新元古代氧化事件促发“雪球地球”冰期气候?
Did the Neoproterozoic Oxygenation Event Trigger the Snowball Earth?
,
新元古代氧化事件的启动时间、持续时长及氧气含量的上升幅度存在争议,其与“雪球地球”发生的先后序列和因果联系也有待厘清.系统梳理和分析了拉伸纪古生物化石演化、地球化学数据和模型,对上述问题提出假说:新元古代氧化事件可能早于“雪球地球”,“雪球地球”结束进一步促进了氧气含量的增加.具体而言,真核藻类在拉伸纪已广泛存在,具备较高生产力的物质基础;罗迪尼亚超大陆裂解引发了强烈的大陆风化,导致磷等营养元素大量输入海水,增强了有机质的生成与埋藏并促进氧气大量释放.O2含量上升和强烈大陆风化限制了CH4、CO2等温室气体,使气温降低并引发“雪球地球”.“雪球地球”间冰期或冰后期,冰川消融引起强烈的物理风化,增强营养元素的供应,提高有机碳埋藏效率和O2水平,进一步加强新元古代氧化.然而,拉伸纪地层划分与对比存在较大争议,许多化石的生物学属性尚不明确,多种地球化学数据难以耦合.因此,为厘清新元古代氧化事件与“雪球地球”的相互作用机制,需要加强年代学、古生物学和地球化学等方面的综合研究.
The initiation time, the duration and the magnitude of oxygen increase of the Neoproterozoic Oxygenation Event (NOE) are controversial. The sequence and causal relationship between the NOE and the Snowball Earth also need to be clarified. This review analyzes previous studies of fossils, geochemical data and models in the Tonian, suggesting a hypothesis of possible linkages between the NOE and the Snowball Earth. The NOE may have occurred earlier than the Snowball Earth, and the end of Snowball Earth further promoted an increase of oxygen content. Specifically, eukaryotic algae were widely present during the Tonian and constructed a basis for high productivity. Rifting of the Rodinia supercontinent triggered intense continental weathering, leading to a large amount of nutrients such as phosphorus into seawater. Consequently, enhanced primary production elevated the burial of organic matter, and sufficient oxygen was released to the ocean and atmosphere, indicating the onset of the oxygenation event. On the other hand, abundant O2 and intense continental weathering consumed greenhouse gases such as CH4 and CO2, causing a decrease of temperature and driving the Snowball Earth. During the interglacial and postglacial periods of the Snowball Earth, glacier melting caused strong physical weathering and enhanced nutrient supply, improving organic carbon burial and O2 level. To clarify the interactions between the NOE and the Snowball Earth, it is necessary to further study chronology, paleontology and geochemistry of the Tonian in the future.
新元古代 / 氧化事件 / 雪球地球 / 协同演化 / 罗迪尼亚超大陆 / 地球化学.
Neoproterozoic / Oxygenation Event / Snowball Earth / co⁃evolution / Rodinia supercontinent / geochemistry
| [1] |
Agić, H., Moczydłowska, M., Yin, L. M., 2017. Diversity of Organic⁃Walled Microfossils from the Early Mesoproterozoic Ruyang Group, North China Craton -A Window into the Early Eukaryote Evolution. Precambrian Research, 297: 101-130. https://doi.org/10.1016/j.precamres.2017.04.042 |
| [2] |
Bao, H. M., Lyons, J. R., Zhou, C. M., 2008. Triple Oxygen Isotope Evidence for Elevated CO2 Levels after a Neoproterozoic Glaciation. Nature, 453: 504-506. https://doi.org/10.1038/nature06959 |
| [3] |
Behr, H. J., Ahrendt, H., Martin, H., et al., 1983. Sedimentology and Mineralogy of Upper Proterozoic Playa⁃Lake Deposits in the Damara Orogen.In: Martin, H., Eder, F. W.,eds., Intracontinental Fold Belts. Springer, Heidelberg, 577-610. https://doi.org/10.1007/978⁃3⁃642⁃69124⁃9_24 |
| [4] |
Berkner, L. V., Marshall, L. C., 1965. On the Origin and Rise of Oxygen Concentration in the Earth’s Atmosphere. Journal of the Atmospheric Sciences, 22(3): 225-261. https://doi.org/10.1175/1520⁃0469(1965)0220225: otoaro>2.0.co;2 |
| [5] |
Blamey, N. J. F., Brand, U., Parnell, J., et al., 2016. Paradigm Shift in Determining Neoproterozoic Atmospheric Oxygen. Geology, 44(8): 651-654. https://doi.org/10.1130/g37937.1 |
| [6] |
Blättler, C. L., Claire, M. W., Prave, A. R., et al., 2018. Two⁃Billion⁃Year⁃Old Evaporites Capture Earth’s Great Oxidation. Science, 360(6386): 320-323. https://doi.org/10.1126/science.aar2687 |
| [7] |
Brasier, M. D., Lindsay, J. F., 1998. A Billion Years of Environmental Stability and the Emergence of Eukaryotes: New Data from Northern Australia. Geology, 26(6): 555-558. https://doi.org/10.1130/0091⁃7613(1998)026<0555: ABYOES>2.3.CO;2 |
| [8] |
Brocks, J. J., Jarrett, A. J. M., Sirantoine, E., et al., 2017. The Rise of Algae in Cryogenian Oceans and the Emergence of Animals. Nature, 548: 578-581. https://doi.org/10.1038/nature23457 |
| [9] |
Brocks, J. J., Jarrett, A. J., Sirantoine, E., et al., 2016. Early Sponges and Toxic Protists: Possible Sources of Cryostane, an Age Diagnostic Biomarker Antedating Sturtian Snowball Earth. Geobiology, 14(2): 129-149. https://doi.org/10.1111/gbi.12165 |
| [10] |
Brocks, J. J., Nettersheim, B. J., Adam, P., et al., 2023. Lost World of Complex Life and the Late Rise of the Eukaryotic Crown. Nature, 618:767-773. https://doi.org/10.1038/s41586⁃023⁃06170⁃w |
| [11] |
Buick, R., Des Marais, D. J., Knoll, A. H., 1995. Stable Isotopic Compositions of Carbonates from the Mesoproterozoic Bangemall Group, Northwestern Australia. Chemical Geology, 123(1-4): 153-171. https://doi.org/10.1016/0009⁃2541(95)00049⁃R |
| [12] |
Butterfield, N. J., 2005. Probable Proterozoic Fungi. Paleobiology, 31(1): 165-182. https://doi.org/10.1666/0094⁃8373(2005)0310165: ppf>2.0.co;2 |
| [13] |
Butterfield, N. J., 2009. Oxygen, Animals and Oceanic Ventilation: An Alternative View. Geobiology, 7(1): 1-7. https://doi.org/10.1111/j.1472⁃4669.2009.00188.x |
| [14] |
Butterfield, N. J., 2015a. Early Evolution of the Eukaryota. Palaeontology, 58(1): 5-17. https://doi.org/10.1111/pala.12139 |
| [15] |
Butterfield, N.J., 2015b. The Neoproterozoic. Curr. Biol., 25: R859-863. |
