西菲律宾海深水沉积物的声速结构特征
周娇 , 田雨杭 , 何高文 , 罗伟东 , 杨楚鹏 , 谭玉芳
地球科学 ›› 2025, Vol. 50 ›› Issue (07) : 2899 -2911.
西菲律宾海深水沉积物的声速结构特征
Characteristics of Sound Velocity Structure in Deep Water Sediments of West Philippine Sea
,
深海沉积物的声速是构建海洋环境声场的基础.对西菲律宾海4 818~6 630 m深水海域获取的海底沉积物柱状样的纵波波速、湿密度、孔隙度以及中值粒径等参数进行了测试与分析,阐明了研究海域海底沉积物声学与物理参数基本特征及垂向变化特征,探讨了物理参数对声速的影响,并对实测数据及经验方程预测值进行对比,提出了研究区海底沉积物四种典型声速结构.结果表明,沉积物纵波波速分布在1 455~1 674 m/s之间,孔隙度介于61.71%~69.63%之间,湿密度介于1.26~1.62 g/cm3之间,中值粒径介于7.75~8.42 Φ之间.研究区沉积物各参数随着埋深变化规律各有差异,密度对声速的影响要优于孔隙度和中值粒径.通过与底层海水声速、同层内声速剖面以及与上层海底沉积物下表面声速的比较,建立了研究区低声速表面‒低声速层‒声速减小类型(GMI1)、低声速表面‒高声速层‒声速增大类型(GMI2)、高声速表面‒低声速层‒声速减小类型(GMII1型)、高声速表面‒高声速层‒声速增大类型(GMII2)四种声速结构模型;中央裂谷带南部(A区)和北部(B区)两个区域沉积物的声学特性与声速梯度变化存在显著差异,其中A区可分为GMII1型和GMII1-GMI1型,而B区可划分为GMI2型和GMI1-GMII2型.
The sound velocity of deep-sea sediments is fundamental for constructing the acoustic field of the marine environment. This article tests and analyzes parameters such as longitudinal wave velocity, wet density, porosity, and median particle size of sediment column samples obtained from the deep waters of 4 818-6 630 m in the West Philippine Sea. It elucidates the basic characteristics and vertical variations of acoustic and physical parameters of seabed sediments in the study area, explores the relationship between physical parameters and sound velocity, compares measured data with empirical equation predictions, and proposes four typical sound velocity structures of seabed sediments in the study area. The results show that the longitudinal wave velocity distribution of sediment ranges from 1 460 to 1 674 m/s, the porosity ranges from 62.07% to 69.54%, the wet density varies from 1.34 to 1.62 g/cm3, and the median particle size varies from 7.75 to 8.40 Φ. The sediment parameters in the study area vary with depth, and density has a better effect on sound velocity than porosity and median particle size. By comparing the sound velocity of the bottom seawater, the sound velocity profile within the same layer, and the sound velocity of the lower surface of the upper seabed sediment,four types of sound velocity structure models were established in the research area, involving low velocity surface-low velocity layer-sound velocity reduction type (GMI1), low velocity surface-high velocity layer-sound velocity increase type (GMI2), high velocity surface-low velocity layer-sound velocity rreduction type (GMII1), and high velocity surface-high velocity layer-sound velocity increase type (GMII2).There are significant differences in the acoustic characteristics and sound velocity gradient changes of sediments in the southern (Zone A) and northern (Zone B) regions of the Central Rift Valley. Zone A can be divided into GMII1 and GMII1-GMI1 types, while Zone B can be divided into GMI2 and GMI1-GMII2 types.
