白云鄂博Wu dyke碳酸岩脉及围岩的岩相特征和年龄特征综合探讨

田朋飞 ,  刘海涛 ,  杨晓勇 ,  袁万明 ,  史江涛 ,  何姿霏

地球科学 ›› 2025, Vol. 50 ›› Issue (08) : 2937 -2955.

PDF (23420KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (08) : 2937 -2955. DOI: 10.3799/dqkx.2025.031

白云鄂博Wu dyke碳酸岩脉及围岩的岩相特征和年龄特征综合探讨

作者信息 +

A Comprehensive Discussion on the Petrographic and Age Characteristics of the Wu Carbonatite Dyke and Wall Rock in the Bayan Obo

Author information +
文章历史 +
PDF (23981K)

摘要

白云鄂博矿床是世界上最大的稀土矿床之一,Wu dyke为矿床东部最典型的一条碳酸岩脉,其相关年龄跨度较大. 采用薄片全扫描、TIMA(TESCAN Intergrated Mineral Analyzer)全扫描、微量元素对其进行岩相学分析,并对其围岩石英砾岩薄片中的锆石进行了原位U⁃Pb分析. 岩相学分析表明石英砾岩中的锆石按分布特征具3种类型,大部分锆石分布在石英和正长石的接触部位,且周边均有伴有霓石和钠长石;部分锆石分布在石英中,其中部分锆石周边有钠长石和霓石颗粒;少部分锆石分布在正长石中,锆石周边亦有钠长石和霓石. 石英砾岩中锆石具有~2.5 Ga和~1.9 Ga两个主要峰值年龄,~2.3 Ga次要峰值年龄,最小锆石年龄1 844±18 Ma可能约束了白云鄂博群都拉哈拉组的最大沉积年龄;3种分布特征的锆石均含有1.8~2.5 Ga的年龄. Wu dyke碳酸岩脉形成于1.4~1.3 Ga之间,在脉体侵位时从碳酸岩岩浆中结晶出来锆石. Wu dyke碳酸岩脉及围岩锆石年龄的研究说明,碳酸岩脉中混染了大量围岩锆石. 在~0.4 Ga期间,Wu dyke碳酸岩脉中和矿区附近部分锆石边缘得到了再生长,部分锆石核部遭受了交代作用. 碳酸岩脉中~0.2 Ga的锆石可能是由与二叠纪花岗岩侵位有关的接触变质作用中的热液流体结晶和/或已有锆石和白云石的交代反应而成.

Abstract

The Bayan Obo deposit in China is endowed with the largest rare earth element resource in the world. The Wu dyke is one of the typical carbonatite dyke in the eastern part of the deposit, but itsrelevant age span is relatively large in previous studies. To solve the issue, we carried out a detailed petrographic analysis of sectionfull scan, TIMA (TESCAN Intergrated Mineral Analyzer)scan, and trace element. The U⁃Pb dating was then carried out on zircons in the thin section of the quartz conglomerate that from the wall rock of the Wucarbonatite dyke. Petrographic analysis reveals three types of zircon distribution in the quartz conglomerate: most zircons are distributed in the contact area between quartz and orthoclase, and are accompanied by aegirine and albite in the surrounding areas; Some zircons are distributed in pure quartz, but some of them are surrounded by aegirine and albite particles; A small amount of zircon is distributed in orthoclase, and there are alsoamounts of albite and aegirine around zircon. The zircons in the quartz conglomerate have two main age peaks of ~2.5 Ga and ~1.9 Ga, and secondary age peak of ~2.3 Ga. The minimum zircon age of 1 844±18 Ma may represent the biggestsedimentary age of the Dulahala Formation in the Bayan Obo Group; all three types of zircons contain ages of 1.8~2.5 Ga.The Wucarbonatite dyke was formed at 1.4~1.3 Ga, and new zircons crystallized from the carbonatite magma when the dykewas emplaced, which is approximately coeval with the world⁃wide rifting events at this time that are associated with the final breakup of the Columbia supercontinent.Studies on the zircon ages of the Wucarbonatite dyke and wall rock show that the carbonatite dykeis contaminated with a large number of basement zircons. During the ~0.4 Ga period, the margins of some zircon in the Wucarbonatite dyke and in the Bayan Obo deposit were regrown, and some zircon cores were metasomatized.The ~0.2 Ga zircons from carbonatitethat around the Bayan Obo deposit maybeformed by hydrothermal fluids and/or reactions involving zircon and dolomite during contact metamorphism resulting from hydrothermal input from emplacement of the Permian granitoids.

Graphical abstract

关键词

白云鄂博 / 碳酸岩 / Wu dyke / TIMA / 原位锆石 / 华北克拉通 / 矿床学.

Key words

Bayan Obo / carbonatite / Wu dyke / TIMA / in situ zircon / NCC / ore deposits

引用本文

引用格式 ▾
田朋飞,刘海涛,杨晓勇,袁万明,史江涛,何姿霏. 白云鄂博Wu dyke碳酸岩脉及围岩的岩相特征和年龄特征综合探讨[J]. 地球科学, 2025, 50(08): 2937-2955 DOI:10.3799/dqkx.2025.031

登录浏览全文

4963

注册一个新账户 忘记密码

碳酸岩(carbonatite)可定义为任何含有体积分数大于30%的原生火成碳酸岩的岩石,而不考虑SiO2含量(Mitchell, 2005). 碳酸岩是一种相对罕见的火成岩,是典型的幔源岩浆岩,多形成于板内裂谷环境,在大洋或造山带环境中也有发育(Woolley and Kjarsgaard, 2008). 碳酸岩型稀土元素矿床是世界稀土的主要来源,白云鄂博矿床是碳酸岩型稀土矿床的典型代表(Huang et al., 2023Xue et al., 2024; 尹淑苹等, 2024;Zhang et al., 2024). 据美国地质调查局2013年公布的数据,世界稀土资源总量约150 Mt,白云鄂博目前探明的稀土资源量约112 Mt,占世界稀土资源总量的三分之二以上(谢玉玲等, 2019).
白云鄂博矿区地处华北克拉通北缘渣尔泰-白云鄂博-化德中元古代裂谷带中(图1a, 1b)(Zhao et al., 2003). 华北克拉通经历了古元古代末期—新元古代的多期裂谷事件、古生代与俯冲有关的多期岩浆、变质和变形作用等(Zhai, 2011,20132015;钟焱等, 2019),其北部大量碳酸岩脉被认为与哥伦比亚中元古代裂解有关(Zhang et al., 2017a,2017b). 白云鄂博矿区范围内碳酸岩脉(墙)分布广泛(中国科学院地球化学研究所, 1988;Le Bas et al., 1992),碳酸岩脉的研究可为矿床起源与演化提供有价值的信息(Xie et al., 2019Cui et al., 2020). 白云鄂博区域内碳酸岩脉按侵入序列可划分为3种类型(早期文献多以“岩墙”命名,近些年随着全球范围内碳酸岩研究深入,部分研究中岩墙也以岩脉命名,本文统一用“岩脉”):(1)白云石型;(2)白云石-方解石型;(3)方解石型(王凯怡等, 2002;Yanget al., 2011a,2019).
Wu dyke为白云鄂博矿床东部~3 km处一条典型方解石型碳酸岩脉,此碳酸岩脉以纪念其发现者吴占江先生发现而命名. 岩脉地表出露良好,长约60 m,宽约1.1~1.5 m,切穿了白云鄂博群的石英砾岩和板岩,围岩具强烈霓长岩化蚀变;走向东北20°,向西倾斜85°~89°(Fan et al., 2014). 已有学者在Wu dyke碳酸岩脉及其周边围岩此做过较为细致研究,碳酸岩脉相关年龄差异很大:~2.5 Ga和~1.9 Ga(Lai and Yang, 2019),~2.0 Ga(范宏瑞等, 2002),~1.4 Ga(Fan et al., 2014),~1.3 Ga(Yang et al., 2011b),1.3~0.2 Ga(Liu et al., 2018).
本文应用显微镜薄片全扫描、TIMA (TESCAN intergrated mineral analyzer)全扫描、电子探针分析、微量元素,详细分析了Wu dyke碳酸岩和其围岩石英砾岩的岩相学和矿物学特征. 碳酸岩薄片中方解石U含量太低,无法进行U⁃Pb定年;但围岩薄片中可见大量锆石,所以对锆石进行了原位U⁃Pb定年和Sr同位素测试,并计算了其TDM2(Hf)年龄. 结合前人锆石、磷灰石、独居石的U⁃Pb、Sm⁃Nd、Th⁃Pb年龄,对Wu dyke岩脉和围岩进行了详细的岩石学和年代学特征探讨.