| [16] |
Butterfield, N. J., Knoll, A. H., Swett, K., 1994. Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossils and Strata. Scandinavian University Press, Oslo, 1-84. https://doi.org/10.18261/8200376494⁃1994⁃01 |
| [17] |
Butterfield, N.J., 2000. Bangiomorpha Pubescens N. Gen., N. sp.: Implications for the Evolution of Sex, Multicellularity, and the Mesoproterozoic/Neoproterozoic Radiation of Eukaryotes. Paleobiology, 26: 386-404. |
| [18] |
Canfield, D. E., Poulton, S. W., Knoll, A. H., et al., 2008. Ferruginous Conditions Dominated Later Neoproterozoic Deep⁃Water Chemistry. Science, 321(5891): 949-952. https://doi.org/10.1126/science.1154499 |
| [19] |
Canfield, D. E., Poulton, S. W., Narbonne, G. M., 2007. Late⁃Neoproterozoic Deep⁃Ocean Oxygenation and the Rise of Animal Life. Science, 315(5808): 92-95. https://doi.org/10.1126/science.1135013 |
| [20] |
Canfield, D. E., Zhang, S. C., Frank, A. B., et al., 2018. Highly Fractionated Chromium Isotopes in Mesoproterozoic⁃Aged Shales and Atmospheric Oxygen. Nature Communications, 9: 2871. https://doi.org/10.1038/s41467⁃018⁃05263⁃9 |
| [21] |
Cawood, P. A., Strachan, R. A., Pisarevsky, S. A., et al., 2016. Linking Collisional and Accretionary Orogens during Rodinia Assembly and Breakup: Implications for Models of Supercontinent Cycles. Earth and Planetary Science Letters, 449: 118-126. https://doi.org/10.1016/j.epsl.2016.05.049 |
| [22] |
Chen, X., Zhou, Y., Shields, G. A., 2022. Progress towards an Improved Precambrian Seawater 87Sr/86Sr Curve. Earth⁃Science Reviews, 224: 103869. https://doi.org/10.1016/j.earscirev.2021.103869 |
| [23] |
Chu, X. L., 2004. “Snowball Earth” during the Neoproterozoic. Bulletin of Mineralogy, Petrology and Geochemistry, 23(3): 233-238 (in Chinese with English abstract). |
| [24] |
Chu, X. L., Zhang, T. G., Zhang, Q. R., et al., 2007. Sulfur and Carbon Isotope Records from 1 700 to 800 Ma Carbonates of the Jixian Section, Northern China: Implications for Secular Isotope Variations in Proterozoic Seawater and Relationships to Global Supercontinental Events. Geochimica et Cosmochimica Acta, 71(19): 4668-4692. https://doi.org/10.1016/j.gca.2007.07.017 |
| [25] |
Cloud, P., 1976. Beginnings of Biospheric Evolution and Their Biogeochemical Consequences. Paleobiology, 2(4): 351-387. https://doi.org/10.1017/s009483730000498x |
| [26] |
Cohen, P. A., Irvine, S. W., Strauss, J. V., 2017. Vase⁃Shaped Microfossils from the Tonian Callison Lake Formation of Yukon, Canada: Taxonomy, Taphonomy and Stratigraphic Palaeobiology. Palaeontology, 60(5): 683-701. https://doi.org/10.1111/pala.12315 |
| [27] |
Cole, D. B., Reinhard, C. T., Wang, X. L., et al., 2016. A Shale⁃Hosted Cr Isotope Record of Low Atmospheric Oxygen during the Proterozoic. Geology, 44(7): 555-558. https://doi.org/10.1130/G37787.1 |
| [28] |
Cornet, Y., François, C., Compère, P., et al., 2019. New Insights on the Paleobiology, Biostratigraphy and Paleogeography of the Pre⁃Sturtian Microfossil Index Taxon Cerebrosphaera. Precambrian Research, 332: 105410. https://doi.org/10.1016/j.precamres.2019.105410 |
| [29] |
Cox, G. M., Halverson, G. P., Stevenson, R. K., et al., 2016. Continental Flood Basalt Weathering as a Trigger for Neoproterozoic Snowball Earth. Earth and Planetary Science Letters, 446: 89-99. https://doi.org/10.1016/j.epsl.2016.04.016 |
| [30] |
Cui, H., Kaufman, A. J., Xiao, S. H., et al., 2017. Was the Ediacaran Shuram Excursion a Globally Synchronized Early Diagenetic Event? Insights from Methane⁃Derived Authigenic Carbonates in the Uppermost Doushantuo Formation, South China. Chemical Geology, 450: 59-80. https://doi.org/10.1016/j.chemgeo.2016.12.010 |
| [31] |
Cui, Y. X., Shen, B., Sun, Y. L., et al., 2021. A Pulse of Seafloor Oxygenation at the Late Devonian Frasnian⁃Famennian Boundary in South China. Earth⁃Science Reviews, 218: 103651. https://doi.org/10.1016/j.earscirev.2021.103651 |
| [32] |
Dahl, T. W., Canfield, D. E., Rosing, M. T., et al., 2011. Molybdenum Evidence for Expansive Sulfidic Water Masses in ~750 Ma Oceans. Earth and Planetary Science Letters, 311(3-4): 264-274. https://doi.org/10.1016/j.epsl.2011.09.016 |
| [33] |
Demoulin, C. F., Lara, Y. J., Lambion, A., et al., 2024. Oldest Thylakoids in Fossil Cells Directly Evidence Oxygenic Photosynthesis. Nature, 625:529-534. https://doi.org/10.1038/s41586⁃023⁃06896⁃7 |
| [34] |
Derry, L. A., 2010. A Burial Diagenesis Origin for the Ediacaran Shuram⁃Wonoka Carbon Isotope Anomaly. Earth and Planetary Science Letters, 294(1-2): 152-162. https://doi.org/10.1016/j.epsl.2010.03.022 |
| [35] |
Ding, W. M., Nie, T., Peng, Y. B., etal., 2021. Validating the Deep Time Carbonate Carbon Isotope Records: Effect of Benthic Flux on Seafloor Carbonate.Acta Geochimica, 40(3):271-286. https://doi.org/10.1007/s11631⁃021⁃00467⁃1 |
| [36] |
dos Reis, M., Thawornwattana, Y., Angelis, K., et al., 2015. Uncertainty in the Timing of Origin of Animals and the Limits of Precision in Molecular Timescales. CurrentBiology, 25(22): 2939-2950. https://doi.org/10.1016/j.cub.2015.09.066 |
| [37] |
Ernst, R.E., Bond, D.P.G., Zhang, S.H., et al., 2021. Large Igneous Province Record through Time and Implications for Secular Environmental Changes and Geological Time⁃Scale Boundaries. In: Ernst, R.E., Dickson, A.J., Bekker, A., eds., Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes. American Geophysical Union, 1-26. |
