2025年1月7日西藏定日MS6.8地震余震序列特征与发震构造

杨婷 ,  王世广 ,  房立华 ,  王未来 ,  李思祺 ,  胥广银 ,  唐方头

地球科学 ›› 2025, Vol. 50 ›› Issue (05) : 1721 -1732.

PDF (13176KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (05) : 1721 -1732. DOI: 10.3799/dqkx.2025.033

2025年1月7日西藏定日MS6.8地震余震序列特征与发震构造

作者信息 +

Analysis of Earthquake Sequence and Seismogenic Structure of the 2025 MS6.8 Dingri Earthquake in Tibetan Plateau

Author information +
文章历史 +
PDF (13491K)

摘要

2025年1月7日9时5分,西藏定日发生MS6.8强震,造成了重大人员伤亡和财产损失.震中位于藏南申扎‒定结裂谷南段西部的丁木错地堑内,其震源机制为典型的正断型地震.此次地震的发震断层为丁木错断裂,但地震形成的地表破裂展布特征、断裂带的几何结构以及地堑的演化模式等还有待深入研究.根据野外地表破裂调查和余震序列重定位,探讨了此次地震的变形特征及丁木错地堑的演化模式.震后科考发现,丁木错东、西两侧均发育有明显的地表破裂,为典型的地堑结构,尼辖错仅在东部发育地表位错,位错量较大,为典型的半地堑结构,地表破裂总长~30 km,且表现出了边界断裂向盆地内部迁移的特征.基于双差定位方法,结合固定台网和流动观测台网,对震后13 d的地震序列进行了重定位,共获得4 312个高精度定位结果,主震震中位置28.51°N,87.52°E,震源深度为11.3 km.余震序列与地表破裂走向一致,呈~NS向分布,深度集中在~4~ 17 km,余震分布揭示了断层东倾和西倾并存的特征.结合地表破裂和余震序列分布,认为此次地震的发震断层为丁木错断裂的东部边界断裂,倾角~60°~70°.地震序列主要集中在上地壳,此次地震可能是对喜马拉雅弧形逆冲形成的边界应力的响应.

Abstract

On January 7, 2025, at 09:05, an MS6.8 earthquake struck Dingri County in the Xizang Autonomous Region, resulting in significant casualties and property damage. The epicenter of the main shock was located in the Dingmucuo graben, in the western segment of the southern Shenzha⁃Dingjie rift zone in the southern Tibetan Plateau, and the focal mechanism was identified as a typical normal faulting earthquake. The seismogenic fault is the normal faults in Dingmucuo graben, however, the distribution of surface rupture and geometry of normal faults, as well as the evolution model of this graben is relatively limited. This study discusses the seismogenic fault of the earthquake and the evolution model of the Shenzha⁃Dingjie rift through the interpretation of remote sensing images before and after the event, field investigations of surface ruptures, and the relocation of the seismic sequence. Earthquake investigations revealed significant surface ruptures developed on both the eastern and western sides of Dingmucuo, forming a typical graben structure, while the northern segment primarily developed in the eastern part of the Nixiacuo, exhibiting significant displacement and resembling a half-graben structure. Notably, the surface rupture extends about 30 km in the graben showing a migration of the graben boundary fault into the basin. Furthermore, based on the seismic phase data recorded by the permanent and temporary stations, 4 312 high-precision location results were determined by using a double-difference relocation method. The epicenter of the main shock was determined to be at 28.51°N, 87.52°E, with a focal depth of 11.3 km. The aftershock sequence was consistent with the direction of the surface rupture, showing a ~NS distribution, with depths concentrated around ~4‒17 km. The aftershock distribution revealed the coexistence of east-dipping and west-dipping fault characteristics. Based on the surface rupture and aftershock sequence, it concludes that the seismogenic fault for this earthquake is the eastern boundary fault of the Dingmucuo graben, with a dip angle of approximately 60°‒70°. The earthquake sequence is primarily concentrated in the upper crust and is likely a response to boundary stress resulting from the thrusting along Himalayan arc.