1 地质背景

白云鄂博Fe⁃REE⁃Nb矿床位于内蒙古包头市以北~150 km处,地处华北克拉通北缘,紧邻中亚造山带(Xiao et al., 2003Ren et al., 2019)(图1). 白云鄂博地区在区域大地构造上南至包头为华北陆块内蒙地轴的北侧部分,北为内蒙海西古大洋区,是一套含蛇绿岩大洋型沉积(Yang et al., 2017),故其地跨华北古陆及内蒙海西古大洋两大构造单元,大陆与大洋之间被乌兰宝力格深大断裂隔开(图1c)(杨晓勇等, 2015; 肖庆辉等, 2020).

白云鄂博矿区主要出露地层为出露在背斜轴部的中元古界白云鄂博群,下元古界地层主要出露在背斜轴部并且出露很少,古生代以后地层仅有少量出露于矿区东北部. 白云鄂博群总体上为一套陆相、海陆交互相、滨海相沉积建造,向东可到锡林郭勒盟南部化德县,向西可到达尔罕茂明安联合旗熊包子等地,东西长~600 km,总厚度~7 200 m,其上被上侏罗统砾岩不整合覆盖,其下与色尔腾山群不整合接触(中国科学院地球化学研究所, 1988). 白云鄂博群可分为18个岩性段,6个岩组,自下而上为都拉哈拉岩组(H1~H3)、尖山岩组(H4~H5)、哈拉霍疙特岩组(H6~H8)、比鲁特岩组(H9~H10)、白音宝拉格岩组(H11~H13)、呼吉尔图岩组(H14~H18)(中国科学院地球化学研究所, 1988)(图1d). H8为主要赋矿地层,其沉积年龄受白云鄂博群 H7碎屑锆石U⁃Pb年龄1 710 Ma(Zhong et al., 2015)和H9黑片岩Re⁃Os年龄1 447 Ma(Liuet al., 2016)约束.

2 样品分析

在Wu dyke碳酸岩脉范围采集了4个样品(图2). 样品经抛光、显微镜薄片全扫描、BSE全扫描、TIMA全扫描分析其岩相特征,之后对大部分矿物用电子探针进行了验证;富氟硅镁石由TIMA识别为橄榄石,经不同实验室电子探针测试,最终识别其为富氟硅镁石,其他矿物均与TIMA矿物识别结果一致.

Wu⁃1为碳酸岩脉本体,其矿物成分为方解石(66.21%)、氟碳铈矿(18.68%)、石英(5.10%)、正长石(1.85%)、赤铁矿/磁铁矿(1.72%)、重晶石(1.20%)、独居石(0.25%)、黑云母(0.23%)、钙长石(0.21%)、铁白云石(0.01%)和金红石(0.01%)(图3). Wu⁃2为碳酸岩脉周边蚀变围岩,具明显条带状特征,其矿物成分为方解石(47.41%)、富氟硅镁石(16.46%)、蓝透闪石(10.82%)、氟碳铈矿(10.69%)、易变辉石(5.37%)、黑云母(3.32%)、铁白云石(1.20%)、赤铁矿/磁铁矿(0.21%)、独居石(0.19%)、重晶石(0.05%)、磷灰石(0.02%)、霓石(0.01%) (图4). Wu⁃1和Wu⁃2中氟碳铈矿晶形特征稍有不同:Wu⁃1中氟碳铈矿为半自形、圆形、深色,长约300 μm;Wu⁃2中的氟碳铈矿多为长圆柱形,较透明,长约150 μm.

从Wu dyke采集了两个石英砾岩样品,即Wu⁃3和Wu⁃4,两个样品均发育霓长岩化. Wu⁃3的矿物成分包括石英(70.08%)、正长石(12.50%)、钠长石(8.44%)、霓石(3.02%)、黑云母(0.42%)、蓝透闪石(0.17%)、磷灰石(0.10%)、锆石(0.05%)、钙长石(0.05%)、金红石(0.02%)、重晶石(0.02%)、富氟硅镁石(0.02%)、赤铁矿/磁铁矿(0.01%)、独居石(0.01%)(图5). Wu⁃4的矿物成分为石英(71.48%)、正长石(16.58%)、钠长石(5.18%)、霓石(1.93%)、金红石(0.15%)、黑云母(0.07%)、赤铁矿/磁铁矿(0.05%)、重晶石(0.04%)、磷灰石(0.04%)、锆石(0.03%)、钙长石(0.01%)、独居石(0.01%)、蓝透闪石(0.01%)(图6). 在Wu⁃3和Wu⁃4薄片中分布有大量单颗粒磷灰石和锆石,BSE图像下磷灰石和锆石相似度高,但借助TIMA可清晰识别. 大部分锆石主要分布在石英与正长石交接部位,且周边含有较多霓石和钠闪石矿物;部分锆石分布在石英中,但个别此类锆石周边亦有少量霓石和钠闪石;少量锆石分布在正长石中,锆石周边亦有钠长石和霓石.

图2中可见Wu dyke碳酸岩脉与地层之间常发育霓长岩化. 霓长岩化(Fenitization)为使围岩与碱硅酸盐达到平衡的物理和化学变化的总和(Morogan, 1994),从化学上讲,霓长岩化去除了Si,增加了交代原岩中的Na、K、Mg和Fe(Mian and Le Bas, 1986). 霓长岩(fentie)是霓长岩化的最终产物,可分为钠质、中间质、钾质3种类型(Morogan, 1994). 霓长岩主要由碱性长石和碱性暗色矿物组成,分布在碳酸岩体和碱性岩体与围岩的接触带,是原地碱质交代作用所形成的碱质交代蚀变岩. Wu dyke岩脉外围石英砾岩中含有霓石,具霓长岩化特征,其内正长石和钠长石可能也是K⁃Na交代作用形成. 样品Wu⁃4中矿物成分体积比为石英(71.48%)、正长石(16.58%)、钠长石(5.18%)、霓石(1.93%),可知石英砾岩中钾化大于钠化.

3 实验方法

3.1 光片全扫描

岩石薄片全扫描在廊坊市拓轩岩矿检测服务有限公司完成. 透射光、透射光+正交偏光和反射光均由高倍显微镜自动拍摄,一张全景照片约由2 500张照片合成(总耗时~500 s);结合配套软件SD Power Mosaic,可实现照片配有坐标系统标定矿物位置,软件比例尺可达22 μm.

3.2 TIMA扫描

TIMA基于SEM自动矿物分析系统,由TESCAN扫描电镜、EDAX能谱仪,TIMA矿物分析软件组成. TIMA分析系统可以对块状、薄片或抛光切片样品进行自动矿产丰度分析、粒度解离分析、矿物组合分析和颗粒尺寸分析,从而对矿物微区结构构造进行系统扫描成像,出具定量化的成分及微区填图数据和图像,为进一步有针对性地开展微区研究提供非常可靠的、直观的基础支撑. 测试单位为南京宏创地质勘查技术服务有限公司.

3.3 LA-ICP-MS锆石U⁃Pb定年

LA⁃ICP⁃MS锆石U⁃Pb定年均选用激光片中的锆石,测试分析在北京科荟测试技术有限公司完成,锆石定年分析所用仪器为AnalytikJena PQMS Elite型 ICP⁃MS及与之配套的RESOlution 193 nm 准分子激光剥蚀系统. 激光剥蚀所用斑束直径为24 μm,频率为6 Hz,能量密度约为6 J/cm2,以He为载气. LA⁃ICP⁃MS激光剥蚀采样采用单点剥蚀的方式,测试前先用锆石标样GJ⁃1进行调试仪器,使之达到最优状态. 锆石U⁃Pb定年以标样GJ⁃1为外标,微量元素含量利用NIST 610作为外标、Si做内标的方法进行定量计算(Liu et al., 2010). 测试过程中在每测定10个样品前后重复测定两个锆石标样GJ⁃1对样品进行校正,并测量一个锆石Plesovice,观察仪器的状态以保证测试的精确度. 数据处理采用ICPMSDataCal程序,测量过程中绝大多数分析点206Pb/204Pb>1 000,未进行普通铅校正,204Pb含量异常高的分析点可能受包体等普通Pb的影响,对204Pb含量异常高的分析点在计算时剔除,锆石年龄谐和图用Isoplot 3.0程序获得(Ludwig, 2003).

