基于无人机高光谱遥感的黑土土壤有机碳含量反演方法研究
杨汉水 , 马琳 , 王瑞禛 , 陈伟涛 , 王力哲
地球科学 ›› 2025, Vol. 50 ›› Issue (08) : 3144 -3152.
基于无人机高光谱遥感的黑土土壤有机碳含量反演方法研究
Mapping Organic Carbon Content in Black Soil Using UAV Hyperspectral Remote Sensing and Deep Learning
,
,
我国东北地区黑土作为重要且珍贵的农耕资源,受到长期开发的影响,退化问题日益加重. 通过卫星遥感技术反演黑土有机碳含量能够为保护利用黑土地提供技术支撑.针对卫星高光谱数据空间分辨率低以及黑土有机碳含量反演精度低的问题,本研究利用无人机高光谱数据及土壤地球化学数据,基于一维卷积神经网络思想,构建并对比了MDS⁃1DCNN、LLE⁃1DCNN、PLSR⁃1DCNN与KPCA⁃1DCNN四种模型土壤有机碳含量的反演效果.以黑龙江五大连池市典型黑土区为研究区,结果表明:LLE⁃1DCNN模型反演效果较好,在验证集上的R2为0.806,RMSE为0.572%,能够为黑土土壤有机碳含量反演提供技术支撑.
Black soil in northeastern China is an important agricultural resource but has been increasingly degraded due to long⁃term development. The use of satellite remote sensing technology to retrieve the organic carbon content in black soil offers technical support for the protection and sustainable use. However, satellite hyperspectral data suffer from low spatial resolution, and the retrieval accuracy for organic carbon content remains limited in fine⁃scaled study sites. To address these challenges, this study utilized UAV⁃based hyperspectral data and soil geochemical data instead. We proposed and compared four models based on one⁃dimensional convolutional neural networks (1DCNN)⁃MDS⁃1DCNN, LLE⁃1DCNN, PLSR⁃1DCNN, and KPCA⁃1DCNN, for organic carbon content retrieval using the Wudalianchi region in Heilongjiang Province as a case study. The results show that the LLE⁃1DCNN model outperforms the others, achieving an R² of 0.806 and an RMSE of 0.572% on the validation set. This approach offers promising potential for accurately retrieving organic carbon content in black soil and supporting its conservation and management.
黑土 / 土壤有机碳 / 无人机高光谱 / 深度学习 / 遥感.
black soil / soil organic carbon / UAV hyperspectral / deep learning / remote sensing
| [1] |
Angelopoulou, T., Tziolas, N., Balafoutis, A., et al., 2019. Remote Sensing Techniques for Soil Organic Carbon Estimation: A Review. Remote Sensing, 11(6): 676. https://doi.org/10.3390/rs11060676 |
| [2] |
Bendor, E., Chabrillat, S., Demattê, J. A. M., et al., 2009. Using Imaging Spectroscopy to Study Soil Properties. Remote Sensing of Environment, 113: S38-S55. https://doi.org/10.1016/j.rse.2008.09.019 |
| [3] |
Brunet, D., Barthès, B. G., Chotte, J. L., et al., 2007. Determination of Carbon and Nitrogen Contents in Alfisols, Oxisols and Ultisols from Africa and Brazil Using NIRS analysis: Effects of Sample Grinding and Set Heterogeneity. Geoderma, 139(1/2): 106-117. https://doi.org/10.1016/j.geoderma.2007.01.007 |
| [4] |
Chen, Y., Wang, J. L., Liu, G. J., et al., 2019. Hyperspectral Estimation Model of Forest Soil Organic Matter in Northwest Yunnan Province, China. Forests, 10(3): 217. https://doi.org/10.3390/f10030217 |
| [5] |
Deng, Y., Niu, Z. W., Feng, Q. Y., et al., 2023. A Novel Hyperspectral Prediction Model of Organic Matter in Red Soil Based on Improved Temporal Convolutional Network. Spectroscopy and Spectral Analysis, 43(9): 2942-2951 (in Chinese with English abstract). |
| [6] |
Diwu, P. Y., Bian, X. H., Wang, Z. F., et al., 2019. Study on the Selection of Spectral Preprocessing Methods. Spectroscopy and Spectral Analysis, 39(9): 2800(in Chinese with English abstract). |
| [7] |
Gao, L. L., Zhu, X. C., Han, Z. Y., et al., 2019. Spectroscopy⁃Based Soil Organic Matter Estimation in Brown Forest Soil Areas of the Shandong Peninsula, China. Pedosphere, 29(6): 810-818. https://doi.org/10.1016/S1002⁃0160(17)60485⁃5 |
| [8] |
Huang,Y., Dend,G., 2013. Research on Development of Agricultural Geographic Information Ontology.Journal of Integrative Agriculture,11(5):865-877.https://doi.org/10.1016/S2095⁃3119(12)60077⁃X |
| [9] |
Ji, W. J., Li, S., Chen, S. C., et al., 2016. Prediction of Soil Attributes Using the Chinese Soil Spectral Library and Standardized Spectra Recorded at Field Conditions. Soil and Tillage Research, 155: 492-500. https://doi.org/10.1016/j.still.2015.06.004 |
| [10] |
Li, X. P., Zhang, F., Wang, X. P., 2019. Study on Differential⁃Based Multispectral Modeling of Soil Organic Matter in Ebinur Lake Wetland. Spectroscopy and Spectral Analysis, 39(2): 535-542 (in Chinese with English abstract). |
| [11] |
Liaghat, S., Balasundram,S.K., 2020.A review:the Role of Remote Sensing in Precision Agriculture. American Journal of Agricultural & Biological Science,5(1):553-564. |
| [12] |
