基于机器学习的隐式三维地质建模:以牟乳成矿带腊子沟金矿为例
王统荣 , 纪旭波 , 王江波 , 刘洋 , 邵玉宝 , 王勇军 , 黄鑫 , 高涛 , 姜鹏 , 单江涛 , 谭俊 , 赵志新
地球科学 ›› 2025, Vol. 50 ›› Issue (08) : 3167 -3181.
基于机器学习的隐式三维地质建模:以牟乳成矿带腊子沟金矿为例
Implicit 3D Geological Modeling Based on Machine Learning: A Case Study of Lazigou Gold Deposit in Muping⁃Rushan Metallogenic Belt
,
为解决如何利用有限的勘探数据进行隐式三维地质模型的问题.以腊子沟金矿为例,基于原始刻槽取样数据利用距离加权方法生成虚拟刻槽,使用原始刻槽数据训练并评价K最近邻、随机森林、梯度提升机3种机器学习模型,选择其中预测性能最佳的随机森林模型对虚拟刻槽的岩性进行判别预测.通过机器学习方法实现了对刻槽数据的虚拟加密,为隐式三维建模提供大量的样本数据. 在此基础上,利用原始刻槽和虚拟刻槽数据在隐式建模软件中构建了腊子沟金矿的矿体模型、Au元素品位数值模型. 并圈定了5个找矿靶区,所圈定靶区经工程验证切实可靠.基于机器学习的隐式三维建模可充分利用已知数据预测未知区域,为隐式三维建模提供充足的样本,有利于在现有勘探工程的条件下构建更高精度的地质模型,进而为深边部找矿预测提供依据.
This study aims to develop a methodology for implicit 3D geological modeling under the constraint of limited exploration data availability. Taking Lazigougold deposit as an example, we generate virtual grooving by distance weighting method based on the original grooving sampling data, and use the original grooving data to train and evaluate three machine learning models, namely K-nearest neighbor, random forest and gradient elevator, and select the random forest model with the best prediction performance to discriminate and predict the lithology of virtual grooving. Virtual encryption of groove data is realized by machine learning method, which provides a large number of sample data for implicit 3D modeling. On this basis, the orebody model and Au element grade numerical model of Lazigou gold mine were constructed in implicit modeling software using the original groove and virtual groove data. Five prospecting targets have been delimited, which have been proved reliable by engineering. The implicit 3D modeling based on machine learning can make full use of the known data to predict the unknown region and provide sufficient samples for the implicit 3D modeling, which is conducive to the construction of a higher precision geological model under the existing exploration engineering conditions, and then provide a basis for the deep edge prospecting prediction.
腊子沟金矿床 / 隐式三维建模 / 机器学习 / 随机森林 / 三维成矿预测.
Lazigou gold deposit / implicit 3D modeling / machine learning / random forest / 3D mineral prediction
| [1] |
Benmahamed, Y., Teguar, M., Boubakeur, A., 2017. Application of SVM and KNN to Duval Pentagon 1 for Transformer Oil Diagnosis. IEEE Transactions on Dielectrics and Electrical Insulation, 24(6): 3443-3451. https://doi.org/10.1109/TDEI.2017.006841 |
| [2] |
Bi, L., Liu, X. M., Chen, X., et al., 2016. An Automatic 3D Modeling Method Based on Orebody Contours. Geomatics and Information Science of Wuhan University, 41(10): 1359-1365 (in Chinese with English abstract). |
| [3] |
Breiman, L., 2001. Random Forests. Machine Learning, 45(1): 5-32. https://doi.org/10.1023/A:1010933404324 |
| [4] |
Brown, W. M., Gedeon, T. D., Groves, D. I., et al., 2000. Artificial Neural Networks: a New Method for Mineral Prospectivity Mapping. Australian Journal of Earth Sciences, 47(4): 757-770. https://doi.org/10.1046/j.1440⁃0952.2000.00807.x |
| [5] |
Chen, J., Mao, X. C., Deng, H., 2020.3D Quantitative Mineral Prediction in the Depth of the Dayingezhuang Gold Deposit, Shandong Province. Acta Geoscientica Sinica, 41(2): 179-191 (in Chinese with English abstract). |
| [6] |
Coppi, R., Gil, M. A., Kiers, H. A. L., 2006. The Fuzzy Approach to Statistical Analysis. Computational Statistics & Data Analysis, 51(1): 1-14. https://doi.org/10.1016/j.csda.2006.05.012 |
| [7] |
Deng, J., Yang, L. Q., Groves, D. I., et al., 2020. An Integrated Mineral System Model for the Gold Deposits of the Giant Jiaodong Province, Eastern China. Earth⁃Science Reviews, 208: 103274. https://doi.org/10.1016/j.earscirev.2020.103274 |