3.4 LA-ICP-MS锆石Lu-Hf同位素

本项目检测仪器为激光剥蚀多接收器电感耦合等离子体质谱仪,激光进样系统为RESOlution SE固体激光器,分析系统为多接收等离子体质谱仪(NEPTUNE plus). 根据锆石照片选择合适区域,利用激光剥蚀系统对锆石进行剥蚀,激光剥蚀的斑束直径约为30 μm,能量密度为6 J/cm2,频率为6 Hz,激光剥蚀物质以高纯He为载气送入Neptune Plus(MC⁃ICP⁃MS). 铪同位素数据在低分辨静态模式下获得. 176Hf/177Hf比值采用179Hf/177Hf=0.732 5进行指数归一化校正(即认为两对同位素之间的质量歧视分馏效应符合指数法则). 176Hf同质异位素的干扰校正:176Hf有两个同质异位素176Lu和176Yb,通过对175Lu和172Yb的测定对176Lu和176Yb进行同质异位素的干扰校正.

4 实验结果

4.1 锆石类型判别

通常,较低的Th/U质量比(<0.1)与变质起源相关(Rubatto, 2017),而较高的质量比(>0.4)表示岩浆起源(Hoskin and Schaltegger,2003). 然而,Kong(2025)的研究表明Th/U质量比并不是确定锆石来源的可靠工具. 本次研究对Wu⁃3和Wu⁃4样品的锆石微区进行了稀土元素分析测试,分析结果见表1. 根据锆石微量元素含量,我们应用Kong(2025)机器学习方法分析其为岩浆锆石的概率,Wu⁃3中概率较低的颗粒为点17 (概率0.00%,Th/U比值0.72)、点18 (概率0.14%,Th/U比值0.27);Wu⁃4中概率较低的颗粒为点3 (概率0.32%,Th/U比值0.18)、点5 (概率0.22%,Th/U比值0.40)、点6 (概率0.01%,Th/U比值0.15)、12点(概率0.00%,Th/U比值0.09)、点13 (概率0.12%,Th/U比值0.36)、点17 (概率0.01%,Th/U比值0.15)、点26 (概率0.03 %,Th/U比值0.25).

4.2 锆石U⁃Pb定年

来自Wu⁃3的34颗锆石晶形较好,主要为透明黄色和白色. 剔除不可靠数据后32颗锆石年龄分布特征为图7a和7b;最大单颗粒锆石207Pb/206Pb年龄为2 635±27 Ma,最小单颗粒锆石207Pb/206Pb年龄为1 850±15 Ma;207Pb/ 206Pb年龄集中在1 850 Ma至2 065 Ma,区域内主要峰值年龄为1 959 Ma,次要峰值年龄为2 310 Ma和2 505 Ma. 黄色锆石年龄总体上并不比白色锆石年龄大;锆石U含量为65×10-6~970×10-6,Th含量为25×10-6~685×10-6,Pb含量为34×10-6~509×10-6,Th/U比值为0.03~1.50,Th/U比值小于0.1的年龄为1 899 Ma和1 921 Ma(表2).

来自Wu⁃4的31颗锆石点剔除9个异常年龄后,22个单颗粒年龄分布特征见图7c和7d;最大和最小单颗粒锆石207Pb/206Pb年龄分别为2 616±10 Ma和1 844±17 Ma;207Pb/206Pb年龄集中在1 844 Ma至2 007 Ma,区域内主要峰值年龄为1 968 Ma,次要峰值年龄为2 500 Ma(图7d). 锆石U含量为107×10-6~1 597×10-6,Th含量为27×10-6~316×10-6,Pb含量为53×10-6~675×10-6,Th/U比值为0.09~1.45,Th/U比值小于0.1的年龄为1 939 Ma(表2).

基于机器学习方法对锆石类型进行区分后,综合Wu⁃3和Wu⁃4中的数据,岩浆锆石具有1 972 Ma、2 309 Ma、2 510 Ma峰值,变质锆石具有1 940 Ma、2 274 Ma、2 498 Ma峰值;二者具有年龄接近的峰值特征(图7e,7f),但不同阶段的变质锆石峰值年龄均比岩浆锆石稍小.

4.3 锆石Lu-Hf同位素

Hf同位素组成见表3,围岩锆石年龄⁃εHft)图解见图8. Wu⁃3样品的176Hf/177Hf 比值范围是0.281 280~0.281 747,计算的εHft)值为-12.29~9.77,TDM2(Hf)(两阶段模式年龄)为2 234~3 006 Ma. Wu⁃4样品的176Hf/177Hf 比值范围是0.281 265~0.281 686,计算的εHft)值为-5.49~7.19,TDM2 (Hf)(两阶段模式年龄)为2 316~2 823 Ma. Wu⁃3 和Wu⁃4两个样品的fLu/Hf平均值均为-0.98,明显小于铁镁质地壳fLu/Hf值(-0.34, Amelin et al., 2000)和硅铝质地壳fLu/Hf值(-0.72,Vervoort et al., 1996),故二阶段模式年龄更能反应其源区物质从亏损地幔被抽取的时间或其源区物质在地壳的平均存留年龄.

5 讨论

5.1 白云鄂博区域基底年龄与白云鄂博群年龄

白云鄂博区域上出露的地层包括太古宙-古元古代古老基底杂岩,中元古代白云鄂博群,以及古生代、中新生代沉积物. 白云鄂博新太古代基底主要由钙质TTG(英云闪长岩-奥长花岗岩-花岗闪长岩,tonalite⁃trondhjemite⁃granodiorite)片麻岩组成(范宏瑞等, 2010; 王凯怡等, 2001;钟焱等, 2019; 赵育龙等, 2023). 有研究人员对白云鄂博地区变质基底中片麻状英云闪长岩、片麻状闪长岩、片麻状奥长花岗岩、片麻状二长花岗岩中的锆石进行了岩浆锆石和变质锆石区分,获得了2.63 Ga和2.20~1.89 Ga的岩浆锆石年龄以及2.51~2.47 Ga和1.94~1.86 Ga的变质锆石年龄. 除白云鄂博基底杂岩外,在怀安杂岩、登封杂岩、遵化和五台山带等研究区均有记录~2.5 Ga的年龄(Polat et al., 2006Diwu et al., 2011Liu et al., 2012). 白云鄂博区域~2.5 Ga期间的动力背景与哥伦比亚超大陆形成华北克拉通中的古元古代地壳组合时间相契合(Zhao et al., 2005,2008Trap et al., 2007,2008; 赵国春, 2009). 综合Wu⁃3和Wu⁃4中的数据,岩浆锆石具有1 972 Ma、2 309 Ma、2 510 Ma峰值,变质锆石具有1 940 Ma、2 274 Ma、2 498 Ma峰值,二者均具~2.5 Ga年龄峰值;因此,本文薄片中锆石~2.5 Ga的年龄记录了白云鄂博地区基底锆石的形成或变质时间.

哥伦比亚超大陆的聚合是在2.1~1.8 Ga期间完成的;此后,在1.8~1.3 Ga期间,其主要大陆边缘发生了与俯冲有关的长期增生;其裂解始于~1.6 Ga之前,完成于∼1.3 Ga (Zhao et al., 2003,2011). 在此全球地质背景下,华北克拉通北缘在~2.0 Ga至~1.9 Ga之间的碰撞造山运动带来了闪长岩-花岗闪石岩浆群(2 018±15 Ma)和强烈的区域变质事件(1 891.9±3.8 Ma至1 880±9.3 Ma) (Kusky et al., 2007Fan et al., 2014),基底遭受了二次热事件并产生了大量变质锆石. 白云鄂博前寒武期的岩浆锆石和变质锆石,不仅均具有~2.5 Ga和~1.9 Ga的年龄,也均具有相似的Hf同位素组成. 通过本文锆石Hf同位素分析,在Wu⁃3中,最小207Pb/206Pb年龄为1 850 Ma的单个锆石显示出最大TDM2(Hf)年龄为3 006 Ma,其具εHft)最小(-12.29);在Wu⁃4样品中,最小207Pb/206Pb年龄为1 844 Ma,其也显示最大TDM2(Hf)年龄3 006 Ma,也显示出最小εHft)为-12.29;总体上TDM2(Hf)年龄和207Pb/206Pb与εHft)值之间的年龄差呈现出完美的负相关关系,这种模式年龄越老Hf同位素越富集是正常现象. 锆石εHft)>0反映岩浆起源于地幔或者是来源于从亏损地幔中新增生的年轻地壳,而εHft)<0则反映岩浆起源于地壳物质;Wu⁃3的εHft)值为-12.29~9.77,Wu⁃4的εHft)值为-5.49~7.19(图8),可推测地幔添加和地壳再循环在该区各次岩浆作用中都发挥了重要作用.

