2025年1月7日西藏定日地震地表破裂特征和野外同震位移测量初步结果

邵延秀 ,  王爱生 ,  刘静 ,  王文鑫 ,  韩龙飞 ,  邢麟杰 ,  许建红 ,  王霁川 ,  姚文倩 ,  张惠心 ,  刘小利

地球科学 ›› 2025, Vol. 50 ›› Issue (05) : 1677 -1695.

PDF (18488KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (05) : 1677 -1695. DOI: 10.3799/dqkx.2025.040

2025年1月7日西藏定日地震地表破裂特征和野外同震位移测量初步结果

作者信息 +

Preliminary Investigation on Surface Rupture and Coseismic Displacement of the January 7, 2025 Dingri Earthquake in Xizang

Author information +
文章历史 +
PDF (18931K)

摘要

2025年1月7日在西藏日喀则地区定日县境内发生MS6.8地震,地震发生后,我们立即对发震构造和地表破裂开展了野外调查和高精度无人机航测.基于野外地震破裂带调查和遥感数据初步解译,我们发现定日地震发震断裂为登么错(又称丁木错)断裂,并破裂了该断裂的中北段,最北到羊姆丁错姆湖的东岸,最南到朋曲河北岸,地表破裂长度约36.5 km.该地震的地表破裂基本沿着先存断裂分布;在破裂南端,多条平行断裂上出现地表陡坎,最大破裂宽度~4 km.地表破裂样式复杂多样,主要形成不同高度和宽度的地震陡坎和拉张裂缝的组合,且破裂带的北段陡坎较大,最大垂直位移(265±27)cm,陡坎高度沿走向变化较大,在两端仅为垂直位移不明显的张裂隙.本研究初步获得地表破裂长度和最大位移等参数与全球正断型地震的矩震级‒地表破裂参数经验关系的平均值较为一致.同时,定日地震的地表破裂特征也为研究单次地震陡坎与长期累积陡坎的地貌演化过程研究提供了难得的数据.

Abstract

On January 7, 2025, a MS6.8 earthquake struck Dingri County in the Shigatse region of Xizang. In response to the event, it conducted field investigations and high-precision UAV aerial surveys, which indicate that the rupture extends from the central-northern segment of the Dengme Co (or Dingmu Co) fault to the eastern shore of Yangmudingcuomu Lake and the northern bank of the Pengqu River, totaling approximately 36.5 km. The surface rupture predominantly follows existing fault structures, with the southern end exhibiting multiple parallel faults and surface scarps up to 4 km wide. The rupture patterns are complex, combining seismic scarps and extensional fissures of varying dimensions. Notably, the northern section displays larger scarps, with maximum displacements reaching approximately (265±27) cm. Scarp heights vary significantly along the rupture, with minimal vertical displacement at north and south end. Our preliminary findings suggest that the surface rupture length and maximum displacement align closely with global empirical relationships between earthquake magnitude and rupture characteristics. Additionally, the characteristics of the Dingri earthquake’s surface rupture offer valuable insights for studying the geomorphic evolution of single-event seismic scarps and their long-term cumulative effects.

Graphical abstract

关键词

地震 / 登么错断裂 / 地震地表破裂 / 同震位移 / 破裂长度 / 构造地质.

Key words

earthquakes / Dengme Co fault / seismic surface rupture / coseismic displacement / rupture length / tectonics

引用本文

引用格式 ▾
邵延秀,王爱生,刘静,王文鑫,韩龙飞,邢麟杰,许建红,王霁川,姚文倩,张惠心,刘小利. 2025年1月7日西藏定日地震地表破裂特征和野外同震位移测量初步结果[J]. 地球科学, 2025, 50(05): 1677-1695 DOI:10.3799/dqkx.2025.040

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

地震地表破裂几何以及同震位移分布提供了重要的基本观测数据,有助于理解地震动态破裂过程.这些参数可用于建立全球或某一地区,地震震级与破裂长度或位移量的经验公式,为预测地震规模提供依据(Wells and Coppersmith,1994).基于地表破裂填图,研究阶区或拐折宽度对断裂终止和同震位移变化的控制作用有助于预测未来地震破裂的终止位置乃至于地震的震级 (Wesnousky,2008),而同震位移量沿走向的突然变化提供断层或单个断裂分段的信息(Crone and Haller, 1991Haeussler et al., 2004Klinger, 2010; 毕海芸等, 2017; Bie et al., 2017),因此,对同震地表破裂的分布形态和几何结构的深入了解,可为地震断裂的力学机理、动态破裂过程和未来大地震发生的可能性与破裂终点等方面的研究提供重要信息(徐锡伟等,1988;Wesnousky, 2006,2008Xu et al., 2006,2009;Liu⁃Zheng et al., 2009, 2010, 2012,, 2015, 2024; Oskin et al., 2012Rockwell and Klinger, 2013;韩龙飞等,2022;姚文倩等,2022;许建红等,2023).

灾害方面,地震对人类活动,尤其是基础设施的威胁不仅在于地震波的晃动,还会因产生地表的永久变形造成破坏.历史上的许多次大地震已经说明,地震地表破裂和大位移对基础设施可以造成极为严重的破坏.如2022年青海门源地震造成公路发生脆性变形、桥梁掀斜,以及兰新高铁轨道和隧道严重破坏(潘家伟等,2022;苏瑞欢等,2023),并致使铁路交通停运,直接经济损失30余亿元 .

对正断型大地震的同震地表破裂几何展布及同震位移变化特征开展调查研究意义重大.研究人员试图从历史地震数据中总结经验参数用于解释研究地表断层的分布和规模(Wells and Coppersmith, 1994).其中,概率性断层位移危险性分析(PFDHA)可用于应对地表破裂威胁,特别是针对因无法避开断裂带或在建设后才发现断裂带而无法避开的地区.世界地震地表破裂(SURE1.0,Surface Rupture due to Earthquakes)数据库发布于2020年(Baize et al., 2020,2021).该数据库尝试将历史和现代地震的地表破裂数据整合到一个统一的数据集中.这类数据对于评估活动断裂带及周边区域的断层位移相关风险至关重要.虽然能产生地表破裂的地震震级没有绝对阈值,但一般震级越大,破裂到达地表的可能性越高(唐茂云等,2015).世界范围内同震地表破裂的数据积累仍然很少,尤其是正断型和逆冲型地震,同震地表破裂的详细填图难得,偏少于走滑型(Wells and Coppersmith, 1994Yeats et al., 1997).SURE 2.0 (Nurminen et al., 2022)里收录的震例中,正断型破裂也偏少.因此,需要增加正断型大地震的同震破裂几何展布及同震位移变化特征的数据积累.目前,上述两个全球地震破裂数据库中还缺少来自中国的、尤其是正断型地震震例.

据中国地震台网测定,2025年1月7日9时5分,在西藏日喀则市定日县发生MS6.8地震(矩震级MW7.1),距离最近的定结县城34 km,震中附近的长所乡、措果乡破坏最为严重.截至7日19时,地震已造成126人遇难,188人受伤,倒塌房屋3 609户.该地震是近年来西藏发生的震级最大的、伤亡人数最多的一次地震.

主震和48 h内的余震空间分布显示定日地震破裂近南北向,余震长轴>60 km(杨婷等,2025).中国地震台网中心发布的震源机制解(表1)显示此次地震以正断层特征为主(节面I:走向348°/倾角49°/滑动角-95°,节面II:走向181°/倾角51°/滑动角-81°).其中节面II的走向与已知的登么错断裂(又称丁木错断裂)相似,推测登么错断裂为发震断裂,与余震分布的长轴方向和位置吻合.

