汇聚板块边缘从大洋俯冲经大陆碰撞到碰撞后再造过程中的碳循环
苏懿 , 李姝宁 , 陈仁旭 , 郑永飞
地球科学 ›› 2025, Vol. 50 ›› Issue (08) : 3085 -3116.
汇聚板块边缘从大洋俯冲经大陆碰撞到碰撞后再造过程中的碳循环
Deep Carbon Cycle during Tectonic Evolution from Oceanic Subduction through Continental Collision to Post⁃Collisional Reworking at Convergent Plate Margins
,
,
深部碳循环影响着地表CO2含量,对全球气候变化和地球宜居性具有至关重要的影响. 在汇聚板块边缘,地表碳通过板块俯冲过程中的变质脱水/部分熔融、壳幔相互作用和岩浆作用等一系列过程实现深部碳循环.系统介绍了地幔和地壳碳储库情况、俯冲板片的脱碳机制、壳幔相互作用过程中的固碳作用以及汇聚板块边缘岩浆作用对深部碳循环和碳释放的影响,系统总结了汇聚板块边缘从大洋俯冲经大陆碰撞到碰撞后再造过程中深部碳循环的足迹及各个阶段碳释放、碳固定或碳迁移的影响因素.
The deep carbon cycle significantly influences atmospheric CO₂ concentrations, playing a critical role in global climate change and Earth’s habitability. At convergent plate margins, surface carbon undergoes deep cycling through plate subduction via a series of processes such as metamorphic dehydration and/or partial melting, crust⁃mantle interactions, and magmatism. This paper presents a systematical review on the carbon reservoirs of the mantle and crust, the decarbonation mechanisms in subducting slabs, carbon sequestration during crust⁃mantle interactions, and the role of magmatic activity at convergent plate margins in deep carbon cycling and carbon release. It also outlines the footprints of deep carbon cycling in oceanic subduction zones and continental collision zones, along with the factors affecting carbon release, sequestration, or migration in various processes.
汇聚板块边缘 / 深部碳循环 / 壳幔相互作用 / 脱碳机制 / 大陆再造 / 构造学.
convergent plate margin / deep carbon cycle / crust⁃mantle interaction / decarbonization mechanism / continental reworking / tectonics
| [1] |
Ague, J. J., Nicolescu, S., 2014. Carbon Dioxide Released from Subduction Zones by Fluid⁃Mediated Reactions. Nature Geoscience, 7(5): 355-360. https://doi.org/10.1038/ngeo2143 |
| [2] |
Ague, J. J., Tassara, S., Holycross, M. E., et al., 2022. Slab⁃Derived Devolatilization Fluids Oxidized by Subducted Metasedimentary Rocks. Nature Geoscience, 15(4): 320-326. https://doi.org/10.1038/s41561⁃022⁃00904⁃7 |
| [3] |
Akam, S. A., Swanner, E. D., Yao, H. M., et al., 2023. Methane⁃Derived Authigenic Carbonates: a Case for a Globally Relevant Marine Carbonate Factory. Earth⁃Science Reviews, 243: 104487. https://doi.org/10.1016/j.earscirev.2023.104487 |
| [4] |
Albers, E., Bach, W., Pérez⁃Gussinyé, M., et al., 2021. Serpentinization⁃Driven H2 Production from Continental Break⁃Up to Mid⁃Ocean Ridge Spreading: Unexpected High Rates at the West Iberia Margin. Frontiers in Earth Science, 9: 673063. https://doi.org/10.3389/feart. 2021. 673063 |
| [5] |
Alt, J. C., Schwarzenbach, E. M., Früh⁃Green, G. L., et al., 2013. The Role of Serpentinites in Cycling of Carbon and sulfur: Seafloor Serpentinization and Subduction Metamorphism. Lithos, 178: 40-54. https://doi.org/10.1016/j.lithos.2012.12.006 |
| [6] |
Anenburg, M., Mavrogenes, J. A., Frigo, C., et al., 2020. Rare Earth Element Mobility in and around Carbonatites Controlled by Sodium, Potassium, and Silica. Science Advances, 6(41): eabb6570. https://doi.org/10.1126/sciadv.abb6570 |
| [7] |
Behn, M. D., Kelemen, P. B., Hirth, G., et al., 2011. Diapirs as the Source of the Sediment Signature in Arc Lavas. Nature Geoscience, 4(9): 641-646. https://doi.org/10.1038/ngeo1214 |
| [8] |
Beinlich, A., Mavromatis, V., Austrheim, H., et al., 2014. Inter⁃Mineral Mg Isotope Fractionation during Hydrothermal Ultramafic Rock Alteration: Implications for the Global Mg⁃Cycle. Earth and Planetary Science Letters, 392: 166-176. https://doi.org/10.1016/j.epsl.2014.02.028 |
| [9] |
Berner, R. A., 1995. Chemical Weathering and Its Effect on Atmospheric CO2 and Climate. Reviews in Mineralogy and Geochemistry, 31(1): 565-583. |
| [10] |
Beyssac, O., Rumble, D., 2014. Graphitic Carbon: A Ubiquitous, Diverse, and Useful Geomaterial. Elements, 10(6): 415-420. https://doi.org/10.2113/gselements.10.6.415 |
| [11] |
Blank, J. G., Stolper, E. M., Carroll, M. R., 1993. Solubilities of Carbon Dioxide and Water in Rhyolitic Melt at 850 ℃ and 750 Bars. Earth and Planetary Science Letters, 119(1/2): 27-36. https://doi.org/10.1016/0012⁃821X(93)90004⁃S |
| [12] |
Boetius, A., Ravenschlag, K., Schubert, C. J., et al., 2000. A Marine Microbial Consortium Apparently Mediating Anaerobic Oxidation of Methane. Nature, 407(6804): 623-626. https://doi.org/10.1038/35036572 |
| [13] |
Borghini, A., Nicoli, G., Ferrero, S., et al., 2023. The Role of Continental Subduction in Mantle Metasomatism and Carbon Recycling Revealed by Melt Inclusions in UHP Eclogites. Science Advances, 9(6): eabp9482. https://doi.org/10.1126/sciadv.abp9482 |
| [14] |
Botcharnikov, R. E., Behrens, H., Holtz, F., 2006. Solubility and Speciation of C⁃O⁃H Fluids in Andesitic Melt at T=1 100⁃1 300 ℃ and P=200 and 500 MPa. Chemical Geology, 229(1/2/3): 125-143. https://doi.org/10.1016/j.chemgeo.2006.01.016 |
| [15] |
Boutier, A., Martinez, I., Sissmann, O., et al., 2024. Complexity of Graphite Formation in Response to Metamorphic Methane Generation and Transformation in an Orogenic Ultramafic Body. Geochimica et Cosmochimica Acta, 364: 166-183. https://doi.org/10.1016/j.gca.2023.10.028 |
| [16] |
Boutier, A., Vitale Brovarone, A., Martinez, I., et al., 2021. High⁃Pressure Serpentinization and Abiotic Methane Formation in Metaperidotite from the Appalachian Subduction, Northern Vermont. Lithos, 396: 106190. https://doi.org/10.1016/j.lithos.2021.106190 |
| [17] |
Brooker, R. A., 1994. Experimental Studies of Carbon Dioxide in Silicate Melts: Solubility, Speciation, and Stable Carbon Isotope Behavior. In: Jennifer, G. B., Richard, A. B., eds., Volatiles in Magmas, Walter de Gruyter GmbH, 157-186. https://doi.org/10.1515/9781501509674⁃011 |
| [18] |
Burton, M. R., Sawyer, G. M., Granieri, D., 2013. Deep Carbon Emissions from Volcanoes. Reviews in Mineralogy and Geochemistry, 75(1): 323-354. https://doi.org/10.2138/rmg.2013.75.11 |
| [19] |
Cartapanis, O., Bianchi, D., Jaccard, S. L., et al., 2016. Global Pulses of Organic Carbon Burial in Deep⁃Sea Sediments during Glacial Maxima. Nature Communications, 7: 10796. https://doi.org/10.1038/ncomms10796 |
| [20] |
Carter, L. B., Dasgupta, R., 2018. Decarbonation in the Ca⁃Mg⁃Fe Carbonate System at Mid⁃Crustal Pressure as a Function of Temperature and Assimilation with Arc Magmas: Implications for Long⁃Term Climate. Chemical Geology, 492: 30-48. https://doi.org/10.1016/j.chemgeo.2018.05.024 |
| [21] |
Chen, T. N., Chen, R. X., Zheng, Y. F., et al., 2022. The Effect of Supercritical Fluids on Nb⁃Ta Fractionation in Subduction zones: Geochemical Insights from a Coesite⁃Bearing Eclogite⁃Vein System. Geochimica et Cosmochimica Acta, 335: 23-55. https://doi.org/10.1016/j.gca.2022.08.013 |
| [22] |
Chen, T. N., Chen, R. X., Zheng, Y. F., et al., 2025. Subduction Zone Rocks Oxidized by Supercritical fluid: Constraints from an Ultrahigh⁃Pressure Eclogite⁃Vein System in the Dabie Orogen, China. Geological Society of America Bulletin, 137(5/6): 2358-2374. https://doi.org/10.1130/b37979.1 |
