福建省地热成藏模式I:流体地球化学特征及其形成机制
孙厚云 , 马峰 , 王贵玲 , 朱喜 , 张薇 , 陈礼明
地球科学 ›› 2025, Vol. 50 ›› Issue (08) : 3241 -3269.
福建省地热成藏模式I:流体地球化学特征及其形成机制
Formation Mode of Geothermal Resources in Fujian Province I: Hydrogeochemical Characteristics and Genetic Mechanisms of Geothermal Fluids
,
,
福建省地处华南陆缘高热流地热异常区,揭示区域地热成藏机制对指导地热科学高效利用具有重要意义. 基于福建省地热地质分区,结合全省208件地热样品水化学特征与自组织神经映射与K⁃means耦合聚类机器学习方法,剖析了地热流体的水化学形成变化与水岩作用机制,探讨了地热系统的热源类型. 结果表明,福建省内陆由隆起山地补给区至山间河谷与盆地中部地热流体水化学类型由HCO3⁃Ca和HCO3⁃Na·Ca型演化为HCO3·SO4⁃Na和HCO3⁃Na型. 闽中隆起山地至闽东火山断坳盆地与滨海平原深部,地热流体水化学类型呈现由HCO3⁃Ca和HCO3⁃Na·Ca型至HCO3·SO4⁃Na和HCO3⁃Na型,再到Cl⁃Na·Ca和Cl⁃Na型演化特征. SOM⁃KM耦合聚类将省域地热温泉水样划分为三大类,有效区分识别了浅循环低焓低矿化度地热水、高温高氟富磷富硅深循环与海水混合补给型深循环成因地热水的空间分布. 其中,浅循环低焓低矿化度地热流体受地表水与浅层地下水混合影响较大,主要分布于闽西北隆起带与闽西南碳酸盐岩-碎屑岩断陷盆地区. 高氟富磷富硅深循环地热水分布于闽东火山断坳带张扭性NW向导水断裂与压性NE向阻水-导热断裂、环状火山机构放射性断裂带交汇处与火山断陷盆地中部,水化学形成受火成岩内生水及深大断裂与火山机构古封存流体的升流混合影响较为显著. 海水混合补给型深循环地热水循环过程中经历了与深部海水的第一次混合以及升流过程中与浅部冷水的第二次混合过程. 区域侵入岩-火山岩地热储层水化学的长期供应端元为斜长石,矿物水热蚀变指示的热储温度集中在100~150 ℃,在橄榄石、辉石和钙长石等优先溶解形成的方解石饱和沉淀-碳酸缓冲平衡体系制约下,热储层流体向高pH、富Na、低Ca的HCO3⁃Na型地热水演化. 从地热流体水文地球化学论据来看,福建省地热系统为无岩浆热源的深循环水热系统.
Fujian Province is one of the most important geothermal anomaly areas in China. It is of great significance for the scientific utilization of geothermal resources to reveal the formation mechanisms of geothermal system in the region. The changes in hydrochemical formation and water⁃rock interaction mechanism of geothermal fluidsin each hydrogeochemical zonewas clarified based on the implication of hydrochemical characteristics of 208 geothermal water samples and the machine learning methods of self⁃organizing map⁃K⁃means (SOM⁃KM) clustering. The results show that the water types of geothermal fluids from the uplifted mountainous recharge areas to the low⁃lying valleys and deep basin axis evolved from HCO3⁃Ca and HCO3⁃Na·Ca to HCO3·SO4⁃Naand HCO3⁃Na in each intact groundwater system in inland areas. While from the central mountainous areas to the eastern volcano⁃graben basin and coastal plain, the water types of geothermal fluids evolved from HCO3⁃Ca, HCO3⁃Na·Ca to HCO3·SO4⁃Na and HCO3⁃Na, and then Cl⁃Na·Ca, Cl⁃Na type. The SOM⁃KM analysis identified the spatial distribution of low⁃enthalpy and low⁃salinity shallow circulating geothermal water, high⁃enthalpy and P⁃F⁃SiO2 enriched deep circulating geothermal water, and deep circulation geothermal water with seawater mixing at the provincial scale effectively. Among them, the low⁃enthalpy shallow circulating geothermal water was significantly affected by the mixing of surface water and shallow groundwater, and mainly distributed along the steam systems of northwestern uplifted mountain region and the carbonate⁃clastic sedimentary basins of southeastern region. The hydrochemistry formation of high⁃enthalpy deep circulating geothermal water was significantly influenced by the upwelling mixing of endogenous water in igneous rocks, deep⁃seated faults, and ancient sealed fluids in volcanic edifice, and mainly distributed at the intersection of regional northwestern water⁃conducting faults with the northeastern thermal⁃conducting faults and the radioactive faults of the circular volcanic apparatus in eastern volcanic depression zone. The deep circulation geothermal