| [38] |
Erwin, D. H., Laflamme, M., Tweedt, S. M., et al., 2011. The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals. Science, 334(6059): 1091-1097. https://doi.org/10.1126/science.1206375 |
| [39] |
Fike, D. A., Grotzinger, J. P., Pratt, L. M., et al., 2006. Oxidation of the Ediacaran Ocean. Nature, 444: 744-747. https://doi.org/10.1038/nature05345 |
| [40] |
Gao, L. Z., Wang, Z. Q., Zhang, C. H., 2010. Geochemical Character of C/O Isotope of the Upper Proterozoic from Southern Margin of North China Block and Implication for Its Depositional Environment. Journal of Palaeogeography, 12(6): 639-654 (in Chinese with English abstract). |
| [41] |
Gao, L. Z., Zhang, C. H., Shi, X. Y., et al., 2007. A New SHRIMP Age of the Xiamaling Formation in the North China Plate and Its Geological Significance. Acta Geologica Sinica (English Edition), 81(6): 1103-1109. https://doi.org/10.1111/j.1755⁃6724.2007.tb01032.x |
| [42] |
Gao, L. Z., Zhang, C. H., Shi, X. Y., et al., 2008a. Mesoproterozoic Age for Xiamaling Formation in North China Plate Indicated by Zircon SHRIMP Dating. Chinese Science Bulletin, 53(17): 2665-2671. https://doi.org/10.1007/s11434⁃008⁃0340⁃3 |
| [43] |
Gao, L., Zhang, C., Yin, C., et al., 2008b. SHRIMP Zircon Ages: Basis for Refining the Chronostratigraphic Classification of the Meso⁃and Neoproterozoic Strata in North China Old Land. Acta Geologica Sinica (English Edition), 29: 366-376. |
| [44] |
Gao, L.Z., Zhang, C.H., Shi, X.Y., et al., 2007. Zircon SHRIMP U⁃Pb Dating of the Tuff Bed in the Xiamaling Formation of the Qingbaikouan System in North China. Geological Bulletin of China, 26(3): 249-255 (in Chinese with English abstract). |
| [45] |
Gibson, T. M., Shih, P. M., Cumming, V. M., et al., 2018. Precise Age of Bangiomorpha Pubescens Dates the Origin of Eukaryotic Photosynthesis. Geology, 46(2): 135-138. https://doi.org/10.1130/G39829.1 |
| [46] |
Gingras, M., Hagadorn, J. W., Seilacher, A., et al., 2011. Possible Evolution of Mobile Animals in Association with Microbial Mats. Nature Geoscience, 4(6): 372-375. https://doi.org/10.1038/ngeo1142 |
| [47] |
Gnaiger, E., Kuznetsov, A. V., 2002. Mitochondrial Respiration at Low Levels of Oxygen and Cytochrome C. Biochemical Society Transactions, 30(2): 252-258. https://doi.org/10.1042/bst0300252 |
| [48] |
Gong, Z., Li, M. S., 2020. Astrochronology of the Ediacaran Shuram Carbon Isotope Excursion, Oman. Earth and Planetary Science Letters, 547: 116462. https://doi.org/10.1016/j.epsl.2020.116462 |
| [49] |
Grotzinger, J. P., Fike, D. A., Fischer, W. W., 2011. Enigmatic Origin of the Largest⁃Known Carbon Isotope Excursion in Earth’s History. Nature Geoscience, 4: 285-292. https://doi.org/10.1038/ngeo1138 |
| [50] |
Halverson, G. P., Hoffman, P. F., Schrag, D. P., et al., 2005. Toward a Neoproterozoic Composite Carbon⁃Isotope Record. Geological Society of America Bulletin, 117(9): 1181-1207. https://doi.org/10.1130/B25630.1 |
| [51] |
Halverson, G. P., Maloof, A. C., Schrag, D. P., et al., 2007. Stratigraphy and Geochemistry of a ca 800 Ma Negative Carbon Isotope Interval in Northeastern Svalbard.Chemical Geology, 237(1-2):5-27. https://doi.org/10.1016/j.chemgeo.2006.06.013 |
| [52] |
Halverson, G. P., Wade, B. P., Hurtgen, M. T., et al., 2010. Neoproterozoic Chemostratigraphy. Precambrian Research, 182(4): 337-350. https://doi.org/10.1016/j.precamres.2010.04.007 |
| [53] |
Hardisty, D. S., Lu, Z. L., Bekker, A., et al., 2017. Perspectives on Proterozoic Surface Ocean Redox from Iodine Contents in Ancient and Recent Carbonate. Earth and Planetary Science Letters, 463: 159-170. https://doi.org/10.1016/j.epsl.2017.01.032 |
| [54] |
Heckman, D. S., Geiser, D. M., Eidell, B. R., et al., 2001. Molecular Evidence for the Early Colonization of Land by Fungi and Plants. Science, 293(5532): 1129-1133. https://doi.org/10.1126/science.1061457 |
| [55] |
Hoffman, P. F., Abbot, D. S., Ashkenazy, Y., et al., 2017. Snowball Earth Climate Dynamics and Cryogenian Geology⁃Geobiology. Science Advances, 3(11):e1600983. https://doi.org/10.1126/sciadv.1600983 |
| [56] |
Hoffman, P. F., Kaufman, A. J., Halverson, G. P., et al., 1998. A Neoproterozoic Snowball Earth. Science, 281(5381): 1342-1346. https://doi.org/10.1126/science.281.5381.1342 |
| [57] |
Horita, J., Zimmermann, H., Holland, H. D., 2002. Chemical Evolution of Seawater during the Phanerozoic Implications from the Record of Marine Evaporites. Geochimica et Cosmochimica Acta, 66(21): 3733-3756. https://doi.org/10.1016/S0016⁃7037(01)00884⁃5 |
| [58] |
Huang, K. J., Teng, F. Z., Shen, B., et al., 2016. Episode of Intense Chemical Weathering during the Termination of the 635 Ma Marinoan Glaciation. Proceedings of the National Academy of Sciences, 113(52): 14904-14909. https://doi.org/10.1073/pnas.1607712113 |
| [59] |
Huntley, J. W., Xiao, S. H., Kowalewski, M., 2006. 1.3 Billion Years of Acritarch History: An Empirical Morphospace Approach. Precambrian Research, 144(1-2): 52-68. https://doi.org/10.1016/j.precamres.2005.11.003 |
| [60] |
Isson, T. T., Love, G. D., Dupont, C. L., et al., 2018. Tracking the Rise of Eukaryotes to Ecological Dominance with Zinc Isotopes. Geobiology, 16(4): 341-352. https://doi.org/10.1111/gbi.12289 |
| [61] |