有限断层模型反演得到的震源破裂过程初步结果显示,西藏定日MS6.8地震破裂面基本呈现NS走向,破裂为主要是单向的、往北扩展的非对称破裂,破裂由震中向北向延伸,由深部向浅部扩展,持续时间~25 s,破裂长度~45 km,最大位移量3.2 m (位于深约5 km),计算得到的地震矩为5.37×1019 Nm,矩震级MW为7.1(Wang, 2025).由中国地震局发布的《西藏定日6.8级地震烈度图》显示,最高烈度为Ⅸ度,等震线长轴呈近南北走向.本次地震的地表破裂在海拔>4 200 m的高寒地区,不同研究组对地表破裂开展了踏勘性研究(石峰等,2025;杨婷等,2025).我们基于野外工作,对本次地表破裂的一些特点进行报道和分析.

1 构造和地质背景

本次地震位于印度大陆与欧亚大陆的汇聚和碰撞带以北 200 km.印度‒欧亚碰撞是新生代以来地球上最重要的地质事件之一.这一事件不仅形成了世界上规模最大的青藏高原和中亚地区的众多活动山系,还对其周边地区的地貌格局和环境演化产生了深远影响(Molnar and Tapponnier, 1975;李吉均等,1979; Molnar et al., 1993; 李吉均和方小敏,1998;An et al., 2001Tapponnier et al., 2001).同时,这一过程还形成了一系列规模巨大的活动断裂(图1).其中,N⁃S向的正断层是青藏高原南部地区最显著的构造特征(Tapponnier and Molnar, 1977Molnar and Tapponnier, 1978Ni and York, 1978Tapponnier et al., 1981Rothery and Drury, 1984Armijo et al., 1986),这一特征与印度‒欧亚碰撞前缘地带的俯冲断层(表现出明显的缩短变形特征)及青藏高原周缘的走滑断层有显著区别.在班公‒怒江缝合带以南,垂直于喜马拉雅造山弧形成了7条主要的近南北向正断层裂谷系(Armijo et al., 1986Tapponnier et al., 2001).这些裂谷系长约300~400 km、宽约5~10 km,并以120~200 km的间隔分布(Armijo et al., 1986Molnar and Tapponnier, 1978;Molnar and Lyon⁃Caen, 1989;Yin et al., 1999).其中,塔克拉裂谷、申扎‒定结裂谷和亚东‒谷露裂谷切穿藏南拆离系(STDS),并向南延伸至喜马拉雅山脉(Heron, 1922Olen et al., 2015).这些裂谷系不仅是地震的多发区,且历史上曾发生过多次7级以上的大地震.然而,关于这些裂谷系的形成时间、形成机制及其变形配分等问题,仍然存在很大争议.

西藏南部的东西向拉张量和速率及其在各个正断层系的配分广为关注但富有争议.根据印度板块与欧亚板块之间的缩短方向与喜马拉雅弧的走向关系,从东到西的缩短向量方位角差异约为30°,因此,约20 mm/a的缩短速率与位于俯冲带上盘的藏南地区约10 mm/a的近东西向拉张速率在运动学上是相匹配的(Armijo et al., 1986McCaffrey and Nabelek, 1998; 张进江等, 2002; Zhang et al., 2004; 张进江, 2007; Zheng et al., 2017).早期的研究中,Armijo et al.(1986)通过卫星影像推算藏南正断层体系的拉张速率约为(10±6)mm/a,而Chen et al.(2004)基于GPS观测估算该体系的伸展速率为(9.7±3)mm/a,其中1/2至2/3的伸展集中在亚东‒谷露裂谷带和塔克拉裂谷系.近年来,Wang et al.(2019)结合GPS速度场与InSAR数据,揭示了藏南地区总的近东西向伸展速率约为15 mm/a,且显示出明显的空间不均匀性,其中约50%的应变分布在地质填图的断层之外.

申扎‒定结裂谷系是自东向西的第三条正断层体系,北起申扎县城以南的甲岗雪山(30.8°N, 88.7°E),与NW走向的右旋走滑断层格仁错断裂相连接,向南穿越雅鲁藏布江,最终切割藏南拆离系(STDS)(Armijo et al., 1986,1989;张进江等,2002; Taylor et al., 2003;张进江, 2007).该裂谷系存在多条近平行的次级断裂(图1),主要由高角度正断层控制,在部分区段形成了显著的断层陡坎、断层三角面等地貌特征.申扎‒定结裂谷系南段日玛那山脉的西边界和东边界受控于两条正断裂(图2Kali et al., 2010Leloup et al., 2010),两者晚更新世以来的平均垂向滑动速率分别为(1.2±0.2)mm/a和(1.7±0.3)mm/a(Kali et al., 2010),而登么错断裂晚更新世以来的滑动速率小于1 mm/a(徐心悦,2019;田婷婷和吴中海等,2023).

2 定日地震地表破裂几何特征

详细的野外地质调查一直是同震位移测量的主要方法之一,即在野外实地调查同震地表破裂特征及被断错的地貌标志.我们在震后展开了同震地表破裂的野外调查和测量工作,野外调查的区域主要集中在4段:尼辖错段、古荣村段、登么错东岸以及登么错南岸‒朋曲河北岸.通过实地踏勘,我们测量了同震地表破裂带的展布方向、长度、宽度(破裂带的影响范围)、位错量、张裂宽度以及倾滑角等,记录了同震破裂带的分段特征以及不同区段破裂面的形态特征.除野外实地测量外,我们还使用无人机摄影测量技术实现了对定日地震地表破裂特征的快速获取.本次航拍作业采用复合翼无人机,搭载1亿像素的Phase One ixm⁃100相机,航拍数据覆盖先存断裂带两侧各500 m、长近40 km的摄影测量廊带.

由于震区海拔较高以及人力有限,本研究在野外调查中采用穿插法和追索法对部分段落开展了踏勘性调查(图3a),并基于卫星遥感和无人机航拍初步确定破裂的位置和宏观特征.本文对地表破裂带的几何结构特征进行初步的宏观描述,后续将基于无人机航拍数据进行地表破裂的详细填图.基于野外现场调查,地表破裂带基本沿着先存断裂带发育展布,但在空间上断续分布,仅在尼辖错一带连续性较好(图3图4),最北可达羊姆丁错姆东岸,最南端可到朋曲河北岸(图5).尤其是在登么错湖西南多条先存平行断裂东倾陡坎发育的区段,产生了4~9 cm高的陡坎(图3).地表破裂的总体走向近NS向,北端偏向NE向,而登木错东岸一带变化较大,从NW到NE向均有分布.如果以地表破裂带的南北端点为基准,投影在断裂的宏观走向即NS向,那么地表破裂带的长度约为36.5 km.

本次地震地表破裂样式复杂多样,多数情况发育多条陡坎,呈雁列(图4a)或平行(图6a)分布,在破裂带的前缘和内部往往会表现出挤压缩短和走滑的变形特征(图6b),这可能是由于地形较陡或主断裂往下铲型倾角变小而造成的浅表效应(图6b).在较宽的变形带还会发育地堑的样式(图6c),这一般是受控于先存构造的分布特征.此外,断层上盘还会发生旋转变形,断层面发生弯曲,形成典型“铲形”(图6d).除了沿着断裂带发育的地表破裂外,在陡峭的地形或沉积物较为松散的区域还发育了大面积的重力垮塌变形和砂土液化,如登木错东岸和朋曲河两岸.这些重力垮塌基本沿着河(湖)边,通常长度较短,且上边界具有上凸的弧形特征.

