江西城门山铜多金属矿床中稀散元素的差异化富集规律
朱乔乔 , 谢桂青 , 高任 , 徐净 , 卢丽帆
地球科学 ›› 2025, Vol. 50 ›› Issue (07) : 2667 -2688.
江西城门山铜多金属矿床中稀散元素的差异化富集规律
Diversified Enrichment Regularity of Dispersed Elements of Chengmenshan Cu Polymetallic Deposit from Jiangxi Province
,
,
斑岩‒矽卡岩型铜矿床中伴生的稀散元素之间存在明显的差异化富集,其规律尚需深入研究.对城门山斑岩‒矽卡岩铜多金属矿床的矿石开展了光学显微镜和扫描电镜观察,并对钻孔中的稀散元素(Te、Se、Ga、Ge、Cd、In和Tl)和Bi含量开展了相关性分析、聚类分析和分形分析等研究.城门山矿床中的Te以独立矿物为主、少量赋存于硫化物中,其他稀散元素大多呈类质同象赋存于不少于两种硫化物中.复杂的赋存状态导致稀散元素的含量除Tl呈简单分形外,均呈多重分形分布.城门山矿床中的稀散元素具有沉淀顺序先后分开、富集位置空间错位的差异化富集规律,主要受温度、pH、硫逸度和氧逸度等物化条件以及元素性质的制约.稀散元素差异化富集规律的深入研究,可以有效避免在勘查评价过程中遗漏伴生稀散元素矿床.建立了城门山矿床的稀散元素原生晕分布模式,该模式可为伴生稀散元素矿床的成因研究和深部找矿勘查实践提供参考.
Porphyry-skarn Cu deposits are frequently characterized by high contents of dispersed elements, which exhibit significantly diversified enrichment between them. However, the regularity of the diversified enrichment remains insufficiently understood. In this study, the primary ore minerals present in the Chengmenshan deposit were investigated, using the optical microscope and scanning electron microscopy. Additionally, correlation analysis, cluster analysis, and fractal analysis were employed to explore the relationships between the dispersed elements (Te, Se, Ga, Ge, Cd, In, and Tl) and Bi contents in the drill cores. The results reveal that Te is predominantly hosted by independent minerals, with only a minor fraction incorporated into sulfides. In contrast, other dispersed elements are incorporated by at least two types of sulfide. The distribution patterns of the dispersed elements at Chengmenshan exhibit multifractal patterns, except for Tl, which follows a simple fractal distribution due to its complex occurrence. The enrichment pattern of these dispersed elements at Chengmenshan is characterized by a sequential separation and spatial dislocation. The pattern is likely influenced by metallogenic factors such as temperature, pH, fS2, and fO2, along with the distinctive geochemical properties of the dispersed elements. This research demonstrates that an understanding of the diversified enrichment regularity of these dispersed elements could be instrumental in identifying independent deposits of these elements. Furthermore, a primary halo distribution model for the dispersed elements in the Chengmenshan deposit has been developed, which may serve as a valuable reference for studying the genesis of associated dispersed element deposits and for the prospecting and exploration of deeply buried targets.
稀散元素 / 差异化富集 / 分形分布 / 城门山矿床 / 原生晕 / 矿床学.