在哥伦比亚超大陆的聚合、裂解期间,全球范围内的花岗岩-花岗闪长岩(granite⁃granodiorite,GG)岩套继承了较老的TTG岩套;虽然一些GG岩套形成较早,但GG岩套主要散布在1.9~1.8 Ga之间的造山带中,并且在1.8 Ga后不再产生(Rogers and Santosh, 2009). 全球范围内GG岩套在~1.8 Ga后不再产生,这与白云鄂博区域内白云鄂博群的发育是一致的. 李长海等(2020)通过内蒙古商都地区白云鄂博群尖山组碎屑锆石研究,将尖山组的沉积时代限定在1 800~1 650 Ma之间. 通过比对钟焱等(2019)中都拉哈拉组最小锆石年龄和李长海等(2020)中尖山组最大锆石年龄,本文石英砾岩中锆石207Pb/206Pb最小年龄1 844±18 Ma可能约束了白云鄂博群都拉哈拉组的最大沉积年龄.

5.2 独居石年代确定岩脉初始时间~1.4 Ga

白云鄂博矿床周边岩脉内部分含有独居石和氟碳铈矿,其年龄值不会受基岩锆石混染影响,二者的初始年龄可确定岩脉形成初始时间. Yang et al. (2019)分析方解石碳酸岩中独居石Th⁃Pb年龄分布范围是1 321±14 Ma至411±6 Ma,岩脉本身的初始形成的时间为1 321±14 Ma. Tian et al. (2022)研究白云鄂博矿床内部黑云母型矿石中独居石最大~600 μm,其单点207Pb校正年龄最大为1 393±142 Ma,最小为429±24 Ma;细粒白云岩中大小~20 μm的独居石集合体单点最大年龄为951±136 Ma,最小为451±189 Ma;霓辉石型矿石中独居石以粗粒单颗粒存在,最大~300 μm,单点最大年龄为818±31 Ma,最小为597±15 Ma. 訾建威等(2024)利用SHRIMP离子探针对Wu dyke及其蚀变围岩样品开展了薄片原位独居石208Pb/232Th年代学研究,方解石碳酸岩的独居石年龄变化于1 453 Ma和894 Ma之间;霓长岩样品中独居石年龄为1 164~420 Ma,蚀变围岩石英砾岩中独居石年龄为1 106~501 Ma;独居石加权平均年龄1 401±39 Ma代表其侵入时代. Yang et al. (2019)中独居石Sm⁃Nd年龄为1 317±140 Ma,如果算上其误差值,Sm⁃Nd年龄最大值为1 457 Ma;这与訾建威等(2024)和Tian et al. (2022)研究中独居石~1.4 Ga的初始年龄较一致.

虽然白云鄂博矿床独居石的初始年龄可能代表初始岩脉和初始稀土的形成时间,但独居石年龄在1.0~0.4 Ga区间的分布居多,特别是~0.4 Ga. 因为白云鄂博矿床在1.0~0.4 Ga期间的多阶段构造热事件导致白云鄂博矿床被流体强烈覆盖(Song et al., 2018Yang et al., 2019Tian et al., 2021Li et al., 2022She et al., 2022Wei et al., 2022),造成不同程度的铅损失(Chen et al., 2019Li et al., 2021Wei et al., 2022). 独居石的U⁃Th⁃Pb系统表现不同取决于宿主变质岩中激活的变形机制:溶解-沉淀-蠕变或位错-蠕变(Wawrzenitz et al., 2012);白云鄂博独特的多期热液活动,其内大量的独居石基本经历了溶解-沉淀-蠕变或位错-蠕变机制. 因此独居石中放射性成因Pb的丢失和独居石的变形,造成了白云鄂博相关岩石中Th⁃Pb同位素体系的破坏或重置,这可能是白云鄂博矿床独居石年龄跨度如此之大的原因.

5.3 Sm⁃Nd定年厘定岩脉形成时间~1.3 Ga

关于白云鄂博矿床外围碳酸岩脉Sm⁃Nd年龄前人早已研究,测试方法经历了全岩或单矿物分选化学分析到单矿物LA⁃ICP⁃MS原位测试的转变. 都拉哈拉碳酸岩脉全岩Sm⁃Nd年龄为1 223±65 Ma,此岩脉侵入H2石英砂岩中,脉宽2 m,且两侧围岩已蚀变岩为霓长岩(张宗清等, 1994);张宗清等(2003a)从都拉哈拉碳酸岩脉及其蚀变岩-霓长岩获得1 240±94 Ma的全岩Sm⁃Nd年龄;Le Bas et al. (2007)结合前人数据总结出Zhang碳酸岩脉和Wu dyke碳酸岩脉Sm⁃Nd年龄为1 157±160 Ma;Yang et al. (2011a)统计8个碳酸岩脉全岩Sm⁃Nd等时线年龄1 354±59 Ma;Fan et al. (2014)中Wu dyke碳酸岩中的独居石的原位Sm⁃Nd年龄为1 275±87 Ma;Yang et al. (2019)中碳酸岩粗粒白云岩中的磷灰石原位Sm⁃Nd年龄为1 317±140 Ma;Yang et al. (2023)从铁质碳酸岩脉中获得的磷灰石原位Sm⁃Nd等时线年龄为1 315±69 Ma.

白云鄂博矿床Sm⁃Nd年龄还存在一些~1.3 Ga或~0.4 Ga阶段的年龄(任英忱等, 1994;张宗清等, 1994, 2001, 2003b; Hu et al.,2009Liu et al., 2023). Zhu et al. (2015)通过系统研究白云鄂博Sm⁃Nd年龄发现143Nd/144Nd演化线可以延伸至代表最早稀土元素成矿事件~1.3 Ga交点,并认为岩石保留了其在~1.3 Ga形成时获得的原始Sm⁃Nd同位素特征,即:这些中间年龄不是由于岩石在进化历史后期添加了稀土元素,而是由于一些热事件扰乱了其某些组成矿物中的Sm⁃Nd同位素平衡,但整个岩石的Sm⁃Nd系统基本上保持封闭状态. 总之,白云鄂博周边碳酸岩脉和霓长岩岩床通过Sm⁃Nd定年均显示了~1.3 Ga的形成时间,同时说明岩脉中具较大年龄的锆石均为捕获而来.

5.4 ~1.3 G期间岩脉和岩床中锆石的混染

全球范围内存在大量1.4~1.3 Ga与裂谷-裂解有关的大火成岩省或基性岩浆活动,产生了大量火成碳酸岩(张拴宏等,2024),白云鄂博Wu dyke碳酸岩脉也形成于此背景. 前人研究中,Wu dyke碳酸岩脉中的锆石U⁃Pb年龄主要有2.0 Ga (范宏瑞等, 2006),1.9 Ga、1.4 Ga年龄峰组(范宏瑞等, 2006),2.55~1.82 Ga(Liu et al., 2008),2.5 Ga、1.9 Ga、1.4 Ga年龄峰组(Fan et al., 2014),1.4 Ga、1.2 Ga、0.4 Ga、0.2 Ga(Liu et al., 2018),2.5 Ga和1.9 Ga年龄峰组(Lai and Yang., 2019). 本文Wu dyke围岩石英砾岩中的锆石具~2.5 Ga和~1.9 Ga峰值年龄,这与前人碳酸岩脉中锆石的部分峰值年龄相吻合,而本文的样品为碳酸岩脉周边的围岩,这说明Wu dyke碳酸岩脉中不仅含有在脉体侵位时从碳酸岩岩浆中结晶出来的锆石,也混染了围岩中大量年龄为~2.5 Ga和~1.9 Ga的锆石.