声速特征 / 声速结构 / 声速结构模型 / 物理参数 / 深海沉积物 / 西菲律宾海 / 海洋地质学.
sound velocity characteristic / sound velocity structure / geoacoustic model / physical parameter / deep⁃sea sediment / West Philippine Sea / marine geology
| [1] |
Bae, S. H., Kim, D. C., Lee, G. S., et al., 2014. Physical and Acoustic Properties of Inner Shelf Sediments in the South Sea, Korea.Quaternary International, 344: 125-142. https://doi.org/10.1016/j.quaint.2014.03.058 |
| [2] |
Belcourt, J., Holland, C. W., Dosso, S. E., et al.,2020. Depth⁃Dependent Geoacoustic Inferences with Dispersion at the New England Mud Patch via Reflection Coefficient Inversion. IEEE Journal of Oceanic Engineering, 45(1): 69-91. https://doi.org/10.1109/joe.2019.2900115 |
| [3] |
Chu, Z., Hu, N. J., Liu, J. H., et al., 2016. Rare Earth Elements in Sediments of West Philippine Sea and Their Implications for Sediment Provenance. Marine Geology & Quaternary Geology, 36(5): 53-62 (in Chinese with English abstract). |
| [4] |
Deschamps, A., Lallemand, S., 2002. The West Philippine Basin: An Eocene to Early Oligocene back Arc Basin Opened between Two Opposed Subduction Zones. Journal of Geophysical Research: Solid Earth, 107(B12): EPM1⁃1⁃EPM1⁃24. https://doi.org/10.1029/2001JB001706 |
| [5] |
Dong, D. D., Zhang, Z. Y., Zhang, G. X., et al., 2017. Tectonic and Sedimentary Features of the West Philippine Basin and Its Implication to the Basin Evolution—Evidence from a Seismic Transection. Oceanologia et Limnologia Sinica, 48(6): 1415-1425 (in Chinese with English abstract). |
| [6] |
Dong, J. Q., Sun, H., Zou, D. P., et al., 2023. Model and Prediction Relationship of Sound Velocity and Porosity of Seafloor Sediments.Journal of Sea Research, 194:102413. https://doi.org/10.1016/j.seares.2023.102413 |
| [7] |
Fang, Z. H., Li, P. F., Yang, Y., et al., 2022. Analysis on Sedimentary Characteristics of Shallow Strata in Deep Water Environment of Philippine Sea. Haiyang Xuebao, 44(3): 53-60 (in Chinese with English abstract). |
| [8] |
Ge, S. L., Shi, X. F., Yang, G., et al., 2007. Rock Magnetic Response to Climatic Changes in West Philippine Sea for the Last 780 ka: Based on Relative Paleointensity Assisted Chronology. Quaternary Sciences, 27(6): 1040-1052 (in Chinese with English abstract). |
| [9] |
Hamilton, E. L., 1970.Sound Velocity and Related Properties of Marine Sediments,North Pacific. Journalof Geophysical Research, 75(23): 4423-4446. https://doi.org/10.1029/jb075i023p04423 |
| [10] |
Hamilton, E. L., 1980. Geoacoustic Modeling of the Sea Floor.The Journal of the Acoustical Society of America, 68(5): 1313-1340. https://doi.org/10.1121/1.385100 |
| [11] |
Hou, Z. Y., Chen, Z., Wang, J. Q., et al., 2018a. Acoustic Impedance Properties of Seafloor Sediments of the Coast of Southeastern Hainan, South China Sea. Journal of Asian Earth Sciences, 154: 1-7. https://doi.org/10.1016/j.jseaes.2017.12.003 |
| [12] |
Hou, Z. Y., Chen, Z., Wang, J. Q., et al., 2018b. Acoustic Characteristics of Seafloor Sediments in the Abyssal Areas of the South China Sea. Ocean Engineering, 156: 93-100. https://doi.org/10.1016/j.oceaneng.2018.03.013 |
| [13] |
Jiang, F. Q., Frank, M., Li, T. G., et al., 2013. Asian Dust Input in the Western Philippine Sea: Evidence from Radiogenic Sr and Nd Isotopes. Geochemistry,Geophysics,Geosystems, 14(5): 1538-1551. https://doi.org/10.1002/ggge.20116 |
| [14] |
