华南主要大河新生代演化:南海北缘沉积学记录的制约
Cenozoic Evolution of Large Rivers in South China: Constraints from Sedimentary Archive in Northern South China Sea
,
印度‒欧亚大陆碰撞和青藏高原隆升,深刻地改变了亚洲地形及气候格局,引发了大河水系的重大调整.近年来,南海北缘大河演化成为地学研究的前沿和热点问题.近海油气勘探和国际大洋钻探计划(IODP)的实施,为重建华南主要大河演化提供了连续且年代精确的沉积记录.梳理了近20年来南海北缘新生代盆地的沉积物源研究,讨论了华南主要大河演化(包括红河和珠江等)的沉积学研究进展.莺歌海盆地物源研究显示,晚始新世以来红河是该盆地主要物源供给者;并且莺歌海盆地与青藏高原东南缘其他大河(包括怒江、澜沧江和长江等)的物源信号差异较大(如碎屑锆石U-Pb年龄和钾长石Pb同位素等),表明晚始新世以来这些大河并未汇入莺歌海盆地,即青藏高原东南缘并不存在巨型古红河.珠江口盆地在始新世‒早渐新世主要由华南南缘供给沉积物,指示古珠江流域范围较小;晚渐新世在南海打开的驱动下,古珠江向西扩展至青藏东南缘.台湾新生代地层的物源区在晚渐新世由华南沿海转变为武夷山,暗示着古闽江向西扩展.华南沿海主要大河(包括珠江和闽江等)在晚渐新世均经历了由中小型水系向内陆拓展的过程,与南海打开时限基本吻合,表明南海打开控制了这些大河的演化.
The India-Eurasia collision and the uplift of the Tibetan Plateau have profoundly changed the topography and climate patterns of Asia, triggering reorganization of large river systems. Recently, the evolution of large rivers on the northern South China Sea has become a frontier and hot issue in geoscience research. Offshore oil and gas exploration and the implementation of the International Ocean Drilling Program (IODP) have provided continuous and accurately dated sedimentary records for reconstructing the evolution of major rivers in South China. This paper reviews the sedimentary provenance investigations of the Cenozoic basins in the northern South China Sea in the past two decades, and discusses the progress in the evolution of major rivers in South China, such as the Red and Pearl Rivers. Provenance research in the Yinggehai Basin shows that the Red River has been the main supplier since the Late Eocene; and there are differences in provenance signals between the Yinggehai and large rivers of the Tibet Plateau (including the Nujiang, the Lancang and the Yangtze Rivers, indicating that they have not flowed into the Yinggehai Basin since the Late Eocene. During the Eocene to Early Oligocene, the Pearl River Mouth Basin was mainly supplied by the South China, indicating that the Pearl River was relatively small. Driven by the opening of the South China Sea in the Late Oligocene, the Pearl River expanded westward to the southeastern Tibetan Plateau. Cenozoic stratigraphy in Taiwan records that the ancient Minjiang River expanded westward to the Wuyi Mountain in the Late Oligocene. This evidence shows that the opening of the South China Sea controlled the evolution of the large rivers in South China.
南海 / 珠江 / 红河 / 物源示踪 / 大河演化 / 沉积学 / 海洋地质学.