白云鄂博区域其他类型岩脉、岩床形成时间大部分为~1.3 Ga,但其基本都混染了较老的锆石. 在华北克拉通北部燕辽裂陷槽中元古代沉积地层内有大量辉绿岩床侵位,其侵位于~1.32 Ga,与燕辽大火成岩省有关(张拴宏等,2024). Yang et al. (2023)对白云鄂博矿床周边镁铁质岩床(mafic sill)进行了年代学研究,其中岩浆锆石具有~1.3 Ga的207Pb/206Pb年龄,岩脉中具有1 807~2 153 Ma的捕获锆石. 可见在白云鄂博地区不仅是碳酸岩脉,镁铁质岩床中也混染了较老的锆石.

5.5 ~0.4 Ga期间岩浆锆石和老锆石的过度生长、交代

白云鄂博区域内地层在~0.4 Ga期间经历了较高的热事件. 白云鄂博及其周边中-上地壳晚古生代期间具有异常高的地温梯度,可高达50.0±8.3 ℃/km至88.3±8.3 ℃/km,这种异常热的中-上地壳一方面导致了白云鄂博矿区稀土矿物年轻的Th⁃Pb年龄,另一方面也导致了稀土矿物的重结晶及二次富集,形成了大量的脉状富稀土矿体(Zhang et al., 2023). 通过以上信息可推测,发生在~0.4 Ga期间白云鄂博矿区内部及周边的热液活动对矿床内部和外部的部分锆石造成了核部交代或/且边缘的再生长,且Wu dyke石英砾岩中流体包裹体记录了此阶段热事件(Ni et al., 2020).

Campbell et al.(2014)从白云鄂博矿床内部条带状矿石中提取锆石,其核部Th⁃Pb年龄为1 325±60 Ma,边部年龄为450~420 Ma,锆石过度生长的边缘应该是早古生代交代事件的结果. Yang et al. (2023)从碱性岩脉核部年龄为1 307±19 Ma,但锆石边缘5个点显示出570~444 Ma的208Pb/232Th年龄,且锆石边部的Th/U比(1.6~3.9)也显著低于核心的Th/U比(8~770). Wu dyke碳酸岩脉中部分锆石206Pb/238U年龄为381±4 Ma和367±14 Ma(Liu et al., 2018),这几颗热液锆石中含有白云石;这一地质过程解释为中元古代方解石碳酸岩岩浆作用与古亚洲洋闭合期间俯冲释放的加里东流体的长期流动相互作用,以及与地幔楔的相互作用和上覆沉积碳酸盐的交代作用的结果. 与锆石因过度成长和交代显示锆石边缘具~0.4 Ga年龄不同的是,Huang et al.(2023)对白云鄂博西矿周边碳酸岩中存在岩浆锆石,其U⁃Pb年龄和Th⁃Pb年龄分别为427.4±9.8 Ma和435.2±4.6 Ma,表明白云鄂博地区在早古生代时期还存在一期火成碳酸岩的岩浆活动;此期火成碳酸岩岩浆活动有待更多学者挖掘,对区域内锆石时间上和空间上的演化具有重要意义.

5.6 ~0.2 Ga期间岩浆锆石和结晶锆石

白云鄂博区域内闪长质-花岗质岩石中锆石U⁃Pb年龄为281~263 Ma(范宏瑞等, 2010),花岗岩年龄为294~243 Ma (Linget al., 2014),这表示此阶段区域内形成岩浆锆石. 斜锆石为二氧化硅不饱和火成岩结晶年龄的关键矿物,Zhang et al. (2017b)从白云鄂博碳酸岩脉中获得斜锆石年龄为310~270 Ma (U⁃Th⁃Pb),研究认为斜锆石形成于晚古生代花岗岩侵位过程中已有锆石与白云石的交代反应,或者是矽卡岩化中某些阶段贫硅流体结晶的产物. 同时,Liu et al. (2018)在从Wu dyke碳酸岩中获得的一粒锆石年龄为218~204 Ma,这也有可能是碳酸岩脉受此时期热液活动而反映结晶形成的锆石;另一粒Liu et al. (2018)研究中交代明显的锆石一个点位呈现190 Ma,可能是此时期热液交代的反映. Huang et al. (2023)研究中白云鄂博西矿周边碳酸岩体中的锆石U⁃Pb年龄还有237 Ma、206 Ma、198 Ma,因为此岩体中锆石指示~0.4 Ga的火成碳酸岩岩浆活动,这些~0.2 Ga的年龄有待讨论.

通过以上关于白云鄂博地区碳酸岩脉中锆石形成构造背景和时间的分析,可初步总结碳酸岩脉中锆石的形成序列(图9). 但关于碳酸岩脉中和锆石相关的一些问题还有待进一步研究,诸如:碳酸岩脉围岩石英砾岩中锆石与霓石、长石的相互关系是否存在多期次性,岩脉外围岩石内的锆石为什么不受后期热液作用出现边缘再生长或核部交代,~0.4 Ga火成碳酸岩对~1.3 Ga碳酸岩脉的影响,~0.2 Ga非岩浆成因锆石的分布区域,相关热事件对先前年龄封闭体系的影响程度等.

6 结论

(1)Wu dyke周围石英砾中的锆石有3种分布特征:①大部分锆石分布在石英和正长石的接触部位,且周边均伴有霓石和钠长石;②部分锆石分布在石英中,其中部分锆石周边有钠长石和霓石颗粒;③少部分锆石分布在正长石中,锆石周边含有微量的钠长石和霓石;每种分布类型的锆石均有1.8~2.5 Ga年龄. 石英砾岩中锆石具有~2.5 Ga和~1.9 Ga主要峰值年龄,一个次要峰值年龄~2.3 Ga;最小锆石年龄1 844±18 Ma可能约束了白云鄂博群都拉哈拉组的最大沉积年龄.

(2)Wu dyke碳酸岩脉及围岩锆石年龄研究说明,碳酸岩脉中混染了围岩中的锆石. Wu dyke碳酸岩脉形成于1.4~1.3 Ga之间,在脉体侵位时从碳酸岩岩浆中结晶出来锆石. 在1.2~0.5 Ga期间矿床区域内虽经历多期次热液活动,但没有此期间的锆石发现. 在~0.4 Ga期间,Wu dyke碳酸岩脉中生成了部分热液锆石,矿区附近部分锆石的边缘得到了再生长;矿床周边区域可能有同期碳酸岩体的形成并生成了岩浆锆石. 碳酸岩脉中~0.2 Ga的锆石可能是由与二叠纪花岗岩侵位有关的接触变质作用中的热液流体结晶和/或已有锆石和白云石的交代反应而成.

附件见:https://doi.org/10.3799/dqkx.2025.031

参考文献

[1]

Amelin, Y., Lee, D. C., Halliday, A. N., 2000. Early⁃Middle Archaean Crustal Evolution Deduced from Lu⁃Hf and U⁃Pb Isotopic Studies of Single Zircon Grains. Geochimica et Cosmochimica Acta, 64(24): 4205-4225. https://doi.org/10.1016/S0016⁃7037(00)00493⁃2

[2]

Campbell, L. S., Compston, W., Sircombe, K. N., et al., 2014. Zircon from the East Orebody of the Bayan Obo Fe⁃Nb⁃REE Deposit, China, and SHRIMP Ages for Carbonatite⁃Related Magmatism and REE Mineralization Events. Contributions to Mineralogy and Petrology, 168(2): 1041. https://doi.org/10.1007/s00410⁃014⁃1041⁃3

[3]

Chen, W., Liu, H. Y., Lu, J., et al., 2019. The Formation of the Ore⁃Bearing Dolomite Marble from the Giant Bayan Obo REE⁃Nb⁃Fe Deposit, Inner Mongolia: insights from Micron⁃Scale Geochemical Data. Mineralium Deposita, 55(1): 131-146. https://doi.org/10.1007/s00126⁃019⁃00886⁃4

[4]

Cui, H., Zhong, R. C., Xie, Y. L., et al., 2020. Forming Sulfate⁃ and REE⁃Rich Fluids in the Presence of Quartz. Geology, 48(2): 145-148. https://doi.org/10.1130/G46893.1

[5]

Diwu, C. R., Sun, Y., Guo, A. L., et al., 2011. Crustal Growth in the North China Craton at 2.5Ga: Evidence from in Situ Zircon U⁃Pb Ages, Hf Isotopes and Whole⁃Rock Geochemistry of the Dengfeng Complex. Gondwana Research, 20(1): 149-170. https://doi.org/10.1016/j.gr.2011.01.011

[6]

Fan, H.R., Chen, F.K., Wang, K.Y., et al., 2002. Zircon U⁃Pb Age of a Carbonatite Dyke from Bayan Obo REE⁃Fe⁃Nb Deposit, Inner Mongolia and Its Geological Significance. Acta Petrologica Sinica, 18(13): 363-368 (in Chinese with English abstract).