| [23] |
Chen, C. F., Förster, M. W., Foley, S. F., et al., 2021. Massive Carbon Storage in Convergent Margins Initiated by Subduction of Limestone. Nature Communications, 12: 4463. https://doi.org/10.1038/s41467⁃021⁃24750⁃0 |
| [24] |
Chen, W., Keshav, S., Peng, W. G., et al., 2023. Coupled Cycling of Carbon and Water in the Form of Hydrous Carbonatitic Liquids in the Subarc Region. Journal of Geophysical Research: Solid Earth, 128(10): e2023JB026681. https://doi.org/10.1029/2023JB026681 |
| [25] |
Chen, C. F., Liu, Y. S., Foley, S. F., et al., 2016. Paleo⁃Asian Oceanic Slab under the North China Craton Revealed by Carbonatites Derived from Subducted Limestones. Geology, 44(12): 1039-1042. https://doi.org/10.1130/g38365.1 |
| [26] |
Chen, X. Q., Zhang, L. F., 2023. Carbon Sequestration, Transport, Transfer, and Degassing: Insights into the Deep Carbon Cycle. Geoscience Frontiers, 30(3): 313-339 (in Chinese with English abstract). |
| [27] |
Clift, P. D., 2017. A Revised Budget for Cenozoic Sedimentary Carbon Subduction. Reviews of Geophysics, 55(1): 97-125. https://doi.org/10.1002/2016RG000531 |
| [28] |
Consuma, G., Aulbach, S., Braga, R., et al., 2021. Multi⁃Stage Sulfur and Carbon Mobility in Fossil Continental Subduction zones: New Insights from Carbonate⁃Bearing Orogenic Peridotites. Geochimica et Cosmochimica Acta, 306: 143-170. https://doi.org/10.1016/j.gca.2021.05.008 |
| [29] |
Consuma, G., Braga, R., Giovanardi, T., et al., 2020. In Situ Sr Isotope Analysis of Mantle Carbonates: Constraints on the Evolution and Sources of Metasomatic Carbon⁃Bearing Fluids in a Paleo⁃Collisional Setting. Lithos, 354: 105334. https://doi.org/10.1016/j.lithos.2019.105334 |
| [30] |
Dalai, T. K., Krishnaswami, S., Sarin, M. M., 2002. Major Ion Chemistry in the Headwaters of the Yamuna River system: Chemical Weathering, Its Temperature Dependence and CO2 Consumption in the Himalaya. Geochimica et Cosmochimica Acta, 66(19): 3397-3416. https://doi.org/10.1016/S0016⁃7037(02)00937⁃7 |
| [31] |
Dasgupta, R., Hirschmann, M. M., 2010. The Deep Carbon Cycle and Melting in Earth’s Interior. Earth and Planetary Science Letters, 298(1/2): 1-13. https://doi.org/10.1016/j.epsl.2010.06.039 |
| [32] |
Dasgupta, R., Aubaud, C., 2025. Major Volatiles in the Earth’s Mantle beneath Mid⁃Ocean Ridges and Intraplate Ocean Islands. Treatise on Geochemistry. Elsevier, Amsterdam,381-423. https://doi.org/10.1016/b978⁃0⁃323⁃99762⁃1.00090⁃5 |
| [33] |
Debret, B., Ménez, B., Walter, B., et al., 2022. High⁃Pressure Synthesis and Storage of Solid Organic Compounds in Active Subduction Zones. Science Advances, 8(37): eabo2397. https://doi.org/10.1126/sciadv.abo2397 |
| [34] |
Deng, L. X., Liu, Y. S., Zong, K. Q., et al., 2019. Carbonate Metasomatism and Its Identification Characteristics in Mantle Peridotite. Earth Science, 44(4): 1113-1127 (in Chinese with English abstract). |
| [35] |
Deng, K., Yang, S. Y., Guo, Y. L., 2022. A Global Temperature Control of Silicate Weathering Intensity. Nature Communications, 13: 1781. https://doi.org/10.1038/s41467⁃022⁃29415⁃0 |
| [36] |
DePaolo, D. J., 2015. Sustainable Carbon emissions: The Geologic Perspective. MRS Energy & Sustainability, 2(1): 9. https://doi.org/10.1557/mre.2015.10 |
| [37] |
Derry, L. A., 2014. Organic Carbon Cycling and the Lithosphere. Treatise on Geochemistry. Elsevier, Amsterdam, 239-249. https://doi.org/10.1016/b978⁃0⁃08⁃095975⁃7.01014⁃7 |
| [38] |
Dixon, J. E., 1997. Degassing of Alkalic Basalts. American Mineralogist, 82(3/4): 368-378. https://doi.org/10.2138/am⁃1997⁃3⁃415 |
| [39] |
Dong, X. H., Wang, S. J., Wang, W. Z., et al., 2024. Highly Oxidized Intraplate Basalts and Deep Carbon Storage. Science Advances, 10(32): eadm8138. https://doi.org/10.1126/sciadv.adm8138 |
| [40] |
Duan, Z. H., Li, D. D., 2008. Coupled Phase and Aqueous Species Equilibrium of the H2O⁃CO2⁃NaCl⁃CaCO3 System from 0 to 250 ℃, 1 to 1000 bar with NaCl Concentrations up to Saturation of Halite. Geochimica et Cosmochimica Acta, 72(20): 5128-5145. https://doi.org/10.1016/j.gca.2008.07.025 |
| [41] |
Ducea, M. N., Currie, C. A., Balica, C., et al., 2022. Diapirism of Carbonate Platforms Subducted into the Upper Mantle. Geology, 50(8): 929-933. https://doi.org/10.1130/g50000.1 |
| [42] |
Dutkiewicz, A., Müller, R. D., Cannon, J., et al., 2018. Sequestration and Subduction of Deep⁃Sea Carbonate in the Global Ocean since the Early Cretaceous. Geology, 47(1): 91-94. https://doi.org/10.1130/g45424.1 |
| [43] |
Edmonds, M., Liu, E. J., Cashman, K. V., 2022. Open⁃Vent Volcanoes Fuelled by Depth⁃Integrated Magma Degassing. Bulletin of Volcanology, 84(3): 28. https://doi.org/10.1007/s00445⁃021⁃01522⁃8 |
| [44] |
Eichenseer, K., Balthasar, U., Smart, C. W., et al., 2019. Jurassic Shift from Abiotic to Biotic Control on Marine Ecological Success. Nature Geoscience, 12(8): 638-642. https://doi.org/10.1038/s41561⁃019⁃0392⁃9 |
| [45] |
Eickenbusch, P., Ken, T. K., Sissman, O., et al., 2019. Origin of Short⁃Chain Organic Acids in Serpentinite Mud Volcanoes of the Mariana Convergent Margin. Frontiers in Microbiology, 10: 1729. https://doi.org/10.3389/fmicb. 2019.01729 |
| [46] |
Facq, S., Daniel, I., Montagnac, G., et al., 2014. In Situ Raman Study and Thermodynamic Model of Aqueous Carbonate Speciation in Equilibrium with Aragonite under Subduction Zone Conditions. Geochimica et Cosmochimica Acta, 132: 375-390. https://doi.org/10.1016/j.gca. 2014.01.030 |
| [47] |
Falk, E. S., Kelemen, P. B., 2015. Geochemistry and Petrology of Listvenite in the Samail Ophiolite, Sultanate of Oman: Complete Carbonation of Peridotite during Ophiolite Emplacement. Geochimica et Cosmochimica Acta, 160: 70-90. https://doi.org/10.1016/j.gca.2015.03.014 |
| [48] |
Farsang, S., Louvel, M., Zhao, C. S., et al., 2021. Deep Carbon Cycle Constrained by Carbonate Solubility. Nature Communications, 12: 4311. https://doi.org/10.1038/s41467⁃021⁃24533⁃7 |
| [49] |
Feng, D., Qiu, J. W., Hu, Y., et al., 2018. Cold Seep Systems in the South China Sea: An Overview. Journal of Asian Earth Sciences, 168: 3-16. https://doi.org/10. 1016/j.jseaes.2018.09.021 |
| [50] |
Feng, W. M., Zheng, Y. F., Zhou, J. B., 2003. Carbon and Oxygen Isotope Geochemistry of Marbles from the Dabie-Sulu Orogenic Belt. Acta Petrologica Sinica, 19(3): 468-478 (in Chinese with English abstract). |
| [51] |
Ferrando, S., Frezzotti, M. L., Dallai, L., et al., 2005. Multiphase Solid Inclusions in UHP Rocks (Su⁃Lu, China): Remnants of Supercritical Silicate⁃Rich Aqueous Fluids Released during Continental Subduction. Chemical Geology, 223(1/2/3): 68-81. https://doi.org/10.1016/j.chemgeo.2005.01.029 |
| [52] |
Fischer, T. P., Arellano, S., Carn, S., et al., 2019. The Emissions of CO2 and Other Volatiles from the World’s Subaerial Volcanoes. Scientific Reports, 9: 18716. https://doi.org/10.1038/s41598⁃019⁃54682⁃1 |
| [53] |