South China Sea / Pearl River / Red River / sedimentary provenance / large river evolution / sedimentology / marine geology
| [1] |
An, Z. S., Kutzbach, J. E., Prell, W. L., et al., 2001. Evolution of Asian Monsoons and Phased Uplift of the Himalaya⁃Tibetan Plateau since Late Miocene Times. Nature, 411(6833): 62-66. https://doi.org/10.1038/35075035 |
| [2] |
Bodet, F., Schärer, U., 2001. Pb Isotope Systematics and Time⁃Integrated Th/U of SE⁃Asian Continental Crust Recorded by Single K⁃Feldspar Grains in Large Rivers. Chemical Geology, 177(3-4): 265-285. https://doi.org/10.1016/S0009⁃2541(00)00413⁃7 |
| [3] |
Brookfield, M. E., 1998. The Evolution of the Great River Systems of Southern Asia during the Cenozoic India⁃Asia Collision: Rivers Draining Southwards. Geomorphology, 22(3-4): 285-312. https://doi.org/10.1016/S0169⁃555X(97)00082⁃2 |
| [4] |
Brookfield, M. E., 2008. Evolution of the Great River Systems of Southern Asia during the Cenozoic India⁃Asia Collision: Rivers Draining North from the Pamir Syntaxis. Geomorphology, 100(3-4): 296-311. https://doi.org/10.1016/j.geomorph.2008.01.003 |
| [5] |
Cao, L. C., Jiang, T., Wang, Z. F., et al., 2015. Provenance of Upper Miocene Sediments in the Yinggehai and Qiongdongnan Basins, Northwestern South China Sea: Evidence from REE, Heavy Minerals and Zircon U⁃Pb Ages. Marine Geology, 361: 136-146. https://doi.org/10.1016/j.margeo.2015.01.007 |
| [6] |
Cao, L. C., Shao, L., Qiao, P. J., et al., 2018. Early Miocene Birth of Modern Pearl River Recorded Low⁃Relief, High⁃Elevation Surface Formation of SE Tibetan Plateau. Earth and Planetary Science Letters, 496: 120-131. https://doi.org/10.1016/j.epsl.2018.05.039 |
| [7] |
Caracciolo, L., 2020. Sediment Generation and Sediment Routing Systems from a Quantitative Provenance Analysis Perspective: Review, Application and Future Development. Earth⁃Science Reviews, 209: 103226. https://doi.org/10.1016/j.earscirev.2020.103226 |
| [8] |
Chen, C. H., Lee, C. Y., Lin, J. W., et al., 2019. Provenance of Sediments in Western Foothills and Hsuehshan Range (Taiwan): A New View Based on the EMP Monazite versus LA⁃ICPMS Zircon Geochronology of Detrital Grains. Earth⁃Science Reviews, 190: 224-246. https://doi.org/10.1016/j.earscirev.2018.12.015 |
| [9] |
Chen, C.M., Shi, H.S., Xu, S.C., et al., 2003. Formation Conditions of Tertiary Oil and Gas Reservoirs in the Eastern Pearl River Mouth Basin. Geological Publishing House, Beijing (in Chinese). |
| [10] |
Chen, Y., Yan, M. D., Fang, X. M., et al., 2017. Detrital Zircon U⁃Pb Geochronological and Sedimentological Study of the Simao Basin, Yunnan: Implications for the Early Cenozoic Evolution of the Red River. Earth and Planetary Science Letters, 476: 22-33. https://doi.org/10.1016/j.epsl.2017.07.025 |
| [11] |
Clark, M. K., Schoenbohm, L. M., Royden, L. H., et al., 2004. Surface Uplift, Tectonics, and Erosion of Eastern Tibet from Large⁃Scale Drainage Patterns. Tectonics, 23(1): TC1006. https://doi.org/10.1029/2002tc001402 |
| [12] |
Clift, P. D., Blusztajn, J., Nguyen, A. D., 2006. Large⁃Scale Drainage Capture and Surface Uplift in Eastern Tibet⁃SW China before 24 Ma Inferred from Sediments of the Hanoi Basin, Vietnam. Geophysical Research Letters, 33(19): L19403. https://doi.org/10.1029/2006gl027772 |
| [13] |
Clift, P. D., Long, H. V., Hinton, R., et al., 2008. Evolving East Asian River Systems Reconstructed by Trace Element and Pb and Nd Isotope Variations in Modern and Ancient Red River⁃Song Hong Sediments. Geochemistry, Geophysics, Geosystems, 9(4): Q04039. https://doi.org/10.1029/2007GC001867 |