Graphical abstract

关键词

申扎‒定结裂谷 / 地震 / 丁木错地堑 / 地表破裂 / 余震序列 / 构造地质.

Key words

Shenzha⁃Dingjie rift / earthquakes / Dingmucuo graben / surface rupture / aftershock sequence / tectonics

引用本文

引用格式 ▾
杨婷,王世广,房立华,王未来,李思祺,胥广银,唐方头. 2025年1月7日西藏定日MS6.8地震余震序列特征与发震构造[J]. 地球科学, 2025, 50(05): 1721-1732 DOI:10.3799/dqkx.2025.033

登录浏览全文

4963

注册一个新账户 忘记密码

印度板块现今以~40 mm/a的速率向欧亚板块汇聚(Tapponnier et al., 2001),~15~20 mm/a的速率被喜马拉雅主前缘逆冲带吸收,其余速率则被青藏高原周缘的大型走滑断裂和内部七条大规模的南北向裂谷所吸收(Armijo et al., 1986).这些南北向断裂带是青藏高原早中新世以来EW向伸展的结果(Wang et al. , 2022a,2022b),也是高原内部最为显著的活动构造带和强震活动区(图1).2025年1月7日西藏定日发生MS6.8地震(简称定日地震),震中位于28.50°N,87.45°E,震源深度为10 km,产生了明显的地表破裂,最高烈度为IX度,等震线长轴呈近南北走向,长轴约为191 km,短轴约为152 km(李宗超等,2025).截至1月20日10时,震区附近共记录到5 396次余震,其中M4.0以上余震12次,最大余震M5.0.此次地震震感强烈,矩震级达MW7.1, 震区人口密集,造成126人死亡,3 000多户房屋倒塌,经济损失巨大.
定日地震震区周边地震活动频繁,近十年发生了3次5级以上的中强地震,其中最近一次是2020年定日MW5.7地震(图2),此次MS6.8地震是该区域有历史记录以来的最大地震.由于震区周边的地震监测能力较弱,对周边中强地震的研究较少.此次地震位于丁木错地堑内部,断裂结构复杂(徐心悦,2019),这些断裂的几何结构和地堑的演化模式等研究程度相对较低.此次地震为研究上述问题提供了宝贵窗口.地震发生后,我们迅速赴震区开展地质调查工作,结合区域及周边布设的固定台和流动台的观测数据,进一步开展了余震序列重定位研究,相关结果为研究定日地震的发震断层和深部结构,以及探讨藏南裂谷的成因机制等具有重要的科学意义.

1 地质背景与历史地震

南北向裂谷是现今青藏高原内部最为显著的活动构造(Armijo et al. , 1986Tapponnier et al. , 2001Kapp et al. , 2008),是高原内部地震活动性最强的区域.申扎‒定结裂谷位于藏南地区,形成于~13~11 Ma(Leloup et al. , 2010),切割了拉萨地体、雅鲁藏布江缝合带、喜马拉雅地体和藏南拆离系,北与格仁错断裂相连,向南延伸至喜马拉雅山脉,整体沿NNE向展布~350 km(图2;黄婷等,2024).此次定日地震震中位于申扎‒定结裂谷南段的丁木错地堑内,该地堑近NS走向,南起措果乡,向北经丁木错(登么错)延伸~60 km,(田婷婷和吴中海,2023).地堑内部出露基岩主要为前震旦系变质岩、泥盆系‒石炭系灰岩和石英砂岩、二叠系灰岩及泥岩、三叠系砂岩、侏罗系灰岩和砂岩,以及白垩系灰岩和砂岩.第四纪以来,青藏高原内部受到强烈的EW向拉张作用,形成了多条垂直高差较大的裂谷(Armijio et al. , 1986),裂谷内部和周缘形成大量湖泊和冰川,因此,丁木错地堑内部分布有大量以砂土层为主的湖积物和以漂砾混杂堆积为主的冰碛物(图3).