dispersed elements / diversified enrichment / fractal distribution / Chengmenshan deposit / primary halo / ore deposit
| [1] |
Audétat, A., Zhang, D. H., 2019. Abundances of S, Ga, Ge, Cd, In, Tl and 32 Other Major to Trace Elements in High⁃Temperature (350-700 ℃) Magmatic⁃Hydrothermal Fluids. Ore Geology Reviews, 109: 630-642. https://doi.org/10.1016/j.oregeorev.2019.05.017 |
| [2] |
Chaffee, M. A., 1976. The Zonal Distribution of Selected Elements above the Kalamazoo Porphyry Copper Deposit, San Manuel District, Pinal County, Arizona. Journal of Geochemical Exploration, 5(1-2): 145-165. https://doi.org/10.1016/0375⁃6742(76)90042⁃x |
| [3] |
Chang, Y.F., Liu, X.P., Wu, Y.C., 1991. Metallogenic Belt of the Middle and Lower Yangtze River. Geological Publishing House, Beijing (in Chinese). |
| [4] |
Cook, N. J., Ciobanu, C. L., Pring, A., et al., 2009. Trace and Minor Elements in Sphalerite: A LA⁃ICPMS Study. Geochimica et Cosmochimica Acta, 73(16): 4761-4791. https://doi.org/10.1016/j.gca.2009.05.045 |
| [5] |
Du, H. F., Zheng, J. P., Tian, L. R., et al., 2020. Microfabrics, In⁃Situ Trace Element and Sulfur Isotope Compositions of Pyrite from the Jinjiwo Copper Deposit in Chengmenshan Orefield, Northern Yangtze Block: Syngenetic Stratabound Mineralization and Hydrothermal Remobilization. Ore Geology Reviews, 127: 103830. https://doi.org/10.1016/j.oregeorev.2020.103830 |
| [6] |
Frenzel, M., Hirsch, T., Gutzmer, J., 2016. Gallium, Germanium, Indium, and Other Trace and Minor Elements in Sphalerite as a Function of Deposit Type⁃A Meta⁃Analysis. Ore Geology Reviews, 76: 52-78. https://doi.org/10.1016/j.oregeorev.2015.12.017 |
| [7] |
Gadd, M.G., Lawley, C.J., Corriveau, L., et al., 2023. Public Geoscience Solutions for Diversifying Canada’s Critical Mineral Production. In: Smelror, M., Hanghøj, K., Schiellerup, H. eds., The Green Stone Age: Exploration and Exploitation of Minerals for Green Technologies. Geological Society, London, Special Publications, 526: 25-50.https://doi.org/10.1144/SP526⁃2021⁃190 |
| [8] |
Gao, R., Xie, G. Q., Feng, D. S., et al., 2023. Characteristics and Genesis of Newly Discovered W Mineralization in Wushan Cu Deposit, Jiangxi: Constraints from Mineralography, In⁃Situ U⁃Pb Chronology and Element Geochemistry of Scheelite. Mineral Deposits, 42(6): 1139-1158 (in Chinese with English abstract). |
| [9] |
Gao, R., Xie, G. Q., Zha, Z. Q., et al., 2022. Mineralization of Associated Dispersed Elements in the Chengmenshan Copper Deposit of Jiangxi Province and Its Geological Significance. Geology and Exploration, 58(3): 514-531 (in Chinese with English abstract). |
| [10] |
George, L. L., Cook, N. J., Ciobanu, C. L., 2017. Minor and Trace Elements in Natural Tetrahedrite⁃Tennantite: Effects on Element Partitioning among Base Metal Sulphides. Minerals, 7(2): 17. https://doi.org/10.3390/min7020017 |
| [11] |
Grundler, P. V., Brugger, J., Etschmann, B. E., et al., 2013. Speciation of Aqueous Tellurium(IV) in Hydrothermal Solutions and Vapors, and the Role of Oxidized Tellurium Species in Te Transport and Gold Deposition. Geochimica et Cosmochimica Acta, 120: 298-325. https://doi.org/10.1016/j.gca.2013.06.009 |
| [12] |
Gu, T., Liu, Y. P., Li, C. Y., 2000. Super⁃Richening and Coexistence of Disperse Elements. Bulletin of Mineralogy, Petrology and Geochemistry, 19(1): 60-63 (in Chinese with English abstract). |
| [13] |