| [14] |
Deng, K., Yang, S. Y., Li, C., et al., 2017. Detrital Zircon Geochronology of River Sands from Taiwan: Implications for Sedimentary Provenance of Taiwan and Its Source Link with the East China Mainland. Earth⁃ Science Reviews, 164: 31-47. https://doi.org/10.1016/j.earscirev.2016.10.015 |
| [15] |
Flowerdew, M. J., Tyrrell, S., Riley, T. R., et al., 2012. Distinguishing East and West Antarctic Sediment Sources Using the Pb Isotope Composition of Detrital K⁃ Feldspar. Chemical Geology, 292-293: 88-102. https://doi.org/10.1016/j.chemgeo.2011.11.006 |
| [16] |
Garzanti, E., Vermeesch, P., Andò, S., et al., 2013. Provenance and Recycling of Arabian Desert Sand. Earth⁃ Science Reviews, 120: 1-19. https://doi.org/10.1016/j.earscirev.2013.01.005 |
| [17] |
Guo, Z. T., Sun, B., Zhang, Z. S., et al., 2008. A Major Reorganization of Asian Climate by the Early Miocene. Climate of the Past, 4(3): 153-174. https://doi.org/10.5194/cp⁃4⁃153⁃2008 |
| [18] |
He, M. Y., Zheng, H. B., Clift, P. D., 2013. Zircon U⁃Pb Geochronology and Hf Isotope Data from the Yangtze River Sands: Implications for Major Magmatic Events and Crustal Evolution in Central China. Chemical Geology, 360-361: 186-203. https://doi.org/10.1016/j.chemgeo.2013.10.020 |
| [19] |
Huang, C. Y., Yen, Y., Zhao, Q. H., et al., 2012. Cenozoic Stratigraphy of Taiwan: Window into Rifting, Stratigraphy and Paleoceanography of South China Sea. Chinese Science Bulletin, 57(24): 3130-3149. https://doi.org/10.1007/s11434⁃012⁃5349⁃y |
| [20] |
Jiang, T., Cao, L. C., Xie, X. N., et al., 2015. Insights from Heavy Minerals and Zircon U⁃Pb Ages into the Middle Miocene⁃Pliocene Provenance Evolution of the Yinggehai Basin, Northwestern South China Sea. Sedimentary Geology, 327: 32-42. https://doi.org/10.1016/j.sedgeo.2015.07.011 |
| [21] |
Jin, H. L., Wan, S. M., Clift, P. D., et al., 2022. Birth of the Pearl River at 30 Ma: Evidence from Sedimentary Records in the Northern South China Sea. Earth and Planetary Science Letters, 600: 117872. https://doi.org/10.1016/j.epsl.2022.117872 |
| [22] |
Kong, P., Zheng, Y., Caffee, M. W., 2012. Provenance and Time Constraints on the Formation of the First Bend of the Yangtze River. Geochemistry, Geophysics, Geosystems, 13(6): Q06017. https://doi.org/10.1029/2012gc004140 |
| [23] |
Lan, Q., Yan, Y., Huang, C. Y., et al., 2014. Tectonics, Topography, and River System Transition in East Tibet: Insights from the Sedimentary Record in Taiwan. Geochemistry, Geophysics, Geosystems, 15(9): 3658-3674. https://doi.org/10.1002/2014gc005310 |
| [24] |
Lan, Q., Yan, Y., Huang, C. Y., et al., 2016. Topographic Architecture and Drainage Reorganization in South East China: Zircon U⁃Pb Chronology and Hf Isotope Evidence from Taiwan. Gondwana Research, 36: 376-389. https://doi.org/10.1016/j.gr.2015.07.008 |
| [25] |
Larsen, H. C., Mohn, G., Nirrengarten, M., et al., 2018. Rapid Transition from Continental Breakup to Igneous Oceanic Crust in the South China Sea. Nature Geoscience, 11(10): 782-789. https://doi.org/10.1038/s41561⁃018⁃0198⁃1 |
| [26] |
Lee, C. Y., 1934. The Development of the Upper Yangtze Valley. Bulletin of the Geological Society of China, 13(1): 107-118. https://doi.org/10.1111/j.1755⁃6724.1934.mp13001006.x |
| [27] |