申扎‒定结裂谷活动性强烈,北段现今的EW向伸展速率达2~4 mm/a (Gan et al. , 2007), 南段晚第四纪以来的EW向伸展速率为0.6~ 2.0 mm/a (Kali et al. , 2010).断裂活动影响范围较大,在距离断裂EW方向~20~50 km宽度内均有历史中强震发生,主要以正断型地震为主(Wang et al. , 2014).自1900年以来,裂谷内部历史记录的5.0≤M<6.0地震达二十余次,6.0≤ M<7.0地震共有6次,未有七级以上地震发生.丁木错地堑位于申扎‒定结裂谷南段的西侧,晚第四纪以来断裂活动强烈,发育明显的断层三角面和多级断层陡坎地貌,垂直活动速率达0.08~ 0.28 mm/a (徐心悦,2019;田婷婷和吴中海,2023),地堑内部可见丰富的第四纪古地震遗迹以及由古地震造成的软沉积变形(李楠等,2024).2015年尼泊尔MW7.8地震后,丁木错地堑应力处于加载状态,活动性明显增强(王永哲等,2021),于2020年发生了MW5.7地震(图2) ,此次定日MS6.8地震为申扎‒定结裂谷整段有历史记录以来的最大地震.

2 地表破裂分布特征

震后野外现场考察可以确定地表破裂的展布位置、几何结构和位移分布等基本特征,对判断发震构造、破裂过程以及致灾机理等有重要意义(Li et al. , 2023).地震发生后,基于震前、震后国产高分卫星影像解译,发现此次地震产生了明显的地表破裂(图3Yu et al., 2025),中国地震局地球物理研究所在中国地震局定日MS6.8地震科考指挥部的统一部署下,于2025年1月10日前往震中开展了地震地质调查,对地表破裂的分布范围、野外特征进行了详细研究.野外科考发现,此次地表破裂在丁木错东、西两岸均有分布,西岸地表破裂延伸距离较短,位错量相对较小;而东岸地表破裂延伸较远,位错量较大,地表变形带同时具有地表破裂和重力垮塌成因,变形机制较为复杂.

本文将此次定日地震的地表破裂总长 ~30 km,分为丁木错西、尼辖错北以及丁木错东三段,各段主要特征如下:

(1)丁木错西段地表破裂发育在朋曲河北岸,丁木错西南~2 km, 呈~NS走向,延伸

~5 km, 断层倾向东(图3),是距离震中最近的地表破裂带.该地表破裂带沿先存的断层陡坎发育,在N、S两端为单支破裂,在中部发育为两条近平行的破裂,宽~150 m,破裂带延伸稳定,切割了河流阶地、冲沟及干涸的河道(图4a),主要表现为正断作用.西侧的地表破裂位错量稍大,在干涸河道底部测得西侧地表破裂垂直位错量为0.13 m(图4b),东侧为0.12 m(图4c),总位错量达0.25 m.该地表破裂在几何结构上位于丁木错断裂的西部边界断裂带内(田婷婷和吴中海,2023).

(2)尼辖错北段地表破裂位于尼辖错北东,距离震中以北~20~30 km处, 沿拉昂水库东侧向北延伸~12~15 km,部分段落在先存陡坎处继续发育,局部段落则发育在先存陡坎西侧、靠近盆地区域(图3图5a).地表破裂在该段发育最为显著,位错量较大,可连续追索较远距离,切割了更新统冰川沉积、坡积以及现今河道等,整体~NS向展布,倾向西,右阶斜列,破裂带较宽区域可达~50 m(图5b).地表破裂边缘呈锯齿状,为典型的拉张应力下形成的张裂,在拉昂水库北~500 m处测得的垂直位错量可达~2.5 m(图5c),向北继续追索可见断裂带的垂直位错量明显减小,逐渐转变为地表张裂隙.该段地表破裂均分布在5 100~5 400 m的高海拔区域,垂直位错量明显大于丁木错区域(海拔为 4 100~4 300 m),不排除断层陡坎在正断作用下叠加了重力垮塌的作用,形成了异常的垂向位错.

