喜马拉雅造山带东段拉隆淡色花岗岩的成因及其与藏南拆离系的关系
吴健 , 田世洪 , 李光明 , 付建刚 , 郭伟康 , 许伟 , 李浩通 , 李文强 , 向开义 , 黄昌祺 , 刘文斌
地球科学 ›› 2025, Vol. 50 ›› Issue (07) : 2593 -2612.
喜马拉雅造山带东段拉隆淡色花岗岩的成因及其与藏南拆离系的关系
Petrogenesis of Lalong Leucogranites in Eastern Himalayan Orogenic Belt and Relationship with South Tibetan Detachment System
,
作为碰撞造山带的产物,淡色花岗岩不仅与稀有金属成矿密切相关,还对造山过程及高原隆升机制有着重要指示意义.关于淡色花岗岩的成因,目前尚存很大争议.早期研究认为淡色花岗岩是原地变沉积岩经低程度部分熔融的产物,但近年来,越来越多的学者指出,淡色花岗岩可能是一种高分异花岗岩,是岩浆高度结晶分异的产物.为探究淡色花岗岩的成因,对喜马拉雅造山带东段的拉隆淡色花岗岩及它们的围岩(板岩与大理岩)进行了独居石U-Th-Pb定年以及全岩主微量元素和Sr-Nd同位素分析.拉隆淡色花岗岩位于拉隆穹窿的核部,从内到外,依次出露二云母花岗岩、白云母花岗岩和钠长石花岗岩.定年结果表明,这三种淡色花岗岩具有相近的侵位时代(22~23 Ma).淡色花岗岩总体显示高硅(SiO2=73.0%~75.7%)、高钾(K2O=3.50%~6.53%)、低镁(MgO=0.03%~0.22%)和过铝质(A/CNK=1.05~1.24)的主量元素特征.从二云母花岗岩到白云母花岗岩到钠长石花岗岩,Eu的负异常逐渐加剧,Rb、Rb/Sr和Y/Ho逐渐升高而Sr、Ba、K/Rb和Zr/Hf逐渐降低.此外,这些淡色花岗岩具有相似的全岩Sr-Nd同位素组成:(87Sr/86Sr)i=0.736 456~0.737 929,εNd(t)=-12.4~-12.1,但明显亏损于围岩的Nd同位素组成(εNd(t)=-16.9~-15.1).二云母花岗岩具有与高喜马拉雅结晶岩系一致的Sr-Nd同位素组成,高的CaO/Na2O(0.33~0.42)和Al2O3/TiO2(197~459)比值指示其源区以碎屑岩为主.上述的野外空间分布规律和数据结果说明,拉隆淡色花岗岩可能起源于高喜马拉雅结晶岩系变质杂砂岩的白云母脱水熔融,并经过了一定程度的分离结晶,而不是原地变沉积岩部分熔融的产物.微量元素的瑞利分馏模拟计算结果也证明,以二云母花岗岩为初始熔体时可以经历~70%和~90%程度的分离结晶形成白云母花岗岩和钠长石花岗岩.考虑到藏南拆离系和拉隆淡色花岗岩在时间上的重叠关系,藏南拆离系可能通过减压的方式触发了淡色花岗岩源区的部分熔融并为淡色花岗岩的流动分异提供了空间.
