江西宜春-新余地区石竹山超大型硅灰石矿区中多金属矿化矽卡岩的特征、形成年代及其找矿意义

李昌元 ,  马盈 ,  刘德亮 ,  李岩 ,  朱振华 ,  曾凯 ,  袁启玉 ,  肖丹

地球科学 ›› 2025, Vol. 50 ›› Issue (08) : 2925 -2936.

PDF (11212KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (08) : 2925 -2936. DOI: 10.3799/dqkx.2025.032

江西宜春-新余地区石竹山超大型硅灰石矿区中多金属矿化矽卡岩的特征、形成年代及其找矿意义

作者信息 +

Characteristics, Age, and Exploration Significance of Polymetallic Mineralized Skarns in the Super⁃Large Shizhushan Wollastonite Deposit in the Yichun⁃Xinyun Area of Jiangxi Province

Author information +
文章历史 +
PDF (11480K)

摘要

江西石竹山矿床(7 000万吨硅灰石)位于钦杭成矿带东段,是世界上最大的硅灰石矿床. 石竹山矿区中蒙山岩体与围岩碳酸盐岩地层接触带产出的矽卡岩中发育W⁃Sn⁃Cu⁃Mo多金属矿化现象,但其形成时代和成因研究较为薄弱. 基于石竹山矿床中多金属矿化矽卡岩的地质特征,通过对不同类型石榴子石开展原位微区U⁃Pb测年和主微量元素分析,以限定多金属矿化矽卡岩的形成年代,深化对矿床成因的认识,进一步指导找矿勘查. 矽卡岩中发育3种类型的石榴子石,分别为红棕色石榴子石(Grt⁃1),深棕色石榴子石(Grt⁃2)和黄绿色石榴子石(Grt⁃3),3种类型石榴子石均属于钙铁榴石-钙铝榴石固溶体系列,但Grt⁃1和Grt⁃2相对富铁而Grt⁃3相对富铝. Grt⁃2和Grt⁃3的U⁃Pb年龄分别为234.7±1.6 Ma和234.4±9.9 Ma,与矿区内广泛出露的蒙山岩体似斑状黑云母二长花岗岩的年龄一致. 研究表明,石竹山矿床硅灰石矿化和多金属矿化均发生于晚三叠世,二者均与蒙山岩体的岩浆活动具有密切的成因联系,除硅灰石外,石竹山矿区还具有较大的W⁃Sn⁃Cu⁃Mo多金属矿化潜力.

Abstract

The Shizhushan deposit (70 millions tons of wollastonite) in Jiangxi is situated in the eastern section of the Qin⁃Hang metallogenic belt and is recognized as the largest wollastonite deposit in the world. Within this deposit, W⁃Sn⁃Cu⁃Mo polymetallic mineralization is present in the skarns located in the contact zone between the Mengshan granite and the surrounding carbonate rocks. However, research on the formation age and genesis of this mineralization is relatively limited. This paper conducts in situ U⁃Pb dating and trace element analyses of garnets from different generations to determine the age of formation of the polymetallic mineralized skarns. The findings aim to enhance the understanding of the deposit's genesis and provide further guidance for mineral exploration. Three types of garnets have developed in the skarn: the first type consists of reddish⁃brown garnet (Grt⁃1), the second type comprises dark⁃brown garnet (Grt⁃2), and the third type features yellowish⁃green garnet (Grt⁃3). All three types of garnet belong to the andradite to grossularite solid⁃solution series; however, Grt⁃1 and Grt⁃2 are relatively rich in iron, while Grt⁃3 is relatively rich in aluminum. The U⁃Pb ages of Grt⁃2 and Grt⁃3 are 234.7±1.6 Ma and 234.4±9.9 Ma, respectively, which align with the ages of the biotite monzogranite from the Mengshan complex, widely exposed in the mining area. This study indicates that both wollastonite mineralization and polymetallic mineralization in the Shizhushan deposit occurred during the Late Triassic and are closely associated with the intrusion of the Mengshan granite. In addition to wollastonite, the Shizhushan deposit also holds significant potential for W⁃Sn⁃Cu⁃Mo polymetallic mineralization.