Fischer, R. A., Cottrell, E., Hauri, E., et al., 2020. The Carbon Content of Earth and Its Core. Proceedings of the National Academy of Science, 117(16): 8743-8749. https://doi.org/10.1073/pnas.1919930117 |
| [54] |
Focru, R. A., Lcor, M., 2008. The Solubility of Carbon Dioxide in Rhyolitic Melts: A Quantitative FTIR Study. Geochimica et Cosmochimica Acta, 72(19): 4808-4826. https://doi.org/ 10.1016/j.gca.2008.06.014 |
| [55] |
Foley, S. F., Fischer, T. P., 2017. An Essential Role for Continental Rifts and Lithosphere in the Deep Carbon Cycle. Nature Geoscience, 10(12): 897-902. https://doi.org/10.1038/s41561⁃017⁃0002⁃7 |
| [56] |
Förster, B., Aulbach, S., Bebout, G. E., et al., 2024. Iron⁃Sulfur⁃Carbon Redox Interactions in the Continental Subduction Factory and Their Effect on Volatile Element Storage in the Mantle Wedge. Earth and Planetary Science Letters, 648: 119074. https://doi.org/10.1016/j.epsl. 2024.119074 |
| [57] |
Frezzotti, M. L., 2019. Diamond Growth from Organic Compounds in Hydrous Fluids Deep within the Earth. Nature Communications, 10: 4952. https://doi.org/10.1038/s41467⁃019⁃12984⁃y |
| [58] |
Frezzotti, M. L., Selverstone, J., Sharp, Z. D., et al., 2011. Carbonate Dissolution during Subduction Revealed by Diamond⁃Bearing Rocks from the Alps. Nature Geoscience, 4(10): 703-706. https://doi.org/10.1038/ngeo1246 |
| [59] |
Frost, D. A., Garnero, E. J., Creasy, N., et al., 2024. Heterogeneous Mantle Effects on the Behaviour of SmKS Waves and Outermost Core Imaging. Geophysical Journal International, 237(3): 1655-1673. https://doi.org/10.1093/gji/ggae135 |
| [60] |
Frost, D. J., McCammon, C. A., 2008. The Redox State of Earth’s Mantle. Annual Review of Earth and Planetary Sciences, 36: 389-420. https://doi.org/10.1146/annurev.earth.36.031207.124322 |
| [61] |
Gaillardet, J., Dupré, B., Louvat, P., et al., 1999. Global Silicate Weathering and CO2 Consumption Rates Deduced from the Chemistry of Large Rivers. Chemical Geology, 159(1/2/3/4): 3-30. https://doi.org/10.1016/S0009⁃2541(99)00031⁃5 |
| [62] |
Galvez, M. E., Beyssac, O., Martinez, I., et al., 2013. Graphite Formation by Carbonate Reduction during Subduction. Nature Geoscience, 6(6): 473-477. https://doi.org/10.1038/ngeo1827 |
| [63] |
Galvez, M. E., Connolly, J. A. D., Manning, C. E., 2016. Implications for Metal and Volatile Cycles from the pH of Subduction Zone Fluids. Nature, 539(7629): 420-424. https://doi.org/10.1038/nature20103 |
| [64] |
Galy, V., Beyssac, O., France⁃Lanord, C., et al., 2008. Recycling of Graphite during Himalayan Erosion: A Geological Stabilization of Carbon in the Crust. Science, 322(5903): 943-945. https://doi.org/10.1126/science. 1161408 |
| [65] |
Gao, S., Luo, T. C., Zhang, B. R., et al., 1998. Chemical Composition of the Continental Crust as Revealed by Studies in East China. Geochimica et Cosmochimica Acta, 62(11): 1959-1975. https://doi.org/10.1016/S0016⁃7037(98)00121⁃5 |
| [66] |
Gao, Y., Zong, K., Zhang, J., et al., 2024. Continental Subduction⁃Triggered Carbonate Metasomatism of the Lithospheric Mantle: Implications for the Deep Carbon Cycle. Chemical Geology, 660: 122159. https://doi.org/ 10.1016/j.chemgeo.2024.122159 |
| [67] |
Gerya, T. V., Connolly, J. A. D., Yuen, D. A., et al., 2006. Seismic Implications of Mantle Wedge Plumes. Physics of the Earth and Planetary Interiors, 156(1/2): 59-74. https://doi.org/10.1016/j.pepi.2006.02.005 |
| [68] |
Gerya, T. V., Meilick, F. I., 2011. Geodynamic Regimes of Subduction under an Active Margin: effects of Rheological Weakening by Fluids and Melts. Journal of Metamorphic Geology, 29(1): 7-31. https://doi.org/10.1111/j.1525⁃1314.2010.00904.x |
| [69] |
Gerya, T. V., Yuen, D. A., 2003. Rayleigh⁃Taylor Instabilities from Hydration and Melting Propel ‘Cold Plumes’ at Subduction Zones. Earth and Planetary Science Letters, 212(1/2): 47-62. https://doi.org/10.1016/S0012⁃821X(03)00265⁃6 |
| [70] |
Gibson, S. A., McKenzie, D., 2023. On the Role of Earth’s Lithospheric Mantle in Global Volatile Cycles. Earth and Planetary Science Letters, 602: 117946. https://doi.org/10.1016/j.epsl.2022.117946 |
| [71] |
Gillis, K. M., Coogan, L. A., 2011. Secular Variation in Carbon Uptake into the Ocean Crust. Earth and Planetary Science Letters, 302(3/4): 385-392. https://doi.org/10.1016/j.epsl.2010.12.030 |
| [72] |
Gorczyk, W., Gonzalez, C. M., 2019. CO2 Degassing and Melting of Metasomatized Mantle Lithosphere during Rifting: Numerical Study. Geoscience Frontiers, 10(4): 1409-1420. https://doi.org/10.1016/j.gsf.2018.11.003 |
| [73] |
Goudie, A. S., Viles, H. A., 2012. Weathering and the Global Carbon cycle: Geomorphological Perspectives. Earth⁃Science Reviews, 113(1/2): 59-71. https://doi.org/10.1016/j.earscirev.2012.03.005 |
| [74] |
Groppo, C., Rolfo, F., Castelli, D., et al., 2017. Metamorphic CO2 Production in Collisional Orogens: Petrological Constraints from Phase Diagram Modeling of Himalayan, Scapolite⁃Bearing, Calc⁃Silicate Rocks in the NKC(F)MAS(T)⁃HC System. Journal of Petrology, 58(1): 53-83. https://doi.org/10.1093/petrology/egx005 |
| [75] |
Groppo, C., Rolfo, F., Frezzotti, M. L., 2022. CO2 Outgassing during Collisional Orogeny Is Facilitated by the Generation of Immiscible Fluids. Communications Earth & Environment, 3: 13. https://doi.org/10.1038/s43247⁃022⁃00340⁃w |
| [76] |
Guillot, S., Hattori, K., Agard, P., et al., 2009. Exhumation Processes in Oceanic and Continental Subduction Contexts: A Review. Subduction Zone Geodynamics. Berlin, Heidelberg: Springer, Berlin Heidelberg, 175-205. https://doi.org/10.1007/978⁃3⁃540⁃87974⁃9_10 |
| [77] |
Guo, S., Hermann, J., Chu, X., et al., 2025. Substantial Carbon Dioxide Release from Subducted Dolomitic Carbonate Driven by Episodic Infiltration of Eclogite⁃Facies Fluids. Geology, 53(4): 328-332. https://doi.org/10. 1130/g52670.1 |
| [78] |
Guo, S., Hermann, J., Tang, P., et al., 2022. Formation of Carbon⁃Bearing Silicate Melts by Melt⁃Metacarbonate Interaction at Convergent Plate Margins. Earth and Planetary Science Letters, 597: 117816. https://doi.org/10.1016/j.epsl.2022.117816 |
| [79] |
Guo, Z. F., Wilson, M., Dingwell, D. B., et al., 2021. India⁃Asia Collision as a Driver of Atmospheric CO2 in the Cenozoic. Nature Communications, 12: 3891. https://doi.org/10.1038/s41467⁃021⁃23772⁃y |
| [80] |
Hartmann, J., Dürr, H. H., Moosdorf, N., et al., 2012. The Geochemical Composition of the Terrestrial Surface (without Soils) and Comparison with the Upper Continental Crust. International Journal of Earth Sciences, 101(1): 365-376. https://doi.org/10.1007/s00531⁃010⁃0635⁃x |
| [81] |
Hazen, R.M., Schiffries, C.M., 2013. Why Deep Carbon? Reviews in Mineralogy and Geochemistry, 75(1): 1-6. https://doi.org/ 10.2138/rmg.2013.75.1 |
| [82] |
Hilley, G. E., Porder, S., 2008. A Framework for Predicting Global Silicate Weathering and CO2 Drawdown Rates over Geologic Time⁃Scales. Proceedings of the National Academy of Sciences, 105: 16855-16859. https://doi.org/ 10.1073/pnas.0801462105 |
| [83] |