(3)丁木错东段地表破裂与丁木错东岸的湖岸线近平行发育,断续延伸~10 km,呈~NS向弯曲展布,倾向西.地表破裂的南端变形较为简单,基本沿先存陡坎或临近区域发育(图3),而中部变形带较为复杂,主要靠近盆地内部发育,最宽变形处可达~500 m.该段靠近丁木错一侧的变形带前缘为挤压鼓包,后缘为拉张形成的较宽的地表裂隙(图3),在变形结构上为典型的滑塌变形特征(图5a),因该处为湖积形成的松散沉积物,胶结较差,受到地震动影响,在正断和重力作用下易形成滑塌变形(图5b,李楠等,2024),因变形带较为复杂,地表破裂和滑塌变形可能在该区域相互影响,难以单独追索并区分各自的影响范围.

3 余震精定位结果

地震发生后,中国地震局迅速组织人员赴现场架设了10个流动台站.本研究使用的台站主要包括主震震中附近300 km范围内的12个固定地震台站和6个流动地震台站,最近台距离震中~10 km(图7a),对余震区形成了较好的方位覆盖.研究中使用的震相数据和初始定位结果来自西藏自治区地震局提供的快报观测报告.截止2025年1月20日10时,西藏地震台网给出的地震目录中包含5 396个余震,震级分布范围ML0.4~5.0,完备性震级MC为1.7级(图7b).为了保证定位结果的可靠性,数据的筛选原则如下:①保留到时拾取误差≤2 s的震相数据;②每个事件记录的台站数≥4个;③每个事件记录的震相数≥6个,其中符合条件的余震数量有4 803个.

采用双差地震定位方法(Waldhauser, 2000)对定日地震余震序列进行了重新定位,该方法是目前余震序列重定位研究中应用最常用的方法(房立华等,2018;王未来等,2021;Yang et al. , 2023).首先根据初始震源位置组成地震对,然后选择相邻较近、到达同一台站的一组震相的走时差来反演震源位置,可较好地消除震源至台站间共同传播路径效应的影响.速度模型参考Zhang andKlemperer(2010)和滕吉文等(1983)在该区域人工地震测深的结果(图7c).波速比值参考接收函数研究(He et al. , 2014)选为1.69.双差定位地震组对时,设置的最小连接数(MINLNK)为7,最小观测数(MINOBS)为6,震源间距小于12 km,事件对到台站的距离小于300 km.最终获得了4 312个地震重定位的位置参数,东西、南北和垂直方向的平均定位误差分别为0.17 km、0.17 km、0.26 km,平均定位残差为0.12 s.

重定位后的主震震中位置28.51°N,87.52°E,震源深度为11.3 km.由于正断层作用过程中的重力垮塌作用,可能会影响断层形态的判断,我们对地震重定位结果进行了进一步筛选,只对3 830个震级ML≥1.4的地震进行分析.余震主要分布在丁木错断裂的西侧,整体呈近南北向展布,余震序列长约60~70 km,宽约10 km(图8a).余震主要朝北侧发展,震源深度集中分布在4~17 km.余震序列的分段性特征明显,从北向南分为北段(剖面BB’)、中段(剖面CC’)和南段(剖面DD’).其中主震位于余震序列的南段,主震附近分布较多M3.5级以上的较大余震,南段的地震序列以NNW向为主;中段的余震分布揭示出明显的分支断裂特征,从西向东依次呈NNW、NS和NNE向展布;北段的余震序列主要呈NNE向展布,范围较宽,可能存在多组平行断裂,与Yao et al.(2025)给出的地震分布结果基本一致.早期余震序列中较大余震主要分布在中段和北段,后期则主要分布在南段.不同剖面上的地震分布表明(图8b~8d),此次地震的发震断层结构较为复杂,由余震分布刻画的不同分段区的断裂形态各异,其中最显著的特点是西倾和东倾的断裂并存.主震所在的南段区域的余震深度较浅,约3~12 km,DD’剖面的余震分布具有明显的丛集性,但断层的倾向并不明显,结合断裂位置和地表破裂的分布,可能是由多组不同倾向的断裂均发生破裂的结果.同时,该剖面更靠南的余震剖面揭示出明显的东倾特征,与Yao et al.(2025)的结果相似.中段CC’剖面揭示了各分支断裂呈现倾向各异的特点,而北段BB’剖面的余震整体呈西倾特征.采用P波初动极性反演震源机制结果表明,南段区域主要以正断性质为主,同震破裂较弱,表现为较宽的地表形变带和地裂缝,北段和中段区域的地震主要以走滑性质为主,对应同震破裂和地表破裂最显著的区域.结合野外断层调查和余震分布(图8),认为此次地震的发震断层为丁木错地堑的东部边界断裂,倾角~60°~70°.