Kan, G. M., Su, Y. F., Liu, B. H., et al., 2014. Properties of Acoustic Impedance of Seafloor Sediments in the Middle Area of the Southern Yellow Sea. Journal of Jilin University (Earth Science Edition), 44(1): 386-395 (in Chinese with English abstract). |
| [15] |
Kawabe, M., Fujio, S., 2010. Pacific Ocean Circulation Based on Observation.Journal of Oceanography, 66(3): 389-403. https://doi.org/10.1007/s10872⁃010⁃0034⁃8 |
| [16] |
Kim, G. Y., Kim, D. C., Yoo, D. G., et al., 2011. Physical and Geoacoustic Properties of Surface Sediments off Eastern Geoje Island, South Sea of Korea. Quaternary International, 230(1-2): 21-33. https://doi.org/10.1016/j.quaint.2009.07.028 |
| [17] |
Kim, G. Y., Park, K. J., Lee, G. S., et al., 2019. Physical Property Characterization of Quaternary Sediments in the Vicinity of the Paleo⁃Seomjin River of the Continental Shelf of the South Sea, Korea. Quaternary International, 503: 153-162. https://doi.org/10.1016/j.quaint.2018.09.002 |
| [18] |
Li, G. B., Hou, Z. Y., Wang, J. Q., et al., 2021a. Empirical Equations of P⁃Wave Velocity in the Shallow and Semi⁃Deep Sea Sediments from the South China Sea. Journal of Ocean University of China, 20(3): 532-538. https://doi.org/10.1007/s11802⁃021⁃4476⁃y |
| [19] |
Li, G. B., Wang, J. Q., Meng, X. M., et al., 2021b. Relationships between the Sound Speed Ratio and Physical Properties of Surface Sediments in the South Yellow Sea. Acta Oceanologica Sinica, 40(4): 65-73. https://doi.org/10.1007/s13131⁃021⁃1764⁃8 |
| [20] |
Li, X. J., Wang, Z., Yao, Y. J., et al., 2017. The Tectonic Features and Evolution of the West Pacific Margin. Geology in China, 44(6): 1102-1114 (in Chinese with English abstract). |
| [21] |
Liu, B. H., Han, T. C., Kan, G. M., et al., 2013. Correlations between the In Situ Acoustic Properties and Geotechnical Parameters of Sediments in the Yellow Sea, China. Journal of Asian Earth Sciences, 77: 83-90. https://doi.org/10.1016/j.jseaes.2013.07.040 |
| [22] |
Long, J. J., Li, G. X., 2015. Theoretical Relations between Sound Velocity and Physical⁃Mechanical Properties for Seafloor Sediments. Acta Acustica, 40(3): 462-468. |
| [23] |
Lu, B., 1994. Sound Velocity and Physical Properties of Shallow Seabed Sediments. Chinese Science Bulletin, 39(5): 435-437 (in Chinese). |
| [24] |
Lu, B., 1995. Model of Sound Velocity Structure in Seawater⁃Sediments. Marine Science Bulletin, 14(2): 42-47 (in Chinese with English abstract). |
| [25] |
Lu, B., Li, G. X., Sun, D. H., et al., 2006. Acoustic⁃ Physical Properties of Seafloor Sediments from Nearshore Southeast China and Their Correlations. Journal of Tropical Oceanography, 25(2): 12-17 (in Chinese with English abstract). |
| [26] |
Meng, Q. S., Liu, S. B., Jia, Y. G., et al., 2018. Analysis on Acoustic Velocity Characteristics of Sediments in the Northern Slope of the South China Sea. Bulletin of Engineering Geology and the Environment, 77(3): 923-930. https://doi.org/10.1007/s10064⁃017⁃1070⁃z |
| [27] |
Okino, K., Fujioka, K., 2003. The Central Basin Spreading Center in the Philippine Sea: Structure of an Extinct Spreading Center and Implications for Marginal Basin Formation. Journal of Geophysical Research (Solid Earth), 108(B1): 2040. https://doi.org/10.1029/2001JB001095 |
| [28] |
Orsi, T. H., Dunn, D. A., 1990. Sound Velocity and Related Physical Properties of Fine⁃Grained Abyssal Sediments from the Brazil Basin (South Atlantic Ocean). The Journal of the Acoustical Society of America, 88(3): 1536-1542. https://doi.org/10.1121/1.400311 |