Guo, X. Z., Zhou, T. F., Wang, F. Y., et al., 2021. Study of Occurrence States and Precipitation Mechanism of Tellurium in Chengmenshan Porphyry⁃Skarn Deposit from the Middle⁃Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica, 37(9): 2723-2742 (in Chinese with English abstract). |
| [14] |
Guo, X. Z., Zhou, T. F., Wang, F. Y., et al., 2023. Distribution of Co, Se, Cd, In, Re and Other Critical Metals in Sulfide Ores from a Porphyry⁃Skarn System: A Case Study of Chengmenshan Cu Deposit, Jiangxi, China. Ore Geology Reviews, 158: 105520. https://doi.org/10.1016/j.oregeorev.2023.105520 |
| [15] |
Halley, S., Dilles, J. H., Tosdal, R. M., 2015. Footprints: Hydrothermal Alteration and Geochemical Dispersion around Porphyry Copper Deposits. SEG Discovery, (100): 1-17. https://doi.org/10.5382/SEGnews.2015⁃100.fea |
| [16] |
Han, Y.X., 2020. Geology and Mineralization of the Cu⁃Au Skarn System in Southeast Hubei Province and Northwest Jiangxi Province, Eastern China: Examples from the Fengshan and Chengmenshan Areas in Jiurui Ore District (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). |
| [17] |
Hurtig, N. C., Gysi, A. P., Monecke, T., et al., 2024. Tellurium Transport and Enrichment in Volcanogenic Massive Sulfide Deposits: Numerical Simulations of Vent Fluids and Comparison to Modern Sea⁃Floor Sulfides. Economic Geology, 119(4): 829-851. https://doi.org/10.5382/econgeo.5067 |
| [18] |
Jiang, Y. G., Zhou, J. X., Luo, K., et al., 2023. The Differential Enrichment Mechanism of Thallium in the Huodehong MVT Deposit, NE Yunnan Province, China: Evidence from EBSD, LA⁃ICPMS and TEM. Acta Petrologica Sinica, 39(10): 3002-3014 (in Chinese with English abstract). |
| [19] |
Keith, M., Smith, D. J., Jenkin, G. R. T., et al., 2018. A Review of Te and Se Systematics in Hydrothermal Pyrite from Precious Metal Deposits: Insights into Ore⁃Forming Processes. Ore Geology Reviews, 96: 269-282. https://doi.org/10.1016/j.oregeorev.2017.07.023 |
| [20] |
Kong, F. B., Ye, S. Z., Gao, R., et al., 2020. Characteristics of Associated Gold and Silver for Copper⁃Sulfur Orebody in Tielukan Copper Deposit of Jiangxi Province. China Molybdenum Industry, 44(6): 14-19 (in Chinese with English abstract). |
| [21] |
Li, X. H., Li, W. X., Wang, X. C., et al., 2010. SIMS U⁃Pb Zircon Geochronology of Porphyry Cu⁃Au⁃(Mo) Deposits in the Yangtze River Metallogenic Belt, Eastern China: Magmatic Response to Early Cretaceous Lithospheric Extension. Lithos, 119(3-4): 427-438. https://doi.org/10.1016/j.lithos.2010.07.018 |
| [22] |
Liu, C. M., Wu, C. L., Xu, W. S., 1998. The Exploration Geochemical Model for Major Types of Copper Deposits in China. Geophysical and Geochemical Exploration, 22(3): 161-165 (in Chinese with English abstract). |
| [23] |
Liu, J. J., Wang, D. Z., Zhai, D. G., et al., 2021. Super⁃Enrichment Mechanisms of Precious Metals by Low⁃Melting Point Copper⁃Philic Element(LMCE) Melts. Acta Petrologica Sinica, 37(9): 2629-2656 (in Chinese with English abstract). |
| [24] |
Liu, J. J., Zhai, D. G., Wang, D. Z., et al., 2020. Classification and Mineralization of the Au⁃(Ag)⁃Te⁃Se Deposits. Earth Science Frontiers, 27(2): 79-98 (in Chinese with English abstract). |
| [25] |
Luo, J.A., Yang, G.C., 2007. Geological Characteristics of Chengmenshan Copper Deposit, Jiangxi and Its Ore Genesis. Mineral Resources and Geology, 21(3): 284-288 (in Chinese with English abstract). |
| [26] |