Lei, C., 2012. Analysis of Cenozoic Tectonic Deformation Pattern and Its Evolution Process in Yinggehai⁃ Qiongdongnan Basin in the Northern South China Sea (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). |
| [28] |
Lei, C., Clift, P. D., Ren, J. Y., et al., 2019. A Rapid Shift in the Sediment Routing System of Lower⁃Upper Oligocene Strata in the Qiongdongnnan Basin (Xisha Trough), Northwest South China Sea. Marine and Petroleum Geology, 104: 249-258. https://doi.org/10.1016/j.marpetgeo.2019.03.012 |
| [29] |
Lei, C., Ren, J. Y., Sternai, P., et al., 2015. Structure and Sediment Budget of Yinggehai⁃Song Hong Basin, South China Sea: Implications for Cenozoic Tectonics and River Basin Reorganization in Southeast Asia. Tectonophysics, 655(2): 177-190. https://doi.org/10.1016/j.tecto.2015.05.024 |
| [30] |
Li, C. F., Xu, X., Lin, J., et al., 2014. Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12): 4958-4983. https://doi.org/10.1002/2014gc005567 |
| [31] |
Li, X. H., Wei, G. J., Shao, L., et al., 2003. Geochemical and Nd Isotopic Variations in Sediments of the South China Sea: A Response to Cenozoic Tectonism in SE Asia. Earth and Planetary Science Letters, 211(3-4): 207-220. https://doi.org/10.1016/S0012⁃821X(03)00229⁃2 |
| [32] |
Liu, C., Stockli, D. F., Clift, P. D., et al., 2022. Geochronological and Geochemical Characterization of Paleo⁃Rivers Deposits during Rifting of the South China Sea. Earth and Planetary Science Letters, 584: 117427. https://doi.org/10.1016/j.epsl.2022.117427 |
| [33] |
Liu, J. P., Li, A. C., Xu, K. H., et al., 2006. Sedimentary Features of the Yangtze River⁃Derived Along⁃Shelf Clinoform Deposit in the East China Sea. Continental Shelf Research, 26(17-18): 2141-2156. https://doi.org/10.1016/j.csr.2006.07.013 |
| [34] |
Liu, J. P., Xu, K. H., Li, A. C., et al., 2007. Flux and Fate of Yangtze River Sediment Delivered to the East China Sea. Geomorphology, 85(3-4): 208-224. https://doi.org/10.1016/j.geomorph.2006.03.023 |
| [35] |
Liu, Z. F., Zhao, Y. L., Colin, C., et al., 2016. Source⁃ to⁃Sink Transport Processes of Fluvial Sediments in the South China Sea. Earth⁃Science Reviews, 153: 238-273. https://doi.org/10.1016/j.earscirev.2015.08.005 |
| [36] |
Malusà, M. G., Resentini, A., Garzanti, E., 2016. Hydraulic Sorting and Mineral Fertility Bias in Detrital Geochronology. Gondwana Research, 31: 1-19. https://doi.org/10.1016/j.gr.2015.09.002 |
| [37] |
Nie, J. S., Ruetenik, G., Gallagher, K., et al., 2018. Rapid Incision of the Mekong River in the Middle Miocene Linked to Monsoonal Precipitation. Nature Geoscience, 11(12): 944-948. https://doi.org/10.1038/s41561⁃018⁃0244⁃z |
| [38] |
Pang, X., Chen, C.M., Shao, L., et al., 2007. Baiyun Movement, a Great Tectonic Event on the Oligocene⁃Miocene Boundary in the Northern South China Sea and Its Implications. Geological Review, 53(2): 145-151 (in Chinese with English abstract). |
| [39] |
Pang, X., Chen, C. M., Zhu, M., et al., 2009. Baiyun Movement: A Significant Tectonic Event on Oligocene/Miocene Boundary in the Northern South China Sea and Its Regional Implications. Journal of Earth Science, 20(1): 49-56. https://doi.org/10.1007/s12583⁃009⁃0005⁃4 |
| [40] |
Que, X.M., Shu, Y., Wang, X.D., et al., 2024. Provenance Characteristics and Sedimentary Evolution of Zhu Ⅰ Depression in Paleogene: Indications from Detrital Zircon Ages. Earth Science, 49(7): 2373-2387 (in Chinese with English abstract). |
| [41] |
Ren, J.Y., 2018. Genetic Dynamics of China Offshore Cenozoic Basins. Earth Science, 43(10): 3337-3361 (in Chinese with English abstract). |