fluid affected by seawater recharge undergone the first mixing process with the deep high⁃salinity seawater and the second mixing process with shallow cold water during the upwelling stage. The long⁃term supply end member of hydrochemistry in regional intrusive⁃volcanic geothermal reservoir is plagioclase, and the reservoir temperature indicated by mineral hydrothermal alteration is concentrated in the range of 100⁃150 ℃. The geothermal fluid tended to evolve towards HCO3⁃Na water with high pH, low⁃Na concentration and high⁃Ca concentration under the constraints of super saturation precipitation of calcite ⁃ carbonate buffer equilibrium system due to the preferential dissolution of olivine, pyroxene, and anorthite in the plagioclase. The geothermal system in the bulk horizons is turned out to be deep⁃circulation hydrothermal systems without magmatic heat source from the hydrogeochemical evidence.
地热温泉 / 水化学 / 水岩作用 / 成因模式 / 自组织神经网络 / 福建省 / 水文地质.
geothermal water / hydrogeochemistry / water⁃rock interaction / formation mode / self⁃organizing map / Fujian Province / hydrogeology
| [1] |
Apollaro, C., Accornero, M., Marini, L., et al., 2009. The Impact of Dolomite and Plagioclase Weathering on the Chemistry of Shallow Groundwaters Circulating in a Granodiorite⁃Dominated Catchment of the Sila Massif (Calabria, Southern Italy). Applied Geochemistry, 24(5): 957-979. https://doi.org/10.1016/j.apgeochem. 2009. 02.026 |
| [2] |
April, R., Newton, R., Coles, L. T., 1986. Chemical Weathering in Two Adirondack watersheds: Past and Present⁃Day Rates. Geological Society of America Bulletin, 97(10): 1232. https://doi.org/10.1130/0016⁃7606(1986)971232:cwitaw>2.0.co;2 |
| [3] |
Banks, D., Frengstad, B., Midtgård, A. K., et al., 1998. The Chemistry of Norwegian groundwaters: I. the Distribution of Radon, Major and Minor Elements in 1604 Crystalline Bedrock Groundwaters. Science of The Total Environment, 222(1/2): 71-91. https://doi.org/10.1016/S0048⁃9697(98)00291⁃5 |
| [4] |
Banks, D., Frengstad, B., 2006. Evolution of Groundwater Chemical Composition by Plagioclase Hydrolysis in Norwegian Anorthosites. Geochimica et Cosmochimica Acta, 70(6): 1337-1355. https://doi.org/10.1016/j.gca. 2005. 11.025 |
| [5] |
BGMRFP.,2010. Bureau of Geology and Mineral Resources of Fujian Province. Metallogenic Prognosis Types and Results of Gold Deposits in Fujian Province, Geological Map. |
| [6] |
Boschetti, T., Toscani, L., Barbieri, M., et al., 2017. Low Enthalpy Na⁃Chloride Waters from the Lunigiana and Garfagnana Grabens, Northern Apennines, Italy: Tracing Fluid Connections and Basement Interactions via Chemical and Isotopic Compositions. Journal of Volcanology and Geothermal Research, 348: 12-25. https://doi.org/10.1016/j.jvolgeores.2017.10.008 |
| [7] |
Brantley, S. L., Kubicki, J. D., White, A. F., 2008. Kinetics of Water⁃Rock Interaction. Berlin Germany: Springer⁃Verlag, Berlin Heidelberg, 1-900. |
| [8] |
Brehme, M., Bauer, K., Nukman, M., et al., 2017. Self⁃Organizing Maps in Geothermal Exploration:A New Approach for Understanding Geochemical Processes and Fluid Evolution. Journal of Volcanology and Geothermal Research, 336: 19-32. https://doi.org/10.1016/j.jvolgeores.2017.01.013 |