4 讨论

震后野外调查表明地表破裂主要发育在丁木错地堑东岸,沿地堑东部边界断裂形成的先存陡坎或靠近盆地区域发育,呈~NS向断续延伸 ~20 km,位错量可达~2.5 m,变形带最宽区域可达上百米,为主要的地表破裂带(图3图5图6),虽然在丁木错西侧同样发育地表破裂,但规模较小,垂直位错量仅为~0.25 m(图4b,4c),因此东部边界断裂为此次地震的主要变形带,考虑到东部边界断裂控制着地堑的发育,且发生过多次地震事件(李楠等,2024),最近一次造成地表破裂的古地震发生事件可能接近~9 ka(田婷婷和吴中海,2023),离逝事件较长,可以认为此次定日MS6.8地震的发震断层为丁木错地堑的东部边界断裂.野外考察和余震精定位结果发现,尼辖错北段地表破裂为东部边界单支断裂的活动(图5图8),而南段丁木错的东、西侧多支边界断裂同时参与了同震变形,因此,此次地震变形具有半地堑结构和地堑结构的同时参与.另外,尼辖错北段右阶斜列的地表破裂几何形态(图5b)和走滑型震源机制解(图8a),表明该段破裂也具有一定的左旋走滑分量,这可能是由于伸展方向与断层走向存在一定夹角造成的(Armijo et al. , 1986).

在几何学和运动学特征上,丁木错东部发育的地表破裂,在北段整体上沿先存陡坎发育,南段则基本上发育在先存陡坎西侧,表现出了断裂活动向由山前向盆地方向逐渐迁移的特征,结合前人对藏南亚东‒谷露裂谷和隆格儿裂谷几何形态的研究(Kapp et al. , 2008),可以推断丁木错地堑的发育和演化模式:受东西向伸展作用,地堑初始形成,此时仅边界断裂活动性较强(图9a),如尼辖错北部的小规模地堑;随着边界断裂的深切作用增强,盆地的重力均衡作用造成深部边界断裂形态发生挠曲(图9b),断裂在地表逐渐向盆地迁移,在几何结构上也逐渐由半地堑结构向地堑结构发展;此次地震发生在较为成熟的丁木错断裂南部,随着多次地震形成的地表破裂向盆地方向迁移,伸展量逐渐增大,在地堑两侧均形成较为显著的边界断裂(图9c).

青藏高原南北向裂谷的形成机制主要可分为两类模式,第一类为地幔尺度的深部构造活动相关模式:包括重力垮塌和岩石圈拆沉模式 (England and Houseman, 1989)、地幔流动模式(Royden et al. ,1997)以及印度板片撕裂模式(Chen et al. , 2015Hou et al. , 2023)等;第二类则为地壳尺度的边界应力相关模式,包括放射性扩展模式(Seeber and Armbruster, 1984)、斜向汇聚模式(McCaffrey and Nabelek, 1998)和沿喜马拉雅造山带的弧形逆冲模式(Wang et al. , 2022a,2022bJiao et al. , 2024)等.此次地震为有仪器记录以来,藏南裂谷区域发生的最大地震,余震精定位结果显示余震序列主要集中在上地壳,由于藏南区域上、下地壳解耦的变形机制(杨攀新等,2010; Wang et al. , 2022b),此次地震可能是对喜马拉雅弧形逆冲形成的边界应力的响应.