[7]

Fan, H. R., Hu, F. F., Chen, F. K., et al., 2006. Intrusive Age of No.1 Carbonatite Dyke from Bayan Obo REE⁃Nb⁃Fe Deposit, Inner Mongolia: with Answers to Comment of Dr.Le Bas. Acta Petrologica Sinica, 22(2): 519-520 (in Chinese with English abstract).

[8]

Fan, H.R., Yang, K.F., Hu, F.F., et al., 2010. Zircon Geochronology of Basement Rocks from the Bayan Obo Area, Inner Mongolia, and Tectonic Implications. Acta Petrologica Sinica, 26(5): 1342-1350 (in Chinese with English abstract).

[9]

Fan, H.R., Hu, F.F., Yang, K.F., et al., 2014. Integrated U⁃Pb and Sm⁃Nd Geochronology for a REE⁃Rich Carbonatite Dyke at the Giant Bayan Obo REE Deposit, Northern China. Ore Geology Reviews, 63: 510-519. https://doi.org/10.1016/j.oregeorev.2014.03.005

[10]

Hoskin, W.O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Rev. Mineral. Geochem. 53:27-55.

[11]

Huang, Y.S., Liu, Q., Liu, F.X., et al., 2023. Large Si Isotope Fractionation Reveals Formation Mechanism of Quartz in Silicon⁃Poor Carbonatite. Geology, 51: 1038-1042.

[12]

Huang, Y. S., Li, X. C., Xu, X. W., et al., 2024. New Discovery of the Early Paleozoic Carbonatite in Bayan Obo (China): Insights into the Giant REE Accumulation. Ore Geology Reviews, 170: 106156. https://doi.org/10.1016/j.oregeorev.2024.106156

[13]

Hu, F. F., Fan, H. R., Liu, S., et al., 2009. Samarium⁃Neodymium and Rubidium⁃Strontium Isotopic Dating of Veined REE Mineralization for the Bayan Obo REE⁃Nb⁃Fe Deposit, Northern China. Resource Geology, 59(4): 407-414. https://doi.org/10.1111/j.1751⁃3928.2009.00107.x

[14]

IGCAS. 1988. Geochemistry of the Bayan Obo Deposit. Science Press, Beijing (in Chinese with English abstract).

[15]

Kong, J. T., Yu, H. R., Sun, J. Y., et al., 2025. Classifying zircon: A Machine⁃Learning Approach Using Zircon Geochemistry. Gondwana Research, 137: 227-233. https://doi.org/10.1016/j.gr.2024.09.010

[16]

Kusky, T., Li, J. H., Santosh, M., 2007. The Paleoproterozoic North Hebei Orogen: North China Craton’s Collisional Suture with the Columbia Supercontinent. Gondwana Research, 12(1/2): 4-28. https://doi.org/10.1016/j.gr.2006.11.012

[17]

Lai, X. D., Yang, X. Y., 2019. U⁃Pb Ages and Hf Isotope of Zircons from a Carbonatite Dyke in the Bayan Obo Fe⁃REE Deposit in Inner Mongolia: Its Geological Significance. Acta Geologica SinicaEnglish Edition, 93(6): 1783-1796. https://doi.org/10.1111/1755⁃6724.14364

[18]

Le Bas, M. J., Kellere, J., Tao, K. J., et al., 1992. Carbonatite Dykes at Bayan Obo, Inner Mongolia, China. Mineralogy and Petrology, 46(3): 195-228. https://doi.org/10.1007/BF01164647

[19]

Le Bas, M. J., Yang, X. M., Taylor, R. N., et al., 2007. New Evidence from a Calcite⁃Dolomite Carbonatite Dyke for the Magmatic Origin of the Massive Bayan Obo Ore⁃Bearing Dolomite Marble, Inner Mongolia, China. Mineralogy and Petrology, 91(3): 287. https://doi.org/10.1007/s00710⁃007⁃0215⁃3

[20]

Li, H. T., Yang, K. F., Gao, Y. P., et al., 2022. Age and Origin of the H9 Member from the Bayan Obo Group: Implications for the Genesis of the Giant Bayan Obo Fe⁃Nb⁃REE Deposit, China. Ore Geology Reviews, 146: 104927. https://doi.org/10.1016/j.oregeorev.2022.104927

[21]

Li, X. C., Yang, K. F., Spandler, C., et al., 2021. The Effect of Fluid⁃Aided Modification on the Sm⁃Nd and Th⁃Pb Geochronology of Monazite and bastnäsite: Implication for Resolving Complex Isotopic Age Data in REE Ore Systems. Geochimica et Cosmochimica Acta, 300: 1-24. https://doi.org/10.1016/j.gca.2021.02.028

[22]

Ling, M. X., Zhang, H., Li, H., et al., 2014. The Permian⁃Triassic Granitoids in Bayan Obo, North China Craton: A Geochemical and Geochronological Study. Lithos, 190: 430-439. https://doi.org/10.1016/j.lithos.2014.01.002

[23]

Liu, F., Guo, J. H., Peng, P., et al., 2012. Zircon U⁃Pb Ages and Geochemistry of the Huai’an TTG Gneisses terrane: Petrogenesis and Implications for ∼2.5Ga Crustal Growth in the North China Craton. Precambrian Research, 212: 225-244. https://doi.org/10.1016/j.precamres. 2012. 06.006

[24]

Liu, S., Fan, H. R., Wang, Q. W., et al., 2023. Carbonatite⁃Related Delicate REE Mineralization Processes Revealed by Fluorocarbonates and monazite: Insights from the Giant Bayan Obo REE⁃Nb⁃Fe Deposit, China. Ore Geology Reviews, 157: 105443. https://doi.org/10.1016/j.oregeorev.2023.105443

[25]

Liu, Y. F., Bagas, L., Nie, F. J., et al., 2016. Re⁃Os System of Black Schist from the Mesoproterozoic Bayan Obo Group, Central Inner Mongolia, China and Its Geological Implications. Lithos, 261: 296-306. https://doi.org/10.1016/j.lithos.2015.11.023

[26]

Liu, Y., Williams, I. S., Chen, J., et al., 2008. The Significance of Paleoproterozoic Zircon in Carbonatite Dikes Associated with the Bayan Obo REE⁃Nb⁃Fe Deposit. American Journal of Science, 308(3): 379-397. https://doi.org/10.2475/03.2008.08

[27]

Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling⁃Induced Melt⁃Peridotite Interactions in the Trans⁃North China Orogen: U⁃Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571

[28]

Liu, Y. L., Ling, M. X., Williams, I. S., et al., 2018. The Formation of the Giant Bayan Obo REE⁃Nb⁃Fe Deposit, North China, Mesoproterozoic Carbonatite and Overprinted Paleozoic Dolomitization. Ore Geology Reviews, 92: 73-83. https://doi.org/10.1016/j.oregeorev. 2017. 11.011

[29]

Ludwig, K.R., 2003. User's Manual for Isoplot 3.00, a Geochronlogical Toolkit for Microsoft Excel. Berkeley Geochronl. Cent. Spec. Publ., 4: 25-32.