| [42] |
Ren, J.Y., Lei, C., 2011. Tectonic Stratigraphic Framework of Yinggehai⁃Qiongdongnan Basins and Its Implication for Tectonic Province Division in South China Sea. Chinese Journal of Geophysics, 54(12): 3303-3314 (in Chinese with English abstract). |
| [43] |
Ren, J. Y., Tamaki, K., Li, S. T., et al., 2002. Late Mesozoic and Cenozoic Rifting and Its Dynamic Setting in Eastern China and Adjacent Areas. Tectonophysics, 344(3-4): 175-205. https://doi.org/10.1016/S0040⁃1951(01)00271⁃2 |
| [44] |
Ren, M.E., Bao, H.S., Han, T.C., et al., 1959. Geomorphology and River Capture in Jinsha River Valley in Northwest Yunnan. Acta Geographica Sinica, 25(2): 135-155 (in Chinese with English abstract). |
| [45] |
Shao, L., Cao, L. C., Pang, X., et al., 2016. Detrital Zircon Provenance of the Paleogene Syn⁃Rift Sediments in the Northern South China Sea. Geochemistry, Geophysics, Geosystems, 17(2): 255-269. https://doi.org/10.1002/2015gc006113 |
| [46] |
Shao, L., Pang, X., Qiao, P.J., et al., 2008. Sedimentary Filling of the Pearl River Mouth Basin and Its Response to the Evolution of the Pearl River. Acta Sedimentologica Sinica, 26(2): 179-185 (in Chinese with English abstract). |
| [47] |
Shao, L., Qiao, P. J., Zhao, M., et al., 2016. Depositional Characteristics of the Northern South China Sea in Response to the Evolution of the Pearl River. Geological Society, London, Special Publications, 429(1): 31-44. https://doi.org/10.1144/SP429.2 |
| [48] |
Shao, L., Zhao, M., Qiao, P.J., et al., 2013. The Characteristics of the Sediment in Northern South China Sea and Its Response to the Evolution of the Pearl River. Quaternary Sciences, 33(4): 760-770 (in Chinese with English abstract). |
| [49] |
Shao, W. Y., Chung, S. L., Chen, W. S., et al., 2015. Old Continental Zircons from a Young Oceanic Arc, Eastern Taiwan: Implications for Luzon Subduction Initiation and Asian Accretionary Orogeny. Geology, 43(6): 479-482. https://doi.org/10.1130/g36499.1 |
| [50] |
Sun, X. J., Wang, P. X., 2005. How Old is the Asian Monsoon System?-Palaeobotanical Records from China. Palaeogeography, Palaeoclimatology, Palaeoecology, 222(3-4): 181-222. https://doi.org/10.1016/j.palaeo.2005.03.005 |
| [51] |
Suo, Y. H., Li, S. Z., Zhao, S. J., et al., 2015. Continental Margin Basins in East Asia: Tectonic Implications of the Meso⁃Cenozoic East China Sea Pull⁃Apart Basins. Geological Journal, 50(2): 139-156. https://doi.org/10.1002/gj.2535 |
| [52] |
Suo, Y.H., Li, S.Z., Dai, L.M., et al., 2012. Cenozoic Tectonic Migration and Basin Evolution in East Asia and Its Continental Margins. Acta Petrologica Sinica, 28(8): 2602-2618 (in Chinese with English abstract). |
| [53] |
Tyrrell, S., Haughton, P. D. W., Daly, J. S., 2007. Drainage Reorganization during Breakup of Pangea Revealed by In⁃Situ Pb Isotopic Analysis of Detrital K⁃Feldspar. Geology, 35(11): 971-974. https://doi.org/10.1130/g4123a.1 |
| [54] |
Van Hoang, L., Wu, F. Y., Clift, P. D., et al., 2009. Evaluating the Evolution of the Red River System Based on In Situ U⁃Pb Dating and Hf Isotope Analysis of Zircons. Geochemistry, Geophysics, Geosystems, 10(11): Q11008. https://doi.org/10.1029/2009gc002819 |
| [55] |
Wang, C., Liang, X. Q., Foster, D. A., et al., 2016. Zircon U⁃Pb Geochronology and Heavy Mineral Composition Constraints on the Provenance of the Middle Miocene Deep⁃Water Reservoir Sedimentary Rocks in the Yinggehai⁃Song Hong Basin, South China Sea. Marine and Petroleum Geology, 77: 819-834. https://doi.org/10.1016/j.marpetgeo.2016.05.009 |