| [29] |
Potty, G. R., Miller, J. H., Michalopoulou, Z. H., et al., 2019. Estimation of Geoacoustic Parameters Using Machine Learning Techniques. Acoustical Society of America Journal, 146(4): 2987. https://doi.org/10.1121/1.5137342 |
| [30] |
Qiu, B., 2001. Kuroshio and Oyashio Currents. Academic Press, New York,1413-1425. |
| [31] |
Ryang, W. H., Kim, S. P., Kim, S., et al., 2013. Geoacoustic Model of the Transverse Acoustic Variability Experiment Area in the Northern East China Sea. Geosciences Journal, 17(3): 267-278. https://doi.org/10.1007/s12303⁃013⁃0039⁃6 |
| [32] |
Savov, I. P., Hickey⁃Vargas, R., D’Antonio, M., et al., 2006. Petrology and Geochemistry of West Philippine Basin Basalts and Early Palau⁃Kyushu Arc Volcanic Clasts from ODP Leg 195, Site 1201D: Implications for the Early History of the Izu⁃Bonin⁃Mariana Arc. Journal of Petrology, 47(2): 277-299. https://doi.org/10.1093/petrology/egi075 |
| [33] |
Shu, Y.T., Zheng, Y.L., Xu, D.,et al., 2015. The Provenance of Clay Minerals in Core 18 from the West Philippine Basin. Journal of Marine Science, 33(4): 61-69. https://doi.org/10.3969/j.issn.1001⁃909x.205.04.007 |
| [34] |
Sun, M. J., Gao, H. F., Li, X. J., et al., 2020. Sedimentary Evolution Characteristics since Late Miocene in the Huatung Basin. Haiyang Xuebao, 42(1): 154-162 (in Chinese with English abstract). |
| [35] |
Sun, S. X., Teng, J., 2003. Climate Character of the Philippine Sea. Marine Forecasts, 20(3): 31-39 (in Chinese with English abstract). |
| [36] |
Sun, Z. W., Sun, L., Li, G. B., et al., 2018. The Relationship between the Acoustic Characteristics and Physical Properties of Deep⁃Sea Sediments in the Philippine Sea. Marine Sciences, 42(5): 12-22 (in Chinese with English abstract). |
| [37] |
Tian, Y. H., Chen, Z., Hou, Z. Y., et al., 2019. Geoacoustic Provinces of the Northern South China Sea Based on Sound Speed as Predicted from Sediment Grain Sizes. Marine Geophysical Research, 40(4): 571-579. https://doi.org/10.1007/s11001⁃019⁃09387⁃5 |
| [38] |
Tian, Y. H., Chen, Z., Mo, Y. X., et al., 2023. Effects of Physical Properties on the Compression Wave Speed of Seafloor Sediment in the South China Sea: Comparisons between Theoretical Models and Measured Data.Frontiers in Physics, 11: 1122617. https://doi.org/10.3389/fphy.2023.1122617 |
| [39] |
Wan, S. M., Yu, Z. J., Clift, P. D., et al., 2012. History of Asian Eolian Input to the West Philippine Sea over the Last One Million Years. Palaeogeography, Palaeoclimatology, Palaeoecology, 326-328: 152-159. https://doi.org/10.1016/j.palaeo.2012.02.015 |
| [40] |
Wang, C., Xu, F. J., Hu, B. Q., et al., 2020. Elemental Geochemistry of Core XT⁃4 Sediments from the Western Philippines Sea since 3.7 Ma and Its Paleoenvironmental Implications. Marine Sciences, 44(8): 205-214 (in Chinese with English abstract). |
| [41] |
Wang, J. Q., Guo, C. S., Hou, Z. Y., et al., 2014. Distributions and Vertical Variation Patterns of Sound Speed of Surface Sediments in South China Sea. Journal of Asian Earth Sciences, 89: 46-53. https://doi.org/10.1016/j.jseaes.2014.03.026 |
| [42] |
Wang, J. Q., Li, G. B., Liu, B. H., et al., 2018. Experimental Study of the Ballast In Situ Sediment Acoustic Measurement System in South China Sea. Marine Georesources & Geotechnology, 36(5): 515-521. https://doi.org/10.1080/1064119X.2017.1348413 |