Jackson, M. P. A., Warin, O. N., Woad, G. M., et al., 2003. Neoproterozoic Allochthonous Salt Tectonics during the Lufilian Orogeny in the Katangan Copperbelt, Central Africa. Geological Society of America Bulletin, 115: 314-330. https://doi.org/10.1130/0016⁃7606(2003)1150314: nastdt>2.0.co;2 |
| [62] |
Javaux, E. J., Knoll, A. H., 2017. Micropaleontology of the Lower Mesoproterozoic Roper Group, Australia, and Implications for Early Eukaryotic Evolution. Journal of Paleontology, 91(2): 199-229. https://doi.org/10.1017/jpa.2016.124 |
| [63] |
Javaux, E. J., Knoll, A. H., Walter, M. R., 2001. Morphological and Ecological Complexity in Early Eukaryotic Ecosystems. Nature, 412: 66-69. https://doi.org/10.1038/35083562 |
| [64] |
Javaux, E. J., Knoll, A. H., Walter, M. R., 2004. TEM Evidence for Eukaryotic Diversity in Mid⁃Proterozoic Oceans. Geobiology, 2(3): 121-132. https://doi.org/10.1111/j.1472⁃4677.2004.00027.x |
| [65] |
Javaux, E. J., Lepot, K., 2018. The Paleoproterozoic Fossil Record: Implications for the Evolution of the Biosphere during Earth’s Middle⁃Age. Earth⁃Science Reviews, 176: 68-86. https://doi.org/10.1016/j.earscirev.2017.10.001 |
| [66] |
Kah, L. C., Bartley, J. K., Teal, D. A., 2012. Chemostratigraphy of the Late Mesoproterozoic Atar Group, Taoudeni Basin, Mauritania: Muted Isotopic Variability, Facies Correlation, and Global Isotopic Trends. Precambrian Research, 200: 82-103. https://doi.org/10.1016/j.precamres.2012.01.011 |
| [67] |
Kah, L. C., Lyons, T. W., Chesley, J. T., 2001. Geochemistry of a 1.2 Ga Carbonate⁃Evaporite Succession, Northern Baffin and Bylot Islands: Implications for Mesoproterozoic Marine Evolution. Precambrian Research, 111(1-4): 203-234. https://doi.org/10.1016/S0301⁃9268(01)00161⁃9 |
| [68] |
Kah, L. C., Sherman, A. G., Narbonne, G. M., et al., 1999. δ13C Stratigraphy of the Proterozoic Bylot Supergroup, Baffin Island, Canada: Implications for Regional Lithostratigraphic Correlations. Canadian Journal of Earth Sciences, 36(3): 313-332. https://doi.org/10.1139/e98⁃100 |
| [69] |
Knoll, A. H., 2014. Paleobiological Perspectives on Early Eukaryotic Evolution. Cold Spring Harbor Perspectives in Biology, 6(1): a016121. https://doi.org/10.1101/cshperspect.a016121 |
| [70] |
Knoll, A. H., Javaux, E. J., Hewitt, D., et al., 2006. Eukaryotic Organisms in Proterozoic Oceans. Philosophical Transactions of the Royal Society B, 361(1470): 1023-1038. https://doi.org/10.1098/rstb.2006.1843 |
| [71] |
Kuang, H., Peng, N., Liu, Y. Q., et al., 2023. Is There a Great Unconformity between Xiamaling and Longshan Formations in the North China Craton? Scientia SinicaTerrae, 53(5): 948-972 (in Chinese). |
| [72] |
Kuang, H.W., Liu, Y.Q., Geng, Y.S., et al., 2019. Important Sedimentary Geological Events of the Meso⁃Neoproterozoic and Their Significance. Journal of Palaeogeography (Chinese Edition), 21(1): 1-30 (in Chinese with English abstract). |
| [73] |
Kuang, H. W., Liu, Y. Q., Peng, N., et al., 2011. Geochemistry of the Neoproterozoic Molar⁃Tooth Carbonates in Dalian, Eastern Liaoning, China, and Its Geological Implications. Earth Science Frontiers, 18(4): 25-40 (in Chinese with English abstract). |
| [74] |
Kump, L. R., 1991. Interpreting Carbon⁃Isotope Excursions: Strangelove Oceans. Geology, 19(4): 299-302. https://doi.org/10.1130/0091⁃7613(1991)0190299: icieso>2.3.co;2 |
| [75] |
Kump, L. R., 2014. Hypothesized Link between Neoproterozoic Greening of the Land Surface and the Establishment of an Oxygen⁃Rich Atmosphere. Proceedings of the National Academy of Sciences, 111(39): 14062-14065. https://doi.org/10.1073/pnas.1321496111 |
| [76] |
Kump, L. R., Arthur, M. A., 1999. Interpreting Carbon⁃Isotope Excursions: Carbonates and Organic Matter. Chemical Geology, 161(1-3): 181-198. https://doi.org/10.1016/S0009⁃2541(99)00086⁃8 |
| [77] |
Lamb, D. M., Awramik, S. M., Chapman, D. J., et al., 2009. Evidence for Eukaryotic Diversification in the ∼1 800 Million⁃Year⁃Old Changzhougou Formation, North China. Precambrian Research, 173(1-4): 93-104. https://doi.org/10.1016/j.precamres.2009.05.005 |
| [78] |
Lang, X.G., Chen, J.L., 2023. Research Progress on Environmental Effects of the Cryogenian Global Glaciation. Sedimentary Geology and Tethyan Geology, 43(3): 651-660 (in Chinese with English abstract). |
| [79] |
Lang, X. G., Chen, J. T., Cui, H., et al., 2018a. Cyclic Cold Climate during the Nantuo Glaciation: Evidence from the Cryogenian Nantuo Formation in the Yangtze Block, South China. Precambrian Research, 310: 243-255. https://doi.org/10.1016/j.precamres.2018.03.004 |
| [80] |
Lang, X. G., Shen, B., Peng, Y. B., et al., 2018b. Transient Marine Euxinia at the End of the Terminal Cryogenian Glaciation. Nature Communications, 9: 3019. https://doi.org/10.1038/s41467⁃018⁃05423⁃x |
| [81] |
Lee, C. T. A., Yeung, L. Y., McKenzie, N. R., et al., 2016. Two⁃Step Rise of Atmospheric Oxygen Linked to the Growth of Continents. Nature Geoscience, 9: 417-424. https://doi.org/10.1038/ngeo2707 |
| [82] |
Lenton, T. M., Boyle, R. A., Poulton, S. W., et al., 2014. Co⁃Evolution of Eukaryotes and Ocean Oxygenation in the Neoproterozoic Era. Nature Geoscience, 7: 257-265. https://doi.org/10.1038/ngeo2108 |
| [83] |
Li, C., Love, G. D., Lyons, T. W., et al., 2010. A Stratified Redox Model for the Ediacaran Ocean. Science, 328(5974): 80-83. https://doi.org/10.1126/science.1182369 |