| [9] |
Bruce, V., Meunier, A. T., 2008.The Origin of Clay Minerals in Soils and Weathered Rocks. Springer⁃Verlag Berlin Heidelberg, 1-407. |
| [10] |
Chen, Y. T., Wang, Z. P., Huang, Q. T., et al., 1998. Downfaulted Basin, Plain, Bay and Earthquakes of Coastland in Fujian Province.Journal of Geodesy and Geodynamics, 18(4): 55-61 (in Chinese with English abstract). |
| [11] |
Chi, Z., Ni, P., Pan, J. Y., et al., 2020. Petrogenesis and Tectonic Setting of the Cretaceous Volcanic⁃Intrusive Complex in the Zijinshan Ore District, Southeast China: Implications for Different Stages of Mineralization. Journal of Asian Earth Sciences, 192: 104265. https://doi.org/10.1016/j.jseaes.2020.104265 |
| [12] |
Davies, D. L., Bouldin, D. W., 1979. A Cluster Separation Measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1(2): 224-227. https://doi.org/10.1109/TPAMI.1979.4766909 |
| [13] |
Davisson, M., Criss, R. E., 1996. Na⁃Ca⁃Cl Relations in Basinal Fluids. Geochimica et Cosmochimica Acta, 60(15): 2743-2752. https://doi.org/10.1016/0016⁃7037(96)00143⁃3 |
| [14] |
Deng, D. X., 2017. Generation Rule of Geothermal Resources in Fuzhou and Analysis of Potential Geothermal Anomaly Areas. East China Geology, 38(2): 132-137 (in Chinese with English abstract). |
| [15] |
Dong, S. W., Li, J. H., Cawood, P. A., et al., 2020. Mantle Influx Compensates Crustal Thinning beneath the Cathaysia Block, South China: Evidence from SINOPROBE Reflection Profiling. Earth and Planetary Science Letters, 544: 116360. https://doi.org/10.1016/j.epsl.2020.116360 |
| [16] |
Ellis, A. J., 1971. Magnesium Ion Concentrations in the Presence of Magnesium Chlorite, Calcite, Carbon Dioxide, Quartz. American Journal of Science, 271(5): 481-489. https://doi.org/10.2475/ajs.271.5.481 |
| [17] |
Gan, H. N., Wang, G. L., Wang, X., et al., 2019. Research on the Hydrochemistry and Fault Control Mechanism of Geothermal Water in Northwestern Zhangzhou Basin. Geofluids, 2019: 3925462. https://doi.org/10.1155/2019/3925462 |
| [18] |
Gan, H. N., 2023.Thermo⁃Rheological Structure of the Lithosphere and Geodynamic Evolution of the Coastal Fujian and Adjacent Region, China(Dissertation). Nanjing University,Nanjing (in Chinese with English abstract). |
| [19] |
Garrels, R. M., Mackenzie, F. T., 1967. Origin of the Chemical Composition of Some Springs and lakes. In: Stumm, W. ed., Equilibrium Concepts in Natural Water Systems. Advanced Chemical Series. American Chemical Society, 67:222-242. |
| [20] |
Garrels, R. M.,1968. Genesis of Some Groundwaters from Igneous Rocks. Researches in Geochemistry, 2:406-420. |
| [21] |
Giggenbach, W. F., 1988. Geothermal Solute Equilibria. Derivation of Na⁃K⁃Mg⁃Ca Geoindicators. Geochimica et Cosmochimica Acta, 52(12): 2749-2765. https://doi.org/10.1016/0016⁃7037(88)90143⁃3 |
| [22] |
Guo, Q. H., Liu, M. L., Luo, L., et al., 2019. Geochemical Controls on Magnesium and Its Speciation in Various Types of Geothermal Waters from Typical Felsic⁃Rock⁃Hosted Hydrothermal Systems in China. Geothermics, 81: 185-197. https://doi.org/10.1016/j.geothermics. 2019. 05.006 |
| [23] |
Guo, Q. H., 2020. Magma⁃Heated Geothermal Systems and Hydrogeochemical Evidence of Their Occurrence. Acta Geologica Sinica, 94(12): 3544-3554. https://doi.org/10.19762/j.cnki.dizhixuebao.2020195 |