Graphical abstract

关键词

超大型硅灰石矿床 / 多金属矿化 / 找矿意义 / 江西石竹山地区 / 矿物学.

Key words

Super⁃large wollastonite deposit / polymetallic mineralization / significance of prospecting / Shizhushan area / Jiangxi Province / mineralogy

引用本文

引用格式 ▾
李昌元,马盈,刘德亮,李岩,朱振华,曾凯,袁启玉,肖丹. 江西宜春-新余地区石竹山超大型硅灰石矿区中多金属矿化矽卡岩的特征、形成年代及其找矿意义[J]. 地球科学, 2025, 50(08): 2925-2936 DOI:10.3799/dqkx.2025.032

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

钦杭成矿带位于华夏与扬子地块的构造拼贴带,其以发育大规模的Cu⁃Au⁃Pb⁃Zn⁃W⁃Sn多金属矿化为特色,目前已探明超大型、大中型矿床400余处,包括德兴、金山、柿竹园、锡矿山、黄沙坪等大型-特大型多金属矿田等(毛景文等,2011). 近年来,随着找矿工作的不断深入,在钦杭成矿带东段江西宜春-新余地区萍乐坳陷带蒙山岩体周缘发现了一批大型-超大型硅灰石、透辉石非金属矿床,这些矿床主要分布在蒙山岩体与碳酸盐地层的接触带中,矿体中发育大量硅灰石、透辉石和石榴子石等矽卡岩矿物(王先广等,2019;张鹏浩等,2023). 关于区内与金属相关的矽卡岩矿床及其与蒙山岩体之间的成因联系,目前还缺乏相关的研究和报道. 王先广等(2019)在蒙山地区的人工重砂矿物中发现了锡石和黑钨矿,且蒙山岩体W、Sn、Cu、Mo等金属元素含量较高,显示出多金属富集矿化的苗头. 因此,开展区内与矽卡岩型非金属矿床共伴生的多金属矿化的潜力评价具有十分重要的意义. 本文报道了我们近期在该地区开展地质找矿工作中,在石竹山超大型硅灰石矿区内新发现围绕蒙山岩体与围岩碳酸盐岩地层接触带产出的矽卡岩中发育的多金属矿化现象.

石榴子石是矽卡岩中常见的蚀变矿物,其形成年龄可以代表接触交代变质作用的开始时间(Meinert et al., 2005). 石榴子石具有一定含量的U和较高的U⁃Pb同位素体系封闭温度(>850 ℃; Mezger et al., 1989),使其成为潜在的U⁃Pb测年矿物. 对石榴子石进行原位微区U⁃Pb同位素测年在精确限定矽卡岩型多金属矿床的成矿时代方面已获得诸多成功实例(Wafforn et al., 2018;张小波等,2020;Zhao et al., 2023).

基于此,本文对与多金属矿化相关的矽卡岩中石榴子石开展了原位微区LA⁃ICP⁃MS U⁃Pb同位素测年及主微量元素分析,紧密结合矿床地质、蚀变矿化期次特征,精确限定了矿床的成矿时代,研究了W、Sn、Cu、Mo等金属矿化的地质特征,以期为深入认识蒙山地区印支期大规模非金属成矿事件及评估其中多金属成矿潜力提供更多理论依据.

1 区域地质背景

钦杭成矿带南起广西钦州湾、经湘东和赣中延伸至浙江杭州湾,大地构造位置上属于华夏与扬子板块在新元古代的碰撞拼贴带(图1a;杨明桂和梅勇文,1997;蒋少涌等,2008). 显生宙以来,该成矿带先后经历了加里东期(早古生代)和印支期(早中生代)陆内造山和燕山期(晚中生代)太平洋板块俯冲等多期构造运动的影响,形成了大量金属-非金属矿床(毛景文等,2011).

江西石竹山硅灰石矿床位于钦杭成矿带东段的萍乐坳陷带内,北靠蒙山复式背斜,南邻武功山隆起(张鹏浩等,2023). 区域主要出露石炭系砂页岩夹白云岩、二叠系浅海相和台地相碳酸盐岩夹硅质岩以及少量的侏罗系石英砂岩(图1b),其中硅灰石矿体主要赋存于中二叠统茅口组中(图2). 受北部九岭逆冲推覆构造和南部武功山伸展穹窿共同影响,NE⁃SW走向的褶皱和NNE、NE与NW向断裂构造组成了石竹山地区构造的基本格架(图1b).