| [84] |
Li, D. D., Luo, G. M., Yang, H., et al., 2022. Characteristics of the Carbon Cycle in Late Mesoproterozoic: Evidence from Carbon Isotope Composition of Paired Carbonate and Organic Matter of the Shennongjia Group in South China. Precambrian Research, 377: 106726. https://doi.org/10.1016/j.precamres.2022.106726 |
| [85] |
Li, G. J., Chen, L., Pang, K., et al., 2020. An Assemblage of Macroscopic and Diversified Carbonaceous Compression Fossils from the Tonian Shiwangzhuang Formation in Western Shandong, North China. Precambrian Research, 346: 105801. https://doi.org/10.1016/j.precamres.2020.105801 |
| [86] |
Li, G. J., Chen, L., Pang, K., et al., 2023. Tonian Carbonaceous Compressions Indicate That Horodyskia is One of the Oldest Multicellular and Coenocytic Macro⁃Organisms. Communications Biology, 6: 399. https://doi.org/10.1038/s42003⁃023⁃04740⁃2 |
| [87] |
Li, Z. X., Bogdanova, S. V., Collins, A. S., et al., 2008. Assembly, Configuration, and Break⁃Up History of Rodinia: A Synthesis. Precambrian Research, 160(1-2): 179-210. https://doi.org/10.1016/j.precamres.2007.04.021 |
| [88] |
Li, Z. X., Evans, D. A. D., Halverson, G. P., 2013. Neoproterozoic Glaciations in a Revised Global Palaeogeography from the Breakup of Rodinia to the Assembly of Gondwanaland. Sedimentary Geology, 294: 219-232. https://doi.org/10.1016/j.sedgeo.2013.05.016 |
| [89] |
Lindsay, J. F., 1987. Upper Proterozoic Evaporites in the Amadeus Basin, Central Australia, and Their Role in Basin Tectonics. Geological Society of America Bulletin, 99(6): 852-865. https://doi.org/10.1130/0016⁃7606(1987)99852: upeita>2.0.co;2 |
| [90] |
Liu, A.R., Feng, Q.L., Tian, L.F., 2018. The Qingbaikou Macroalgae Biota and Their Implications for Rodinia Reconstruction. Earth Science, 43(2): 475-490 (in Chinese with English abstract). |
| [91] |
Liu, J. Q., Zhang, Y., Shi, X. Y., et al., 2023. Macroscopic Fossils from the Chuanlinggou Formation of North China: Evidence for an Earlier Origin of Multicellular Algae in the Late Palaeoproterozoic. Palaeontology, 66(6): 1-23. https://doi.org/10.1111/pala.12685 |
| [92] |
Liu, W., Zhang, X.L., 2021. Research Progress and Tendency on Neoproterozoic Environments and Lives. Journal of Northwest University (Natural Science Edition), 51(6): 1057-1064 (in Chinese with English abstract). |
| [93] |
Liu, X. M., Kah, L. C., Knoll, A. H., et al., 2016. Tracing Earth’s O2 Evolution Using Zn/Fe Ratios in Marine Carbonates. Geochemical Perspectives Letters, 2(1): 24-34. https://doi.org/10.7185/geochemlet.1603 |
| [94] |
Loron, C. C., François, C., Rainbird, R. H., et al., 2019. Early Fungi from the Proterozoic Era in Arctic Canada. Nature, 570: 232-235. https://doi.org/10.1038/s41586⁃019⁃1217⁃0 |
| [95] |
Loron, C. C., Rainbird, R. H., Turner, E. C., et al., 2018. Implications of Selective Predation on the Macroevolution of Eukaryotes: Evidence from Arctic Canada. Emerging Topics in Life Sciences, 2(2): 247-255. https://doi.org/10.1042/etls20170153 |
| [96] |
Lu, K., Mitchell, R. N., Yang, C., et al., 2022. Widespread Magmatic Provinces at the Onset of the Sturtian Snowball Earth. Earth and Planetary Science Letters, 594: 117736.https://doi.org/10.1016/j.epsl.2022.117736 |
| [97] |
Lu, W., Ridgwell, A., Thomas, E., et al., 2018. Late Inception of a Resiliently Oxygenated Upper Ocean. Science, 361(6398): 174-177. https://doi.org/10.1126/science.aar5372 |
| [98] |
Lu, W., Wörndle, S., Halverson, G. P., et al., 2017. Iodine Proxy Evidence for Increased Ocean Oxygenation during the Bitter Springs Anomaly. Geochemical Perspectives Letters, 5: 53-57. https://doi.org/10.7185/geochemlet.1746 |
| [99] |
Lu, Z. L., Jenkyns, H. C., Rickaby, R. E. M., 2010. Iodine to Calcium Ratios in Marine Carbonate as a Paleo⁃Redox Proxy during Oceanic Anoxic Events. Geology, 38(12): 1107-1110. https://doi.org/10.1130/G31145.1 |
| [100] |
Luo, G. M., Hallmann, C., Xie, S. C., et al., 2015. Comparative Microbial Diversity and Redox Environments of Black Shale and Stromatolite Facies in the Mesoproterozoic Xiamaling Formation. Geochimica et Cosmochimica Acta, 151: 150-167. https://doi.org/10.1016/j.gca.2014.12.022 |
| [101] |
Luo, G. M., Hu, Q. Y., 2022. What Triggered the Paleoproterozoic Great Oxidation Event?. Earth Science, 47(10): 3842-3844 (in Chinese with English abstract). |
| [102] |
Lyons, T. W., Diamond, C. W., Planavsky, N. J., et al., 2021. Oxygenation, Life, and the Planetary System during Earth’s Middle History: An Overview. Astrobiology, 21(8): 906-923. https://doi.org/10.1089/ast.2020.2418 |
| [103] |
Lyons, T. W., Reinhard, C. T., Planavsky, N. J., 2014. The Rise of Oxygen in Earth’s Early Ocean and Atmosphere. Nature, 506: 307-315. https://doi.org/10.1038/nature13068 |
| [104] |
MacDonald, F.A., Schmitz, M.D., Crowley, J.L., et al., 2010. Calibrating the Cryogenian. Science, 327: 1241-1243. |
| [105] |
MacDonald, F. A., Wordsworth, R., 2017.Initiation of Snowball Earth with Volcanic Sulfur Aerosol Emissions. Geophysical Research Letters, 44(4): 1938-1946. https://doi.org/10.1002/2016gl072335 |
| [106] |
Maloof, A. C., Halverson, G. P., Kirschvink, J. L., et al., 2006. Combined Paleomagnetic, Isotopic, and Stratigraphic Evidence for True Polar Wander from the Neoproterozoic Akademikerbreen Group, Svalbard, Norway. Geological Society of America Bulletin, 118(9-10): 1099-1124. https://doi.org/10.1130/b25892.1 |