| [24] |
Hagedorn, B., Cartwright, I., 2009. Climatic and Lithologic Controls on the Temporal and Spatial Variability of CO2 Consumption via Chemical weathering: An Example from the Australian Victorian Alps. Chemical Geology, 260(3/4): 234-253. https://doi.org/10.1016/j.chemgeo. 2008. 12.019 |
| [25] |
Hao, Q. C., Li, Y. S., Xiao, Y., et al., 2023. Hydrogeochemical Fingerprint, Driving Forces and Spatial Availability of Groundwater in a Coastal Plain, Southeast China. Urban Climate, 51: 101611. https://doi.org/10.1016/j.uclim.2023.101611 |
| [26] |
Hentati, A., Kawamura, A., Amaguchi, H., et al., 2010. Evaluation of Sedimentation Vulnerability at Small Hillside Reservoirs in the Semi⁃Arid Region of Tunisia Using the Self⁃Organizing Map. Geomorphology, 122(1/2): 56-64. https://doi.org/10.1016/j.geomorph.2010.05.013 |
| [27] |
Hochstein, M. P., Yang, Z. K., Ehara, S., 1990. The Fuzhou Geothermal System (People’s Republic of China): Modelling Study of a Low Temperature Fracture⁃Zone System. Geothermics, 19(1): 43-60. https://doi.org/10.1016/0375⁃6505(90)90065⁃J |
| [28] |
Huang, H. F., Goff, F., 1986. Hydrogeochemistry and Reservoir Model of Fuzhou Geothermal Field, China. Journal of Volcanology and Geothermal Research, 27(3/4): 203-227. https://doi.org/10.1016/0377⁃0273(86)90014⁃4 |
| [29] |
Kaleem, M., Naseem, S., Bashir, E., et al., 2021. Discrete Geochemical Behavior of Sr and Ba in the Groundwater of Southern Mor Range, Balochistan, a Tracer for Igneous and Sedimentary Rocks Weathering and Related Environmental Issues. Applied Geochemistry, 130: 104996. https://doi.org/10.1016/j.apgeochem.2021.104996 |
| [30] |
Kim, K. H., Yun, S. T., Yu, S., et al., 2020. Geochemical Pattern Recognitions of Deep Thermal Groundwater in South Korea Using Self⁃Organizing map: Identified Pathways of Geochemical Reaction and Mixing. Journal of Hydrology, 589: 125202. https://doi.org/10.1016/j.jhydrol.2020.125202 |
| [31] |
Kohonen, T., 1982. Self⁃Organized Formation of Topologically Correct Feature Maps. Biological Cybernetics, 43(1): 59-69. https://doi.org/10.1007/BF00337288 |
| [32] |
Kohonen, T., 2001. Self⁃Organizing Maps. 3rd. ed. Springer, Berlin. |
| [33] |
Land, M., Ingri, J., Andersson, P. S., et al., 2000. Ba/Sr, Ca/Sr and 87Sr/86Sr Ratios in Soil Water and Groundwater: implications for Relative Contributions to Stream Water Discharge. Applied Geochemistry, 15(3): 311-325. https://doi.org/10.1016/S0883⁃2927(99)00054-2 |
| [34] |
Langelier, W. F., Ludwig, H. F., 1942. Graphical Methods for Indicating the Mineral Character of Natural Waters. Journal AWWA, 34(3): 335-352. https://doi.org/10.1002/j.1551⁃8833.1942.tb19682.x |
| [35] |
Li, S.,Han, J. T.,Liu, L. J., et al., 2022. The Deep Electrical Structure and Thermal Characteristics of the Zhangshu⁃Ningde Magnetotelluric Profile in South China. Chinese Journal of Geophysics,65(4):1354-1375 (in Chinese with English abstract). |
| [36] |
Li, Y. S., Liu, C. L., Cao, S. W., et al., 2021. Br/Cl Ratio, Zn and Radon Constraints on the Origin and Fate of Geothermal Fluids in the Coastal Region of Southeastern China. Hydrogeology Journal, 29(6): 2211-2218. https://doi.org/10.1007/s10040⁃021⁃02373⁃5 |