区域内岩浆活动以三叠纪的蒙山复式岩体为代表,被少量晚中生代花岗斑岩脉切穿(图1b). 蒙山复式岩体主要由3期岩浆侵入形成:(1)第一期为中-粗粒似斑状黑云母二长花岗岩[里村单元(T2L)],锆石U⁃Pb年龄为236~223 Ma(钟玉芳等,2011;孙建东等,2022);(2)第二期以中-粗粒黑云母花岗(斑)岩为标志[西村(T2X)和鸭婆村(T2Y)单元],其侵位年龄介于222~220 Ma之间(钟玉芳等,2011;Wei et al., 2024);(3)第三期主要形成细粒花岗岩[排前村单元(T2P)],锆石U⁃Pb定年结果为218~217 Ma(钟玉芳等,2011;孙建东等,2022).

蒙山岩体周缘产出较多硅灰石、透辉石和铜锡多金属矿床,典型代表包括石竹山、曹坊庙、月光山和观音脑硅灰石矿床、太子壁铜锡矿床、银洞山锡矿床、库里和荷沂钨铜铅矿床等(图1b;王先广等,2019).

2 矿区地质与多金属矿化特征

石竹山矿区位于蒙山岩体南缘,硅灰石矿体主要赋存在岩体外接触带二叠系茅口组含燧石结核/条带灰岩、大理岩化灰岩中(图2). 矿区构造主要为近W⁃E走向的乱山向斜,以及F2及成矿后的F31断裂(图2). 矿区内侵入岩为印支期蒙山复式岩体的一部分,岩性以似斑状黑云母二长花岗岩为主,还可见少量的中-粗粒黑云母花岗(斑)岩和细粒花岗岩等.

石竹山矿床共有13个硅灰石矿体(图2b)和多个铜锡矿化体(图2c). 矿体主要呈似层状或透镜状分布距岩体0.5~282 m范围内(图2). 矿体与地层走向基本一致,为85°~110°,倾向南,倾角介于20°~50°,厚度1.0~31.2 m,硅灰石平均含量为54.7%(陈铖等,2018). 矿石矿物主要为硅灰石(图3),此外还发育少量的辉钼矿(图4a~4c)、白钨矿(图4a, 4c, 4d)、黄铁矿(图4e)、黄铜矿和斑铜矿(图4f)等. 白钨矿在钨矿灯下具有黄绿色荧光,指示其具有较高的Mo含量. 脉石矿物主要为石榴子石、透辉石、方解石和石英等(图5).

根据蚀变矿物共生关系和矿石结构构造,石竹山矿床的硅灰石及多金属矿化可分为进变质矽卡岩、退变质矽卡岩和石英-硫化物等3个阶段. 进变质矽卡岩阶段是硅灰石的主要矿化阶段,而石英-硫化物阶段则发育Cu、Mo多金属矿化.

进变质矽卡岩阶段:在岩体与灰岩接触带发育大量硅灰石(石榴子石)矽卡岩(图3). 硅灰石主要呈乳白色柱状或长柱状晶体,集合体表现为纤维状和放射状(图3a). 石榴子石呈囊状、条带状或浸染状分布在硅灰石或方解石中(图3),且可识别出3种类型的石榴子石:第一种类型石榴子石(Grt⁃1)呈红棕色,其中包裹了少量的白钨矿颗粒(图4d);第二种类型石榴子石(Grt⁃2)呈深棕色,多发育于Grt⁃1的边部(图3e),或呈浸染状分布于硅灰石中(图3f),Grt⁃2中多见透辉石或石英包裹体;第三种类型石榴子石(Grt⁃3)主要呈黄绿色,多与斑铜矿密切共生,其中可见透辉石包裹体. 透辉石主要以细小颗粒的形式分布在石榴子石颗粒中,或石榴子石与方解石颗粒之间(图5b).