Ma, Z.D., Gong, M., Gong, P., et al., 2010. Mineral Deposit Model of the Skarn Deposit. In: Shi, J.F., Tang, J.R., Zhou, P., et al., eds., World Mineral Deposit Model and Exploration. Geological Publishing House, Beijing, 160-171 (in Chinese). |
| [27] |
Makovicky, E., 2018. Modular Crystal Chemistry of Thallium Sulfosalts. Minerals, 8(11): 478. https://doi.org/10.3390/min8110478 |
| [28] |
Mao, J. W., Wang, Y. T., Lehmann, B., et al., 2006. Molybdenite Re⁃Os and Albite 40Ar/39Ar Dating of Cu⁃Au⁃Mo and Magnetite Porphyry Systems in the Yangtze River Valley and Metallogenic Implications. Ore Geology Reviews, 29(3-4): 307-324. https://doi.org/10.1016/j.oregeorev.2005.11.001 |
| [29] |
Mao, J. W., Xie, G. Q., Duan, C., et al., 2011. A Tectono⁃Genetic Model for Porphyry⁃Skarn⁃Strata Bound Cu⁃Au⁃Mo⁃Fe and Magnetite⁃Apatite Deposits along the Middle⁃Lower Yangtze River Valley, Eastern China. Ore Geology Reviews, 43(1): 294-314. https://doi.org/10.1016/j.oregeorev.2011.07.010 |
| [30] |
Mao, J. W., Yang, Z. X., Xie, G. Q., et al., 2019. Critical Minerals: International Trends and Thinking. Mineral Deposits, 38(4): 689-698 (in Chinese with English abstract). |
| [31] |
Meng, Y. M., Hu, R. Z., Huang, X. W., et al., 2017. Germanium in Magnetite: A Preliminary Review. Acta Geologica Sinica (English Edition), 91(2): 711-726. https://doi.org/10.1111/1755⁃6724.13127 |
| [32] |
Meng, Y. M., Zhang, X., Huang, X. W., et al., 2024. A Review of the Zn⁃Pb Deposits in Sichuan⁃Yunnan⁃ Guizhou Metallogenic Region with Emphasis on the Enrichment Mechanism of Ge, Ga, and In. Ore Geology Reviews, 164: 105853. https://doi.org/10.1016/j.oregeorev.2023.105853 |
| [33] |
Murowchick, J. B., Barnes, H. L., 1986. Marcasite Precipitation from Hydrothermal Solutions. Geochimica et Cosmochimica Acta, 50(12): 2615-2629. https://doi.org/10.1016/0016⁃7037(86)90214⁃0 |
| [34] |
Pan, Y. M., Dong, P., 1999. The Lower Changjiang (Yangzi/Yangtze River) Metallogenic Belt, East Central China: Intrusion⁃ and Wall Rock⁃Hosted Cu⁃Fe⁃Au, Mo, Zn, Pb, Ag Deposits. Ore Geology Reviews, 15(4): 177-242. https://doi.org/10.1016/S0169⁃1368(99)00022⁃0 |
| [35] |
Seward, T. M., Henderson, C. M. B., Charnock, J. M., 2000. Indium(III) Chloride Complexing and Solvation in Hydrothermal Solutions to 350 ℃: An EXAFS Study. Chemical Geology, 167(1-2): 117-127. https://doi.org/10.1016/S0009⁃2541(99)00204⁃1 |
| [36] |
Shao, Y., 1997. Geochemical Rock Survey (Dispersion Halo) and Hydrothermal Deposit Exploration. Geological Publishing House, Beijing (in Chinese). |
| [37] |
Shen, W., 2007. Fractal Summation Methods and Its Application in Geochemical Element Data for Population Limits. Computing Techniques for Geophysical and Geochemical Exploration, 29(2): 134-137 (in Chinese with English abstract). |
| [38] |
Shu, Q.A., Chen, P.L., Cheng, J.R., 1992. Geology of Fe⁃Cu Ore Deposits in Eastern Hubei Province. Metallurgical Industry Press, Beijing (in Chinese). |
| [39] |
Škácha, P., Sejkora, J., Plášil, J., 2017. Selenide Mineralization in the Příbram Uranium and Base⁃Metal District (Czech Republic). Minerals, 7(6): 91. https://doi.org/10.3390/min7060091 |
| [40] |
Tao, Y., Hu, R. Z., Tang, Y. Y., et al., 2019. Types of Dispersed Elements Bearing Ore⁃Deposits and Their Enrichment Regularity in Southwest China. Acta Geologica Sinica, 93(6): 1210-1230 (in Chinese with English abstract). |
| [41] |
Tu, G.C., 2000. A Preliminary Research on the Metallogenic of Te. Bulletin of Mineralogy, Petrology and Geochemistry, 19(4): 211-214 (in Chinese). |
| [42] |