由于本次地震的地表破裂在浅地表多数发育在较厚的边坡堆积、冰水堆积或冲洪积沉积中的陡坎式破裂,断层面的露头较少,我们在尼辖错北侧和登么错东侧测量的两个断层面产状,倾角均大于50°(图7),而在登么错西南次级东倾断层的倾角约为64°(图6d), 倾向的较大差异是由断裂局部走向发生变化造成的.断层擦痕的侧伏角近-90°表明运动方式以正断为主,走滑分量不明显.

本次地震地表破裂的宽度在断层走向上差异较大,总体在距离震中23 km的长所拉昂水库以北地表变形较为强烈且集中(图3图4图6),而在南端古荣村‒朋曲河北岸,变形呈弥散分布,多条平行断裂参与破裂,如在登么错南侧,在主断裂的多条分支和反向的次级断裂带(图6b)上均产生同震变形,地表破裂在该区域的变形宽度>4 km(图3).如果主断裂倾角(51°)和次断裂倾角(64°)在深部保持不变的话,次级断裂在约3.5 km的深度上收敛于主断层面上.

3 定日地震地表位移测量

根据野外调查,我们发现本次地震在浅地表的破裂面均为陡立的陡坎,主要表现为地表及之下物质均有不同程度的垮塌,这些垮塌面比断层面要陡峭很多.针对这种破裂现象,我们总结了本次地震的3种地震陡坎类型的测量方法.如图8所示,根据测量陡坎是否发育拉张裂缝及地表面是否垮塌等情况,给定测量的误差范围.

针对这3种地震陡坎类型,我们给出3种测量实例(图9).在调查点P006(28.715 05°N,87.559 11°E)地表之下虽然有垮塌,但是地表没有垮塌,上盘的地表紧靠下盘的垮塌面,符合类型Ⅰ(图8a),野外测得垂直位移为(221±11)cm.在调查点P021(28.649 40°N,87.543 33°E)上下盘之间形成一定宽度的拉张裂缝,有崩塌物堆积在裂缝中,但是上下盘的地表均为垮塌,符合类型Ⅱ(图8b),野外测得垂直位移为(56±6)cm.在调查点P035(28.714 51°N,87.559 0°E)上下盘之间也形成较宽的拉张裂缝,有崩塌物堆积在裂缝中,并且上盘的地表也发生垮塌,并掉入裂缝中,符合类型Ⅲ(图8c).由于上盘崩塌面积较大,测量的误差也大,因此,野外测得垂直位移为(225±45)cm.同时我们在调查点P011(28.720 98°N,87.561 36°E)获得了最大垂直位移,该点陡坎特征属于类型Ⅱ,我们测得的垂直位移为(265±27)cm.我们在北段测得垂直位移与震前和震后DEM差分结果基本一致.

基于野外位移测量的初步结果显示,在尼辖错一带垂直位移最大,最大位移(265±27)cm,并向南北两侧递减到100 cm、50 cm、20 cm、10 cm,到南北两端降低到0.如在古荣村东侧的位移为~50 cm(图9b),在登木错东南两条破裂相加的位移约为 10 cm,而在朋曲河北岸和羊姆丁错姆东岸的先存断层陡坎上仅产生为~5 cm宽、斜列分布的张裂缝,观察不到明显的垂直位移.然而,由于破裂变形带较宽,野外只对有限的明显地震陡坎开展了测量,因此本研究测量的结果应为本次地震同震位移的最小值.未来还需要结合其他方法开展更详细全面的研究.

4 讨论

地表破裂带是地震破裂最直观的现象,地表破裂带的几何分布特征及其性质,不仅能验证基于地震波的地球物理反演结果,而且对认识地震发生机理,理解断层破裂过程、运动方式和预测未来强震规模都具有重要意义.然而,全球范围内陆地上有地表破裂的震例并不多,由于技术和认知的局限,30年前对地表破裂的填图的详细程度不够.近年来随着技术的进步,对于同震地表破裂研究的详细程度越来越高.目前,对于产生地表破裂的地震,研究人员总是会第一时间去现场开展地表破裂的详细填图,积累了震例观测数据.

中国历史上曾发生多次正断型大地震,其中最典型的例子是1556年华县大地震(MW7.5~8.0),其发震断裂为华山山前断裂和渭南塬前断裂,破裂带长度约90 km,最大同震垂直位移约7 m(国家地震局, 1988; 徐锡伟等, 1988;马冀等, 2016; Du et al., 2017Feng et al., 2020).此外,鄂尔多斯周缘还发生了1303年山西洪洞地震(MW7.2~7.6;Yao et al., 1984Xu et al.,2018)、1695年临汾M7¾地震(闫小兵等,2018)、1739年银川地震(MW7.1~7.6,Zhang et al., 1986Middleton et al., 2016),这些地震均属于正断型地震.近年来在青藏高原也发生了多次正断型强震,如2008年于田MW7.1地震(Xu et al., 2013;有走滑分量)和2020年尼玛MW6.4地震(Li et al., 2021).尽管历史上正断型地震较多,但现代仪器记录以来,产生明显地表破裂并有详细记录的正断型地震较少.因此,对本次定日地震的详细填图将增加宝贵的震例.应急阶段的野外调查可以提供基本的、初步的观测结果,后续仍然需要开展更为详实的研究.

通过对2025年1月7日定日地震的地震破裂带的详细调查,我们获得了关键的地表破裂参数:地表破裂长度在NS向上的投影约为36.5 km,而通过地震波反演得到的地下破裂长度则达到约45 km(Wang, 2025),在地表观测到的最大垂直位移量达到265 cm(倾滑分量约为315 cm).本文得到的地表破裂长度大于石峰等(2025)给出的结果 (25 km),这主要是由于其未发现登么错东侧及南侧断裂带上的地表破裂.我们的调查认为在登么错东侧和西南侧的多条断裂带存在明显的同震位移(~20 cm,图6d,图7b).我们将此次地震的震级和地表破裂参数放在Wells and Coppersmith(1994)建立的全球地震地表破裂参数与矩震级间的经验关系中进行了系统对比.该经验关系基于全球大量地震事件的统计分析,建立了震级与破裂长度、位移量等参数之间的定量关系.分析结果显示,定日地震的观测数据与经验关系中的拟合曲线(图10中的蓝色曲线)高度吻合,表明定日地震的破裂特征符合全球地震破裂的一般规律.这种一致性不仅增强了我们对本次地震破裂过程的理解,也为区域地震危险性评估提供了重要的参考依据.

准确鉴别构造成因的地震地表破裂和地震动引发的、非构造成因次生裂隙、液化或垮塌有时候并非易事.部分研究者可能受限于对区域构造背景的认知,易将地震动引发的次生地质灾害(如重力驱动型斜坡变形或沉积物失稳滑动)误判为构造型地表破裂.以本次地震为例,登么错湖东岸及朋曲河两岸发育的线性张裂缝带和崩塌体具有典型的重力失稳特征,而延伸较长的缓坡滑移体,实质为地震动作用下松散沉积物沿浅表软弱面发生的横向扩展现象(lateral spreading,如Cubrinovski et al., 2012Pasuto and Soldati, 2013),此类非构造成因的地表形变不应纳入地震地表破裂带范畴.上述的重力和液化成因的张裂隙与正断型破裂的断层陡坎有一定相似度,增加了识别的难度.