[30]

Mian, I., Le Bas, M. J., 1986. Sodic Amphiboles in Fenites from the Loe Shilman Carbonatite Complex, NW Pakistan. Mineralogical Magazine, 50(356): 187-197. https://doi.org/10.1180/minmag.1986.050.356.01

[31]

Mitchell, R. H., 2005. Carbonatites and Carbonatites and Carbonatites. The Canadian Mineralogist, 43(6): 2049-2068. https://doi.org/10.2113/gscanmin.43.6.2049

[32]

Morogan, V., 1994. Ijolite versus Carbonatite as Sources of Fenitization. Terra Nova, 6(2): 166-176. https://doi.org/10.1111/j.1365⁃3121.1994.tb00650.x

[33]

Ni, P., Zhou, J., Chi, Z., et al., 2020. Carbonatite Dyke and Related REE Mineralization in the Bayan Obo REE Ore Field, North China: Evidence from Geochemistry, CO Isotopes and RBSR Dating. Journal of Geochemical Exploration, 215: 106560. https://doi.org/10.1016/j.gexplo.2020.106560

[34]

Polat, A., Herzberg, C., Munker, C., et al., 2006. Geochemical and Petrological Evidence for a Suprasubduction Zone Origin of Neoarchean (Ca. 2.5 Ga) Peridotites, Central Orogenic Belt, North China Craton. Geological Society of America Bulletin, 118(7/8): 771-784. https://doi.org/10.1130/b25845.1

[35]

Ren, Y. S., Yang, X. Y., Wang, S. S., et al., 2019. Mineralogical and Geochemical Study of Apatite and Dolomite from the Bayan Obo Giant Fe⁃REE⁃Nb Deposit in Inner Mongolia: New Evidences for Genesis. Ore Geology Reviews, 109: 381-406. https://doi.org/10.1016/j.oregeorev.2019.04.020

[36]

Rogers, J. J. W., Santosh, M., 2009. Tectonics and Surface Effects of the Supercontinent Columbia. Gondwana Research, 15(3/4): 373-380. https://doi.org/10.1016/j.gr.2008.06.008

[37]

Rubatto, D., 2017. Zircon: The Metamorphic Mineral. Reviews in Mineralogy and Geochemistry, 83(1): 261-295. https://doi.org/10.2138/rmg.2017.83.9

[38]

Santosh, M., 2010. Assembling North China Craton within the Columbia supercontinent: The Role of Double⁃Sided Subduction. Precambrian Research, 178(1/2/3/4): 149-167. https://doi.org/10.1016/j.precamres.2010.02.003

[39]

She, H. D., Fan, H. R., Yang, K. F., et al., 2022. Carbonatitic Footprints in the Bayan Obo REEs Deposit as Seen from Pyrite Geochemistry. Precambrian Research, 379: 106801. https://doi.org/10.1016/j.precamres.2022.106801

[40]

Song, W. L., Xu, C., Smith, M. P., et al., 2018. Genesis of the World’s Largest Rare Earth Element Deposit, Bayan Obo, China: Protracted Mineralization Evolution over ∼1 B.y. Geology, 46(4): 323-326. https://doi.org/10.1130/g39801.1

[41]

Tian, P. F., Yang, X. Y., Yuan, W. M., 2021. Formation and Preservation of the Bayan Obo Fe⁃REE⁃Nb Deposit, Inner Mongolia: Insights from Evidences of Petrogenesis, Geochemistry and Apatite Fission Track Dating. Solid Earth Sciences, 6(2): 228-245. https://doi.org/10.1016/j.sesci.2020.08.002

[42]

Tian, P. F., Yang, X. Y., Xiao, Y. L., et al., 2022. In Situ Monazite U⁃Pb Ages in Thin Sections from the Giant Bayan Obo Fe⁃REE⁃Nb Deposit, Inner Mongolia: Implications for Formation Sequences. Minerals, 12(10): 1237. https://doi.org/10.3390/min12101237

[43]

Trap, P., Faure, M., Lin, W., et al., 2007. Late Paleoproterozoic (1 900⁃1 800 Ma) Nappe Stacking and Polyphase Deformation in the Hengshan⁃Wutaishan area: Implications for the Understanding of the Trans⁃North⁃China Belt, North China Craton. Precambrian Research, 156(1/2): 85-106. https://doi.org/10.1016/j.precamres.2007.03.001

[44]

Trap, P., Faure, M., Lin, W., et al., 2008. Contrasted Tectonic Styles for the Paleoproterozoic Evolution of the North China Craton. Evidence for a ∼2.1 Ga Thermal and Tectonic Event in the Fuping Massif. Journal of Structural Geology, 30(9): 1109-1125. https://doi.org/10.1016/j.jsg.2008.05.001

[45]

Vervoort, J. D., Patchett, P. J., Gehrels, G. E., et al., 1996. Constraints on Early Earth Differentiation from Hafnium and Neodymium Isotopes. Nature, 379(6566): 624-627. https://doi.org/10.1038/379624a0

[46]

Wang, K.Y., Fan, H.R., Xie, Y.H., et al., 2002. Geochemistry of REE and Other Trace Elements of the Carbonatite Dykes at Bayan Obo Implication for Its Formation. Acta Petrologica Sinica, 18(3): 340-348 (in Chinese with English abstract).

[47]

Wang, K.Y., Fan, H.R., Xie, Y.H., et al., 2002. Zircon U⁃Pb Dating of Basement Gneisses in the Super⁃Large Bayan Obo REE⁃Fe⁃Nb Deposit, Inner Mongolia. Chinese Science Bulletin, 47: 245-248 (in Chinese with English abstract).

[48]

Wawrzenitz, N., Krohe, A., Rhede, D., et al., 2012. Dating Rock Deformation with monazite: The Impact of Dissolution Precipitation Creep. Lithos, 134: 52-74. https://doi.org/10.1016/j.lithos.2011.11.025

[49]

Wei, C.W., Deng, M., Xu, C., et al., 2022. Mineralization of the Bayan Obo Rare Earth Element Deposit by Recrystallization and Decarbonation. Economic Geology, 117(6): 1327-1338. https://doi.org/10.5382/econgeo.4926

[50]

Woolley, A. R., Kjarsgaard, B. A., 2008. Paragenetic Types of Carbonatite as Indicated by the Diversity and Relative Abundances of Associated Silicate Rocks: evidence from a Global Database. The Canadian Mineralogist, 46(4): 741-752. https://doi.org/10.3749/canmin.46.4.741

[51]

Xiao, Q.H., Liu, Y., Xu, L.Q., et al., 2020. Preliminary Study on Geology and Mineralization of the Bayan Obo Ocean Plate. Earth Science, 45(7): 2258-2278 (in Chinese with English abstract).

[52]

Xiao, W. J., Windley, B. F., Hao, J., et al., 2003. Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 22(6):1-10. https://doi.org/10.1029/2002TC001484

[53]

Xie, Y.L., Qu, Y.W., Yang, Z.F., et al., 2019. Giant Bayan Obo Fe⁃Nb⁃REE Deposit: Progresses, Controversaries and New Understandings. Mineral Deposits, 38: 983-1003 (in Chinese with English abstract).

[54]

Xie, Y. L., Qu, Y. W., Zhong, R. C., et al., 2019. The ~1.85 Ga Carbonatite in North China and Its Implications on the Evolution of the Columbia Supercontinent. Gondwana Research, 65: 125-141. https://doi.org/10.1016/j.gr.2018.10.001

[55]

Xue, G.Q., Zhang, J.E., Chen, W.Y., et al., 2024. Translithospheric Carbonatite Magmatic System of the World’s Largest REE Deposit, Bayan Obo, China, Geology.

[56]

Yang, K. F., Fan, H. R., Santosh, M., et al., 2011a. Mesoproterozoic Carbonatitic Magmatism in the Bayan Obo Deposit, Inner Mongolia, North China: Constraints for the Mechanism of Super Accumulation of Rare Earth Elements. Ore Geology Reviews, 40(1): 122-131. https://doi.org/10.1016/j.oregeorev.2011.05.008

[57]

Yang, K. F., Fan, H. R., Santosh, M., et al., 2011b. Mesoproterozoic Mafic and Carbonatitic Dykes from the Northern Margin of the North China Craton: Implications for the Final Breakup of Columbia Supercontinent. Tectonophysics, 498(1/2/3/4): 1-10. https://doi.org/10. 1016/j.tecto.2010.11.015

[58]

Yang, K. F., Fan, H. R., Pirajno, F., et al., 2019. The Bayan Obo (China) Giant REE Accumulation Conundrum Elucidated by Intense Magmatic Differentiation of Carbonatite. Geology, 47(12): 1198-1202. https://doi.org/10.1130/g46674.1

[59]

Yang, K. F., Fan, H. R., Pirajno, F., et al., 2023. Magnesium Isotope Fractionation in Differentiation of Mafic⁃Alkaline⁃Carbonatitic Magma and Fe⁃P⁃REE⁃Rich Melt at Bayan Obo, China. Ore Geology Reviews, 157: 105466. https://doi.org/10.1016/j.oregeorev.2023.105466

[60]

Yang, X.Y., Lai, X.D., Ren, Y.S., et al., 2015. Geological Characteristics and Their Scientific Problems of the Bayan Obo Fe⁃REE⁃Nb Deposit: Discussion on the Origin of Bayan Obo Super⁃Large Deposit. Acta Geologica Sinica, 89(12): 2323-2350 (in Chinese with English abstract).