Tu, G.C., Gao, Z.M., Hu, R.Z., et al., 2004. The Geochemistry and Ore⁃Forming Mechanism of the Dispersed Elements. Geological Publishing House, Beijing (in Chinese). |
| [43] |
Voudouris, P., 2006. A Comparative Mineralogical Study of Te⁃Rich Magmatic⁃Hydrothermal Systems in Northeastern Greece. Mineralogy and Petrology, 87(3): 241-275. https://doi.org/10.1007/s00710⁃006⁃0131⁃y |
| [44] |
Voudouris, P., Repstock, A., Spry, P. G., et al., 2022. Physicochemical Constraints on Indium⁃, Tin⁃, Germanium⁃, Gallium⁃, Gold⁃, and Tellurium⁃bearing Mineralizations in the Pefka and St Philippos Polymetallic Vein⁃ and Breccia⁃Type Deposits, Greece. Ore Geology Reviews, 140: 104348. https://doi.org/10.1016/j.oregeorev.2021.104348 |
| [45] |
Wang, D. H., Sun, Y., Dai, H. Z., et al., 2019. Characteristics and Exploitation of Rare Earth, Rare Metal and Rare⁃Scattered Element Minerals in China. Strategic Study of Chinese Academy of Engineering, 21(1): 119-127 (in Chinese with English abstract). |
| [46] |
Wang, H., Fu, H. P., Li, Y. S., et al., 2023. In⁃Situ LA⁃ICP⁃MS U⁃Pb Dating of Garnet and Zircon from Tongjiangling Copper (Tungsten) Deposit in Jiangxi Province and Its Geological Significance. Acta Geologica Sinica, 97(7): 2281-2292 (in Chinese with English abstract). |
| [47] |
Wedepohl, K.H., 1995. The Composition of the Continental Crust. Geochimica et Cosmochimica Acta, 59(7): 1217-1232. https://doi.org/10.1016/0016⁃7037(95)00038⁃2 |
| [48] |
Wen, H. J., Zhou, Z. B., Zhu, C. W., et al., 2019. Critical Scientific Issues of Super⁃Enrichment of Dispersed Metals. Acta Petrologica Sinica, 35(11): 3271-3291 (in Chinese with English abstract). |
| [49] |
Wen, H. J., Zhu, C. W., Du, S. J., et al., 2020. Gallium (Ga), Germanium (Ge), Thallium (Tl) and Cadmium (Cd) Resources in China. Chinese Science Bulletin, 65(33): 3688-3699 (in Chinese). |
| [50] |
Wu, L. S., Zou, X. Q., 1997. Re Os Isotopic Age Study of the Chengmenshan Copper Deposit, Jiangxi Province. Mineral Deposits, 16(4): 376-381 (in Chinese with English abstract). |
| [51] |
Xie, G. Q., Han, Y. X., Li, X. H., 2019. A Preliminary Study of Characteristics of Dispersed Metal⁃Bearing Deposits in Middle⁃Lower Yangtze River Metallogenic Belt. Mineral Deposits, 38(4): 729-738 (in Chinese with English abstract). |
| [52] |
Xie, G. Q., Mao, J. W., Richards, J. P., et al., 2019. Distal Au Deposits Associated with Cu⁃Au Skarn Mineralization in the Fengshan Area, Eastern China. Economic Geology, 114(1): 127-142. https://doi.org/10.5382/econgeo.2019.4623 |
| [53] |
Xie, G. Q., Mao, J. W., Zhu, Q. Q., et al., 2015. Geochemical Constraints on Cu⁃Fe and Fe Skarn Deposits in the Edong District, Middle⁃Lower Yangtze River Metallogenic Belt, China. Ore Geology Reviews, 64: 425-444. https://doi.org/10.1016/j.oregeorev.2014.08.005 |
| [54] |
Xie, G. Q., Wu, X. L., Li, X. H., et al., 2024. A Primary Study on the Current Status and Mineralization Regularities of Associated Te and Se Resources in Porphyry⁃Skarn Cu Polymetallic Deposits in the Middle⁃Lower Yangtze River Valley Metallogenic Belt, China. Bulletin of Mineralogy, Petrology and Geochemistry, 43(1): 35-48 (in Chinese with English abstract). |
| [55] |
Xu, J., Cook, N. J., Ciobanu, C. L., et al., 2021. Indium Distribution in Sphalerite from Sulfide⁃Oxide⁃Silicate Skarn Assemblages: A Case Study of the Dulong Zn⁃ Sn⁃In Deposit, Southwest China. Mineralium Deposita, 56(2): 307-324. https://doi.org/10.1007/s00126⁃ 020⁃00972⁃y |
| [56] |