5 结论

本文通过震后野外考察,详细调查了地表破裂的展布特征和几何结构,通过地震精定位分析了余震序列的时空演化特征,得到以下主要结论:

(1) 定日地震形成了~30 km的同震变形带,呈~NS走向,南部表现为较宽的地表形变带和地裂缝,北部主要集中较窄的地表破裂带.

(2) 余震序列分段性明显,呈东倾和西倾并存的特征,结合地表破裂位置,认为发震断层为丁木错地堑的东部边界断裂.

(3) 丁木错地堑内部的地表破裂主要呈现出由山前向盆地迁移的几何学和运动学特征,是具有半地堑和地堑结构同时参与的地震形变.

参考文献

[1]

Armijo, R., Tapponnier, P., Mercier, J. L., et al., 1986. Quaternary Extension in Southern Tibet: Field Observations and Tectonic Implications. Journal of Geophysical Research: Solid Earth, 91(B14): 13803-13872. https://doi.org/10.1029/jb091ib14p13803

[2]

Chen, Y., Li, W., Yuan, X. H., et al., 2015. Tearing of the Indian Lithospheric Slab beneath Southern Tibet Revealed by SKS⁃Wave Splitting Measurements. Earth and Planetary Science Letters, 413: 13-24. https://doi.org/10.1016/j.epsl.2014.12.041

[3]

England, P., Houseman, G., 1989. Extension during Continental Convergence, with Application to the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 94(B12): 17561-17579. https://doi.org/10.1029/jb094ib12p17561

[4]

Fang, L.H., Wu, J.P., Su, J.R., et al., 2018. Relocation of Mainshock and Aftershock Sequence of the Ms7.0 Sichuan Jiuzhaigou Earthquake. Chinese Science Bulletin, 63(7): 649-662 (in Chinese).

[5]

Gan, W. J., Zhang, P. Z., Shen, Z. K., et al., 2007. Present⁃Day Crustal Motion within the Tibetan Plateau Inferred from GPS Measurements. Journal of Geophysical Research: Solid Earth, 112(B8): 2005JB004120. https://doi.org/10.1029/2005jb004120

[6]

Gu, G.X.,1983. The Catalogue of Earthquakes in China (1831 BC-1969 AD).Science Press, Beijing, 894 (in Chinese).

[7]

He, R. Z., Shang, X. F., Yu, C. Q., et al., 2014. A Unified Map of Moho Depth and Vp/Vs Ratio of Continental China by Receiver Function Analysis. Geophysical Journal International, 199(3): 1910-1918. https://doi.org/10.1093/gji/ggu365

[8]

Hou, Z. Q., Wang, R., Zhang, H. J., et al., 2023. Formation of Giant Copper Deposits in Tibet Driven by Tearing of the Subducted Indian Plate. Earth⁃Science Reviews, 243: 104482. https://doi.org/10.1016/j.earscirev.2023.104482

[9]

Huang, T., Wu, Z.H., Han, S., et al., 2024. The Basic Characteristics of Active Faults in the Region of Xigaze,Xizang and the Assessment of Potential Earthquake Disaster Risks. Progress in Earthquake Sciences, 54(10): 696-711 (in Chinese with English abstract).

[10]

Jiao, L. Q., Tapponnier, P., Coudurier⁃Curveur Mccallum, A., et al., 2024. The Shape of the Himalayan “Arc”: An Ellipse Pinned by Syntaxial Strike⁃Slip Fault Tips. Proceedings of the National Academy of Sciences of the United States of America, 121(4): e2313278121. https://doi.org/10.1073/pnas.2313278121

[11]

Kali, E., van der Woerd, J., Leloup, P.H., et al., 2010. Extension in Central⁃South Tibet, Insight from Cosmogenic Nuclide Dating. AGU Fall Meeting Abstracts, San Francisco, T41D⁃04.