| [107] |
Melezhik, V. A., Fallick, A. E., Rychanchik, D. V., et al., 2005. Palaeoproterozoic Evaporites in Fennoscandia: Implications for Seawater Sulphate, the Rise of Atmospheric Oxygen and Local Amplification of the δ13C Excursion. Terra Nova, 17(2): 141-148. https://doi.org/10.1111/j.1365⁃3121.2005.00600.x |
| [108] |
Miao, L. Y., Moczydłowska, M., Zhu, S. X., et al., 2019. New Record of Organic⁃Walled, Morphologically Distinct Microfossils from the Late Paleoproterozoic Changcheng Group in the Yanshan Range, North China. Precambrian Research, 321: 172-198. https://doi.org/10.1016/j.precamres.2018.11.019 |
| [109] |
Miao, L. Y., Yin, Z. J., Li, G. X., et al., 2024a. First Report of Tappania and Associated Microfossils from the Late Paleoproterozoic Chuanlinggou Formation of the Yanliao Basin, North China. Precambrian Research, 400: 107268. https://doi.org/10.1016/j.precamres.2023.107268 |
| [110] |
Miao, L.Y., Yin, Z.J., Knoll, A. H., et al., 2024b.1.63⁃Billion⁃Year⁃Old Multicellular Eukaryotes from the Chuanlinggou Formation in North China. Science Advances, 10(4): eadk3208. https://doi.org/10.1126/sciadv.adk3208 |
| [111] |
Mills, D. B., Simister, R. L., Sehein, T. R., et al., 2024. Constraining the Oxygen Requirements for Modern Microbial Eukaryote Diversity. Proceedings of the National Academy of Sciences, 121(2): e2303754120. https://doi.org/10.1073/pnas.2303754120 |
| [112] |
Mills, D. B., Ward, L. M., Jones, C., et al., 2014. Oxygen Requirements of the Earliest Animals. Proceedings of the National Academy of Sciences of the United States of America, 111(11): 4168-4172. https://doi.org/10.1073/pnas.1400547111 |
| [113] |
Och, L. M., Shields⁃Zhou, G. A., 2012. The Neoproterozoic Oxygenation Event: Environmental Perturbations and Biogeochemical Cycling. Earth⁃Science Reviews, 110(1-4): 26-57. https://doi.org/10.1016/j.earscirev.2011.09.004 |
| [114] |
Pang, K., Tang, Q., Chen, L., et al., 2018. Nitrogen⁃Fixing Heterocystous Cyanobacteria in the Tonian Period. Current Biology, 28(4): 616-622.https://doi.org/10.1016/j.cub.2018.01.008 |
| [115] |
Pang, K., Tang, Q., Wan, B., et al., 2020. New Insights on the Palaeobiology and Biostratigraphy of the Acritarch Trachyhystrichosphaera Aimika: A Potential Late Mesoproterozoic to Tonian Index Fossil. Palaeoworld, 29(3): 476-489. https://doi.org/10.1016/j.palwor.2020.02.003 |
| [116] |
Pang, K., Tang, Q., Yuan, X. L., et al., 2015. A Biomechanical Analysis of the Early Eukaryotic Fossil Valeria and New Occurrence of Organic⁃Walled Microfossils from the Paleo⁃Mesoproterozoic Ruyang Group. Palaeoworld, 24(3): 251-262. https://doi.org/10.1016/j.palwor.2015.04.002 |
| [117] |
Pavlov, A. A., Hurtgen, M. T., Kasting, J. F., et al., 2003. Methane⁃Rich Proterozoic Atmosphere? Geology, 31(1): 87. https://doi.org/10.1130/0091⁃7613(2003)031<0087: MRPA>2.0.CO;2 |
| [118] |
Planavsky, N. J., McGoldrick, P., Scott, C. T., et al., 2011. Widespread Iron⁃Rich Conditions in the Mid⁃Proterozoic Ocean. Nature, 477: 448-451. https://doi.org/10.1038/nature10327 |
| [119] |
Planavsky, N. J., Reinhard, C. T., Wang, X.L., et al., 2014a. Earth History. Low Mid⁃Proterozoic Atmospheric Oxygen Levels and the Delayed Rise of Animals. Science, 346(6209): 635-638. https://doi.org/10.1126/science.1258410 |
| [120] |
Planavsky, N. J., Reinhard, C. T., Wang, X. L., et al., 2014b. Low Mid⁃Proterozoic Atmospheric Oxygen Levels and the Delayed Rise of Animals. Science, 346(6209): 635-638. https://doi.org/10.1126/science.1258410 |
| [121] |
Planavsky, N. J., Rouxel, O. J., Bekker, A., et al., 2010. The Evolution of the Marine Phosphate Reservoir. Nature, 467: 1088-1090. https://doi.org/10.1038/nature09485 |
| [122] |
Podder, J., Lin, J., Sun, W., et al., 2017. Iodate in Calcite and Vaterite: Insights from Synchrotron X⁃Ray Absorption Spectroscopy and First⁃Principles Calculations. Geochimica et Cosmochimica Acta, 198: 218-228. https://doi.org/10.1016/j.gca.2016.11.032 |
| [123] |
Pogge von Strandmann, P. A., Stüeken, E. E., Elliott, T., et al., 2015. Selenium Isotope Evidence for Progressive Oxidation of the Neoproterozoic Biosphere. Nature Communications, 6: 10157. https://doi.org/10.1038/ncomms10157 |
| [124] |
Porter, S. M., 2016. Tiny Vampires in Ancient Seas: Evidence for Predation via Perforation in Fossils from the 780⁃740 Million⁃Year⁃Old Chuar Group, Grand Canyon, USA. Proceedings of the Royal Society B, 283(1831): 20160221. https://doi.org/10.1098/rspb.2016.0221 |
| [125] |
Porter, S. M., Meisterfeld, R., Knoll, A. H., 2003. Vase⁃Shaped Microfossils from the Neoproterozoic Chuar Group, Grand Canyon: A Classification Guided by Modern Testate Amoebae. Journal of Paleontology, 77(3): 409-429. https://doi.org/10.1017/s0022336000044140 |
| [126] |
Prince, J. K. G., Rainbird, R. H., Wing, B. A., 2019. Evaporite Deposition in the Mid⁃Neoproterozoic as a Driver for Changes in Seawater Chemistry and the Biogeochemical Cycle of Sulfur. Geology, 47(4): 375-379. https://doi.org/10.1130/g45464.1 |
| [127] |
Reinhard, C. T., Planavsky, N. J., Olson, S. L., et al., 2016. Earth’s Oxygen Cycle and the Evolution of Animal Life. Proceedings of the National Academy of Sciences, 113(32): 8933-8938. https://doi.org/10.1073/pnas.1521544113 |
| [128] |
Retallack, G. J., 2013. Ediacaran Life on Land. Nature, 493(7430): 89-92. https://doi.org/10.1038/nature11777 |