Hirose, K., Wood, B., Vočadlo, L., 2021. Light Elements in the Earth’s Core. Nature Reviews Earth and Environment, 2(9): 645-658. https://doi.org/10.1038/s43017⁃021⁃00203⁃6 |
| [84] |
Hirschmann, M. M., 2018. Comparative Deep Earth Volatile Cycles: The Case for C Recycling from Exosphere/Mantle Fractionation of Major (H2O, C, N) Volatiles and from H2O/Ce, CO2/Ba, and CO2/Nb Exosphere Ratios. Earth and Planetary Science Letters, 502: 262-273. https://doi.org/ 10.1016/j.epsl.2018.08.023 |
| [85] |
Hu, H., Zhang, L., Lan, C., et al., 2023. Petrological Evidence for Deep Subduction of Organic Carbon to Subarc Depths. Communications Earth & Environment, 4: 418. https://doi.org/ 10.1038/s43247⁃023⁃01085⁃w |
| [86] |
Huang, F., Daniel, I., Cardon, H., et al., 2017. Immiscible Hydrocarbon Fluids in the Deep Carbon Cycle. Nature Communications, 8(1): 15798. https://doi.org/ 10.1038/ncomms15798 |
| [87] |
Iacono⁃Marziano, G., Gaillard, F., Scaillet, B., et al., 2009. Role of Non⁃Mantle CO2 in the Dynamics of Volcano Degassing: The Mount Vesuvius Example. Geology, 37(4): 319-322. https://doi.org/ 10.1130/G25446A.1 |
| [88] |
Jablon, B. M., Navon, O., 2016. Most Diamonds were Created Equal. Earth and Planetary Science Letters, 443: 41-47. https://doi.org/ 10.1016/j.epsl.2016.03.013 |
| [89] |
James, N. P., Jones, B., 2016. Origin of Carbonate Sedimentary Rocks. Wiley, Chichester, 446. |
| [90] |
Jin, D. S., Xiao, Y. L., Tan, D.B., et al., 2023. Supercritical Fluid in Deep Subduction Zones as Revealed by Multiphase Fluid Inclusions in an Ultrahigh⁃Pressure Metamorphic Vein. Proceedings of the National Academy of Sciences of the United States of America, 120. https://doi.org/ 10.1073 /pnas.2219083120 |
| [91] |
Jull, M., Kelemen, P. B., 2001. On the Conditions for Lower Crustal Convective Instability. Journal of Geophysical Research: Solid Earth, 106: 6423-6446. https://doi.org/ 10.1029/2000JB900357 |
| [92] |
Kelemen, P. B., Manning, C. E., 2015. Reevaluating Carbon Fluxes in Subduction Zones, What Goes Down, Mostly Comes Up. Proceedings of the National Academy of Sciences, 112(3): 9564-9468. https://doi.org/10.1073/pnas.1507889112 |
| [93] |
Kelley, K. A., Fischer, T. P., 2025. Melt Inclusion and Gas Perspectives on Volatiles in Subduction Zones. In: Ariel, A., Dominique, W., eds., Treatise on Geochemistry (Third Edition), Elsevier, 745-771. https://doi.org/ 10.1016/B978⁃0⁃323⁃99762⁃1.00081⁃4 |
| [94] |
Keppler, H., Wiedenbeck, M., Shcheka, S., 2003. Carbon Solubility in Olivine and the Mode of Carbon Storage in the Earth's Mantle. Nature, 424: 414-416. https://doi.org/ 10.1038/nature01828 |
| [95] |
Kerrick, D. M., Caldeira, K., 1998. Metamorphic CO2 Degassing from Orogenic Belts. Chemical Geology, 145: 213-232. https://doi.org/ 10.1016/S0009⁃2541(97)00144⁃7 |
| [96] |
Kerrick, D. M., Connolly, J. A. D., 2001a. Metamorphic Devolatilization of Subducted Marine Sediments and the Transport of Volatiles into the Earth’s Mantle. Nature, 411: 293-296. |
| [97] |
Kerrick, D. M., Connolly, J. A. D., 2001b. Metamorphic Devolatilization of Subducted Oceanic Metabasalts: Implications for Seismicity, Arc Magmatism and Volatile Recycling. Earth and Planetary Science Letters, 189: 19-29. https://doi.org/ 10.1016/S0012⁃821X(01)00347⁃8 |
| [98] |
King, P. L., Holloway, J. R., 2002. CO2 Solubility and Speciation in Intermediate (Andesitic) Melts: The Role of H2O and Composition. Geochimica et Cosmochimica Acta, 66: 1627-1640. https://doi.org/ 10.1016/S0016⁃7037(01)00872⁃9 |
| [99] |
Kohn, S. C., Brooker, R. A., Dupree, R., 1991. 13C MAS NMR: A Method for Studying CO2 Speciation in Glasses. Geochimica et Cosmochimica Acta, 55: 3879-3884. https://doi.org/ 10.1016/0016⁃7037(91)90082⁃G |
| [100] |
Korsakov, A. V., Theunissen, K., Kozmenko, O. A., et al., 2006. Reaction Textures in Clinozoisite Gneisses. Russ. Geol. Geophys, 47(4): 499-512. |
| [101] |
Kotková, J., Čopjaková, R., Škoda, R., 2021. Multiphase Solid Inclusions Reveal the Origin and Fate of Carbonate⁃Silicate Melts in Metasomatised Peridotite. Lithos, 398-399: 106309. https://doi.org/ 10.1016/j.lithos. 2021. 106309 |
| [102] |
Lan, C., Tao, R., Huang, F., et al., 2023. High⁃Pressure Experimental and Thermodynamic Constraints on the Solubility of Carbonates in Subduction Zone Fluids. Earth and Planetary Science Letters, 603: 117989. https://doi.org/ 10.1016/j.epsl.2023.117989 |
| [103] |
Lan, C. Y., Tao, R. B., Zhang, L. F., et al., 2022. Carbon Releasing Mechanisms and Flux Estimation in Subducting Slabs: Problems and Progress. Acta Petrologica Sinica, 38(5): 1523-1540 (in Chinese with English abstract). |
| [104] |
Lazar, C., Zhang, C., Manning, C. E., et al., 2014. Redox Effects on Calcite⁃Portlandite⁃Fluid Equilibria at Forearc Conditions: Carbon Mobility, Methanogenesis, and Reduction Melting of Calcite. American Mineralogist, 99(8-9): 1604-1615. https://doi.org/ 10.2138/am.2014.4696 |
| [105] |
Lee, C.T., Shen, B., Slotnick, B.,et al., 2013. Continental Arc⁃Island Arc Fluctuations, Growth of Crustal Carbonates, and Long⁃Term Climate Change. Geosphere, 9: 21-36. https://doi.org/ 10.1130/GES00822.1 |
| [106] |
Lee, C. T. A., Lackey, J. S., 2015. Global Continental Arc Flare⁃Ups and Their Relation to Long⁃Term Greenhouse Conditions. Elements, 11: 125-130. https://doi.org/10.2113/ gselements.11.2.125 |
| [107] |
Li, S.G., 2022. Tracing Deep Carbon Cycling by Metal Stable Isotopes. National Science Review, 9:nwac071. https://doi.org/ 10.1093/nsr/nwac071 |
| [108] |
Li, J., Ahmed, R., Li, X., 2018a. Thermodynamic Modeling of CO2⁃N2⁃O2⁃Brine⁃Carbonates in Conditions from Surface to High Temperature and Pressure. Energies, 11: 2627. https://doi.org/ 10.3390/en11102627 |
| [109] |
Li, J.L., Stewart, E.M., John, T., et al., 2024. Metasedimentary “Carbon Filter” and Its Implication for Subduction Zone Carbon Recycling. Earth and Planetary Science Letters, 646: 119007. https://doi.org/ 10.1016/j.epsl. 2024.119007 |
| [110] |
Li, S. G., Wang, Y., Liu, S. A., 2024. Two Modes of Deep Carbon Cycling in a Big Mantle Wedge: Differences and Effects on Earth's Habitability. Geoscience Frontiers, 31(1): 15-27 (in Chinese with English abstract). |
| [111] |
Li, S.G., Yang, W., Ke, S., et al., 2017. Deep Carbon Cycles Constrained by a Large⁃Scale Mantle Mg Isotope Anomaly in Eastern China. National Science Review, 4: 111-120. https://doi.org/ 10.1093/nsr/nww070 |
| [112] |
Li, W.C., Wang, Q., 2022. In Situ Determination of Magnesite Solubility and Carbon Speciation in Water and NaCl Solutions under Subduction Zone Conditions. Solid Earth Sciences, 7: 200-214. https://doi.org/ 10.1016/j.sesci.2022.06.002 |
| [113] |
Liu, Y. S., Chen, C. F., He, D. T., et al., 2019. Deep Carbon Cycle in Subduction Zones. Science China Earth Sciences, 49(12): 1982-2003 (in Chinese). |
| [114] |
Liu, Y., He, D., Gao, C., et al., 2015. First Direct Evidence of Sedimentary Carbonate Recycling in Subduction⁃Related Xenoliths. Scientific Reports, 5: 11547. https://doi.org/ 10.1038/srep11547 |