As a product of collision orogenic belt, leucogranites are not only closely related to rare metal mineralization, but also have great significance to orogenesis and plateau uplift mechanism. The petrogenesis of leucogranites is still controversial. Earlier studies suggested that leucogranites were generated by low-degree in-situ partial melting of metasedimentary rocks, but in recent years, more scholars have pointed out that they may be highly fractionated granites, and the magma had undergone an intensive fractional crystallization. In order to explore the petrogenesis of leucogranites, we collected Lalong leucogranites and their sedimentary surrounding rocks (marbles and slates) in the eastern Himalayan orogenic belt to analyze the major and trace elements, Sr-Nd isotopes and monazite U-Th-Pb dating. Lalong leucogranites are located in the core of the Lalong dome, where two-mica granites, muscovite granites and albite granites are exposed in turn from inside to outside. The dating results show that these three leucogranites have similar emplacement ages (22-23 Ma). Generally, the leucogranites show high SiO2 (73.0%-75.7%), high K2O (3.50%-6.53%), low MgO (0.03%-0.22%) and peraluminum (A/CNK=1.05-1.24). From two-mica granites through muscovite granites to albite granites, the negative Eu anomalies became intensified, Rb, Rb/Sr and Y/Ho gradually increased, while Sr, Ba, K/Rb and Zr/Hf gradually decreased. In addition, these leucogranites have consistent Sr-Nd isotopic compositions: (87Sr/86Sr)i=0.736 456-0.737 929, εNd(t)=-12.4 to -12.1, which are more depleted than that of the surrounding rocks (εNd(t)=-16.9 to -15.1). Two-mica granites have consistent Sr-Nd isotopic compositions with the higher Himalayan crystallines, the high CaO/Na2O ratio values (0.33-0.42) and Al2O3/TiO2 ratio values (197-459), indicating that their source region is dominated by clastic rocks. The spatial distribution characteristics in the field and data results show that the Lalong leucogranites may have originated from muscovite dehydration melting of metagreywacks in higher Himalayan crystallines, which had undergone certain degree of fractional crystallization rather than generated by in-situ partial melting of metasedimentary rocks. The trace element Rayleigh fractionation modeling results also prove that when two-mica granite is used as the initial melt, it could generate muscovite granites and albite granites after fractional crystallization of about 70% and about 90%, respectively. Considering the overlapping relationship between the South Tibetan Detachment System and the Lalong leucogranites, this paper considers that the South Tibetan Detachment System may have triggered partial melting of the leucogranites source region by decompression and provided space for the flowage differentiation of the leucogranites.
淡色花岗岩 / 独居石U⁃Th⁃Pb定年 / 全岩地球化学 / Sr⁃Nd同位素 / 岩石成因 / 拉隆穹窿 / 藏南拆离系 / 特提斯喜马拉雅 / 地球化学.
leucogranite / monazite U⁃Th⁃Pb dating / whole⁃rock geochemistry / Sr⁃Nd isotopes / petrogenesis / Lalong dome / South Tibetan Detachment System / Tethyan Himalaya / geochemistry
| [1] |
Ballouard, C., Poujol, M., Boulvais, P., et al., 2016. Nb⁃Ta Fractionation in Peraluminous Granites: A Marker of the Magmatic⁃Hydrothermal Transition. Geology, 44(3): 231-234. https://doi.org/10.1130/G37475.1 |
| [2] |
Bau, M., 1996. Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems: Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect. Contributions to Mineralogy and Petrology, 123(3): 323-333. https://doi.org/10.1007/s004100050159 |
| [3] |
Burg, J. P., Chen, G. M., 1984. Tectonics and Structural Zonation of Southern Tibet, China. Nature, 311(5983): 219-223. https://doi.org/10.1038/311219a0 |
| [4] |
Cao, H. W., Li, G. M., Zhang, L. K., et al., 2022. Genesis of Himalayan Leucogranite and Its Potentiality of Rare⁃Metal Mineralization. Sedimentary Geology and Tethyan Geology, 42(2): 189-211 (in Chinese with English abstract). |