[61]

Yang, X. Y., Lai, X. D., Pirajno, F., et al., 2017. Genesis of the Bayan Obo Fe⁃REE⁃Nb Formation in Inner Mongolia, North China Craton: A Perspective Review. Precambrian Research, 288: 39-71. https://doi.org/10.1016/j.precamres.2016.11.008

[62]

Yin, S.P., Xie, Y.L, Hou, Z.Q., et al., 2024. A Review of Research Advances on Carbonatite. Acta Petrologica Sinica, 40(3): 1003-1022 (in Chinese with English abstract).

[63]

Zhai, M. G., 2011. Cratonization and the Ancient North China Continent: A Summary and Review. Science China Earth Sciences, 54(8): 1110-1120. https://doi.org/10.1007/s11430⁃011⁃4250⁃x

[64]

Zhai, M. G., Santosh, M., 2013. Metallogeny of the North China Craton: Link with Secular Changes in the Evolving Earth. Gondwana Research, 24(1): 275-297. https://doi.org/10.1016/j.gr.2013.02.007

[65]

Zhai, M. G., Hu, B., Zhao, T. P., et al., 2015. Late Paleoproterozoic⁃Neoproterozoic Multi⁃Rifting Events in the North China Craton and Their Geological Significance: A Study Advance and Review. Tectonophysics, 662: 153-166. https://doi.org/10.1016/j.tecto.2015.01.019

[66]

Zhang, J.E., Fan, H. R., Xiao, W. J., et al., 2024. Configuration of Carbonatite Constrained in Preintrusion Transpositional Foliation in the Bayan Obo Giant Rare Earth Element Deposit, China. Economic Geology, 119(4): 853-869. https://doi.org/10.5382/econgeo.5076

[67]

Zhang, S. H., Zhao, Y., Liu, Y. S., 2017a. A Precise Zircon Th⁃Pb Age of Carbonatite Sills from the World’s Largest Bayan Obo deposit: Implications for Timing and Genesis of REE⁃Nb Mineralization. Precambrian Research, 291: 202-219. https://doi.org/10.1016/j.precamres. 2017. 01.024

[68]

Zhang, S. H., Zhao, Y., Li, Q. L., et al., 2017b. First Identification of Baddeleyite Related/Linked to Contact Metamorphism from Carbonatites in the World’s Largest REE Deposit, Bayan Obo in North China Craton. Lithos, 284: 654-665. https://doi.org/10.1016/j.lithos. 2017. 05.015

[69]

Zhang, S.H., Zhao, Y., 2018. The 1.33~13.0 Ga Mafic Large Igneous Province and REE⁃Nb Metallogenic Event in the Northern North China Craton. Earth Science Frontiers, 25(5): 34-50 (in Chinese with English abstract).

[70]

Zhang, S. H., Zhou, M. F., Zhao, Y., et al., 2023. An Unusually Warm Upper⁃Crust in the Late Paleozoic North China Continental Arc: Implications for the Thermal Modification of the Giant Bayan Obo REE Deposit. Earth and Space Science, 10(5): e2022EA002539. https://doi.org/10.1029/2022EA002539

[71]

Zhang, S. H., Zhao, Y., Pei, J. L., et al., 2024. From the Yanliao Sill Swarms in the North China Craton to the Large⁃Scale Continental Rift System in the Columbia supercontinent: A Review and New Perspectives on 20 Years of Research on the Yanliao Large Igneous Province. Acta Geologica Sinica, 98(3): 783-798 (in Chinese with English abstract).

[72]

Zhang, Z. Q., Tang, S. H., Wang, J. H., et al., 1994. New Data for Ore⁃Forming Age of the Bayan Obo Ree Ore Deposit, Inner Mongolia.Acta Geoscientica Sinica, 15(S1): 85-94(in Chinese with English abstract).

[73]

Zhang, Z. Q., Tang, S. H., Wang, J. H., et al., 2001. The Sm⁃Nd and Rb⁃Sr Isotopic Systems of the Dolomites in the Bayan Obo Ore Deposit, Inner Mongolia, China. Acta Petrologica Sinica, 17(4): 637-642 (in Chinese with English abstract).

[74]

Zhang, Z.Q., Yuan, Z.X., Tang, S.H., et al., 2003a. Age and Geochemistry of the Bayan Obo Ore Deposit. Geological Publishing House, Beijing (in Chinese with English abstract).

[75]

Zhang, Z.Q., Tang, S.H., Wang, J.H., et al., 2003b. Information about Ore Deposit Formation in Different Epochs: Age of the West Ore Bodies of the Bayan Obo Deposit with a Discussion. Geology in China, 30(2): 130-137 (in Chinese with English abstract).

[76]

Zhao, G. C., Sun, M., Wilde, S. A., et al., 2003. Assembly, Accretion and Breakup of the Paleo⁃Mesoproterozoic Columbia Supercontinent: Records in the North China Craton. Gondwana Research, 6(3): 417-434. https://doi.org/10.1016/S1342⁃937X(05)70996⁃5

[77]

Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: key Issues Revisited. Precambrian Research, 136(2): 177-202. https://doi.org/10.1016/j.precamres. 2004. 10.002

[78]

Zhao, G., Wilde, S. A., Sun, M., et al., 2008. SHRIMP U⁃Pb Zircon Geochronology of the Huai’an Complex: Constraints on Late Archean to Paleoproterozoic Magmatic and Metamorphic Events in the Trans⁃North China Orogen. American Journal of Science, 308(3): 270-303. https://doi.org/10.2475/03.2008.04

[79]

Zhao, G.C., 2009. Metamorphic Evolution of Major Tectonic Units in the Basement of the North China Craton: Key Issues and Discussion. Act Petrologica Sinica, 25(8): 1772-1792 (in Chinese with English abstract).

[80]

Zhao, G. C., Li, S. Z., Sun, M., et al., 2011. Assembly, Accretion, and Break⁃Up of the Palaeo⁃Mesoproterozoic Columbia Supercontinent: record in the North China Craton Revisited. International Geology Review, 53(11/12): 1331-1356. https://doi.org/10.1080/00206814. 2010. 527631

[81]

Zhao, Y.L., Zhang, J.E., Fan, H.R., et al., 2023. Haoqin⁃North Jianshan Thrust Fault and Its Constraints on the Extension of Ore⁃Bearing Carbonatite in the Bayan Obo Area. Acta Petrologica Sinica, 39(10): 2910-2926 (in Chinese with English abstract).

[82]

Zhong, Y., Xiang, Z.Q., Chu, H., et al., 2019. A Mesoproterozoic Multi⁃Cycled Composite Basin in the Northern Margin of the North China Craton and Its Geological Implications: Constraints from Statistics of the Detrital Zircon U⁃Pb Data. Acta Petrologica Sinica, 35(8): 2377-2406 (in Chinese with English abstract).

[83]

Zhong, Y., Zhai, M. G., Peng, P., et al., 2015. Detrital Zircon U⁃Pb Dating and Whole⁃Rock Geochemistry from the Clastic Rocks in the Northern Marginal Basin of the North China Craton: Constraints on Depositional Age and Provenance of the Bayan Obo Group. Precambrian Research, 258: 133-145. https://doi.org/10.1016/j.precamres.2014.12.010

[84]

Zhu, X. K., Sun, J., Pan, C. X., 2015. Sm⁃Nd Isotopic Constraints on Rare⁃Earth Mineralization in the Bayan Obo Ore Deposit, Inner Mongolia, China. Ore Geology Reviews, 64: 543-553. https://doi.org/10.1016/j.oregeorev.2014.05.015

[85]

Zi, J. W., Li, L. X., Li, Y. K., et al., 2024. Magmatic⁃Hydrothermal History of Bayan Obo REE⁃Rich Carbonatites Revealed by Monazite Th⁃Pb Geochronology of the Wu Dyke. Earth Science, 49(8): 2685-2696 (in Chinese with English abstract).

基金资助

中国科学院战略性先导科技专项“低碳能源金属矿产(锂、稀土、钴、镍、铜)找矿增储与高效提取”(XDA0430203)

山西省教育厅项目(2022L593)

自然资源部同位素地质重点实验室开放课题基金

国家自然科学基金项目(42127801)

山西省科技厅面上项目(202403021221224)

山西工程技术学院(2021QD⁃21)

山西工程技术学院(2023HX⁃11)

来晋工作优秀博士资助(2022PT⁃03)

AI Summary AI Mindmap
PDF (23420KB)

21

访问

0

被引

详细

导航
相关文章

AI思维导图

/