| [37] |
Liao, Z. J., 2012. Deep⁃Circulation Hydrothermal Systems without Magmatic Heat Source in Fujian Province. Geoscience, 26(1): 85-98 (in Chinese with English abstract). |
| [38] |
Lin, W. J.,Wang, G. L.,Gan, H. N.,2024.Differential Crustal Thermal Structure and Geothermal Significance in the Igneous Region of Southeastern China. Acta Geologica Sinica, 98(2):544-557 (in Chinese with English abstract). |
| [39] |
Liu, C. L., Li, Y. S., Cao, S. W., et al., 2022. Effects of Seawater Recharge on the Formation of Geothermal Resources in Coastal Areas and Their Mechanisms: A Case Study of Xiamen City, Fujian Province, China. Frontiers in Earth Science, 10: 872620. https://doi.org/10.3389/feart.2022.872620 |
| [40] |
Liu, D. H., Wang, C. L., Zhang, X. H., et al., 2023. Implications for the Contribution of Pacific Plate Subduction to Fluorite Mineralization in Southeast China: Evidence from Nanzhou Large Fluorite Deposit, Fujian Province. Ore Geology Reviews, 156: 105385. https://doi.org/10.1016/j.oregeorev.2023.105385 |
| [41] |
Liu, M. L., Guo, Q. H., Luo, L., et al., 2020. Environmental Impacts of Geothermal Waters with Extremely High Boron concentrations: Insight from a Case Study in Tibet, China. Journal of Volcanology and Geothermal Research, 397: 106887. https://doi.org/10.1016/j.jvolgeores.2020.106887 |
| [42] |
Lu, G. P., Wang, X., Li, F. S., et al., 2017. Deep Geothermal Processes Acting on Faults and Solid Tides in Coastal Xinzhou Geothermal Field, Guangdong, China. Physics of the Earth and Planetary Interiors, 264: 76-88. https://doi.org/10.1016/j.pepi.2016.12.004 |
| [43] |
Mason, B., Moore, C. B.,1982. Principles of Geochemistry (Fourth Edition). John Wiley & Sons, Inc Toronto, Canada. |
| [44] |
Nakagawa, K., Yu, Z. Q., Berndtsson, R., et al., 2020. Temporal Characteristics of Groundwater Chemistry Affected by the 2016 Kumamoto Earthquake Using Self⁃Organizing Maps. Journal of Hydrology, 582: 124519. https://doi.org/10.1016/j.jhydrol.2019.124519 |
| [45] |
Narvaez⁃Montoya, C., Mahlknecht, J., Torres⁃Martínez, J. A., et al., 2024. FlowSOM Clustering: a Novel Pattern Recognition Approach for Water research: Application to a Hyper⁃Arid Coastal Aquifer System. Science of The Total Environment, 915: 169988. https://doi.org/10.1016/j.scitotenv.2024.169988 |
| [46] |
Nisi, B., Vaselli, O., Tassi, F., et al., 2013. Hydrogeochemistry of Surface and Spring Waters in the Surroundings of the CO2 Injection Site at Hontomín⁃Huermeces (Burgos, Spain). International Journal of Greenhouse Gas Control, 14: 151-168. https://doi.org/10.1016/j.ijggc.2013.01.012 |
| [47] |
Noble, D. C., Smith, V. C., Peck, L. C., 1967. Loss of Halogens from Crystallized and Glassy Silicic Volcanic Rocks. Geochimica et Cosmochimica Acta, 31(2): 215-223. https://doi.org/10.1016/S0016⁃7037(67)8004⁃0 |
| [48] |
Oliva, P., Dupré, B., Martin, F., et al., 2004. The Role of Trace Minerals in Chemical Weathering in a High⁃Elevation Granitic Watershed (Estibère, France): Chemical and Mineralogical Evidence. Geochimica et Cosmochimica Acta, 68(10): 2223-2243. https://doi.org/10.1016/j.gca.2003.10.043 |
| [49] |