定日地震的同震垂直位移沿走向的空间梯度较大,在登么错东岸只有不到20 cm,比尼辖错一带小近一个数量级.这对古地震研究具有新的启示:在古地震探槽中看到的小位移地震事件并不能代表该地震的震级也小.如果按照位移‒震级关系来估算古地震事件的震级,那么在不同段落上单独开展的古地震探槽工作,可能会得到同一次地震事件的震级相差较大的结果.因此,应根据断裂的几何形态及其可能的破裂尺度,在不同段落开挖多个探槽,最大限度的约束地震事件的破裂长度,并使用破裂长度‒震级关系或综合多个经验关系来估算可能的最大震级(Wells and Coppersmith,1994;邵延秀等,2022).

断层陡坎是断层错断地表的产物,由陡倾的斜面上、下各连接一个缓倾的平面组成(许建红等,2023),通常是断错‒平静‒再断错这样一个过程的重复(Avouac and Peltzer, 1993),对应地震破裂的瞬间断层错动形成新的、坡度大的陡坎自由面,而平静期陡坎在侵蚀作用下不断退化(Avouac and Peltzer, 1993).因此,断层陡坎形态是断层活动、侵蚀过程和堆积过程共同作用的结果(Hanks, 2013),蕴含着丰富的断层活动信息.这样的多次断层活动会在陡坎上形成不同的坡度段,变化的坡度可以用来指示自陡坎形成以来的古地震事件(如Ewiak et al., 2015Wei et al., 2015).陡坎随时间推移会退化变缓,这个过程可以用扩散方程来表达(Hanks et al., 1984Andrews and Hanks, 1985Hanks and Wallace, 1985Arrowsmith et al., 1996Xu et al., 2021),并可限定古地震事件的发生时间(Lu et al., 2022).然而,自然界中的断层陡坎要复杂很多,每次事件的位移量、复发周期并不严格相等,断层每次活动也并不总在同一断层面上(Avouac and Peltzer, 1993).扩散方程中最重要的一个参数扩散系数(k)与构成陡坎的沉积物和气候相关,限定这一常数并不容易.此外,靠近陡坎上地貌面的钙质胶结或泥质土壤层可能也会导致陡坎上半部分的扩散系数值较低(Pelletier et al., 2006),而半干旱‒干旱地区陡坎下半段可能堆积大量的风吹沙,这些都会影响陡坎的剖面形态(许建红等,2023).沿断层的陡坎形态也会有差异,有必要对断裂的几何展布及断层附近的断错微地貌进行精细解译和分析(毕海芸等, 2017).本次定日地震沿先存地震陡坎展布,说明登木错断裂具有原地复发的特征.通过对最新地震陡坎演化过程的监测和分析,获得可靠的扩散系数,辅以构造微地貌分析和必要的探槽验证,可以进一步厘定该断裂带长期的发震历史和地貌演化过程.

2025年1月7日定日地震的面波震级(MS6.8)比矩震级(MW7.1)小约0.3级,这种情况比较少见.之前,中国大陆地震的MS震级往往比MW震级大约0.2~0.5单位.如2001年昆仑山口西大地震(MS8.1、MW7.8,Klinger et al., 2006Wen et al., 2007)和2008年汶川地震(MS8.0、MW7.9,Liu⁃Zeng et al., 2009Xu et al., 2009).刘静等(2023)探讨了包括1920年海原大地震在内,仪器记录早期发生的一些标志性强震的震级被高估,基于对新发掘的数据的分析,1920年海原地震的矩震级为(7.9±0.2) (Liu⁃Zeng et al., 2015Ou et al., 2020),与文献和大众广泛接受的81/2震级的数值差别较大.传统震级测定方法依赖于地震波振幅和频率的分析(刘瑞丰等,2015),存在局限性.相比之下,矩震级(MW)具有独特的优势,它通过直接关联地震破裂面的几何参数(如破裂面积)和运动参数(如位移量)来表征地震规模,能够更准确地反映地震的物理本质.鉴于震级参数在地震能量评估和规模描述中的核心地位(Cheng et al., 2017),从科学性和准确性角度考虑,采用矩震级作为地震震级的标准化定义方法更为合理和可靠.

全球地震地表破裂数据库SURE(Baize et al., 2020,2021Nurminen et al., 2022)收录了50个浅源壳内地震(震源深度≤25 km),其中20个发生在美国,5个发生在澳大利亚,3个发生在希腊、意大利和日本;墨西哥、新西兰、秘鲁和中国各2个;巴基斯坦、厄瓜多尔、印度、吉尔吉斯斯坦、土耳其、法国、阿尔及利亚和亚美尼亚各1个.从破裂的三种类型来说,分为16个走滑型,18个正断型,16个逆冲型地震.收录的两个中国震例分别是1999年集集地震(Ouchi et al., 2001Chen, 2004a,2004bChen et al., 2004Yue et al., 2005),2008年汶川地震 (Li⁃Zeng et al., 2009,20102012Xu et al., 2009),均为逆冲型大震.这与我们国家强震发生频率高的事实有些不匹配.该数据库在地表破裂记录的详实程度设置了较高的标准,即使是像2001年昆仑山口大地震、2010年玉树地震、2014年于田地震等这些大地震,也因详细程度不能达到阈值而未能列入数据库.2021年玛多地震(Liu⁃Zeng et al., 2024)、2024年门源地震(Li et al., 2023)的地表破裂调查的详细程度高,后续应该会补充收录.Sarmiento et al.(2021)汇聚的断裂位错灾害数据库(FDHI)中除了1999年集集地震和2008年汶川地震,还有2010年玉树地震(Li et al., 2012Guo et al., 2012)和2014年于田地震(Li et al., 2016).这些从某种角度说明,我们对地表破裂的记录应该尽量详细,形成可编辑包含地理信息的文档.因此,对本次地震的详细填图将增加宝贵的震例.应急阶段的野外调查可以提供基本的、初步的观测,后续仍然需要更详实的研究.

5 结论和展望

本研究基于对2025年1月7日发生在西藏定日MS6.8地震的野外地震地表破裂调查,获得了以下主要初步认识:该地震的发震构造为登么错断裂,并破裂了该断裂的中北段,从北边的羊姆丁错姆湖东岸到南侧朋曲河北岸,全长约 36.5 km;地震的地表破裂样式复杂多样,主要表现为多条陡坎呈雁列或平行分布;同震位移以垂向运动为主,垂直位移沿走向变化较大,其中北段变形量大,最大位移约(265±27)cm,向南在中段的位移小于20 cm;本研究获得定日地震的破裂长度、位移量与震级的关系,与全球地震参数经验关系吻合,表明其符合地震破裂的一般规律.

本次定日地震和先存的累计地震陡坎表明,该区域地震活动具有原地复发和分段破裂的特征,而盆地内部具有较宽的变形带,因此在未来地震危险性评价中不仅要对先存主要断裂活动习性的几何形态、滑动速率及历史地震复发间隔等参数进行量化,还需要关注场地特征对变形宽度的影响,为重大交通廊道等工程的设计提供科学依据.