| [5] |
Chu, Y., Guo, Y. L., Liu, T.J., et al., 2024. South Tibetan Detachment System Activity and Leucogranite Emplacement: Insights from the Shisha Pangma Regions. Acta Petrologica Sinica, 40(5): 1461-1474 (in Chinese with English abstract). |
| [6] |
Dingwell, D. B., Knoche, R., Webb, S. L., 1993. The Effect of P2O5 on the Viscosity of Haplogranitic Liquid. European Journal of Mineralogy, 5(1): 133-140. https://doi.org/10.1127/ejm/5/1/0133 |
| [7] |
Dingwell, D. B., Knoche, R., Webb, S. L., et al., 1992. The Effect of B2O3 on the Viscosity of Haplogranitic Liquids. American Mineralogist, 77(5-6): 457-461. |
| [8] |
Fu, J. G., Li, G. M., Dong, S. L., et al., 2020. Identification and Its Significances of the Lalong Be⁃Nb⁃Ta⁃ Bearing Albite Granite in the Northern Himalaya, Tibet. Sedimentary Geology and Tethyan Geology, 40(2): 91-103 (in Chinese with English abstract). |
| [9] |
Fu, J. G., Li, G. M., Wang, G. H., et al., 2021. Geological Characteristics and Metallogenic Types of Be⁃Nb⁃Ta Rare Metals in the Lalong Dome, Southern Tibet, China. Geotectonica et Metallogenia, 45(5): 913-933 (in Chinese with English abstract). |
| [10] |
Fu, J. G., Li, G. M., Wang, G. H., et al., 2023. Geochemical Evidence for Genesis of Nb⁃Ta⁃Be Rare Metal Mineralization in Highly Fractionated Leucogranites at the Lalong Dome, Tethyan Himalaya, China. Minerals, 13(11): 1456. https://doi.org/10.3390/min13111456 |
| [11] |
Gao, L. E., Zeng, L. S., 2014. Fluxed Melting of Metapelite and the Formation of Miocene High⁃CaO Two⁃Mica Granites in the Malashan Gneiss Dome, Southern Tibet. Geochimica et Cosmochimica Acta, 130: 136-155. https://doi.org/10.1016/j.gca.2014.01.003 |
| [12] |
Gao, L.E., Zeng, L. S., Asimow, P. D., 2017. Contrasting Geochemical Signatures of Fluid⁃Absent versus Fluid⁃Fluxed Melting of Muscovite in Metasedimentary Sources: The Himalayan Leucogranites. Geology, 45(1): 39-42. https://doi.org/10.1130/G38336.1 |
| [13] |
Gonçalves, G. O., Lana, C., Scholz, R., et al., 2016. An Assessment of Monazite from the Itambé Pegmatite District for Use as U⁃Pb Isotope Reference Material for Microanalysis and Implications for the Origin of the “Moacyr” Monazite. Chemical Geology, 424: 30-50. https://doi.org/10.1016/j.chemgeo.2015.12.019 |
| [14] |
Gonçalves, G. O., Lana, C., Scholz, R., et al., 2018. The Diamantina Monazite: A New Low⁃Th Reference Material for Microanalysis. Geostandards and Geoanalytical Research, 42(1): 25-47. https://doi.org/10.1111/ggr.12192 |
| [15] |
Guillot, S., Le Fort, P., 1995. Geochemical Constraints on the Bimodal Origin of High Himalayan Leucogranites. Lithos, 35(3-4): 221-234. https://doi.org/10.1016/0024⁃4937(94)00052⁃4 |
| [16] |
Halliday, A. N., Davidson, J. P., Hildreth, W., et al., 1991. Modelling the Petrogenesis of High Rb/Sr Silicic Magmas. Chemical Geology, 92(1-3): 107-114. https://doi.org/10.1016/0009⁃2541(91)90051⁃R |
| [17] |
Harris, N. B. W., Inger, S., 1992. Trace Element Modelling of Pelite⁃Derived Granites. Contributions to Mineralogy and Petrology, 110(1): 46-56. https://doi.org/10.1007/BF00310881 |
| [18] |
Harris, N. B. W., Pearce, J. A., Tindle, A. G., 1986. Geochemical Characteristics of Collision⁃Zone Magmatism. Geological Society, London, Special Publications, 19(1): 67-81. https://doi.org/10.1144/GSL.SP.1986.019.01.04 |
| [19] |
Harris, N., Massey, J., 1994. Decompression and Anatexis of Himalayan Metapelites. Tectonics, 13(6): 1537-1546. https://doi.org/10.1029/94TC01611 |
| [20] |
Harris, N., Massey, J., Inger, S., 1993. The Role of Fluids in the Formation of High Himalayan Leucogranites. Geological Society, London, Special Publications, 74(1): 391-400. https://doi.org/10.1144/GSL.SP.1993. 074.01.26 |
| [21] |
Hou, Z. Q., Mo, X. X., Yang, Z. M., et al., 2006. Metallogeneses in the Collisional Orogen of the Qinghai⁃Tibet Plateau: Tectonic Setting, Tempo⁃Spatial Distribution and Ore Deposit Types. Geology in China, 33(2): 340-351 (in Chinese with English abstract). |