| [56] |
Wang, C., Liang, X. Q., Foster, D. A., et al., 2019. Linking Source and Sink: Detrital Zircon Provenance Record of Drainage Systems in Vietnam and the Yinggehai⁃Song Hong Basin, South China Sea. GSA Bulletin, 131(1-2): 191-204. https://doi.org/10.1130/b32007.1 |
| [57] |
Wang, C., Liang, X. Q., Foster, D. A., et al., 2019. Provenance and Drainage Evolution of the Red River Revealed by Pb Isotopic Analysis of Detrital K⁃Feldspar. Geophysical Research Letters, 46(12): 6415-6424. https://doi.org/10.1029/2019gl083000 |
| [58] |
Wang, C., Liang, X. Q., Xie, Y. H., et al., 2014. Provenance of Upper Miocene to Quaternary Sediments in the Yinggehai⁃Song Hong Basin, South China Sea: Evidence from Detrital Zircon U⁃Pb Ages. Marine Geology, 355: 202-217. https://doi.org/10.1016/j.margeo.2014.06.004 |
| [59] |
Wang, P.X., 2005. Cenozoic Deformation and History of Sea⁃Land Interactions in Asia. Earth Science, 30(1): 1-18 (in Chinese with English abstract). |
| [60] |
Wang, W., Bidgoli, T., Yang, X. H., et al., 2018. Source⁃to⁃Sink Links between East Asia and Taiwan from Detrital Zircon Geochronology of the Oligocene Huagang Formation in the East China Sea Shelf Basin. Geochemistry, Geophysics, Geosystems, 19(10): 3673-3688. https://doi.org/10.1029/2018gc007576 |
| [61] |
Wang, Y. F., Li, D., Wang, Y. M., et al., 2015. Major Unconformities and Sedimentary System Evolution in Pearl River Mouth Basin. Acta Sedimentologica Sinica, 33(3): 587-594 (in Chinese with English abstract). |
| [62] |
Wei, H. H., Wang, E., Wu, G. L., et al., 2016. No Sedimentary Records Indicating Southerly Flow of the Paleo⁃Upper Yangtze River from the First Bend in Southeastern Tibet. Gondwana Research, 32: 93-104. https://doi.org/10.1016/j.gr.2015.02.006 |
| [63] |
Wu, F. L., Fang, X. M., Yang, Y. B., et al., 2022. Reorganization of Asian Climate in Relation to Tibetan Plateau Uplift. Nature Reviews Earth & Environment, 3(10): 684-700. https://doi.org/10.1038/s43017⁃022⁃00331⁃7 |
| [64] |
Xie, Y.H., 2009. Sequence Stratigraphy and Natural Gas Accumulation Models in Tectonically Active Basins: A Case Study of the Yinggehai Basin. Geological Publishing House, Beijing (in Chinese). |
| [65] |
Xu, Y. H., Wang, C. Y., Zhao, T. P., 2016. Using Detrital Zircons from River Sands to Constrain Major Tectono⁃Thermal Events of the Cathaysia Block, SE China. Journal of Asian Earth Sciences, 124: 1-13. https://doi.org/10.1016/j.jseaes.2016.04.012 |
| [66] |
Yan, Y., Carter, A., Huang, C. Y., et al., 2012. Constraints on Cenozoic Regional Drainage Evolution of SW China from the Provenance of the Jianchuan Basin. Geochemistry, Geophysics, Geosystems, 13(3): Q03001. https://doi.org/10.1029/2011GC003803 |
| [67] |
Yan, Y., Carter, A., Palk, C., et al., 2011. Understanding Sedimentation in the Song Hong⁃Yinggehai Basin, South China Sea. Geochemistry, Geophysics, Geosystems, 12(6): Q06014. https://doi.org/10.1029/2011GC003533 |
| [68] |
Yan, Y., Yao, D., Tian, Z. X., et al., 2018. Tectonic Topography Changes in Cenozoic East Asia: A Landscape Erosion⁃Sediment Archive in the South China Sea. Geochemistry, Geophysics, Geosystems, 19(6): 1731-1750. https://doi.org/10.1029/2017gc007356 |
| [69] |
Yang, D.Y., Han, Z.Y., Ge, Z.S., et al., 2008. Geomorphic Process of the Formation and Incision of the Section from Shigu to Yibin of the Jinshajiang River. Quaternary Sciences, 28(4): 564-568 (in Chinese with English abstract). |
