrite from the Binchuan Section: Implications for the Termination Age of Emeishan Large Igneous Province. Lithos, 204: 14-19. https://doi.org/10.1016/j.lithos.2014.03.005 |
| [67] |
Zhou, L. J., Zhang, Z. W., Li, Y. J., et al., 2013. Geological and Geochemical Characteristics in the Paleo⁃Weathering Crust Sedimentary Type REE Deposits, Western Guizhou, China. Journal of Asian Earth Sciences, 73: 184-198. https://doi.org/10.1016/j.jseaes.2013.04.011 |
国家自然科学基金项目(42122015)
国家自然科学基金项目(42472148)
/
| 〈 |
|
〉 |