退变质矽卡岩阶段:以形成透闪石和绿帘石等含水硅酸盐矿物为主要特征,本阶段形成的绿帘石等矿物交代进变质矽卡岩阶段沉淀的石榴子石和透辉石等矿物.

石英-硫化物阶段:本阶段是石竹山矿床金属钼、铜矿化的主要阶段,主要沉淀辉钼矿和斑铜矿等矿石矿物,此外还有少量的黄铁矿和黄铜矿等. 脉石矿物主要为石英和方解石等. 辉钼矿主要呈稀疏-稠密浸染状分布在切穿硅灰石矽卡岩的石英脉中(图3b,3c;图4b,4c). 可见石英-方解石-斑铜矿呈脉状穿插黄绿色石榴子石(Grt⁃3)矽卡岩(图3f).

3 分析方法

用于全自动矿物分析系统(TIMA)分析和原位微区U⁃Pb同位素定年及主微量元素分析的石榴子石样品均来自从硅灰石矿石样品上直接切割磨制的光薄片.

TIMA分析在中国地质大学(武汉)紧缺战略矿产资源协同创新中心完成,仪器为配备有二次电子探头、背散射探头和能谱仪的TIMA GMS综合矿物分析仪. 选取表明抛光较好的代表性样品薄片进行分析,试验区对样品表面进行喷碳处理,测试采用点阵扫描模式(dot mapping model),加速电压为25 kV,电流为8 nA,工作距离为15 mm,像素点为3 μm. 电流强度和BSE照片亮度采用法拉第杯程序自动校正,能谱信号则使用Mn标样进行校正.

石榴子石原位微区U⁃Pb同位素定年及主微量元素分析均在中国地质大学(武汉)紧缺战略矿产资源协同创新中心使用Agilent 7900型ICP⁃MS和ESL 193HE型193⁃nm准分子激光剥蚀系统上完成. 对于U⁃Pb测年,激光剥蚀束斑为100 μm,剥蚀频率为6 Hz,能量密度为1.5 J/cm2. 石榴子石U⁃Pb年龄采用锆石标样SA01(535.08±0.32 Ma;Huang et al., 2019)作为外标进行校正,石榴子石标样QC04(130±2 Ma;Deng et al., 2017)作为未知样品进行测试以监控数据质量. 监控标样显示QC04的U⁃Pb年龄为129.5±0.4 Ma(n=30, MSWD=1.6),在误差范围内与推荐年龄(130±2 Ma)一致. 石榴子石主微量元素分析束斑为44 μm,剥蚀频率为8 Hz,能量密度为3 J/cm2. 实验过程中使用MPI⁃DING玻璃标样(GOR128⁃G和StHs6/80⁃G)和玻璃标样NIST 610和612作为外标进行元素含量校正. 分析数据离线处理采用ICPMSDataCal软件完成(Liu et al., 2010),U⁃Pb年龄谐和图使用IsoplotR软件绘制(Vermeesch, 2018).

4 结果

石竹山硅灰石矿床不同类型石榴子石的主微量元素和稀土元素分析结果分别见附表1和附表2. 结果显示,3种类型石榴子石均属于钙铁榴石-钙铝榴石系列(图6a),具体而言,Grt⁃1属于钙铁榴石-钙铝榴石(Adr13.4Gro81.3~Adr49.2Gro48.1),此外,还含有少量的锰铝榴石(0~2.5%)、镁铝榴石(0~0.5%)和铁铝榴石(0~3.5%). Grt⁃2端元组分主要为钙铝榴石(65.1%~75.9%),次为钙铁榴石(14.7%~21.8%),此外,还有少量的镁铝榴石(平均1.5%). 与其他类型的石榴子石相比,Grt⁃3钙铁榴石组分的含量更高,为68.2%~96.2%,此外还含有少量的钙铝榴石(0~27.0%).