| [115] |
Liu, S.A., Qu, Y.R., Wang, Z.Z., et al., 2022. The Fate of Subducting Carbon Tracked by Mg and Zn Isotopes: A Review and New Perspectives. Earth⁃Science Reviews, 228: 104010. https://doi.org/ 10.1016/j.earscirev. 2022. 104010 |
| [116] |
Liu, L., Zhang, J. F., Cao, Y.T., et al., 2018. Evidence Former Stishovite in UHP Eclogite from the South Altyn Tagh, Western China. Earth and Planetary Science Letters, 484: 353-362. |
| [117] |
Liu, W., Zhang, M., Liu, Y., et al., 2024. Massive Crustal Carbon Mobilization and Emission Driven by India Underthrusting Asia. Communications earth & environment, 5: 271. https://doi.org/ org/10.1038/s43247⁃024⁃01438⁃z |
| [118] |
Lowenstern, J., 2001. Carbon Dioxide in Magmas and Implications for Hydrothermal Systems. Mineralium Deposita, 36: 490-502. https://doi.org/ 10.1007/s001260100185 |
| [119] |
Malaspina, N., Hermann, J., Scambelluri, M., et al., 2006. Polyphase Inclusions in Garnet⁃Orthopyroxenite (Dabie Shan, China) as Monitors for Metasomatism and Fluid⁃Related Trace Element Transfer in Subduction Zone Peridotite. Earth and Planetary Science Letters, 249(3-4): 173-187. https://doi.org/ 10.1016/j.epsl.2006.07.017 |
| [120] |
Malaspina, N., Langenhorst, F., Tumiati, S., et al., 2017. The Redox Budget of Crust⁃Derived Fluid Phases at the Slab⁃Mantle Interface. Geochimica et Cosmochimica Acta, 209: 70-84. https://doi.org/ 10.1016/j.gca.2017.04.004 |
| [121] |
Malaspina, N., Poli, S., Fumagalli, P., 2009. The Oxidation State of Metasomatized Mantle Wedge: Insights from C⁃O⁃H⁃Bearing Garnet Peridotite. Journal of Petrology, 50: 1533-1552. https://doi.org/ 10.1093/petrology/egp040 |
| [122] |
Manning, C. E., 2013. Thermodynamic Modeling of Fluid⁃Rock Interaction at Mid⁃Crustal to Upper⁃Mantle Conditions. Reviews in Mineralogy and Geochemistry, 76(1): 135-164. https://doi.org/10.2138/rmg.2013.76.5 |
| [123] |
Marschall, H. R., Schumacher, J. C., 2012. Arc Magmas Sourced from Mélange Diapirs in Subduction Zones. Nature Geoscience, 5(12): 862-867. https://doi.org/10.1038/ngeo1634 |
| [124] |
Marty, B., Jambon, A., Sano, Y., 1989. Helium Isotopes and CO2 in Volcanic Gases of Japan. Chemical Geology, 76(1/2): 25-40. https://doi.org/10.1016/0009⁃2541(89)90125⁃3 |
| [125] |
Mason, E., Edmonds, M., Turchyn, A. V., 2017. Remobilization of Crustal Carbon may Dominate Volcanic Arc Emissions. Science, 357(6348): 290-294. https://doi.org/10.1126/science.aan5049 |
| [126] |
Mattey, D. P., 1991. Carbon Dioxide Solubility and Carbon Isotope Fractionation in Basaltic Melt. Geochimica et Cosmochimica Acta, 55(11): 3467-3473. https://doi.org/10.1016/0016⁃7037(91)90508⁃3 |
| [127] |
McCollom, T. M., 2016. Abiotic Methane Formation during Experimental Serpentinization of Olivine. Proceedings of the National Academy of Sciences of the United States of America, 113(49): 13965-13970. https://doi.org/10.1073/pnas.1611843113 |
| [128] |
McCollom, T. M., 2013. Laboratory Simulations of Abiotic Hydrocarbon Formation in Earth’s Deep Subsurface. Reviews in Mineralogy and Geochemistry, 75(1): 467-494. https://doi.org/10.2138/rmg.2013.75.15 |
| [129] |
Ménez, B., 2020. Abiotic Hydrogen and Methane: Fuels for Life. Elements, 16(1): 39-46. https://doi.org/10.2138/gselements.16.1.39 |
| [130] |
Menzel, M. D., Garrido, C. J., López Sánchez⁃Vizcaíno, V., et al., 2018. Carbonation of Mantle Peridotite by CO2⁃Rich Fluids: the Formation of Listvenites in the Advocate Ophiolite Complex (Newfoundland, Canada). Lithos, 323: 238-261. https://doi.org/10.1016/j.lithos.2018.06.001 |
| [131] |
Menzel, M. D., Sieber, M. J., Godard, M., 2024. From Peridotite to Listvenite:Perspectives on the Processes, Mechanisms and Settings of Ultramafic Mineral Carbonation to Quartz⁃Magnesite Rocks. Earth⁃Science Reviews, 255: 104828. https://doi.org/10.1016/j.earscirev. 2024. 104828 |
| [132] |
Menzel, M. D., Urai, J. L., Ukar, E., et al., 2022. Ductile Deformation during Carbonation of Serpentinized Peridotite. Nature Communications, 13: 3478. https://doi.org/10.1038/s41467⁃022⁃31049⁃1 |
| [133] |
Molina, J. F., Poli, S., 2000. Carbonate Stability and Fluid Composition in Subducted Oceanic Crust: an Experimental Study on H2O⁃CO2⁃Bearing Basalts. Earth and Planetary Science Letters, 176(3/4): 295-310. https://doi.org/10.1016/S0012⁃821X(00)00021⁃2 |
| [134] |
Müller, R. D., Mather, B., Dutkiewicz, A., et al., 2022. Evolution of Earth’s Tectonic Carbon Conveyor Belt. Nature, 605(7911): 629-639. https://doi.org/10.1038/s41586⁃022⁃04420⁃x |
| [135] |
Mysen, B. O., Arculus, R. J., Eggler, D. H., 1975. Solubility of Carbon Dioxide in Melts of Andesite, Tholeiite, and Olivine Nephelinite Composition to 30 Kbar Pressure. Contributions to Mineralogy and Petrology, 53(4): 227-239. https://doi.org/10.1007/BF00382441 |
| [136] |
Newton, R. C., Manning, C. E., 2002. Experimental Determination of Calcite Solubility in H2O⁃NaCl Solutions at Deep Crust/Upper Mantle Pressures and temperatures: Implications for Metasomatic Processes in Shear Zones. American Mineralogist, 87(10): 1401-1409. https://doi.org/10.2138/am⁃2002⁃1016 |
| [137] |
Nicoli, G., Borghini, A., Ferrero, S., 2022. The Carbon Budget of Crustal Reworking during Continental collision: Clues from Nanorocks and Fluid Inclusions. Chemical Geology, 608: 121025. https://doi.org/10.1016/j.chemgeo.2022.121025 |
| [138] |
Nielsen, S. G., Marschall, H. R., 2017. Geochemical Evidence for Mélange Melting in Global Arcs. Science Advances, 3(4): e1602402. https://doi.org/10.1126/sciadv.1602402 |
| [139] |
Oyanagi, R., Okamoto, A., 2024. Subducted Carbon Weakens the Forearc Mantle Wedge in a Warm Subduction Zone. Nature Communications, 15: 7159. https://doi.org/10.1038/s41467⁃024⁃51476⁃6 |
| [140] |
Pan, D., Spanu, L., Harrison, B., et al., 2013. Dielectric Properties of Water under Extreme Conditions and Transport of Carbonates in the Deep Earth. Proceedings of the National Academy of Sciences of the United States of America, 110(17): 6646-6650. https://doi.org/10.1073/pnas.1221581110 |
| [141] |
Peña⁃Alvarez, M., Brovarone, A. V., Donnelly, M. E., et al., 2021. In⁃Situ Abiogenic Methane Synthesis from Diamond and Graphite under Geologically Relevant Conditions. Nature Communications, 12: 6387. |
| [142] |
Peng, W. G., Zhang, L. F., Menzel, M. D., et al., 2020. Multistage CO2 Sequestration in the Subduction zone: Insights from Exhumed Carbonated Serpentinites, SW Tianshan UHP Belt, China. Geochimica et Cosmochimica Acta, 270: 218-243. https://doi.org/10.1016/j.gca. 2019. 11.025 |
| [143] |
Peng, W. G., Zhang, L. F., Tumiati, S., et al., 2021. Abiotic Methane Generation through Reduction of Serpentinite⁃Hosted dolomite: Implications for Carbon Mobility in Subduction Zones. Geochimica et Cosmochimica Acta, 311: 119-140. https://doi.org/10.1016/j.gca.2021.07.033 |
| [144] |