| [70] |
Yang, R., Willett, S. D., Goren, L., 2015. In Situ Low⁃ Relief Landscape Formation as a Result of River Network Disruption. Nature, 520(7548): 526-529. https://doi.org/10.1038/nature14354 |
| [71] |
Yang, S. Y., Zhang, F., Wang, Z. B., 2012. Grain Size Distribution and Age Population of Detrital Zircons from the Changjiang (Yangtze) River System, China. Chemical Geology, 296: 26-38. https://doi.org/10.1016/j.chemgeo.2011.12.016 |
| [72] |
Zeng, Z. W., Zhu, H. T., Yang, X. H., et al., 2019. Using Seismic Geomorphology and Detrital Zircon Geochronology to Constrain Provenance Evolution and Its Response of Paleogene Enping Formation in the Baiyun Sag, Pearl River Mouth Basin, South China Sea: Implications for Paleo⁃Pearl River Drainage Evolution. Journal of Petroleum Science and Engineering, 177: 663-680. https://doi.org/10.1016/j.petrol.2019.02.051 |
| [73] |
Zhang, G. H., Li, S. Z., Suo, Y. H., et al., 2016. Cenozoic Positive Inversion Tectonics and Its Migration in the East China Sea Shelf Basin. Geological Journal, 51(S1): 176-187. https://doi.org/10.1002/gj.2809 |
| [74] |
Zhang, L.G., 1995. Block⁃Geology of Asia Lithosphere: Isotope Geochemistry and Dynamics of Upper Mantle, Basement and Granite. Science Press, Beijing, 252 (in Chinese). |
| [75] |
Zhang, P., Najman, Y., Mei, L. F., et al., 2019. Palaeodrainage Evolution of the Large Rivers of East Asia, and Himalayan⁃Tibet Tectonics. Earth⁃Science Reviews, 192: 601-630. https://doi.org/10.1016/j.earscirev.2019.02.003 |
| [76] |
Zhang, X. C., Huang, C. Y., Wang, Y. J., et al., 2017. Evolving Yangtze River Reconstructed by Detrital Zircon U⁃Pb Dating and Petrographic Analysis of Miocene Marginal Sea Sedimentary Rocks of the Western Foothills and Hengchun Peninsula, Taiwan. Tectonics, 36(4): 634-651. https://doi.org/10.1002/2016TC004357 |
| [77] |
Zhang, Z. J., Daly, J. S., Tian, Y. T., et al., 2023. Late Oligocene Formation of the Pearl River Triggered by the Opening of the South China Sea. Geophysical Research Letters, 50(8): e2023GL103049. https://doi.org/10.1029/2023gl103049 |
| [78] |
Zhang, Z. J., Daly, J. S., Yan, Y., et al., 2021. No Connection between the Yangtze and Red Rivers since the Late Eocene. Marine and Petroleum Geology, 129: 105115. https://doi.org/10.1016/j.marpetgeo.2021.105115 |
| [79] |
Zhang, Z. J., Daly, J. S., Yan, Y., et al., 2022. Cenozoic Reorganization of Fluvial Systems in Eastern China: Sedimentary Provenance of Detrital K⁃Feldspar in Taiwan. Chemical Geology, 592: 120740. https://doi.org/10.1016/j.chemgeo.2022.120740 |
| [80] |
Zhang, Z. J., Tyrrell, S., Li, C. A., et al., 2014. Pb Isotope Compositions of Detrital K⁃Feldspar Grains in the Upper⁃Middle Yangtze River System: Implications for Sediment Provenance and Drainage Evolution. Geochemistry, Geophysics, Geosystems, 15(7): 2765-2779. https://doi.org/10.1002/2014GC005391 |
| [81] |
Zhao, Z.X., Zhou, D., Liao, J., 2009. Tertiary Paleogeography and Depositional Evolution in the Pearl River Mouth Basin of the Northern South China Sea. Journal of Tropical Oceanography, 28(6): 52-60 (in Chinese with English abstract). |
| [82] |
Zheng, H., Clift, P. D., Wang, P., et al., 2013. Pre⁃ Miocene Birth of the Yangtze River. Proceedings of the National Academy of Sciences, 110(19): 7556-7561. https://doi.org/10.1073/pnas.1216241110 |
国家自然科学基金项目(42271008)
国家自然科学基金项目(42171008)
南方海洋科学与工程广东省实验室(珠海)自主科研项目(SML2021SP315)
/
| 〈 |
|
〉 |