微量元素分析显示Grt⁃3具有最高的Sn含量(1 674×10-6~12 941×10-6),Grt⁃1(56×10-6~1 483×10-6)和Grt⁃2(69×10-6~461×10-6)的Sn含量稍低. 稀土元素方面,第一类型石榴子石Grt⁃1的REE含量介于16×10-6~112×10-6之间. Grt⁃1具有亏损轻稀土(LREE)、富集重稀土(HREE)的稀土配分模式(图6b),显示出强烈的负Eu异常(Eu/Eu*=0.01~0.18). Grt⁃2的REE含量较高(78×10-6~12 622×10-6),REE配分模式相对富集LREE、亏损HREE(图6c),具有负Eu异常(Eu/Eu*=0.02~0.35). 黄绿色石榴子石Grt⁃3具有较低的REE含量(5.2×10-6~19×10-6),在稀土元素配分图上,Grt⁃3整体较为平坦,略微富集LREE(图6d).

Grt⁃1的U(<1.8×10-6)和Th(<0.7×10-6)含量较低,因此本次实验未对Grt⁃1开展LA⁃ICP⁃MS测年. 本次研究主要对Grt⁃2和Grt⁃3分别开展了U⁃Pb同位素定年工作,结果见附表2. 在Tera⁃Wasserburg(T⁃W)谐和图解上(图7a),41个Grt⁃2测试点获得下交点年龄为234.7±1.6 Ma(2σ;MSWD=1.1),上交点为0.852±0.014,代表Grt⁃2的普通铅207Pb/206Pb组成. 32个Grt⁃2分析点获得1个T⁃W下交点年龄为234.4±9.9 Ma(2σ;MSWD=2.1),初始207Pb/206Pb组成为0.854±0.007(图7b).

5 找矿勘查意义

石竹山矿区石榴子石主要形成于矽卡岩阶段,且与硅灰石和斑铜矿、白钨矿等矿石矿物密切共生. 鉴于此,笔者认为Grt⁃2和Grt⁃3记录的~234 Ma的年龄不仅可以反映石竹山矿区矽卡岩的形成时代,还可以代表该矿床硅灰石和W⁃Sn⁃Cu⁃Mo多金属矿化的成矿年龄. 主量元素组成方面,石竹山矿区Grt⁃1落在全球矽卡岩型铜矿的范围内,Grt⁃2落在矽卡岩型Sn矿区域内,Grt⁃3则投点于Cu矿与Sn矿的叠合区域内(图6a),按时石竹山硅灰石矿区具有铜、锡的矿化潜力. 石竹山矿床不同类型石榴子石,特别是黄绿色Grt⁃3具有极高的Sn含量(1 674×10-6~12 941×10-6),暗示该矿床具有较高的Sn成矿潜力(Zhou et al., 2017; 赵盼捞等,2018;Yu et al., 2020). Sn4+与Fe3+离子半径接近,因此,Sn4+可以与Mg2+共同类质同象替代Fe3+进入石榴子石晶格,即Sn4++Mg2+=Fe2+Chen et al., 1992). 石榴子石中的Sn暂时无法利用,但其中较高的Sn含量反映了成矿流体中具有较高的Sn含量. 虽然在石竹山矿区矽卡岩中暂未发现锡石等Sn的独立矿物,但结合蒙山地区人工重砂中锡石的发现(王先广等,2019),以及蒙山岩体周缘产出的太子壁和银洞山等锡矿床(图1b),笔者认为石竹山地区多金属矿化矽卡岩具有较大的Sn成矿潜力. 石竹山石榴子石U⁃Pb年龄与蒙山复式岩体第一期似斑状黑云母二长花岗岩的年龄(236~223 Ma;钟玉芳等,2011;孙建东等,2022)在误差范围内一致,表明硅灰石-多金属矿化与蒙山岩体具有密切的成因关系.