Pang, Z. H.,1987. Zhangzhou Basin Geothermal System⁃Genesis Model, Energy Potential and the Occurrence of Thermal Water(Dissertation). Institute of Geology and Geophysics, CAS, Beijing (in Chinese with English abstract). |
| [50] |
Poh, J., Tjiawi, H., Chidire, A., et al., 2025. Geothermal Development in South, Southeast and East Asia: A Review. Renewable and Sustainable Energy Reviews, 209: 115043. https://doi.org/10.1016/j.rser.2024.115043 |
| [51] |
Pokrovskii, V. A., Helgeson, H. C., 1997. Thermodynamic Properties of Aqueous Species and the Solubilities of Minerals at High Pressures and Temperatures: the System Al2O3⁃H2O⁃KOH. Chemical Geology, 137(3/4): 221-242. https://doi.org/10.1016/S0009⁃2541(96)00167⁃2 |
| [52] |
Rahman, A. T. M. S., Kono, Y., Hosono, T., 2022. Self⁃Organizing Map Improves Understanding on the Hydrochemical Processes in Aquifer Systems. Science of The Total Environment, 846: 157281. https://doi.org/10.1016/j.scitotenv.2022.157281 |
| [53] |
Shi, Z. D., Mao, X. M., Ye, J. Q., et al., 2024. Source Analysis of Sodium of Low⁃Salinity High⁃Sodium Geothermal Water in Huangshadong Geothermal Field from East Guangdong. Earth Science, 49(1): 271-287 (in Chinese with English abstract). |
| [54] |
Shu, L. S., Yao, J. L., Wang, B., et al., 2021. Neoproterozoic Plate Tectonic Process and Phanerozoic Geodynamic Evolution of the South China Block. Earth⁃Science Reviews, 216: 103596. https://doi.org/10.1016/j.earscirev.2021.103596 |
| [55] |
Shvartsev, S. L., Sun, Z., Borzenko, S. V., et al., 2018. Geochemistry of the Thermal Waters in Jiangxi Province, China. Applied Geochemistry, 96: 113-130. https://doi.org/10.1016/j.apgeochem.2018.06.010 |
| [56] |
Souid, F., Telahigue, F., Agoubi, B., et al., 2020. Isotopic Behavior and Self⁃Organizing Maps for Identifying Groundwater Salinization Processes in Jerba Island, Tunisia. Environmental Earth Sciences, 79(8): 175. https://doi.org/10.1007/s12665⁃020⁃8899⁃3 |
| [57] |
Stefansson, A., Arnórsson, S., Sveinbjörnsdóttir, Á. E., et al., 2019. Isotope (δD, δ 18O, 3H, δ 13C, 14C) and Chemical (B, Cl) Constrains on Water Origin, Mixing, Water⁃Rock Interaction and Age of Low⁃Temperature Geothermal Water. Applied Geochemistry, 108: 104380. https://doi.org/10.1016/j.apgeochem.2019.104380 |
| [58] |
Sun, H. Y., Ma, F., Zhu, X.,et al., 2025a.Hydrogeochemical Evolution of Geothermal Fluids and Its Indications in the Yanshan Uplift⁃North China Fault Basin, Northern Hebei. Acta Geologica Sinica, 99(5):1711-1742(in Chinese with English abstract). |
| [59] |
Sun, H. Y., Ma, F., Wang, G. L., et al., 2025b.Spatial Variation Characteristics and Source Apportionment of Geothermal Hydrochemical Components with Therapeutic benefits in Fujian Province based on Machine Learning. Acta Geologica Sinica, 50(10):2862-2878(in Chinese with English abstract). |
| [60] |
Sun, H. Y., Sun, X. M., Wei, X. F., et al., 2023. Geochemical Characteristics and Origin of Nuanquanzi Geothermal Water in Yudaokou, Chengde, Hebei, North China. Journal of Earth Science, 34(3): 838-856. https://doi.org/10.1007/s12583⁃022⁃1635⁃z |
| [61] |