| [22] |
Hu, F. Y., Pu, H. L., Guo, Z., et al., 2024. Discovery of the Gangbu Spodumene⁃Bearing Pegmatite in the Shisha Pangma Region and Its Geological Significance. Acta Petrologica Sinica, 40(5): 1489-1509 (in Chinese with English abstract). |
| [23] |
Huang, C. M., Li, G. M., Zhang, Z., et al., 2018. Petrogenesis of the Cuonadong Leucogranite in South Tibet: Constraints from Bulk⁃Rock Geochemistry and Zircon U⁃Pb Dating. Earth Science Frontiers, 25(6): 182-195 (in Chinese with English abstract). |
| [24] |
Huang, Y., Fu, J. G., Li, G. M., et al., 2019. Determination of Lalong Dome in South Tibet and New Discovery of Rare Metal Mineralization. Earth Science, 44(7): 2197-2206 (in Chinese with English abstract). |
| [25] |
Icenhower, J., London, D., 1995. An Experimental Study of Element Partitioning among Biotite, Muscovite, and Coexisting Peraluminous Silicic Melt at 200 MPa (H2O). American Mineralogist, 80(11-12): 1229-1251. https://doi.org/10.2138/am⁃1995⁃11⁃1213 |
| [26] |
Johannes, W., Holtz, F., 1996. Petrogenesis and Experimental Petrology of Granitic Rocks. Springer, Berlin. https://doi.org/10.1007/978⁃3⁃642⁃61049⁃3 |
| [27] |
Kellett, D. A., Grujic, D., Erdmann, S., 2009. Miocene Structural Reorganization of the South Tibetan Detachment, Eastern Himalaya: Implications for Continental Collision. Lithosphere, 1(5): 259-281. https://doi.org/10.1130/l56.1 |
| [28] |
King, J., Harris, N., Argles, T., et al., 2011. Contribution of Crustal Anatexis to the Tectonic Evolution of Indian Crust beneath Southern Tibet. GSA Bulletin, 123(1-2): 218-239. https://doi.org/10.1130/B30085.1 |
| [29] |
Langille, J., Lee, J., Hacker, B., et al., 2010. Middle Crustal Ductile Deformation Patterns in Southern Tibet: Insights from Vorticity Studies in Mabja Dome. Journal of Structural Geology, 32(1): 70-85. https://doi.org/10.1016/j.jsg.2009.08.009 |
| [30] |
Le Fort, P., 1981. Manaslu Leucogranite: A Collision Signature of the Himalaya: A Model for Its Genesis and Emplacement. Journal of Geophysical Research: Solid Earth, 86(B11): 10545-10568. https://doi.org/10.1029/JB086iB11p10545 |
| [31] |
Li, G. M., Zhang, L. K., Jiao, Y. J., et al., 2017. First Discovery and Implications of Cuonadong Superlarge Be⁃W⁃Sn Polymetallic Deposit in Himalayan Metallogenic Belt, Southern Tibet. Mineral Deposits, 36(4): 1003-1008 (in Chinese with English abstract). |
| [32] |
Liu, X. C., Yang, L., He, S. X., et al., 2024. A Preliminary Study on Petrogenesis of the Shisha Pangma Leucogranites. Acta Petrologica Sinica, 40(5): 1446-1460 (in Chinese with English abstract). |
| [33] |
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA⁃ICP⁃MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 |
| [34] |
Liu, Z. C., Wu, F. Y., Ji, W. Q., et al., 2014. Petrogenesis of the Ramba Leucogranite in the Tethyan Himalaya and Constraints on the Channel Flow Model. Lithos, 208: 118-136. https://doi.org/10.1016/j.lithos.2014.08.022 |
| [35] |
Liu, Z. C., Wu, F. Y., Liu, X. C., et al., 2019. Mineralogical Evidence for Fractionation Processes in the Himalayan Leucogranites of the Ramba Dome, Southern Tibet. Lithos, 340: 71-86. https://doi.org/10.1016/j.lithos.2019.05.004 |
| [36] |
Liu, Z. C., Wu, F. Y., Liu, X. C., et al., 2020. The Mechanisms of Fractional Crystallization for the Himalayan Leucogranites. Acta Petrologica Sinica, 36(12): 3551-3571 (in Chinese with English abstract). |
| [37] |
Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016⁃7606(1989)101<0635:TDOG>2.3.CO;2 |
| [38] |
Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth⁃Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012⁃8252(94)90029⁃9 |
| [39] |
Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc⁃Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745 |
| [40] |
Ren, C. M., Zheng, Y. C., Li, X., et al., 2024. Characteristics and Geological Significance of Late Miocene Skarn⁃Type Tungsten Mineralization in Ramba, Southern Tibet. Earth Science, 49(10): 3610-3628 (in Chinese with English abstract). |