| [8] |
Fu, J. M., Hu, M. S., Fang, F., et al., 2024. Complex Orebody 3D Modeling Using Radial Basis Function Surface Incorporating Stacking Integration Strategy. Earth Science, 49(3): 1165-1176 (in Chinese with English abstract). |
| [9] |
Gong, J. Y., Cheng, P. G., Wang, Y. D., 2004. Three⁃Dimensional Modeling and Application in Geological Exploration Engineering. Computers & Geosciences, 30(4): 391-404. https://doi.org/10.1016/j.cageo.2003.06.003 |
| [10] |
Gong, T., Yang, B., Xiang, Y. H., et al., 2017. Tectonic⁃Geochemical Characteristics and Prospecting Prediction of Lazigou Gold District in Jiaodong Region. Gold, 38(7): 6-9 (in Chinese with English abstract). |
| [11] |
Guo, J.T., Liu, Y.H., Han, Y.F., et al. 2019. Implicit 3 D Geological Modeling Method for Borehole Data Based on Machine Learning. Journal of Northeastern University(Natural Science), 40(9): 1337-1342 (in Chinese with English abstract). |
| [12] |
Hou, L. L., Wu, S., Yi, J. Z., et al., 2024. Discriminating Deposit Types Using Chlorite Trace Elements Based on Machine Learning. Earth Science, 49(12): 4303-4317 (in Chinese with English abstract). |
| [13] |
Houlding, S.W., 1993. 3D Geo⁃Science Modeling:Computer Techniques for Geological Characterization. Springer⁃Verlag, London,1-2. |
| [14] |
Huang, X. H., Li, Z. H., Deng, T., et al., 2023. Uranium Potential Evaluation of Zhuguangshan Granitic Pluton in South China Based on Machine Learning. Earth Science, 48(12): 4427-4440 (in Chinese with English abstract). |
| [15] |
Jessell, M., 2001. Three⁃Dimensional Geological Modelling of Potential⁃Field Data. Computers & Geosciences, 27(4): 455-465. https://doi.org/10.1016/s0098⁃3004(00)00142⁃4 |
| [16] |
Li, X. H., Yuan, F., Zhang, M. M., et al., 2015. Three⁃Dimensional Mineral Prospectivity Modeling for Targeting of Concealed Mineralization within the Zhonggu Iron Orefield, Ningwu Basin, China. Ore Geology Reviews, 71: 633-654. https://doi.org/10.1016/j.oregeorev. 2015. 06.001 |
| [17] |
Li, J.M., Huang, X., Shi, W.J., et al. 2021. Three⁃Dimensional Comprehensive Model and Deep Prediction of the Jinqingding Gold Deposit,Muping⁃Rushan Metallogenic Belt,Shandong,China. Bulletin of Geological Science and Technology, 40(6): 151-164 (in Chinese with English abstract). |
| [18] |
Li, Q. Y., Zhang, L. Y., Cao, D. Y., et al., 2016. Usage, Status, Problems, Trends and Suggestions of 3D Geological Modeling. Geology and Exploration, 52(4): 759-767 (in Chinese with English abstract). |
| [19] |
Lindsay, M. D., Aillères, L., Jessell, M. W., et al., 2012. Locating and Quantifying Geological Uncertainty in Three⁃Dimensional Models: Analysis of the Gippsland Basin, Southeastern Australia. Tectonophysics, 546: 10-27. https://doi.org/10.1016/j.tecto.2012.04.007 |
| [20] |
Lou, Y.M. 2023. Study on Surface and Deep Metallogenic Prediction Based on Geological⁃Geochemical Information in Xiongcun District, Tibet(Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract). |
| [21] |
Mitchell, T.M., 1997. Machine Learning. McGraw⁃Hill, New York. |
| [22] |
Niu, L.J., Shi, C.Y., Wang, Z.G., et al. 2024. InterfaceGrid:Gridding Representation of 3D Geological Models for Complex Geological Structures. Earth Science Frontiers, 31(4): 129-138 (in Chinese with English abstract). |
| [23] |
Shen, P., Shen, Y. C., Li, G. M., et al., 2004. A Study on Structure⁃Fluid⁃Mineralization System in the Jinniushan Gold Deposit, East Shandong. Chinese Journal of Geology, 39(2): 272-283 (in Chinese with English abstract). |