参考文献

[1]

An, Z. S., Kutzbach, J. E., Prell, W. L., et al., 2001. Evolution of Asian Monsoons and Phased Uplift of the Himalaya⁃Tibetan Plateau since Late Miocene Times. Nature, 411(6833): 62-66. https://doi.org/10.1038/35075035

[2]

Andrews, D. J., Hanks, T. C., 1985. Scarp Degraded by Linear diffusion: Inverse Solution for Age. Journal of Geophysical Research: Solid Earth, 90(B12): 10193-10208. https://doi.org/10.1029/jb090ib12p10193

[3]

Armijo, R., Tapponnier, P., Han, T. L., 1989. Late Cenozoic Right⁃Lateral Strike⁃Slip Faulting in Southern Tibet. Journal of Geophysical Research: Solid Earth, 94(B3): 2787-2838. https://doi.org/10.1029/jb094ib03p02787

[4]

Armijo, R., Tapponnier, P., Mercier, J. L., et al., 1986. Quaternary Extension in Southern Tibet: Field Observations and Tectonic Implications. Journal of Geophysical Research: Solid Earth, 91(B14): 13803-13872. https://doi.org/10.1029/jb091ib14p13803

[5]

Arrowsmith, J. R., Pollard, D. D., Rhodes, D. D., 1996. Hillslope Development in Areas of Active Tectonics. Journal of Geophysical Research: Solid Earth, 101(B3): 6255-6275. https://doi.org/10.1029/95jb02583

[6]

Avouac, J. P., Peltzer, G., 1993. Active Tectonics in Southern Xinjiang, China: Analysis of Terrace Riser and Normal Fault Scarp Degradation along the Hotan⁃Qira Fault System. Journal of Geophysical Research: Solid Earth, 98(B12): 21773-21807. https://doi.org/10.1029/93jb02172

[7]

Baize, S., Blumetti, A. M., Boncio, P.,et al.,2021.A New Release of the SURE Database of Earthquake Surface Ruptures Suited to Fault Displacement Hazard Analysis. The 23rd EGU General Assembly,Vienna, EGU21⁃14182. https://doi.org/10.5194/egusphere⁃egu21⁃14182, 2021.

[8]

Baize, S., Nurminen, F., Sarmiento, A., et al., 2020. A Worldwide and Unified Database of Surface Ruptures (SURE) for Fault Displacement Hazard Analyses. Seismological Research Letters, 91(1): 499-520. https://doi.org/10.1785/0220190144

[9]

Bi, H. Y., Zheng, W. J., Zeng, J. Y.,et al., 2017. Application of SFM Photogrammetry Method to the Quantitative Study of Active Tectonics. Seismology and Geology, 39(4): 656-674 (in Chinese with English abstract).

[10]

Bie, L. D., González, P. J., Rietbrock, A., 2017. Slip Distribution of the 2015 Lefkada Earthquake and Its Implications for Fault Segmentation. Geophysical Journal International, 210(1): 420-427. https://doi.org/10.1093/gji/ggx171

[11]

Chen, Q. Z., Freymueller, J. T., Yang, Z. Q., et al., 2004. Spatially Variable Extension in Southern Tibet Based on GPS Measurements. Journal of Geophysical Research: Solid Earth, 109(B9): 2002JB002350. https://doi.org/10.1029/2002jb002350

[12]

Chen, W. S., 2004a.1999 Chi⁃Chi Earthquake: A Case Study on the Role of Thrust⁃Ramp Structures for Generating Earthquakes. Bulletin of the Seismological Society of America, 91(5): 986-994. https://doi.org/10.1785/0120000731

[13]

Chen, Y. G., 2004b. Surface Rupture of 1999 Chi⁃Chi Earthquake Yields Insights on Active Tectonics of Central Taiwan. Bulletin of the Seismological Society of America, 91(5): 977-985. https://doi.org/10.1785/0120000721

[14]

Cheng, J., Rong, Y. F., Magistrale, H., et al., 2017. An Mw⁃Based Historical Earthquake Catalog for Mainland China. Bulletin of the Seismological Society of America, 107(5): 2490-2500. https://doi.org/10.1785/0120170102

[15]

Crone, A. J., Haller, K. M., 1991. Segmentation and the Coseismic Behavior of Basin and Range Normal Faults: Examples from East⁃Central Idaho and Southwestern Montana, U.S.A. Journal of Structural Geology, 13(2): 151-164. https://doi.org/10.1016/0191⁃8141(91)90063⁃O

[16]

Crone, A.J., Machette, M.N., Bonilla, M.G., et al., 1987. Surface Faulting Accompanying the Borah Peak Earthquake and Segmentation of the Lost River Fault, Central Idaho. Bulletin of the Seismological Society of America, 77(3): 739-770.

[17]

Cubrinovski, M., Robinson, K., Taylor, M., et al., 2012. Lateral Spreading and Its Impacts in Urban Areas in the 2010-2011 Christchurch Earthquakes. New Zealand Journal of Geology and Geophysics, 55(3): 255-269. https://doi.org/10.1080/00288306.2012.699895

[18]

Du, J. J., Li, D. P., Wang, Y. F., et al., 2017. Late Quaternary Activity of the Huashan Piedmont Fault and Associated Hazards in the Southeastern Weihe Graben, Central China. Acta Geologica Sinica, 91(1): 76-92. https://doi.org/10.1111/1755⁃6724.13064

[19]

Ewiak, O., Victor, P., Oncken, O., 2015. Investigating Multiple Fault Rupture at the Salar Del Carmen Segment of the Atacama Fault System (Northern Chile): Fault Scarp Morphology and Knickpoint Analysis: Multiple Fault Rupture Geomorphology. Tectonics, 34(2): 187-212. https://doi.org/10.1002/2014tc003599

[20]

Feng, X., Ma, J., Zhou, Y., et al., 2020. Geomorphology and Paleoseismology of the Weinan Fault, Shaanxi, Central China, and the Source of the 1556 Huaxian Earthquake. Journal of Geophysical Research (Solid Earth), 125(12): e2019JB017848. https://doi.org/10.1029/2019JB017848

[21]

Guo, J., Zheng, J., Guan, B., et al., 2012. Coseismic Surface Rupture Structures Associated with 2010 MS7.1 Yushu Earthquake, China. Seismological Research Letters, 83(1): 109-118. https://doi.org/10.1785/gssrl.83.1.109

[22]

Haeussler, P. J., 2004. Surface Rupture and Slip Distribution of the Denali and Totschunda Faults in the 3 November 2002 M7.9 Earthquake, Alaska. Bulletin of the Seismological Society of America, 94(6B): S23-S52. https://doi.org/10.1785/0120040626

[23]

Han, L. F., Liu⁃Zeng, J., Yao, W. Q.,et al.,2022. Detailed Mapping of the Surface Rupture Near the Epicenter Segment of the 2021 Madoi Mw7.4 Earthquake and Discussion on Distributed Rupture in the Step⁃Over. Seismology and Geology, 44(2): 484-505 (in Chinese with English abstract).