| [41] |
Rollinson, H. R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. British Library Cataloguing⁃in⁃Publication Data, 1-352. https://doi.org/10.4324/9781315845548 |
| [42] |
Scaillet, B., France⁃Lanord, C., Le Fort, P., 1990. Badrinath⁃Gangotri Plutons (Garhwal, India): Petrological and Geochemical Evidence for Fractionation Processes in a High Himalayan Leucogranite. Journal of Volcanology and Geothermal Research, 44(1-2): 163-188. https://doi.org/10.1016/0377⁃0273(90)90017⁃A |
| [43] |
Shi, Y. L., Wang, Q.Y., 1997. Thermal Modeling of the Formation of Leucogranites in the Higher Himalaya. Chinese Journal of Geophysics, 40(5): 667-676 (in Chinese with English abstract). |
| [44] |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19 |
| [45] |
Sylvester, P. J., 1998. Post⁃Collisional Strongly Peraluminous Granites. Lithos, 45(1-4): 29-44. https://doi.org/10.1016/S0024⁃4937(98)00024⁃3 |
| [46] |
Tao, L. R., Cao, S. Y., Li, W. Y., et al., 2024. Evolution Characteristics and Rheological Significance of Dehydration Melting and Water⁃Fluxed Melting in Deep Continental Crust. Earth Science, 49(6): 2001-2023 (in Chinese with English abstract). |
| [47] |
Thiede, R. C., Arrowsmith, J. R., Bookhagen, B., et al., 2006. Dome Formation and Extension in the Tethyan Himalaya, Leo Pargil, Northwest India. GSA Bulletin, 118(5-6): 635-650. https://doi.org/10.1130/B25872.1 |
| [48] |
Wang, R. C., Wu, F. Y., Xie, L., et al., 2017. A Preliminary Study of Rare⁃Metal Mineralization in the Himalayan Leucogranite Belts, South Tibet. Scientia Sinica Terrae, 47(8): 871-880 (in Chinese). |
| [49] |
Wang, Y. J., Fan, W. M., Guo, F., 2003. Geochemistry of Early Mesozoic Potassium⁃Rich Diorites⁃Granodiorites in Southeastern Hunan Province, South China: Petrogenesis and Tectonic Implications. Geochemical Journal, 37(4): 427-448. https://doi.org/10.2343/geochemj.37.427 |
| [50] |
Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A⁃Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202 |
| [51] |
Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Scientia Sinica Terrae, 47(7): 745-765 (in Chinese). |
| [52] |
Wu, F. Y., Liu, X. C., Liu, Z. C., et al., 2020. Highly Fractionated Himalayan Leucogranites and Associated Rare⁃Metal Mineralization. Lithos, 352: 105319. https://doi.org/10.1016/j.lithos.2019.105319 |
| [53] |
Wu, F. Y., Liu, Z. C., Liu, X. C., et al., 2015. Himalayan Leucogranite: Petrogenesis and Implications to Orogenesis and Plateau Uplift. Acta Petrologica Sinica, 31(1): 1-36 (in Chinese with English abstract). |
| [54] |
Wu, F. Y., Wang, R. C., Liu, X. C., et al., 2021. New Breakthroughs in the Studies of Himalayan Rare⁃Metal Mineralization. Acta Petrologica Sinica, 37(11): 3261-3276 (in Chinese with English abstract). |
| [55] |
Zeng, L. S., Gao, L. E., 2017. Cenozoic Crustal Anatexis and the Leucogranites in the Himalayan Collisional Orogenic Belt. Acta Petrologica Sinica, 33(5): 1420-1444 (in Chinese with English abstract). |
| [56] |
Zeng, L. S., Gao, L. E., Xie, K. J., et al., 2011. Mid⁃ Eocene High Sr/Y Granites in the Northern Himalayan Gneiss Domes: Melting Thickened Lower Continental Crust. Earth and Planetary Science Letters, 303(3-4): 251-266. https://doi.org/10.1016/j.epsl.2011.01.005 |
| [57] |
Zhang, Z. M., Kang, D. Y., Ding, H. X., et al., 2018. Partial Melting of Himalayan Orogen and Formation Mechanism of Leucogranites. Earth Science, 43(1): 82-98 (in Chinese with English abstract). |
| [58] |
Zhao, J. X., Qin, K. Z., He, C. T., et al., 2024. Geological Features and Ore⁃Forming Mechanism of the Qiongjiagang Super⁃Large Pegmatite Lithium Deposit in Himalaya, China. Acta Petrologica Sinica, 40(9): 2664-2678 (in Chinese with English abstract). |
国家重点研发计划“战略性矿产资源开发利用”专项(2021YFC2901900)
“北喜马拉雅锂等稀有金属找矿预测与勘查示范”课题(2021YFC2901903)
江西省“双千计划”创新领军人才长期项目(2020101003)
东华理工大学高层次人才引进配套经费项目(1410000874)
/
| 〈 |
|
〉 |