Liu, H. J., Zhang, B., Zhao, J., et al., 2007. Spectral Models for Prediction of Organic Matter in Black Soil. Acta Pedologica Sinica, 44(1): 27-32 (in Chinese with English abstract). |
| [13] |
Liu, Y., Xu, Y., 2013.Application of Savitzky⁃Golay Smoothing Filter in the Pre⁃Processing of Near⁃Infrared Spectra for Rapid Analysis of Grape Juices.Food Chemistry,139(1-4):205-212. |
| [14] |
Padarian, J., Minasny, B., McBratney, A. B., 2019. Using Deep Learning to Predict Soil Properties from Regional Spectral Data. Geoderma Regional, 16: e00198. https://doi.org/10.1016/j.geodrs.2018.e00198 |
| [15] |
Pan, N., Wang, S., Liu, Y. X., et al., 2019. Advances in Soil Moisture Retrieval from Remote Sensing. Acta Ecologica Sinica, 39(13): 4615-4626 (in Chinese with English abstract). |
| [16] |
Piikki, K., Wetterlind, J., Söderström, M., et al., 2021. Perspectives on Validation in Digital Soil Mapping of Continuous Attributes:A Review. Soil Use and Management, 37(1): 7-21. https://doi.org/10.1111/sum.12694 |
| [17] |
Rossel, R. A., Webster, R., 2012. Predicting Soil Properties from the Australian Soil Visible⁃Near Infrared Spectroscopic Database. European Journal of Soil Science, 63(6): 848-860. https://doi.org/10.1111/j.1365⁃2389. 2012. 01495. x |
| [18] |
Rostami,R., Fathollahi⁃Fard, A.M., 2022.A New Approach for Evaluating the Pearson Correlation Coefficient Using Machine Learning. Applied Sciences,12(5):2456. |
| [19] |
Shi, Z., Xu, D. Y., Teng, H. F., et al., 2018. Soil Information Acquisition Based on Remote Sensing and Proximal Soil sensing: Current Status and Prospect. Progress in Geography, 37(1): 79-92 (in Chinese with English abstract). |
| [20] |
Tian, W.X., 2019. Hyperspectral Quantitative inversion of Black Soil Organic Matter Based on Statistical Model. Chengdu University of Technology,Chengdu(in Chinese with English abstract). |
| [21] |
Viscarra Rossel, R. A., Behrens, T., Ben⁃Dor, E., et al., 2016. A Global Spectral Library to Characterize the World’s Soil. Earth⁃Science Reviews, 155: 198-230. https://doi.org/10.1016/j.earscirev.2016.01.012 |
| [22] |
Wang, D. M., Qin, K., Li, Z. Z., et al., 2018. Retrieval of Organic Matter Content in Black Soil Based on Airborne Hyperspectral Remote Sensing Data: Taking Jiansanjiang District in Heilongjiang Province as an Example. Earth Science, 43(6): 2184-2194 (in Chinese with English abstract). |
| [23] |
Wang, H. F., Chen, Y. W., Zhang, Z. T., et al., 2019. Quantitatively Estimating Main Soil Water⁃Soluble Salt Ions Content Based on Visible⁃Near Infrared Wavelength Selected Using GC, SR and VIP. PeerJ, 7: e6310. https://doi.org/10.7717/peerj.6310 |
| [24] |
Wang, Y. D., Zhang, F., Hu, W. Y., et al., 2024. Reversing Organic Matter Contents in Black Soils in Northeast China Using Digital Image Technology. Soils, 56(5): 1051-1056 (in Chinese with English abstract). |
| [25] |
Xiao, Y., Xin, H. B., Wang, B., et al., 2021. Hyperspectral Estimation of Black Soil Organic Matter Content Based on Wavelet Transform and Successive Projections Algorithm. Remote Sensing for Land & Resources, 33(2): 33-39 (in Chinese with English abstract). |
| [26] |
Xie, Y. H., 2019. Study on Spatial Prediction of Soil Nutrient Distribution in Field Plots of Black Soil Region. Northeast Agricultural University,Harbin(in Chinese with English abstract). |
| [27] |
Yang, Y. C., Zhao, Y. J., Qin, K., et al., 2019. Prediction of Black Soil Nutrient Content Based on Airborne Hyperspectral Remote Sensing. Transactions of the Chinese Society of Agricultural Engineering, 35(20): 94-101 (in Chinese with English abstract). |
| [28] |
Zhang, J. J., Xi, L., Yang, X. Y., et al., 2020. Construction of Hyperspectral Estimation Model for Organic Matter Content in Shajiang Black Soil. Transactions of the Chinese Society of Agricultural Engineering, 36(17): 135-141 (in Chinese with English abstract). |
| [29] |
Zheng, M., Wang, X., Li, S. J., et al., 2022. Remote Sensing Inversion of Soil Organic Matter and Total Nitrogen in Black Soil Region. Scientia Geographica Sinica, 42(8): 1336-1347 (in Chinese with English abstract). |
| [30] |
Zhu, A. X., Yang, L., Fan, N. Q., et al., 2018. The Review and Outlook of Digital Soil Mapping. Progress in Geography, 37(1): 66-78 (in Chinese with English abstract). |
国家自然科学基金杰出青年基金项目(41925007)
黑龙江省地质矿产局科研基金项目(HKY202308)
地质探测与评估教育部重点实验室主任基金(GLAB2024ZR01)
/
| 〈 |
|
〉 |