[24]

Hanks, T. C., 2013. The Age of Scarplike Landforms from Diffusion⁃Equation Analysis. Quaternary Geochronology. American Geophysical Union, Washington, D. C., 313-338. https://doi.org/10.1029/rf004p0313

[25]

Hanks, T. C., Bucknam, R. C., Lajoie, K. R., et al., 1984. Modification of Wave⁃Cut and Faulting⁃ Controlled Landforms. Journal of Geophysical Research: Solid Earth, 89(B7): 5771-5790. https://doi.org/10.1029/jb089ib07p05771

[26]

Hanks, T. C., Wallace, R. E.,1985.Morphological Analysis of the Lake Lahontan Shoreline and Beachfront Fault Scarps, Pershing County, Nevada. Bulletin of the Seismological Society of America, 75(3): 835-846. https://doi.org/10.1785/BSSA0750030835

[27]

Heron, A. M., 1922. Geological Results of the Mount Everest Expedition, 1921. The Geographical Journal, 59(6): 418. https://doi.org/10.2307/1780634

[28]

Kali, E., Leloup, P. H., Arnaud, N., et al., 2010. Exhumation History of the Deepest Central Himalayan Rocks, Ama Drime Range: Key Pressure⁃Temperature⁃Deformation⁃Time Constraints on Orogenic Models. Tectonics, 29(2): TC2014. https://doi.org/10.1029/2009TC002551

[29]

Klinger, Y., 2010. Relation between Continental Strike⁃Slip Earthquake Segmentation and Thickness of the Crust. Journal of Geophysical Research: Solid Earth, 115(B7): 2009JB006550. https://doi.org/10.1029/2009jb006550

[30]

Klinger, Y., Michel, R., King, G. C. P., 2006. Evidence for an Earthquake Barrier Model from MW∼7.8 Kokoxili (Tibet) Earthquake Slip⁃Distribution. Earth and Planetary Science Letters, 242(3/4): 354-364. https://doi.org/10.1016/j.epsl.2005.12.003

[31]

Leloup, P. H., Mahéo, G., Arnaud, N., et al., 2010. The South Tibet Detachment Shear Zone in the Dinggye Area Time Constraints on Extrusion Models of the Himalayas. Earth and Planetary Science Letters, 292(1-2): 1-16. https://doi.org/10.1016/j.epsl.2009.12.035

[32]

Li, C. Y., Pang, J. Z., Zhang, Z. Q., 2012. Characteristics, Geometry, and Segmentation of the Surface Rupture Associated with the 14 April 2010 Yushu Earthquake, Eastern Tibet, China. Bulletin of the Seismological Society of America, 102(4): 1618-1638. https://doi.org/10.1785/0120110261

[33]

Li, H. B., Pan, J. W., Lin, A. M., et al., 2016. Coseismic Surface Ruptures Associated with the 2014 MW6.9 Yutian Earthquake on the Altyn Tagh Fault, Tibetan Plateau. Bulletin of the Seismological Society of America, 106(2): 595-608. https://doi.org/10.1785/0120150136

[34]

Li, J. J., Fang, X. M.,1998.Study on the Uplift and Environmental Change of the Tibetan Plateau. Chinese Science Bulletin, 43(15): 1569-1574 (in Chinese).

[35]

Li, J. J., Wen, S. X., Zhang, Q. S.,et al.,1979.Discussion on the Era, Amplitude and Form of the Uplift of the Tibetan Plateau. Scientia Sinica, 9(6): 608-616 (in Chinese).

[36]

Li, K., Li, Y. S., Tapponnier, P., et al., 2021. Joint InSAR and Field Constraints on Faulting during the MW6.4, July 23, 2020, Nima/Rongma Earthquake in Central Tibet. Journal of Geophysical Research: Solid Earth, 126(9): e2021JB022212. https://doi.org/10.1029/2021jb022212

[37]

Li, K., Tapponnier, P., Xu, X. W.,et al.,2023.The 2022, MS6.9 Menyuan Earthquake: Surface Rupture, Paleozoic Suture Re⁃Activation, Slip⁃Rate and Seismic Gap along the Haiyuan Fault System, NE Tibet. Earth and Planetary Science Letters, 622: 118412. https://doi.org/10.1016/j.epsl.2023.118412

[38]

Liu, J., Xu, J., Ou, Q., et al., 2023. Discussion on the Overestimated Magnitude of the 1920 Haiyuan Earthquake. Acta Seismologica Sinica, 45(4): 579-596 (in Chinese with English abstract).

[39]

Liu, R. F., Chen, Y. T., Ren, X.,et al.,2015. Magnitude Determination. Seismological Press, Beijing (in Chinese).

[40]

Liu⁃Zeng, J., Liu, Z. J., Liu, X. L., et al., 2024. Fault Orientation Trumps Fault Maturity in Controlling Coseismic Rupture Characteristics of the 2021 Maduo Earthquake. AGU Advances, 5(2): e2023AV001134. https://doi.org/10.1029/2023AV001134

[41]

Liu⁃Zeng, J., Shao, Y. X., Klinger, Y., et al., 2015. Variability in Magnitude of Paleoearthquakes Revealed by Trenching and Historical Records, along the Haiyuan Fault, China. Journal of Geophysical Research (Solid Earth), 120(12): 8304-8333. https://doi.org/10.1002/2015JB012163

[42]

Liu⁃Zeng, J., Sun, J., Wang, P., et al., 2012. Surface Ruptures on the Transverse Xiaoyudong Fault: A Significant Segment Boundary Breached during the 2008 Wenchuan Earthquake, China. Tectonophysics, 580: 218-241. https://doi.org/10.1016/j.tecto.2012.09.024

[43]

Liu⁃Zeng, J., Wen, L., Sun, J., et al., 2010. Surficial Slip and Rupture Geometry on the Beichuan Fault near Hongkou during the Mw 7.9 Wenchuan Earthquake, China. Bulletin of the Seismological Society of America, 100(5B): 2615-2650. https://doi.org/10.1785/0120090316

[44]

Liu⁃Zeng, J., Zhang, Z., Wen, L., et al., 2009. Co⁃Seismic Ruptures of the 12 May 2008, MS8.0 Wenchuan Earthquake, Sichuan: East⁃West Crustal Shortening on Oblique, Parallel Thrusts along the Eastern Edge of Tibet. Earth and Planetary Science Letters, 286(3/4): 355-370. https://doi.org/10.1016/j.epsl.2009.07.017

[45]

Lu, L. J., Zhou, Y., Zhang, P. Z., et al., 2022. Modelling Fault Scarp Degradation to Determine Earthquake History on the Muztagh Ata and Tahman Faults in the Chinese Pamir. Frontiers in Earth Science, 10: 838866. https://doi.org/10.3389/feart.2022.838866

[46]

Ma, J., Feng, X. J., Li, G. Y.,et al.,2016.The Coseismic Vertical Displacements of Surface Rupture Zone of the 1556 Huaxian Earthquake. Seismology and Geology, 38(1): 22-30 (in Chinese with English abstract).