| [129] |
Richmond, K. N., Burnite, S., Lynch, R. M., 1997. Oxygen Sensitivity of Mitochondrial Metabolic State in Isolated Skeletal and Cardiac Myocytes. The American Journal of Physiology, 273(5): C1613-C1622. https://doi.org/10.1152/ajpcell.1997.273.5.c1613 |
| [130] |
Riedman, L. A., Porter, S. M., Lechte, M. A., et al., 2023. Early Eukaryotic Microfossils of the Late Palaeoproterozoic Limbunya Group, Birrindudu Basin, Northern Australia. Papers in Palaeontology, 9(6): e1538. https://doi.org/10.1002/spp2.1538 |
| [131] |
Riedman, L. A., Sadler, P. M., 2018. Global Species Richness Record and Biostratigraphic Potential of Early to Middle Neoproterozoic Eukaryote Fossils. Precambrian Research, 319: 6-18. https://doi.org/10.1016/j.precamres.2017.10.008 |
| [132] |
Rishworth, G. M., Perissinotto, R., Bird, M. S., 2016. Coexisting Living Stromatolites and Infaunal Metazoans. Oecologia, 182(2): 539-545. https://doi.org/10.1007/s00442⁃016⁃3683⁃5 |
| [133] |
Robbins, L. J., Lalonde, S. V., Saito, M. A., et al., 2013. Authigenic Iron Oxide Proxies for Marine Zinc over Geological Time and Implications for Eukaryotic Metallome Evolution. Geobiology, 11(4): 295-306. https://doi.org/10.1111/gbi.12036 |
| [134] |
Rooney, A. D., Macdonald, F. A., Strauss, J. V., et al., 2014. Re⁃Os Geochronology and Coupled Os⁃Sr Isotope Constraints on the Sturtian Snowball Earth. Proceedings of the National Academy of Sciences, 111(1): 51-56. https://doi.org/10.1073/pnas.1317266110 |
| [135] |
Runnegar, B., 1991. Precambrian Oxygen Levels Estimated from the Biochemistry and Physiology of Early Eukaryotes. Palaeogeography,Palaeoclimatology,Palaeoecology, 97(1-2): 97-111. https://doi.org/10.1016/0031⁃0182(91)90186⁃U |
| [136] |
Sánchez⁃Baracaldo, P., Raven, J. A., Pisani, D., et al., 2017. Early Photosynthetic Eukaryotes Inhabited Low⁃Salinity Habitats. Proceedings of the National Academy of Sciences, 114(37): E7737-E7745. https://doi.org/10.1073/pnas.1620089114 |
| [137] |
Schrag, D. P., Higgins, J. A., Macdonald, F. A., et al., 2013. Authigenic Carbonate and the History of the Global Carbon Cycle. Science, 339(6119): 540-543. https://doi.org/10.1126/science.1229578 |
| [138] |
Scott, C., Lyons, T. W., Bekker, A., et al., 2008. Tracing the Stepwise Oxygenation of the Proterozoic Ocean. Nature, 452(7186): 456-459. https://doi.org/10.1038/ nature06811 |
| [139] |
Scott, C., Planavsky, N. J., Dupont, C. L., et al., 2013. Bioavailability of Zinc in Marine Systems through Time. Nature Geoscience, 6: 125-128. https://doi.org/10.1038/ngeo1679 |
| [140] |
Sforna, M. C., Loron, C. C., Demoulin, C. F., et al., 2022. Intracellular Bound Chlorophyll Residues Identify 1 Gyr⁃Old Fossils as Eukaryotic Algae. Nature Communications, 13: 146. https://doi.org/10.1038/s41467⁃ 021⁃27810⁃7 |
| [141] |
Shen, B., Dong, L., Xiao, S. H., et al., 2016. Molar Tooth Carbonates and Benthic Methane Fluxes in Proterozoic Oceans. Nature Communications, 7: 10317. https://doi.org/10.1038/ncomms10317 |
| [142] |
Shields, G. A., Mills, B. J. W., 2017. Tectonic Controls on the Long⁃Term Carbon Isotope Mass Balance. Proceedings of the National Academy of Sciences of the United States of America, 114(17): 4318-4323. https://doi.org/10.1073/pnas.1614506114 |
| [143] |
Spear, N., Holland, H. D., Garcia⁃Veígas, J., et al., 2014. Analyses of Fluid Inclusions in Neoproterozoic Marine Halite Provide Oldest Measurement of Seawater Chemistry. Geology, 42(2): 103-106. https://doi.org/10.1130/g34913.1 |
| [144] |
Sperling, E. A., Frieder, C. A., Raman, A. V., et al., 2013a. Oxygen, Ecology, and the Cambrian Radiation of Animals. Proceedings of the National Academy of Sciences, 110(33): 13446-13451. https://doi.org/10.1073/pnas.1312778110 |
| [145] |
Sperling, E. A., Halverson, G. P., Knoll, A. H., et al., 2013b. A Basin Redox Transect at the Dawn of Animal Life. Earth and Planetary Science Letters, 371-372: 143-155. https://doi.org/10.1016/j.epsl.2013.04.003 |
| [146] |
Su, W.B., 2016. Revision of the Mesoproterozoic Chronostratigraphic Subdivision Both of North China and Yangtze Cratons and the Relevant Issues. Earth Science Frontiers, 23(6): 156-185 (in Chinese with English abstract). |
| [147] |
Tang, Q., Hughes, N. C., McKenzie, N. R., et al., 2017a. Late Mesoproterozoic⁃Early Neoproterozoic Organic⁃Walled Microfossils from the Madhubani Group of the Ganga Valley, Northern India. Palaeontology, 60(6): 869-891. https://doi.org/10.1111/pala.12323 |
| [148] |
Tang, Q., Pang, K., Yuan, X. L., et al., 2017b. Electron Microscopy Reveals Evidence for Simple Multicellularity in the Proterozoic Fossil Chuaria. Geology, 45(1): 75-78. https://doi.org/10.1130/g38680.1 |
| [149] |
Tang, Q., Pang, K., Li, G. J., et al., 2021. One⁃Billion⁃Year⁃Old Epibionts Highlight Symbiotic Ecological Interactions in Early Eukaryote Evolution. Gondwana Research, 97: 22-33. https://doi.org/10.1016/j.gr.2021.05.008 |
| [150] |
Tang, Q., Pang, K., Yuan, X. L., et al., 2020. A One⁃ Billion⁃Year⁃Old Multicellular Chlorophyte. Nature Ecology & Evolution, 4: 543-549. https://doi.org/10.1038/s41559⁃020⁃1122⁃9 |
| [151] |
Thomson, D., Rainbird, R. H., Planavsky, N., et al., 2015. Chemostratigraphy of the Shaler Supergroup, Victoria Island, NW Canada: A Record of Ocean Composition Prior to the Cryogenian Glaciations. Precambrian Research, 263: 232-245. https://doi.org/10.1016/j.precamres.2015.02.007 |