| [24] |
Song, M.C., Ding, Z.J., Liu, X.D., et al. 2022. Structural Controls on the Jiaodong Type Gold Deposits and Metallogenic Mo. Acta Geologica Sinica, 96(5): 1774-1802 (in Chinese with English abstract). |
| [25] |
Sun, T., Chen, F., Zhong, L. X., et al., 2019. GIS⁃Based Mineral Prospectivity Mapping Using Machine Learning methods: A Case Study from Tongling Ore District, Eastern China. Ore Geology Reviews, 109: 26-49. https://doi.org/10.1016/j.oregeorev.2019.04.003 |
| [26] |
Wang, G. W., Li, R. X., Carranza, E. J. M., et al., 2015.3D Geological Modeling for Prediction of Subsurface Mo Targets in the Luanchuan District, China. Ore Geology Reviews, 71: 592-610. https://doi.org/10.1016/j.oregeorev.2015.03.002 |
| [27] |
Wang, H., Yan, J.Y., Qi, G., et al. 2023. Metallogenic Prediction Method Based on Gravity and Magnetic Three⁃Dimensional Modeling and Machine Learning: A Case Study of Zhuxi. Progress in Geophysics, 38(2): 734-747 (in Chinese with English abstract). |
| [28] |
Wu, Q., Xu, H., 2014. Three⁃Dimensional Geological Modeling and Its Application in Digital Mine. Science China Earth Sciences, 57(3): 491-502. https://doi.org/10.1007/s11430⁃013⁃4671⁃9 |
| [29] |
Wu, X. L., Zhou, S. Y., 2014. Study on Structural Ore⁃Controlling Law of Jinniushan Gold Deposit in Jiaodong. Mineral Deposits, 33(S1): 1093-1094(in Chinese with English abstract). |
| [30] |
Xiang, J., Chen, J. P., Xiao, K. Y., et al., 2019.3D Metallogenic Prediction Based on Machine learning: A Case Study of the Lala Copper Deposit in Sichuan Province. Geological Bulletin of China, 38(12): 2010-2021 (in Chinese with English abstract). |
| [31] |
Xiong, J.Q. 2023. Research on Intelligent 3D Geological Modeling Method and Application(Dissertation). AnHui University of Science and Technology, Huainan(in Chinese with English abstract). |
| [32] |
Yang, L. Q., Deng, J., Wang, Z. L., et al., 2014. Mesozoic Gold Metallogenic System of the Jiaodong Gold Province, Eastern China. Acta Petrologica Sinica, 30(9): 2447-2467 (in Chinese with English abstract). |
| [33] |
Ye, X. Y., Yang, B., Mao, X. C., et al., 2019. Mineralogical Characteristics of Rubefication Alteration Rocks in Lazigou Gold District, Jiaodong Region and Their Association to Gold Mineralization. Gold, 40(1): 18-21 (in Chinese with English abstract). |
| [34] |
Zhang, X.L., Wu, C.L., Zhou, Q., et al. 2020. Three⁃Dimensional Geological Modeling of Manganese Deposits Based on Exploration Big Data and Data Market. Bulletin of Geological Science and Technology, 39(4): 12-20 (in Chinese with English abstract). |
| [35] |
Zhao, Y.Y., Wu, C.X., Jie, S.W., et al. 2023. Three⁃Dimensional(3D) Geological Modeling and Deep Mineral Targeting of the Tongliishan⁃Tongshan Cu⁃Fe⁃Au Deposit in Southeastern Hubei Province. Bulletin of Geological Science and Technology, 42(1): 112-125 (in Chinese with English abstract). |
| [36] |
Zhou, Q., Wu, C.L., 2024. Experimental Research on Big Data⁃Based Intelligent Exploration Models and Advance. Earth Science Frontiers, 31(06): 350-367 (in Chinese with English abstract). |
| [37] |
Zhou, Y.Z., Xiao, F., 2024. Overview:A Glimpse of the Latest Advances in Artificial Intelligence and Big Data Geoscience Research. Earth Science Frontiers, 31(4): 1-6 (in Chinese with English abstract). |
| [38] |
Zuo, R.G., Peng, Y., Li, T., et al. 2021. Challenges of Geological Prospecting Big Data Mining and Integration Using Deep Learning Algorithms. Earth Science, 46(1): 350-358 (in Chinese with English abstract). |
柴北缘锡铁山铅锌矿床非层状矿体成因:成矿期碳酸盐矿物原位U⁃Pb年代学及C⁃O⁃Sr同位素制约
国家自然科学基金青年科学基金项目(41902090)
/
| 〈 |
|
〉 |