[47]

McCaffrey, R., Nabelek, J., 1998. Role of Oblique Convergence in the Active Deformation of the Himalayas and Southern Tibet Plateau. Geology, 26(8): 691. https://doi.org/10.1130/0091⁃7613(1998)0260691:roocit>2.3.co;2

[48]

Middleton, T. A., Walker, R. T., Rood, D. H., et al., 2016. The Tectonics of the Western Ordos Plateau, Ningxia, China: Slip Rates on the Luoshan and East Helanshan Faults. Tectonics, 35(11): 2754-2777. https://doi.org/10.1002/2016TC004230

[49]

Molnar, P., England, P., Martinod, J., 1993. Mantle Dynamics, Uplift of the Tibetan Plateau, and the Indian Monsoon. Reviews of Geophysics, 31(4): 357-396. https://doi.org/10.1029/93rg02030

[50]

Molnar, P., Lyon⁃Caent, H., 1989. Fault Plane Solutions of Earthquakes and Active Tectonics of the Tibetan Plateau and Its Margins. Geophysical Journal International, 99(1): 123-154. https://doi.org/10.1111/j.1365⁃246x.1989.tb02020.x

[51]

Molnar, P., Tapponnier, P., 1975. Cenozoic Tectonics of Asia: Effects of a Continental Collision. Science, 189(4201): 419-426. https://doi.org/10.1126/science.189.4201.419

[52]

Molnar, P., Tapponnier, P., 1978. Active Tectonics of Tibet. Journal of Geophysical Research: Solid Earth, 83(B11): 5361-5375. https://doi.org/10.1029/jb083ib11p05361

[53]

Ni, J., York, J. E., 1978. Late Cenozoic Tectonics of the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 83(B11): 5377-5384. https://doi.org/10.1029/jb083ib11p05377

[54]

Nurminen, F., Baize, S., Boncio, P., et al., 2022. SURE 2.0-New Release of the Worldwide Database of Surface Ruptures for Fault Displacement Hazard Analyses. Scientific Data, 9: 729. https://doi.org/10.1038/s41597⁃022⁃01835⁃z

[55]

Olen, S. M., Bookhagen, B., Hoffmann, B., et al., 2015. Understanding Erosion Rates in the Himalayan Orogen: A Case Study from the Arun Valley. Journal of Geophysical Research: Earth Surface, 120(10): 2080-2102. https://doi.org/10.1002/2014jf003410

[56]

Oskin, M. E., Arrowsmith, J. R., Corona, A. H.,et al.,2012.Near⁃Field Deformation from the El Mayor⁃ Cucapah Earthquake Revealed by Differential LIDAR. Science, 335(6069): 702-705. https://www.science.org/doi/abs/10.1126/science.1213778

[57]

Ou, Q., Kulikova, G., Yu, J., et al., 2020. Magnitude of the 1920 Haiyuan Earthquake Reestimated Using Seismological and Geomorphological Methods. Journal of Geophysical Research: Solid Earth, 125(8): e2019JB019244. https://doi.org/10.1029/2019jb019244

[58]

Ouchi, T., Lin, A., Chen,A.,et al.,2001. The 1999 Chi⁃Chi (Taiwan) Earthquake: Earthquake Fault and Strong Motions. Bulletin of the Seismological Society of America, 91(5): 966-976. https://doi.org/10.1785/0120000711

[59]

Pan, J. W., Li, H. B., Chevalier, M. L.,et al.,2022.Coseismic Surface Rupture and Seismogenic Structure of the 2022 MS6.9 Menyuan Earthquake, Qinghai Province, China. Acta Geologica Sinica,96(1): 215-231 (in Chinese with English abstract).

[60]

Pasuto, A., Soldati, M., 2013. 7.25 Lateral Spreading. In: Shroder,J.F.,ed., Treatise on Geomorphology. Academic Press, San Diego, 239-248. https://doi.org/10.1016/B978⁃0⁃12⁃374739⁃6.00173⁃1

[61]

Pelletier, J. D., DeLong, S. B., Al⁃Suwaidi, A. H., et al., 2006. Evolution of the Bonneville Shoreline Scarp in West⁃Central Utah: Comparison of Scarp⁃Analysis Methods and Implications for the Diffusion Model of Hillslope Evolution. Geomorphology, 74(1-4): 257-270. https://doi.org/10.1016/j.geomorph.2005.08.008

[62]

Rockwell, T. K., Klinger, Y., 2013. Surface Rupture and Slip Distribution of the 1940 Imperial Valley Earthquake, Imperial Fault, Southern California: Implications for Rupture Segmentation and Dynamics. Bulletin of the Seismological Society of America, 103(2A): 629-640. https://doi.org/10.1785/0120120192

[63]

Rothery, D. A., Drury, S. A., 1984. The Neotectonics of the Tibetan Plateau. Tectonics, 3(1): 19-26. https://doi.org/10.1029/tc003i001p00019

[64]

Sarmiento, A., Madugo, D., Bozorgnia, Y.,et al.,2021.Fault Displacement Hazard Initiative Database. University of California, Los Angeles. https://doi.org/10.34948/N36P48

[65]

Shao, Y. X., Liu⁃Zeng, J., Gao, Y. P.,et al.,2022. Coseismic Displacement Measurement and Distributed Deformation Characterization: A Case of the 2021 MW7.4 Madoi Earthquake. Seismology and Geology, 44(2): 506-523 (in Chinese with English abstract).

[66]

Shi, F., Liang, M. J., Luo, Q. X., et al.,2025.Seismogenic Structure and Coseismic Surface Rupture Characteristics of the M6.8 Dingri Earthquake in Tibet on January 7, 2025. Seismology and Geology, 47(1): 1-15 (in Chinese with English abstract).

[67]

State Seismological Bureau,1988. Active Fault System around Massif. Seismological Press, Beijing (in Chinese).

[68]

Su, R. H.,Yuan, D. Y.,Xie, H.,et al.,2023.Classified Surface Rupture Characteristics and Damage Analysis of the 2022 MS6.9 Menyuan Earthquake, Qinghai. Acta Seismologica Sinica, 45(5): 797-813 (in Chinese with English abstract).

[69]

Tang, M. Y., Liu⁃Zeng, J., Shao, Y. X., et al., 2015. Analysis about the Minimum Magnitude Earthquake Associated with Surface Ruptures. Seismology and Geology, 37(4): 1193-1214 (in Chinese with English abstract).

[70]

Tapponnier, P., Mercier, J. L., Proust, F., et al., 1981. The Tibetan Side of the India⁃Eurasia Collision. Nature, 294(5840): 405-410. https://doi.org/10.1038/294405a0

[71]

Tapponnier, P., Molnar, P., 1977. Active Faulting and Tectonics in China. Journal of Geophysical Research, 82(20): 2905-2930. https://doi.org/10.1029/jb082i020p02905

[72]

Tapponnier, P., Xu, Z. Q., Roger, F., et al., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671-1677. https://doi.org/10.1126/science.105978

[73]

Taylor, M., Yin, A., Ryerson, F. J., et al., 2003. Conjugate Strike⁃Slip Faulting along the Bangong⁃Nujiang Suture Zone Accommodates Coeval East⁃West Extension and North⁃South Shortening in the Interior of the Tibetan Plateau. Tectonics, 22(4): 2002TC001361. https://doi.org/10.1029/2002tc001361

[74]

Tian, T. T., Wu, Z. H., 2023. Recent Prehistoric Major Earthquake Event of Dingmucuo Normal Fault in the Southern Segment of Shenzha⁃Dingjie Rift and Its Seismic Geological Significance. Geological Review, 69(S1):53-55 (in Chinese with English abstract).

[75]

Wang, H., Wright, T. J., Jing, L.Z., et al., 2019. Strain Rate Distribution in South⁃Central Tibet from Two Decades of InSAR and GPS. Geophysical Research Letters, 46(10): 5170-5179. https://doi.org/10.1029/2019gl081916

[76]

Wang, W. M.,2025.Preliminary Result for Rupture Process of Jan. 7, 2025, M7.1 Earthquake, Rikaze, China. National Tibetan Plateau/Third Pole Environment Data Center, Beijing.