[12]

Kapp, P., Taylor, M., Stockli, D., et al., 2008. Development of Active Low⁃Angle Normal Fault Systems during Orogenic Collapse: Insight from Tibet. Geology, 36(1): 7. https://doi.org/10.1130/g24054a.1

[13]

Leloup, P. H., Mahéo, G., Arnaud, N., et al., 2010. The South Tibet Detachment Shear Zone in the Dinggye Area Time Constraints on Extrusion Models of the Himalayas. Earth and Planetary Science Letters, 292(1-2): 1-16. https://doi.org/10.1016/j.epsl.2009.12.035

[14]

Li, K., Tapponnier, P., Xu, X. W., et al., 2023. The 2022, MS6.9 Menyuan Earthquake: Surface Rupture, Paleozoic Suture Re⁃Activation, Slip⁃Rate and Seismic Gap along the Haiyuan Fault System, NE Tibet. Earth and Planetary Science Letters, 622: 118412. https://doi.org/10.1016/j.epsl.2023.118412

[15]

Li, N., Liu, L.Q., Zhu, L.D., et al., 2024. Quaternary Soft⁃Sediment Deformation Structures in the Dingmucuo Graben, Northern Himalaya. Journal of Chengdu University of Technology (Science & Technology Edition), 51 (6): 1048-1056 (in Chinese with English abstract).

[16]

Li, Z.C., Sun, J.Z., Ji, Z.M., et al., 2025. Rapid Simulation of Acceleration Waveform at Everest Seismic Station of Xizang Dingri MS6.8 Earthquake on January 7, 2025. Earth Science (in Chinese with English abstract).

[17]

McCaffrey, R., Nabelek, J., 1998. Role of Oblique Convergence in the Active Deformation of the Himalayas and Southern Tibet Plateau. Geology, 26(8): 691. https://doi.org/10.1130/0091⁃7613(1998)0260691: roocit>2.3.co;2

[18]

Royden, L. H., Burchfiel, B. C., King, R. W., et al., 1997. Surface Deformation and Lower Crustal Flow in Eastern Tibet. Science, 276(5313): 788-790. https://doi.org/10.1126/science.276.5313.788

[19]

Seeber, L., Armbruster, J. G., 1984. Some Elements of Continental Subduction along the Himalayan Front. Tectonophysics, 105(1-4): 263-278. https://doi.org/10.1016/0040⁃1951(84)90207⁃5

[20]

Tapponnier, P., Xu, Z. Q., Roger, F., et al., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671-1677. https://doi.org/10.1126/science.105978

[21]

Teng, J.W., Xiong, S.B., Yin, Z.X., et al., 1983. Structure of the Crust and Upper Mantle Pattern and Velocity Distributional Characteristics at Northern Region of the Himalayan Mountains. Chinese Journal of Geophysics, 26(6): 525-540 (in Chinese with English abstract).

[22]

Tian, T.T., Wu, Z.H., 2023. The Latest Prehistoric Earthquake Event of Dingmucuo Normal Fault in the Southern Section of Shenzha⁃Dingjie Rift in Tibet and Its Seismic Geological Significance. Geological Review, 69(S1): 53-55 (in Chinese with English abstract).