钦杭成矿带是我国重要的中生代斑岩型-矽卡岩型多金属成矿带(毛景文等,2011),产出大量闻名世界的晚中生代大型-超大型矽卡岩型多金属矿床,例如湖南宝山铜铅锌多金属矿床(160 Ma;路远发等,2006)、柿竹园钨多金属矿床(151 Ma;李红艳等,1996)、瑶岗仙钨矿床(158 Ma;Li et al., 2020)、铜山岭铅锌多金属矿床(159 Ma;Zhao et al., 2016)和黄沙坪铜铅锌多金属矿床(154 Ma;马丽艳等,2007)等. 近年来,在南岭地区与钦杭成矿带的结合部位报道了大量印支期W⁃Sn多金属矿床(如三角潭钨矿床、川口钨矿床和栗木Sn⁃Nb⁃Ta⁃W矿床等;谢桂青等,2021),表明研究区同样存在三叠纪的大规模多金属成矿事件. 这些印支期W⁃Sn多金属矿床的赋矿地层多为前寒武纪的变质碎屑岩,矿化大多与区域或者矿床内出露的三叠纪白云母花岗岩具有密切的成因联系(Qin et al., 2020Li et al., 2021). 此外, 近年来,在与钦杭成矿带紧邻的湘中地区发现了很多大中型的三叠纪Au⁃Sb⁃W多金属矿床,包括玉横塘金矿床、古台山Au⁃Sb矿床、杏枫山Au⁃W矿床、龙山Au⁃Sb矿床和曹家坝W矿床等,这些矿床赋存在新元古代的变质岩系中,主要受断裂构造控制,其成因被认为与区域上印支期花岗岩具有密切的时空及成因联系(Xie et al., 2018; 娄元林等,2024). 萍乐坳陷带蒙山岩体周缘发育世界级的矽卡岩型硅灰石矿床(图1b),而本文报道的石榴子石U⁃Pb年龄表明区域矽卡岩型矿化主要形成于晚三叠世,与蒙山岩体的岩浆活动具有密切的时间-空间-成因联系. 更为重要的是,除了硅灰石矿化外,石竹山矿区还具有较大的W⁃Sn⁃Cu⁃Mo多金属矿化潜力. 因此,下一步对该区域还应该重视W⁃Sn⁃Cu⁃Mo多金属矿化的勘查工作.

附件见:https://doi.org/10.3799/dqkx.2025.032

参考文献

[1]

Chen, C., Chen, S.B., Cheng, X.G., 2018. Geological Characteristics and Genesis of a Wollastonite Mineral Deposit in the Shizhushan⁃Zhangmuqiao, Mengshan Area of Jiangxi. Shanghai Land & Resources, 39(4): 19-24 (in Chinese with English abstract).

[2]

Chen, J., Halls, C., Stanley, C. J., 1992. Tin⁃Bearing Skarns of South China: Geological Setting and Mineralogy. Ore Geology Reviews, 7(3): 225-248. https://doi.org/10.1016/0169⁃1368(92)90006⁃7

[3]

Deng, X. D., Li, J. W., Luo, T., et al., 2017. Dating Magmatic and Hydrothermal Processes Using Andradite⁃Rich Garnet U⁃Pb Geochronometry. Contributions to Mineralogy and Petrology, 172(9): 71. https://doi.org/10.1007/s00410⁃017⁃1389⁃2

[4]

Huang, C., Wang, H., Yang, J. H., et al., 2019. SA01⁃a Proposed Zircon Reference Material for Microbeam U⁃Pb Age and Hf⁃O Isotopic Determination. Geostandards and Geoanalytical Research, 44(1): 103-123. https://doi.org/10.1111/ggr.12307

[5]

Jiang, S.Y., Zhao, K.D., Jiang, Y.H., et al., 2008. Characteristics and Genesis of Mesozoic A⁃Type Granites and Associated Mineral Deposits in the Southern Hunan and Northern Guangxi Provinces along the Shihang Belt, South China. Geological Journal of China Universities, 14(4): 496-509 (in Chinese with English abstract).

[6]

Li, H.Y., Mao, J.W., Sun, Y.L., et al., 1996. Re⁃Os Isotopic Chronology of Molybdenites in the Shizhuyuan Polymetallic Tungsten Deposit, Southern Hunan. Geological Review, 42(3): 261-267 (in Chinese with English abstract).