| [43] |
Wang, W., Xu, Z. K., Feng, X. G., et al., 2020. Composition Characteristics and Provenance Implication of Modern Dust in the West Philippine Sea. Earth Science, 45(2): 559-568 (in Chinese with English abstract). |
| [44] |
Wilson, W. D., 1960. Equation for the Speed of Sound in Sea Water. The Journal of the Acoustical Society of America, 32(10): 1357. https://doi.org/10.1121/1.1907913 |
| [45] |
Xu, Z. K., Li, T. G., Yu, X. K., et al., 2013. The Sources of Sediments in the West Philippine Sea in Recent 700 ka and the Records of Major Elements of the Evolution of East Asian Winter Monsoon. Chinese Science Bulletin, 58(11): 1048-1056 (in Chinese). |
| [46] |
Yan, Q. S., Shi, X. F., Wang, K. S., et al., 2007. Provinces and Material Provenance of Light Detritus in the Surficial Sediments from the Western Philippine Sea. Geological Review, 53(6): 765-773 (in Chinese with English abstract). |
| [47] |
Yang, Y. F., Liu, Z. H., Yao, J., et al., 2018. Pore Space Characterization Method of Shale Matrix Formation Based on Superposed Digital Rock and Pore⁃Network Model. Scientia Sinica Technologica, 48(5): 488-498. https://doi.org/10.1360/n092017⁃00076 |
| [48] |
Yu, S. Q., Wang, F., Zheng, G. Y., et al., 2020. Progress and Discussions in Acoustic Properties of Marine Sediments. Journal of Harbin Engineering University, 41(10): 1571-1577 (in Chinese with English abstract). |
| [49] |
Yu, Z. J., Wan, S. M., Colin, C., et al., 2016. Co⁃ Evolution of Monsoonal Precipitation in East Asia and the Tropical Pacific ENSO System since 2.36 Ma: New Insights from High⁃Resolution Clay Mineral Records in the West Philippine Sea. Earth and Planetary Science Letters, 446: 45-55. https://doi.org/10.1016/j.epsl.2016.04.022 |
| [50] |
Zhang, B., Li, G. X., Huang, J. F., 2014. The Tectonic Geomorphology of the Philippine Sea. Marine Geology & Quaternary Geology, 34(2): 79-88 (in Chinese with English abstract). |
| [51] |
Zhou, J., Cai, P. J., Yang, C. P., et al., 2022. Geochemical Characteristics and Genesis of Ferromanganese Nodules and Crusts from the Central Rift Seamounts Group of the West Philippine Sea. Ore Geology Reviews, 145: 104923. https://doi.org/10.1016/j.oregeorev.2022.104923 |
| [52] |
Zhou, J. X., Li, Z. L., Zhang, X. Z., et al., 2023. Physics⁃Based Acoustic Inversion of Sound Velocity and Attenuation in Low⁃Velocity Marine Sediments. The Journal of the Acoustical Society of America, 153(35): A85. https://doi.org/10.1121/10.0018257 |
| [53] |
Zou, D. P., Wu, Z. L., Sun, H., et al., 2022. Basic Geoacoustic Structure and Geoacoustic Model for Seafloor Sediments. Haiyang Xuebao, 44(9): 145-155 (in Chinese with English abstract). |
| [54] |
Zou, D. P., Yan, P., Lu, B., 2012. A Geoacoustic Model Based on Sound Speed Characteristic of Seafloor Surface Sediments of the South China Sea. Acta Oceanologica Sinica, 34(3): 80-86 (in Chinese with English abstract). |
| [55] |
Zou,D. P., Zeng,Z. W., Kan,G. M., et al., 2021. Influence of Environmental Conditions on the Sound Velocity Ratio of Seafloor Surficial Sediment. Journal of Ocean University of China, 20(3): 573-580. https://doi.org/10.1007/s11802⁃021⁃4628⁃0 |
中国地质调查局项目(DD20240090)
中国地质调查局项目(DD20221712)
中国地质调查局项目(DD20230642)
中国地质调查局项目(DD20190209)
中国地质调查局项目(DD20230066)
中国地质调查局项目(DD20242659)
国家自然科学基金项目(42302319)
/
| 〈 |
|
〉 |