Penman, D. E., Caves Rugenstein, J. K., Ibarra, D. E., et al., 2020. Silicate Weathering as a Feedback and Forcing in Earth’s Climate and Carbon Cycle. Earth⁃Science Reviews, 209: 103298. https://doi.org/10.1016/j.earscirev.2020.103298 |
| [145] |
Piccoli, F., Vitale Brovarone, A., Beyssac, O., et al., 2016. Carbonation by Fluid⁃Rock Interactions at High⁃Pressure conditions: Implications for Carbon Cycling in Subduction Zones. Earth and Planetary Science Letters, 445: 146-159. https://doi.org/10.1016/j.epsl.2016.03.045 |
| [146] |
Plank, T., 2014. The Chemical Composition of Subducting Sediments. Treatise on Geochemistry. Elsevier, Amsterdam, 607-629. https://doi.org/10.1016/b978⁃0⁃08⁃095975⁃7.00319⁃3 |
| [147] |
Plank, T., Langmuir, C. H., 1998. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chemical Geology, 145(3/4): 325-394. https://doi.org/10.1016/S0009⁃2541(97)00150⁃2 |
| [148] |
Plank, T., Manning, C. E., 2019. Subducting Carbon. Nature, 574(7778): 343-352. https://doi.org/10.1038/s41586⁃019⁃1643⁃z |
| [149] |
Plümper, O., King, H. E., Geisler, T., et al., 2017. Subduction Zone Forearc Serpentinites as Incubators for Deep Microbial Life. Proceedings of the National Academy of Sciences of the United States of America, 114(17): 4324-4329. https://doi.org/10.1073/pnas.1612147114 |
| [150] |
Poli, S., 2015. Carbon Mobilized at Shallow Depths in Subduction Zones by Carbonatitic Liquids. Nature Geoscience, 8(8): 633-636. https://doi.org/10.1038/ngeo2464 |
| [151] |
Poli, S., Schmidt, M. W., 2002. Petrology of Subducted Slabs. Annual Review of Earth and Planetary Sciences, 30: 207-235. https://doi.org/10.1146/annurev.earth. 30. 091201. 140550 |
| [152] |
Pradhan, S., Sen, I. S., 2024. Metamorphic CO2 Fluxes Offset the Net Geological Carbon Sink in the Himalayan⁃Tibetan Orogen. Earth and Planetary Science Letters, 647: 119018. https://doi.org/10.1016/j.epsl.2024.119018 |
| [153] |
Qiao, X.Y., Xiong, J.W., Chen, Y.X., et al., 2025. Magnesium and Boron Isotope Evidence for the Generation of Arc Magma through Serpentinite⁃Mélange Melting. National Science Review, 12(1): nwae363. https://doi.org/10.1093/nsr/nwae363 |
| [154] |
Qiu, K. F., Romer, R. L., Long, Z. Y., et al., 2024. The Role of an Oxidized Lithospheric Mantle in Gold Mobilization. Science Advances, 10(41): eado6262. https://doi.org/10.1126/sciadv.ado6262 |
| [155] |
Read, J. F., 1985. Carbonate Platform Facies Models. AAPG Bulletin, 69(1):21. https://doi.org/10.1306/AD461B79⁃16F7⁃11D7⁃8645000102C1865D |
| [156] |
Regier, M. E., Pearson, D. G., Stachel, T., et al., 2020. The Lithospheric⁃to⁃Lower⁃Mantle Carbon Cycle Recorded in Superdeep Diamonds. Nature, 585(7824): 234-238. https://doi.org/10.1038/s41586⁃020⁃2676⁃z |
| [157] |
Rohrbach, A., Schmidt, M. W., 2011. Redox Freezing and Melting in the Earth’s Deep Mantle Resulting from Carbon⁃Iron Redox Coupling. Nature, 472(7342): 209-212. https://doi.org/10.1038/nature09899 |
| [158] |
Rudnick, R. L., McDonough, W. F., Chappell, B. W., 1993. Carbonatite Metasomatism in the Northern Tanzanian mantle: Petrographic and Geochemical Characteristics. Earth and Planetary Science Letters, 114(4): 463-475. https://doi.org/10.1016/0012⁃821X(93)90076⁃L |
| [159] |
Sapienza, G. T., Scambelluri, M., Braga, R., 2009. Dolomite⁃Bearing Orogenic Garnet Peridotites Witness Fluid⁃Mediated Carbon Recycling in a Mantle Wedge (Ulten Zone, Eastern Alps, Italy). Contributions to Mineralogy and Petrology, 158(3): 401-420. https://doi.org/10.1007/s00410⁃009⁃0389⁃2 |
| [160] |
Scambelluri, M., Bebout, G. E., Belmonte, D., et al., 2016. Carbonation of Subduction⁃Zone Serpentinite (High⁃Pressure Ophicarbonate; Ligurian Western Alps) and Implications for the Deep Carbon Cycling. Earth and Planetary Science Letters, 441: 155-166. https://doi.org/10.1016/j.epsl.2016.02.034 |
| [161] |
Scambelluri, M., Van Roermund, H. L. M., Pettke, T., 2010. Mantle Wedge peridotites: Fossil Reservoirs of Deep Subduction Zone Processes Inferences from High and Ultrahigh⁃Pressure Rocks from Bardane (Western Norway) and Ulten (Italian Alps). Lithos, 120(1/2): 186-201. https://doi.org/10.1016/j.lithos.2010.03.001 |
| [162] |
Schmidt, M. W., Poli, S., 2014. Devolatilization during Subduction. Treatise on Geochemistry. Amsterdam: Elsevier: 669-701. https://doi.org/10.1016/b978⁃0⁃08⁃095975⁃7.00321⁃1 |
| [163] |
Schrenk, M. O., Brazelton, W. J., Lang, S. Q., 2013. Serpentinization, Carbon, and Deep Life. Reviews in Mineralogy and Geochemistry, 75(1): 575-606. https://doi.org/10.2138/rmg.2013.75.18 |
| [164] |
Sforna, M. C., Brunelli, D., Pisapia, C., et al., 2018. Abiotic Formation of Condensed Carbonaceous Matter in the Hydrating Oceanic Crust. Nature Communications, 9: 5049. https://doi.org/10.1038/s41467⁃018⁃07385⁃6 |
| [165] |
Shatskiy, A., Arefiev, A. V., Podborodnikov, I. V., et al., 2019. Origin of K⁃Rich Diamond⁃Forming Immiscible Melts and CO2 Fluid via Partial Melting of Carbonated Pelites at a Depth of 180⁃200 km. Gondwana Research, 75: 154-171. https://doi.org/10.1016/j.gr.2019.05.004 |
| [166] |
Shen, J., Li, S. G., Wang, S. J., et al., 2018. Subducted Mg⁃Rich Carbonates into the Deep Mantle Wedge. Earth and Planetary Science Letters, 503: 118-130. https://doi.org/10.1016/j.epsl.2018.09.011 |
| [167] |
Smith, K. V., Shirey, S. B., Stern, R. A., et al., 2016. Diamond Growth from C⁃H⁃N⁃O Recycled Fluids in the lithosphere: Evidence from CH4 Micro⁃Inclusions and δ13C⁃Δ 15N⁃N Content in Marange Mixed⁃Habit Diamonds. Lithos, 265: 68-81. https://doi.org/10.1016/j.lithos.2016.03.015 |
| [168] |
Smith, E. M., Shirey, S. B., Richardson, S. H., et al., 2018. Blue Boron⁃Bearing Diamonds from Earth’s Lower Mantle. Nature, 560(7716): 84-87. https://doi.org/10.1038/s41586⁃018⁃0334⁃5 |
| [169] |
Song, S. G., Su, L., Niu, Y. L., et al., 2009. CH4 Inclusions in Orogenic harzburgite: Evidence for Reduced Slab Fluids and Implication for Redox Melting in Mantle Wedge. Geochimica et Cosmochimica Acta, 73(6): 1737-1754. https://doi.org/10.1016/j.gca.2008.12.008 |
| [170] |
Spandler, C., Pirard, C., 2013. Element Recycling from Subducting Slabs to Arc crust: A Review. Lithos, 170: 208-223. https://doi.org/10.1016/j.lithos.2013.02.016 |
| [171] |
Stern, C. R., 2020. The Role of Subduction Erosion in the Generation of Andean and Other Convergent Plate Boundary Arc Magmas, the Continental Crust and Mantle. Gondwana Research, 88: 220-249. https://doi.org/10.1016/j.gr.2020.08.006 |
| [172] |
Stewart, E. M., Ague, J. J., Ferry, J. M., et al., 2019. Carbonation and Decarbonation reactions: Implications for Planetary Habitability. American Mineralogist, 104(10): 1369-1380. https://doi.org/10.2138/am⁃2019⁃6884 |
| [173] |
Straub, S. M., Gómez⁃Tuena, A., Vannucchi, P., 2020. Subduction Erosion and Arc Volcanism. Nature Reviews Earth & Environment, 1(11): 574-589. https://doi.org/10.1038/s43017⁃020⁃0095⁃1 |
| [174] |
Su, B., Chen, Y., Guo, S., et al., 2016. Carbonatitic Metasomatism in Orogenic Dunites from Lijiatun in the Sulu UHP Terrane, Eastern China. Lithos, 262: 266-284. https://doi.org/10.1016/j.lithos.2016.07.007 |