Sun, H. Y., Wei, X. F., Sun, X. M., et al., 2020. Formation Mechanism and Geological Construction Constraints of Metasilicate Mineral Water in Yudaokou, Hannuoba Basalt Area. 45(11): 4236-4253 (in Chinese with English abstract). |
| [62] |
Sun, H. Y., 2023. Mechanism of Strontium Enrichment in Sallow Groundwater Driven by the Coupling of Rock Weathering and Water⁃Rock Interaction in Central Chengde(Dissertation).China University of Geosciences, Beijing,1-187 (in Chinese with English abstract). |
| [63] |
Teng, J.W.,Si, X.,Zhuang, Q. X.,et al., 2017.Abnormal Structure of Crust and Mantle and Analysis of Deep Thermal Potential in Fujian Continental Margin. Science Technology and Engineering,17(17):6-38 (in Chinese with English abstract). |
| [64] |
Tian, J., Li, Y. M., Fan, Y. F., et al., 2023.Geochemical Characteristics and Circulation Conceptual Model of Geothermal Fluid in the Shenzao Coastal Hot Springs in Guangdong Province. Earth Science, 48(3):894-907 (in Chinese with English abstract). |
| [65] |
Tian, J., Stefánsson, A., Li, Y. M., et al., 2023. Geochemistry of Thermal Fluids and the Genesis of Granite⁃Hosted Huangshadong Geothermal System, Southeast China. Geothermics, 109: 102647. https://doi.org/10.1016/j.geothermics.2023.102647 |
| [66] |
Truesdell, A. H., Nathenson, M., Rye, R. O., 1977. The Effects of Subsurface Boiling and Dilution on the Isotopic Compositions of Yellowstone Thermal Waters. Journal of Geophysical Research (1896-1977), 82(26): 3694-3704. https://doi.org/10.1029/JB082i026p03694 |
| [67] |
Vatuva, A., He, X. L., Zhang, X. M., et al., 2023. Genesis of Makeng⁃Type Fe⁃Polymetallic Deposits in SE China: New Constraints by Geochronological and Isotopic Data from the Dapai⁃Makeng Metallogenic System. Geoscience Frontiers, 14(5): 101614. https://doi.org/10.1016/j.gsf.2023.101614 |
| [68] |
Vengosh, A., 2014. Salinization and Saline Environments. In: Holland, H.D., Turekian, K.K., eds., Treatise on Geochemistry 2nd Edition: Environmental Geochemistry, 11:325-378. |
| [69] |
Wan, T. F.,Chu, M. J.,Chen, M. Y.,1988. Thermal Regimes of the Lithosphere and Geothermal Resources Potential in Fujian Province. Acta Geologica Sinica, 2:178-189 (in Chinese with English abstract). |
| [70] |
Wang, D. Z., Shu, L. S., 2012. Late Mesozoic Basin and Range Tectonics and Related Magmatism in Southeast China. Geoscience Frontiers, 3(2): 109-124. https://doi.org/10.1016/j.gsf.2011.11.007 |
| [71] |
Wang, G. L., Gan, H. N., Lin, W. J., et al., 2023. Hydrothermal Systems Characterized by Crustal Thermally⁃Dominated Structures of Southeastern China. Acta Geologica Sinica⁃English Edition, 97(4): 1003-1013. https://doi.org/10.1111/1755⁃6724.15078 |
| [72] |
Wang, G. L., Lin, W. J. 2020.Main Hydro⁃Geothermal Systems and Their Genetic Models in China. Acta Geologica Sinica,94(7):1923-1937 (in Chinese with English abstract). |
| [73] |
Wang, G. L.,Lin, W. J.,Liu, F.,et al.,2023.Geothermal Crust⁃Tectonic Thermal Control Theory and Exploration Practice. Acta Geologica Sinica, 97(3):639-660 (in Chinese with English abstract). |
| [74] |
Wang, X., Lu, G. P., Hu, B. X., 2018. Hydrogeochemical Characteristics and Geothermometry Applications of Thermal Waters in Coastal Xinzhou and Shenzao Geothermal Fields, Guangdong, China. Geofluids, 2018(1): 8715080. https://doi.org/10.1155/2018/8715080 |