[23]

Waldhauser, F., 2000. A Double⁃Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California. The Bulletin of the Seismological Society of America, 90(6): 1353-1368. https://doi.org/10.1785/0120000006

[24]

Wang, H., Elliott, J. R., Craig, T. J., et al., 2014. Normal Faulting Sequence in the Pumqu⁃Xainza Rift Constrained by InSAR and Teleseismic Body⁃Wave Seismology. Geochemistry, Geophysics, Geosystems, 15(7): 2947-2963. https://doi.org/10.1002/2014gc005369

[25]

Wang, S. G., Chevalier, M. L., Tapponnier, P., et al., 2024. Timing and Characteristics of Co⁃Seismic Surface Ruptures in the Yadong Rift, Southern Tibet. Journal of Structural Geology, 188: 105264. https://doi.org/10.1016/j.jsg.2024.105264

[26]

Wang, S. G., Replumaz, A., Chevalier, M. L., et al., 2022a. Decoupling between Upper Crustal Deformation of Southern Tibet and Underthrusting of Indian Lithosphere. Terra Nova, 34(1): 62-71. https://doi.org/10.1111/ter.12563

[27]

Wang, S. G., Shen, X. M., Chevalier, M. L., et al., 2022b. Illite K⁃Ar and (U⁃Th)/He Low⁃Temperature Thermochronology Reveal Onset Timing of Yadong⁃ Gulu Rift in Southern Tibetan Plateau. Frontiers in Earth Science, 10: 993796. https://doi.org/10.3389/feart.2022.993796

[28]

Wang, W.L, Fang, L.H., Wu, J.P., et al, 2021. Aftershock Sequence Relocation of the 2021 Ms7.4 Maduo Earthquake, Qinghai, China. Science China Earth Science, 51(7): 1193-1202 (in Chinese).

[29]

Wang, Y.Z., Chen, S., Chen, K., 2021. Source Model and Tectonic Implications of the 2020 Dingri MW5.7 Earthquake Constrained by InSAR Data. Earthquake, 41(1): 116-128 (in Chinese with English abstract).

[30]

Xu, X.Y., 2019, Late Quaternary Activity and Its Environmental Effects of the N⁃S Trend Kharta Fault in Xaiinza⁃Dinggyr Rift, Southern Tibet. Institute of Geology, China Earthquake Administration (Dissertation), Beijing, 1-84 (in Chinese with English abstract).

[31]

Yang, P.X., Ren, J.W., Chen, Z.W., et al., 2010. Tectonic Geomorphology of the Northern Segment of Shenzha⁃Dingjie Graben since Miocene in Middle Tibetan Plateau. Earthquake, 30(3): 81-89 (in Chinese with English abstract).

[32]

Yang, T., Jia, K., Zhu, A. Y., et al., 2023. The 2022 MS5.8 and 6.0 Maerkang Earthquakes: Two Strike⁃Slip Events Occurred on V⁃Shaped Faults. Bulletin of the Seismological Society of America, 113(6): 2432-2446. https://doi.org/10.1785/0120220206

[33]

Yao, J.Y., Yao, D.D., Chen, F., et al., 2025. A Preliminary Catalog of Early Aftershocks Following the 7 January 2025 MS6.8 Dingri, Xizang Earthquake. Journal of Earth Science. https://doi.org/10.1007/s12583⁃025⁃0210⁃9

[34]

Yu, C., Li, Z.H., Hu, X.N., 2025. Source Parameters and Induced Hazards of the 2025 Mw 7.1 Dingri Earthquake on the Southern Tibetan Plateau (Xizhang), China, as Revealed by Imaging Geodesy. Journal of Earth Science. https://doi.org/10.1007/s12583⁃025⁃0175⁃8

[35]

Zhang, Z., Klemperer, S., 2010. Crustal Structure of the Tethyan Himalaya, Southern Tibet: New Constraints from Old Wide⁃Angle Seismic Data. Geophysical Journal International, 181: 1247-1260. https://doi.org/10.1111/j.1365⁃246X.2010.04578.x

基金资助

国家重点研发计划项目(2024YFC3012904)

中央级公益性科研院所基本科研业务费专项(DQJB225Y01)

国家自然科学基金项目(42374081)

国家自然科学基金项目(42202258)

AI Summary AI Mindmap
PDF (13176KB)

305

访问

0

被引

详细

导航
相关文章

AI思维导图

/