| [152] |
Turner, E. C., 2021. Possible Poriferan Body Fossils in Early Neoproterozoic Microbial Reefs. Nature, 596: 87-91. https://doi.org/10.1038/s41586⁃021⁃03773⁃z |
| [153] |
Turner, E. C., Bekker, A., 2016. Thick Sulfate Evaporite Accumulations Marking a Mid⁃Neoproterozoic Oxygenation Event (Ten Stone Formation, Northwest Territories, Canada). Geological Society of America Bulletin, 128(1-2): 203-222. https://doi.org/10.1130/b31268.1 |
| [154] |
Vidal, G., Moczydłowska⁃Vidal, M., 1997. Biodiversity, Speciation, and Extinction Trends of Proterozoic and Cambrian Phytoplankton. Paleobiology, 23(2): 230-246. https://doi.org/10.1017/s0094837300016808 |
| [155] |
Wang, H. Y., Liu, A. R., Li, C., et al., 2021. A Benthic Oxygen Oasis in the Early Neoproterozoic Ocean. Precambrian Research, 355: 106085. https://doi.org/10.1016/j.precamres.2020.106085 |
| [156] |
Wang, Z., Guo, W., Nie, T., et al., 2019. Is Seawater Geochemical Composition Recorded in Marine Carbonate? Evidence from Iron and Manganese Contents in Late Devonian Carbonate Rocks. Acta Geochimica, 38(2): 173-189. https://doi.org/10.1007/s11631⁃018⁃00312⁃y |
| [157] |
Ward, L. M., Shih, P. M., 2019. The Evolution and Productivity of Carbon Fixation Pathways in Response to Changes in Oxygen Concentration over Geological Time. Free Radical Biology and Medicine, 140: 188-199. https://doi.org/10.1016/j.freeradbiomed.2019.01.049 |
| [158] |
Williams, J. J., Mills, B. J. W., Lenton, T. M., 2019. A Tectonically Driven Ediacaran Oxygenation Event. Nature Communications, 10: 2690. https://doi.org/10.1038/s41467⁃019⁃10286⁃x |
| [159] |
Wörndle, S., Crockford, P. W., Kunzmann, M., et al., 2019. Linking the Bitter Springs Carbon Isotope Anomaly and Early Neoproterozoic Oxygenation through I/[Ca+Mg] Ratios. Chemical Geology, 524: 119-135. https://doi.org/10.1016/j.chemgeo.2019.06.015 |
| [160] |
Xiao, S., 2014. Oxygen and Early Animal Evolution. Treatise on Geochemistry.Elsevier, Amsterdam, 231-250. https://doi.org/10.1016/b978⁃0⁃08⁃095975⁃7.01310⁃3 |
| [161] |
Xiao, S. H., Dong, L., 2006. On the Morphological and Ecological History of Proterozoic Macroalgae.In: Xiao, S. H., Kaufman, A. J.,eds.,Neoproterozoic Geobiology and Paleobiology. Springer, Dordrecht, 57-90. https://doi.org/10.1007/1⁃4020⁃5202⁃2_3 |
| [162] |
Xiao, S. H., Knoll, A. H., Kaufman, A. J., et al., 1997. Neoproterozoic Fossils in Mesoproterozoic Rocks? Chemostratigraphic Resolution of a Biostratigraphic Conundrum from the North China Platform. Precambrian Research, 84(3-4): 197-220. https://doi.org/10.1016/S0301⁃9268(97)00029⁃6 |
| [163] |
Xiao, S. H., Shen, B., Tang, Q., et al., 2014. Biostratigraphic and Chemostratigraphic Constraints on the Age of Early Neoproterozoic Carbonate Successions in North China. Precambrian Research, 246: 208-225. https://doi.org/10.1016/j.precamres.2014.03.004 |
| [164] |
Xiao, S.H., Tang, Q., 2018. After the Boring Billion and before the Freezing Millions: Evolutionary Patterns and Innovations in the Tonian Period. Emerging Topics in Life Sciences, 2(2): 161-171. https://doi.org/10.1042/etls20170165 |
| [165] |
Yuan, X. L., Pang, K., Tang, Q., et al., 2023. The Origin and Early Evolution of Complex Organisms. Chinese Science Bulletin, 68(S1): 169-187 (in Chinese). |
| [166] |
Zhang, F. F., Stockey, R. G., Xiao, S. H., et al., 2022. Uranium Isotope Evidence for Extensive Shallow Water Anoxia in the Early Tonian Oceans. Earth and Planetary Science Letters, 583: 117437. https://doi.org/10.1016/j.epsl.2022.117437 |
| [167] |
Zhang, K., Zhu, X. K., Wood, R. A., et al., 2018. Oxygenation of the Mesoproterozoic Ocean and the Evolution of Complex Eukaryotes. Nature Geoscience, 11: 345-350. https://doi.org/10.1038/s41561⁃018⁃0111⁃y |
| [168] |
Zhang, S. C., Su, J., Ma, S. H., et al., 2021. Eukaryotic Red and Green Algae Populated the Tropical Ocean 1400 Million Years ago. Precambrian Research, 357: 106166. https://doi.org/10.1016/j.precamres.2021.106166 |
| [169] |
Zhang, S. C., Wang, H. J., Wang, X. M., et al., 2022. The Mesoproterozoic Oxygenation Event. Scientia Sinica Terrae, 52(1): 26-52 (in Chinese). |
| [170] |
Zhang, S. C., Wang, X. M., Wang, H. J., et al., 2016. Sufficient Oxygen for Animal Respiration 1, 400 Million Years Ago. Proceedings of the National Academy of Sciences, 113(7): 1731-1736. https://doi.org/10.1073/pnas.1523449113 |
| [171] |
Zhang, X. L., 2021. Cambrian Explosion: Past, Present, and Future. Acta Palaeontologica Sinica, 60(1): 10-24 (in Chinese with English abstract). |
| [172] |
Zheng, Y. F., 2003. Neoproterozoic Magmatic Activity and Global Changes. Chinese Science Bulletin, 48(16): 1705-1720 (in Chinese). |
| [173] |
Zhou, C. M., Xiao, S. H., Wang, W., et al., 2017. The Stratigraphic Complexity of the Middle Ediacaran Carbon Isotopic Record in the Yangtze Gorges Area, South China, and Its Implications for the Age and Chemostratigraphic Significance of the Shuram Excursion. Precambrian Research, 288: 23-38. https://doi.org/10.1016/j.precamres.2016.11.007 |
| [174] |
Zhou, C. M.,Yuan, X. L., Xiao, S. H., et al., 2019. Ediacaran Integrative Stratigraphy and Timescale of China. Scientia Sinica Terrae, 49(1): 7-25 (in Chinese with English abstract). |
国家自然科学基金项目(42293291)
国家自然科学基金项目(92255302)
/
| 〈 |
|
〉 |