| [175] |
Su, B., Chen, Y., Guo, S., et al., 2017. Dolomite Dissociation Indicates Ultra⁃Deep (>150 Km) Subduction of a Garnet⁃Bearing Dunite Block (the Sulu UHP Terrane). American Mineralogist, 102(11): 2295-2306. https://doi.org/10.2138/am⁃2017⁃5982 |
| [176] |
Su, Y., Li, S. N., Chen, R. X., et al., 2025. Redox Processes at the Slab⁃Mantle interface: Evidence from Reduced Carbon Inclusions in Mantle Wedge Peridotites. Earth and Planetary Science Letters, 656: 119272. https://doi.org/10.1016/j.epsl.2025.119272 |
| [177] |
Sun, H., Xiao, Y. L., Gao, Y. J., et al., 2013. Fluid and Melt Inclusions in the Mesozoic Fangcheng Basalt from North China Craton: implications for Magma Evolution and Fluid/Melt⁃Peridotite Reaction. Contributions to Mineralogy and Petrology, 165(5): 885-901. https://doi.org/10.1007/s00410⁃012⁃0840⁃7 |
| [178] |
Sverjensky, D. A., Harrison, B., Azzolini, D., 2014. Water in the Deep Earth: The Dielectric Constant and the Solubilities of Quartz and Corundum to 60kb and 1200℃. Geochimica et Cosmochimica Acta, 129: 125-145. https://doi.org/10.1016/j.gca.2013.12.019 |
| [179] |
Tan, D. B., Xiao, Y. L., Wang, Y. Y., et al., 2024. Carbon⁃Rich Polyphasic Inclusions in Postcollisional Mafic Magmatic Rocks from the Dabie Shan, China: Implications for the Carbon Cycle in Continental Subduction Zones. Geological Society of America Bulletin, 136(11/12): 4727-4736. https://doi.org/10.1130/B37103.1 |
| [180] |
Tao, R. B., Zhang, L. F., Li, S. G., et al., 2018. Significant Contrast in the Mg⁃C⁃O Isotopes of Carbonate between Carbonated Eclogite and Marble from the S.W. Tianshan UHP Subduction zone: Evidence for Two Sources of Recycled Carbon. Chemical Geology, 483: 65-77. https://doi.org/10.1016/j.chemgeo.2018.02.015 |
| [181] |
Tewksbury⁃Christle, C. M., Behr, W. M., Helper, M. A., 2021. Tracking Deep Sediment Underplating in a Fossil Subduction Margin: Implications for Interface Rheology and Mass and Volatile Recycling. Geochemistry, Geophysics, Geosystems, 22(3): e2020GC009463. https://doi.org/10.1029/2020GC009463 |
| [182] |
Tumiati, S., Tiraboschi, C., Miozzi, F., et al., 2020. Dissolution Susceptibility of Glass⁃Like Carbon versus Crystalline Graphite in High⁃Pressure Aqueous Fluids and Implications for the Behavior of Organic Matter in Subduction Zones. Geochimica et Cosmochimica Acta, 273: 383-402. https://doi.org/10.1016/j.gca.2020.01.030 |
| [183] |
Tumiati, S., Tiraboschi, C., Sverjensky, D. A., et al., 2017. Silicate Dissolution Boosts the CO2 Concentrations in Subduction Fluids. Nature Communications, 8: 616. https://doi.org/10.1038/s41467⁃017⁃00562⁃z |
| [184] |
van Achterbergh, E., Griffin, W. L., Ryan, C. G., et al., 2002. Subduction Signature for Quenched Carbonatites from the Deep Lithosphere. Geology, 30(8): 743. https://doi.org/10.1130/0091⁃7613(2002)0300743:ssfqcf>2.0.co;2 |
| [185] |
Van Roermund, H. L. M., Anthony Carswell, D., Drury, M. R., et al., 2002. Microdiamonds in a Megacrystic Garnet Websterite Pod from Bardane on the Island of Fjørtoft, Western Norway: Evidence for Diamond Formation in Mantle Rocks during Deep Continental Subduction. Geology, 30(11): 959. https://doi.org/10.1130/0091⁃7613(2002)0300959:miamgw>2.0.co;2 |
| [186] |
Varekamp, J. C., Kreulen, R., Poorter, R. P. E., et al., 1992. Carbon Sources in Arc Volcanism, with Implications for the Carbon Cycle. Terra Nova, 4(3): 363-373. https://doi.org/10.1111/j.1365⁃3121.1992.tb00825.x |
| [187] |
Vitale Brovarone, A., Chu, X., Martin, L., et al., 2018. Intra⁃Slab COH Fluid Fluxes Evidenced by Fluid⁃Mediated Decarbonation of Lawsonite Eclogite⁃Facies Altered Oceanic Metabasalts. Lithos, 304: 211-229. https://doi.org/10.1016/j.lithos.2018.01.028 |
| [188] |
Vitale Brovarone, A., Martinez, I., Elmaleh, A., et al., 2017. Massive Production of Abiotic Methane during Subduction Evidenced in Metamorphosed Ophicarbonates from the Italian Alps. Nature Communications, 8: 14134. https://doi.org/10.1038/ncomms14134 |
| [189] |
Vitale Brovarone, A., Wong, K., Giovannelli, D., et al., 2025. Forms and Fluxes of carbon: Surface to Deep. Treatise on Geochemistry. Elsevier,Amsterdam,647-698. https://doi.org/10.1016/b978⁃0⁃323⁃99762⁃1.00142⁃x |
| [190] |
Walton, C. R., Shorttle, O., 2024. Phanerozoic Biological Reworking of the Continental Carbonate Rock Reservoir. Earth and Planetary Science Letters, 632: 118640. https://doi.org/10.1016/j.epsl.2024.118640 |
| [191] |
Wang, C. Y., Foley, S. F., Liu, Y. S., et al., 2023a. Origin of Carbonate Melts in Orogenic Belts by Anatexis of Downthrust Carbonate Sediments. Earth and Planetary Science Letters, 619: 118303. https://doi.org/10.1016/j.epsl.2023.118303 |
| [192] |
Wang, J., Foley, S., Wang, X. F., et al., 2024a. Melting Behavior of Impure Limestone under H2O⁃Poor conditions: Implications for the Contribution of Carbonate⁃Rich Sediments to Arc Magmatic Carbon Output. Chemical Geology, 654: 122066. https://doi.org/10.1016/j.chemgeo.2024.122066 |
| [193] |
Wang, J. M., Larson, K. P., Zhang, J. J., et al., 2024b. Buchan⁃Type Metamorphic Decarbonation during the Upward Expansion of the South Tibetan Detachment System: A New Carbon Source in the Himalaya. Lithos, 464: 107428. https://doi.org/10.1016/j.lithos.2023.107428 |
| [194] |
Wang, Y. C., Quan, S. Y., Tang, X., et al., 2024c. Organic and Inorganic Carbon Sinks Reduce Long⁃Term Deep Carbon Emissions in the Continental Collision Margin of the Southern Tibetan Plateau: Implications for Cenozoic Climate Cooling. Journal of Geophysical Research: Solid Earth, 129(4): e2024JB028802. https://doi.org/10.1029/2024JB028802 |
| [195] |
Wang, C., Tao, R. B., Walters, J. B., et al., 2022. Favorable P⁃T⁃CO2 Conditions for Abiotic CH4 Production in Subducted Oceanic Crusts: A Comparison between CH4⁃Bearing Ultrahigh⁃ and CO2⁃Bearing High⁃Pressure Eclogite. Geochimica et Cosmochimica Acta, 336: 269-290. https://doi.org/10.1016/j.gca.2022.09.010 |
| [196] |
Wang, J., Tappe, S., Wang, Q., et al., 2024d. Carbon Cycling during the India⁃Asia Collision Revealed by δ26Mg⁃Δ66Zn⁃Δ98Mo Evidence from Ultrapotassic Volcanoes in NW Tibet. Geology, 52(9): 672-677. https://doi.org/10.1130/g52267.1 |
| [197] |
Wang, S. J., Teng, F. Z., Li, S. G., 2014. Tracing Carbonate⁃Silicate Interaction during Subduction Using Magnesium and Oxygen Isotopes. Nature Communications, 5: 5328. https://doi.org/10.1038/ncomms6328 |
| [198] |
Wang, X. X., Xiao, Y. L., Schertl, H. P., et al., 2023b. Deep Carbon Cycling during Subduction Revealed by Coexisting Diamond⁃Methane⁃Magnesite in Peridotite. National Science Review, 10(10): nwad203. https://doi.org/10.1093/nsr/nwad203 |
| [199] |
Wang, X. X., Zhao, L., Yang, J. F., et al., 2024e. Carbon Storage in the Forearc Produced by Buoyant Diapirs of Subducted Sediment. Geophysical Research Letters, 51(3): e2023GL107011. https://doi.org/10.1029/2023GL107011 |
| [200] |