| [75] |
Wang, X., 2018. Formation Conditions and Hydrogeochemical Characteristicsof the Geothermal Water in Typical Coastal Geothermal Field with Deep Faults, Guangdong Province(Dissertation). China University of Geosciences,Wuhan (in Chinese with English abstract). |
| [76] |
Wang, Y. J., Fan, W. M., Sun, M., et al., 2007. Geochronological, Geochemical and Geothermal Constraints on Petrogenesis of the Indosinian Peraluminous Granites in the South China Block: A Case Study in the Hunan Province. Lithos, 96(3/4): 475-502. https://doi.org/10.1016/j.lithos.2006.11.010 |
| [77] |
Wang, Z., Guo, H. M., Xing, S. P., et al., 2021. Hydrogeochemical and Geothermal Controls on the Formation of High Fluoride Groundwater. Journal of Hydrology, 598: 126372. https://doi.org/10.1016/j.jhydrol.2021.126372 |
| [78] |
Wei, D. G., Jie, Y. J., Huang, T. G., 1997. Regional Geological Structure of Fujian.Geological Bulletin of China, 16(2): 162-170 (in Chinese with English abstract). |
| [79] |
White, A. F., Blum, A. E., 1995. Effects of Climate on Chemical_ Weathering in Watersheds. Geochimica et Cosmochimica Acta, 59(9): 1729-1747. https://doi.org/10.1016/0016⁃7037(95)00078⁃E |
| [80] |
Xu, S. Y.,1987.Hydrogeochemical Chractteristics of Fuzhou Geothermal Field. Geology of Fujian, 6(4):288-303 (in Chinese with English abstract). |
| [81] |
Xu, X. S., O’Reilly, S. Y., Griffin, W. L., et al., 2003. Enrichment of Upper Mantle Peridotite: petrological, Trace Element and Isotopic Evidence in Xenoliths from SE China. Chemical Geology, 198(3/4): 163-188. https://doi.org/10.1016/S0009⁃2541(03)00004⁃4 |
| [82] |
Yao, Z. J.,1999. Recent Hydrothermal Activity along the Continental Margin of Southeast China. Bulletin of the Chinese Academy of Geological Sciences, 20(1):145-148 (in Chinese with English abstract). |
| [83] |
Yuan, H. W., Jing, T. Y., Yin, Y. L., et al., 2024. Geothermal Model and Development Area of a Fault⁃Controlled Geothermal Zone along the Fujian Coastal Area of Southeastern China. Natural Gas Industry B, 11(1): 28-41. https://doi.org/10.1016/j.ngib.2024.01.005 |
| [84] |
Zhang, J., He, Y. B., Fan, Y. X., 2024. Geophysical Analysis of Heat Source Composition in the Fujian Coastal Geothermal Anomaly Area. Earth Science Frontiers, 31(3): 392-401 (in Chinese with English abstract). |
| [85] |
Zhang, Y., Zhang, Y. J., Yu, H., et al., 2020. Geothermal Resource Potential Assessment of Fujian Province, China, Based on Geographic Information System (GIS): Supported Models. Renewable Energy, 153: 564-579. https://doi.org/10.1016/j.renene.2020.02.044 |
| [86] |
Zheng, H. R., Luo, J., 2024. Progress in Research on the Exploration and Evaluation of Deep Geothermal Resources in the Fujian⁃Guangdong⁃Hainan Region, China. Energy Geoscience, 5(2): 100232. https://doi.org/10.1016/j.engeos.2023.100232 |
| [87] |
Zu, F. P., 2012.Evolution Features of Sedimentary and Structural Environment of Representative Basins since Late Palaeozoic in Southeast China(Dissertation). Nanjing University,Nanjing(in Chinese with English abstract). |
中国地质科学院基本科研业务费项目(SK202328)
厦门市自然科学基金项目(3502Z202471066)
中国地质调查局项目(DD20230501)
中国地质调查局项目(DD20230019)
中国地质科学院青年英才项目(YK202305)
/
| 〈 |
|
〉 |