Xu, W. G., Fan, H. R., Hu, F. F., et al., 2014. Gold Mineralization in the Guilaizhuang Deposit, Southwestern Shandong Province, China: Insights from Phase Relations among Sulfides, Tellurides, Selenides and Oxides. Ore Geology Reviews, 56: 276-291. https://doi.org/10.1016/j.oregeorev.2013.06.010 |
| [57] |
Xu, Y. M., Jiang, S. Y., Zhu, Z. Y., et al., 2013. Geochronology, Geochemistry and Mineralogy of Ore⁃Bearing and Ore⁃Barren Intermediate⁃Acid Intrusive Rocks from the Jiurui Ore District, Jiangxi Province and Their Geological Implications. Acta Petrologica Sinica, 29(12): 4291-4310 (in Chinese with English abstract). |
| [58] |
Yang, M.G., Wang, F.N., Zeng, Y., et al., 2004. Metallogenic Geology of Metals in Northern Jiangxi Province. China Land Press, Beijing (in Chinese). |
| [59] |
Yang, Z. M., Hou, Z. Q., Zhou, L. M., et al., 2020. Critical Elements in Porphyry Copper Deposits of China. Chinese Science Bulletin, 65(33): 3653-3664 (in Chinese). |
| [60] |
Ye, S. Z., Gao, R., Wu, H. X., et al., 2019. New Progress and Next Prospecting Direction of Chengmenshan Copper Deposit in Jiangxi. Mineral Exploration, 10(1): 94-101 (in Chinese with English abstract). |
| [61] |
Zhai, Y. S., Xiong, Y. L., Yao, S. Z., et al., 1996. Metallogeny of Copper and Iron Deposits in the Eastern Yangtse Craton, East⁃Central China. Ore Geology Reviews, 11(4): 229-248. https://doi.org/10.1016/0169⁃1368(96)00003⁃0 |
| [62] |
Zhang, Q., Liu, Y. P., Ye, L., et al., 2008. Study on Specialization of Dispersed Element Mineralization. Bulletin of Mineralogy, Petrology and Geochemistry, 27(3): 247-253 (in Chinese with English abstract). |
| [63] |
Zhang, Q., Zhu, X. Q., Gao, Z. M., et al., 2005. A Review of Enrichment and Mineralization of the Dispersed Elements in China. Bulletin of Mineralogy, Petrology and Geochemistry, 24(4): 342-349 (in Chinese with English abstract). |
| [64] |
Zhao, H. T., Shao, Y. J., Zhang, Y., et al., 2023. Big Data Mining on Trace Element Geochemistry of Sphalerite. Journal of Geochemical Exploration, 252: 107254. https://doi.org/10.1016/j.gexplo.2023.107254 |
| [65] |
Zhou, T. F., Fan, Y., Chen, J., et al., 2020. Critical Metal Resources in the Middle⁃Lower Yangtze River Valley Metallogenic Belt. Chinese Science Bulletin, 65(33): 3665-3677 (in Chinese). |
| [66] |
Zhou, T. F., Fan, Y., Wang, S. W., et al., 2017. Metallogenic Regularity and Metallogenic Model of the Middle⁃Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica, 33(11): 3353-3372 (in Chinese with English abstract). |
| [67] |
Zhou, T. F., Fan, Y., Yuan, F., et al., 2008. A Preliminary Investigation and Evaluation of the Thallium Environmental Impacts of the Unmined Xiangquan Thallium⁃Only Deposit in Hexian, China. Environmental Geology, 54(1): 131-145. https://doi.org/10.1007/s00254⁃007⁃0800⁃0 |
| [68] |
Zhu, Q. Q., Cook, N. J., Xie, G. Q., et al., 2022. Textural and Geochemical Analysis of Celestine and Sulfides Constrain Sr⁃(Pb⁃Zn) Mineralization in the Shizilishan Deposit, Eastern China. Ore Geology Reviews, 144: 104814. https://doi.org/10.1016/j.oregeorev.2022.104814 |
| [69] |
Zhu, Q. Q., Xie, G. Q., Lu, L. F., et al., 2024. Trace Element of Epidote from the Tonglushan Cu⁃Fe⁃Au Deposit, Eastern China: Implications for Exploration Indicator for Skarn Mineralization. Ore Geology Reviews, 174: 106298. https://doi.org/10.1016/j.oregeorev.2024.106298 |
国家自然科学基金项目(92162217)
国家自然科学基金项目(41925011)
国家自然科学基金项目(92462306)
新一轮找矿突破战略行动科技支撑项目(ZKKJ202425)
/
| 〈 |
|
〉 |