Wedepohl, K., 1995. The Composition of the Continental Crust. Geochimica et Cosmochimica Acta, 59(7): 1217-1232. https://doi.org/10.1016/0016⁃7037(95)00038⁃2 |
| [201] |
Wieser, P. E., Iacovino, K., Matthews, S., et al., 2022. VESIcal: 2. a Critical Approach to Volatile Solubility Modeling Using an Open⁃Source Python3 Engine. Earth and Space Science, 9(2): e2021EA001932. https://doi.org/10.1029/2021EA001932 |
| [202] |
Wilson, J. L., 1975. Carbonate Facies in Geologic History. Springer⁃Verlag,Berlin.https://doi.org/10.1007/978⁃3⁃642⁃65923⁃2 |
| [203] |
Wolf, M., Breitkopf, O., Puk, R., 1989. Solubility of Calcite in Different Electrolytes at Temperatures between 10° and 60℃ and at CO2 Partial Pressures of about 1 kPa. Chemical Geology, 76(3/4): 291-301. https://doi.org/10.1016/0009⁃2541(89)90097⁃1 |
| [204] |
Xu, C., Kynický, J., Song, W. L., et al., 2018. Cold Deep Subduction Recorded by Remnants of a Paleoproterozoic Carbonated Slab. Nature Communications, 9: 2790. https://doi.org/10.1038/s41467⁃018⁃05140⁃5 |
| [205] |
Yaroshevsky, A. A., 2006. Abundances of Chemical Elements in the Earth’s Crust. Geochemistry International, 44(1): 48-55. https://doi.org/10.1134/S001670290601006X |
| [206] |
Ye, K., Song, Y. R., Chen, Y., et al., 2009. Multistage Metamorphism of Orogenic Garnet⁃Lherzolite from Zhimafang, Sulu UHP Terrane, E. China: Implications for Mantle Wedge Convection during Progressive Oceanic and Continental Subduction. Lithos, 109(3/4): 155-175. https://doi.org/10.1016/j.lithos.2008.08.005 |
| [207] |
Yin, Z. Z., Chen, R. X., Zheng, Y. F., et al., 2023. Serpentinization and Deserpentinization of the Mantle Wedge at a Convergent Plate Margin: Evidence of Orogenic Peridotites from a Composite Oceanic⁃Continental Subduction Zone. Journal of Petrology, 64(3): 323-330 |
| [208] |
Zhang, W., Chen, C. M., Su, P. B., et al., 2023. Formation and Implication of Cold⁃Seep Carbonates in the Southern South China Sea. Journal of Asian Earth Sciences, 241: 105485. https://doi.org/10.1016/j.jseaes.2022.105485 |
| [209] |
Zhang, R. Y., Li, T., Rumble, D., et al., 2007. Multiple Metasomatism in Sulu Ultrahigh⁃P Garnet Peridotite Constrained by Petrological and Geochemical Investigations. Journal of Metamorphic Geology, 25(2): 149-164. https://doi.org/10.1111/j.1525⁃1314.2006.00683.x |
| [210] |
Zhang, N. Z., Lin, M., Snyder, G. T., et al., 2019. Clumped Isotope Signatures of Methane⁃Derived Authigenic Carbonate Presenting Equilibrium Values of Their Formation Temperatures. Earth and Planetary Science Letters, 512: 207-213. https://doi.org/10.1016/j.epsl.2019.02.005 |
| [211] |
Zhang, R. Y., Liou, J. G., Cong, B. L., 1994. Petrogenesis of Garnet⁃Bearing Ultramafic Rocks and Associated Eclogites in the Su⁃Lu Ultrahigh⁃P Metamorphic Terrane, Eastern China. Journal of Metamorphic Geology, 12(2): 169-186. https://doi.org/10.1111/j.1525⁃1314.1994.tb00012.x |
| [212] |
Zhang, L. F., Tao, R. B., Zhu, J. J., 2017. Some Problems of Deep Carbon Cycle in Subduction Zone. Bulletin of Mineralogy,Petrology and Geochemistry, 36(2): 185-196 (in Chinese with English abstract). |
| [213] |
Zhang, L., Wang, Q., Ding, X., et al., 2021. Diverse Serpentinization and Associated Abiotic Methanogenesis within Multiple Types of Olivine⁃Hosted Fluid Inclusions in Orogenic Peridotite from Northern Tibet. Geochimica et Cosmochimica Acta, 296: 1-17. https://doi.org/10.1016/j.gca.2020.12.016 |
| [214] |
Zhang, M. L., Xu, S., Sano, Y., 2024. Deep Carbon Recycling Viewed from Global Plate Tectonics. National Science Review, 11(6): nwae089. https://doi.org/10.1093/nsr/nwae089 |
| [215] |
Zhao, K., Dai, L. Q., Fang, W., et al., 2022. Decoupling between Mg and Ca Isotopes in Alkali basalts: Implications for Geochemical Differentiation of Subduction Zone Fluids. Chemical Geology, 606: 120983. https://doi.org/10.1016/j.chemgeo.2022.120983 |
| [216] |
Zhao, Y., Zheng, J. P., Xiong, Q., 2021. Prolonged Slab⁃Derived Silicate and Carbonate Metasomatism of a Cratonic Mantle Wedge (Maowu Ultramafic Body, China). Journal of Petrology, 62(11): egab081. https://doi.org/10.1093/petrology/egab081 |
| [217] |
Zheng, Y. F., 2019. Subduction Zone Geochemistry. Geoscience Frontiers, 10(4): 1223-1254. https://doi.org/10.1016/j.gsf.2019.02.003 |
| [218] |
Zheng, Y.F., 2023. Plate Tectonics in the 21st Century. Science China Earth Sciences, 53(1): 1-40 (in Chinese with English abstract). |
| [219] |
Zheng, Y. F., Chen, Y. X., 2016. Continental versus Oceanic Subduction Zones. National Science Review, 3(4): 495-519. https://doi.org/10.1093/nsr/nww049 |
| [220] |
Zheng, Y. F., Chen, R. X., 2017. Regional Metamorphism at Extreme conditions: Implications for Orogeny at Convergent Plate Margins. Journal of Asian Earth Sciences, 145: 46-73. https://doi.org/10.1016/j.jseaes.2017.03.009 |
| [221] |
Zheng, Y.F., Chen, Y.X., 2019. Crust⁃Mantle Interaction in Continental Subduction Zones. Earth Science, 44(12):3961-3983 (in Chinese with English abstract). |
| [222] |
Zheng, Y. F., Chen, R. X., 2021. Extreme Metamorphism and Metamorphic Facies Series at Convergent Plate boundaries: Implications for Supercontinent Dynamics. Geosphere, 17(6): 1647-1685. https://doi.org/10.1130/ges02334.1 |
| [223] |
Zheng, Y.F., Chen, Y.X., Chen, R.X., et al., 2022. Tectonic Evolution of Convergent Plate Margins and Its Geological Effects. Science China Earth Sciences, 52(7): 1213-1242 (in Chinese with English abstract). |
| [224] |
Zheng, Y.F., Chen, R.X., Gao, P., 2024. Anatectic Metamorphism and Granite Petrogenesis in Continental Collision Zones. Earth Science, 49(1): 1-28 (in Chinese with English abstract). |
| [225] |
Zheng, Y.F., Chen, R.X., Xu, Z., et al., 2016. Water Transport in Subduction Zones. Science China Earth Sciences, 46(3): 253-286 (in Chinese with English abstract). |
| [226] |
Zheng, Y. F., Hermann, J., 2014. Geochemistry of Continental Subduction⁃Zone Fluids. Earth, Planets and Space, 66(1): 93. https://doi.org/10.1186/1880⁃5981⁃66⁃93 |
| [227] |
Zheng, Y. F., Zhou, J. B., Wu, Y. B., et al., 2005. Low⁃Grade Metamorphic Rocks in the Dabie⁃Sulu Orogenic Belt: A Passive⁃Margin Accretionary Wedge Deformed during Continent Subduction. International Geology Review, 47(8): 851-871. https://doi.org/10.2747/0020⁃6814.47.8.851 |
| [228] |
Zhu, X. X., Liu, Y., Hou, Z. Q., 2023. Massive Rare Earth Element Storage in Sub⁃Continental Lithospheric Mantle Initiated by Diapirism, Not by Melting. Geology, 52(2): 105-109. https://doi.org/10.1130/g51102.1 |
| [229] |
Zong, K. Q., Liu, Y. S., 2018. Carbonate Metasomatism in the Lithospheric Mantle: Implications for Cratonic Destruction in North China. Science China Earth Sciences, 61: 711-729 (in Chinese). |
| [230] |
Zong, K. Q., He, D. T., Chen, C. F., et al., 2022. The Effect of the Deep Carbon Cycle on Environment and Climate. Acta Petrologica Sinica, 38(5): 1389-1398 (in Chinese with English abstract). |
国家重点研发计划项目(2024YFF0807300)
国家自然科学基金项目(41873033)
国家自然科学基金项目(41873022)
/
| 〈 |
|
〉 |