[7]

Li, W. S., Ni, P., Wang, G. G., et al., 2020. A Possible Linkage between Highly Fractionated Granitoids and Associated W⁃Mineralization in the Mesozoic Yaogangxian Granitic Intrusion, Nanling Region, South China. Journal of Asian Earth Sciences, 193: 104314. https://doi.org/10.1016/j.jseaes.2020.104314

[8]

Li, W. S., Ni, P., Pan, J. Y., et al., 2021. Constraints on the Timing and Genetic Link of Scheelite⁃ and Wolframite⁃Bearing Quartz Veins in the Chuankou W Ore Field, South China. Ore Geology Reviews, 133: 104122. https://doi.org/10.1016/j.oregeorev.2021.104122

[9]

Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U⁃Pb Isotope and Trace Element Analyses by LA⁃ICP⁃MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434⁃010⁃3052⁃4

[10]

Lou, Y.L., Liu, X.H., Zeng, H., et al., 2024. Genesis of Xingfengshan Au⁃W Deposit in Central Hunan Province: Constraints from Hydrothermal Apatite U⁃Pb Dating and In Situ S Isotopes. Earth Science, 49(12): 4265-4277 (in Chinese with English abstract).

[11]

Lu, Y.F., Ma, L.Y., Qu, W.J., et al., 2006. U⁃Pb and Re⁃Os Isotope Geochronology of Baoshan Cu⁃Mo Polymetallic Ore Deposit in Hunan Province. Acta Petrologica Sinica, 22(10): 2483-2492 (in Chinese with English abstract).

[12]

Ma, L.Y., Lu, Y.F., Qu, W.J., et al., 2007. Re⁃Os Isotopic Chronology of Molybdenites in Huangshaping Lead⁃Zinc Deposit, Southeast Hunan, and Its Geological Implications. Mineral Deposits, 26(4): 425-431 (in Chinese with English abstract).

[13]

Mao, J.W., Chen, M.H., Yuan, S.D., et al., 2011. Geological Characteristics of the Qinhang (or Shihang) Metallogenic Belt in South China and Spatial⁃Temporal Distribution Regularity of Mineral Deposits. Acta Geologica Sinica, 85(5): 636-658 (in Chinese with English abstract).

[14]

Meinert, L. D., Dipple, G. M., Nicolescu, S., 2005. World Skarn Deposits. In: Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., eds., Economic Geology 100th Anniversary Volume. Society of Economic Geologists, Colorado.

[15]

Mezger, K., Hanson, G. N., Bohlen, S. R., 1989. U⁃Pb Systematics of Garnet: Dating the Growth of Garnet in the Late Archean Pikwitonei Granulite Domain at Cauchon and Natawahunan Lakes, Manitoba, Canada. Contributions to Mineralogy and Petrology, 101(2): 136-148. https://doi.org/10.1007/BF00375301

[16]

Qin, J. H., Wang, D. H., Li, C., et al., 2020. The Molybdenite Re⁃Os Isotope Chronology, in Situ Scheelite and Wolframite Trace Elements and Sr Isotope Characteristics of the Chuankou Tungsten Ore Field, South China. Ore Geology Reviews, 126: 103756. https://doi.org/10.1016/j.oregeorev.2020.103756

[17]

Sun, J.D., Li, H.L., Lu, F., et al., 2022. Geochemistry, Zircon U⁃Pb Ages, and Hf Isotopes of the Mengshan Rock Mass in Western Jiangxi Province and Their Geologic Implications. Geology and Exploration, 58(1): 96-106 (in Chinese with English abstract).

[18]

Vermeesch, P., 2018. IsoplotR: a Free and Open Toolbox for Geochronology. Geoscience Frontiers, 9(5): 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001

[19]

Wang, X.G., Hu, Z.H., Yu, X., et al., 2019. Geological Characteristics and Prospecting Significance of the Shizhushan Superlarge Wollastonite Deposit in Mengshan, West Jiangxi Province. Acta Geoscientica Sinica, 40(2): 259-264 (in Chinese with English abstract).