[77]

Wei, Z. Y., Bi, L. S., Xu, Y. R., et al., 2015. Evaluating Knickpoint Recession along an Active Fault for Paleoseismological Analysis: The Huoshan Piedmont, Eastern China. Geomorphology, 235: 63-76. https://doi.org/10.1016/j.geomorph.2015.01.013

[78]

Wells, D. L., Coppersmith, K. J., 1994. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. The Bulletin of the Seismological Society of America, 84(4): 974-1002. https://doi.org/10.1785/BSSA0840040974

[79]

Wen, X. Z., Yi, G. X., Xu, X. W., 2007. Background and Precursory Seismicities along and Surrounding the Kunlun Fault before the MS8.1, 2001, Kokoxili Earthquake, China. Journal of Asian Earth Sciences, 30(1): 63-72. https://doi.org/10.1016/j.jseaes.2006.07.008

[80]

Wesnousky, S. G.,2006.Predicting the Endpoints of Earthquake Ruptures. Nature, 444(7117): 358-360. https://www.ncbi.nlm.nih.gov/pubmed/17108963

[81]

Wesnousky, S. G., 2008. Displacement and Geometrical Characteristics of Earthquake Surface Ruptures: Issues and Implications for Seismic⁃Hazard Analysis and the Process of Earthquake Rupture. The Bulletin of the Seismological Society of America, 98(4): 1609-1632. https://doi.org/10.1785/0120070111

[82]

Xu, J. H., Arrowsmith, J. R., Chen, J., et al., 2021. Evaluating Young Fluvial Terrace Riser Degradation Using a Nonlinear Transport Model: Application to the Kongur Normal Fault in the Pamir, Northwest China. Earth Surface Processes and Landforms, 46(1): 280-295. https://doi.org/10.1002/esp.5022

[83]

Xu, J. H., Chen, J., Wei, Z. Y.,et al.,2023. Morphologic Dating of Scarp Morphology Based on Diffusion Equation: A Review. Seismology and Geology, 45(4): 811-832 (in Chinese with English abstract).

[84]

Xu, X. W., Tan, X. B., Yu, G. H., et al., 2013. Normal⁃ and Oblique⁃Slip of the 2008 Yutian Earthquake: Evidence for Eastward Block Motion, Northern Tibetan Plateau. Tectonophysics, 584: 152-165. https://doi.org/10.1016/j.tecto.2012.08.007

[85]

Xu, X. W., Wen, X. Z., Yu, G. H., et al., 2009. Coseismic Reverse⁃ and Oblique⁃Slip Surface Faulting Generated by the 2008 MW7.9 Wenchuan Earthquake, China. Geology, 37(6): 515-518. https://doi.org/10.1130/g25462a.1

[86]

Xu, X. W., Yu, G. H., Klinger, Y., et al., 2006. Reevaluation of Surface Rupture Parameters and Faulting Segmentation of the 2001 Kunlunshan Earthquake (Mw7.8), Northern Tibetan Plateau, China. Journal of Geophysical Research: Solid Earth, 111(B5): 2004JB003488. https://doi.org/10.1029/2004jb003488

[87]

Xu, X. W., Zhang, H. W., Deng, Q. D., 1988. The Paleoearthquake Traces on Huashan Front Fault Zone in Weihe Basin and Its Earthquake Intervals. Seismology and Geology, 10(4): 206 (in Chinese with English abstract).

[88]

Xu, X.Y., 2019. Late Quaternary Activity and Environmental Effects of the Kada Zheng Fault of the Shenzha⁃Dingjie Fault System in Southern Tibet (Dissertation). Institute of Geology, China Earthquake Administration, Beijing (in Chinese).

[89]

Xu, Y. R., He, H. L., Deng, Q. D., et al., 2018. The CE 1303 Hongdong Earthquake and the Huoshan Piedmont Fault, Shanxi Graben: Implications for Magnitude Limits of Normal Fault Earthquakes. Journal of Geophysical Research (Solid Earth), 123(4): 3098-3121.

[90]

Yan, X. B., Zhou, Y. S., Li, Z. H., et al., 2018. A Study on the Seismogenic Structure of Linfen M7(3/4) Earthquake in 1695. Seismology and Geology, 40(4): 883-902 (in Chinese with English abstract).

[91]

Yang, T., Wang, S. G., Fang, L. H., et al., 2025. Aftershock Sequence Characteristics and Seismogenic Structure of the Ms6.8 Dingri Earthquake in Tibet. Earth Science, 50(5): 1721-1732 (in Chinese with English abstract).

[92]

Yao, G. G., Jiang, Y., Yu, X. M.,1984.Investigation on the 1303 Zhaocheng Shanxi, Earthquake (M=8) and Its Parameters Concerned. Journal of Seismological Research, 7: 313-326.

[93]

Yao, W. Q., Wang, Z. J., Liu⁃Zeng, J.,et al.,2022. Discussion on Coseismic Surface Rupture Length of the 2021 MW7.4 Madoi Earthquake, Qinghai, China. Seismology and Geology, 44(2): 541-559 (in Chinese with English abstract).

[94]

Yeats, R. S., Sieh, K. E., Allen, C. R., 1997.The Geology of Earthquakes. Oxford University Press, New York.

[95]

Yin, A., Kapp, P. A., Murphy, M. A., et al., 1999. Significant Late Neogene East⁃West Extension in Northern Tibet. Geology, 27(9): 787-790. https://doi.org/10.1130/0091⁃7613(1999)027<0787:SLNEWE>2.3.CO;2

[96]

Yue, L. F., Suppe, J., Hung, J. H., 2005. Structural Geology of a Classic Thrust Belt Earthquake: the 1999 Chi⁃Chi Earthquake Taiwan (MW=7.6). Journal of Structural Geology, 27(11): 2058-2083. https://doi.org/10.1016/j.jsg.2005.05.020

[97]

Zhang, B. C, Liao, Y. H, Guo, S. M.,et al.,1986. Fault Scarps Related to the 1739 Earthquake and Seismicity of the Yinchuan Graben, Ningxia Huizu Zizhiqu, China. Bulletin of the Seismological Society of America, 76(5): 1253-1287. https://doi.org/10.1785/BSSA0760051253

[98]

Zhang, J. J.,2007.A Review on the Extensional Structures in the Northern Himalaya and Southern Tibet. Geological Bulletin of China, 26(6): 639-649 (in Chinese with English abstract).

[99]

Zhang, J. J., Ji, J. Q., Zhong, D. L., et al., 2002.Tectonic and Chronological Evidence of the Collision of the East Himalayan Structure with India and Eurasia at the Beginning of the Paleocene in Nangabawa Region. Acta Geologica Sinica, 76(4): 445-445 (in Chinese with English abstract).

[100]

Zhang, P. Z., Shen, Z. K., Wang, M.,et al.,2004.Continuous Deformation of the Tibetan Plateau from Global Positioning System Data. Geology, 32(9): 809-812. https://doi.org/10.1130/G20554.1

[101]

Zheng, G., Wang, H., Wright, T. J., et al., 2017. Crustal Deformation in the India⁃Eurasia Collision Zone from 25 Years of GPS Measurements. Journal of Geophysical Research: Solid Earth, 122(11): 9290-9312. https://doi.org/10.1002/2017jb014465

基金资助

国家自然科学基金项目(42272242)

国家自然科学基金项目(W2411033)

中国地震局地质研究所所长基金重点项目(JB⁃18⁃02)

地震动力学与强震预测全国重点实验室项目(LED2022A03)

AI Summary AI Mindmap
PDF (18488KB)

247

访问

0

被引

详细

导航
相关文章

AI思维导图

/