[20]

Wei, J., Ouyang, Y. P., Zou, J., et al., 2024. Genesis of the Mengshan Granitoid Complex in an Early Mesozoic Intracontinental Subduction Tectonic Setting in South China: Evidence from Zircon U⁃Pb⁃Hf Isotopes and Geochemical Composition. Minerals, 14(9): 854. https://doi.org/10. 3390/min14090854

[21]

Wafforn, S., Seman, S., Kyle, J. R., et al., 2018. Andradite Garnet U⁃Pb Geochronology of the Big Gossan Skarn, Ertsberg⁃Grasberg Mining District, Indonesia. Economic Geology, 113(3): 769-778. https://doi.org/10.5382/econgeo.2018.4569

[22]

Xie, G. Q., Mao, J. W., Bagas, L., et al., 2018. Mineralogy and Titanite Geochronology of the Caojiaba W Deposit, Xiangzhong Metallogenic Province, Southern China: Implications for a Distal Reduced Skarn W Formation. Mineralium Deposita, 54(3): 459-472. https://doi.org/10.1007/s00126⁃018⁃0816⁃2

[23]

Xie, G.Q., Mao, J.W., Zhang, C.Q., et al., 2021.Triassic Deposits in South China: Geological Characteristics, Ore⁃Forming Mechanism and Ore Deposit Model. Earth Science Frontiers, 28(3): 252-270 (in Chinese with English abstract).

[24]

Yang, M.G., Mei, Y.W., 1997. Characteristics of Geology and Mineralization in the Qinzhou⁃Hangzhou Paleoplate Juncture. Geology and Mineral Resources of South China, 3: 52-59 (in Chinese with English abstract).

[25]

Yu, F., Shu, Q. H., Niu, X. D., et al., 2020. Composition of Garnet from the Xianghualing Skarn Sn Deposit, South China: Its Petrogenetic Significance and Exploration Potential. Minerals, 10(5): 456. https://doi.org/10.3390/min10050456

[26]

Zhang, P.H., Wang, X.G., Ding, F., et al. 2023. Characteristics and Geological Significance of Garnet in Shizhushan Wollastonite Deposit, Western Jiangxi Province. Acta Petrologica et Mineralogica, 42(4):521-540 (in Chinese with English abstract).

[27]

Zhang, X.B., Zhang, S.T., Chen, H.Y., et al., 2020. Application of Garnet U⁃Pb Dating in the Skarn Deposit: a Case Study of Gaoyishan W(⁃Cu) Deposit in Southeast Hubei Province. Earth Science, 45(3): 856-868 (in Chinese with English abstract).

[28]

Zhao, P. L., Yuan, S. D., Mao, J. W., et al., 2016. Geochronological and Petrogeochemical Constraints on the Skarn Deposits in Tongshanling Ore District, Southern Hunan Province: Implications for Jurassic Cu and W Metallogenic Events in South China. Ore Geology Reviews, 78: 120-137. https://doi.org/10.1016/j.oregeorev.2016.03.004

[29]

Zhao, P.L., Yuan, S.D., Yuan, Y.B., 2018. Geochemical Characteristics of Garnet in the Huangshaping Polymetallic Deposit, Southern Hunan: Implications for the Genesis of Cu and W⁃Sn Mineralization. Acta Petrologica Sinica, 34(9): 2581-2597 (in Chinese with English abstract).

[30]

Zhao, W. W., Zhou, M. F., Dudka, S., 2023. In Situ U⁃Pb Dating of Garnet and Cassiterite from the Kanbauk W⁃Sn(⁃F) Skarn Deposit, Dawei Region, Southern Myanmar: New Insights on the Regional Sn⁃W Metallogeny in the Southeast Asian Tin Belt. Economic Geology, 118(5): 1219-1229. https://doi.org/10.5382/econgeo.5002

[31]

Zhong, Y.F., Ma, C.Q., She, Z.B., et al., 2011. U⁃Pb⁃Hf Isotope of Zircons, Geochemistry and Genesis of Mengshan Granitoids in Northwestern Jiangxi Province. Earth Science, 36(4): 703-720 (in Chinese with English abstract).

[32]

Zhou, J. H., Feng, C. Y., Li, D. X., 2017. Geochemistry of the Garnets in the Baiganhu W⁃Sn Orefield, NW China. Ore Geology Reviews, 82: 70-92. https://doi.org/10.1016/j.oregeorev.2016.11.019

基金资助

中国地质调查局“江西宜春-新余地区金矿控矿构造和成矿规律研究”(DD20243079)

国家自然科学基金项目(42302087)

博士后创新人才支持计划(BX20230335)

AI Summary AI Mindmap
PDF (11212KB)

27

访问

0

被引

详细

导航
相关文章

AI思维导图

/