基于地质结构探测的多滑面边坡系统可靠度分析
梁姚颖 , 彭铭 , 刘鎏 , 石振明 , 王登一 , 沈健
地球科学 ›› 2025, Vol. 50 ›› Issue (10) : 3982 -3996.
基于地质结构探测的多滑面边坡系统可靠度分析
System Reliability Analysis of Multi-Slip Surface Slopes Based on Geological Structure Detection
地质结构识别与强度参数不确定性量化是岩质边坡稳定性评估的核心问题.为此,提出了一种基于地质结构探测的多滑面边坡系统可靠度分析方法.该方法首先结合多道勒夫波分析(multichannel analysis of Love waves,MALW)与初至旅行时层析成像(first-arrival travel time tomography,FATT),实现软弱层与断层探测效果的互补.随后,通过弹性波速折减软弱层强度参数,统计获取其概率分布.最后,考虑参数不确定性,计算边坡地表位移及单一滑面与系统失效概率.该方法在两个边坡案例的测试中表明:多阶频散曲线对边坡深部及浅部软弱层的反演精度均优于基阶频散曲线,且勒夫波较瑞雷波受岩层界面起伏的影响更小.边坡断层在初至旅行时记录中表现为特定范围内的波动特征,基于该特征的反演可定位局部断层.对于多滑面边坡案例,结合地表位移,地质结构与各滑面单一失效概率,确定边坡主要受深层滑面控制.且该边坡系统失效概率受内摩擦角变异系数的影响远大于黏聚力.此方法能够有效探测边坡地质结构,定位软弱层与断层.可考虑软弱层内部裂隙结构和风化程度的影响,折减强度参数并量化其不确定性.能够准确识别关键控制滑动面,定量评估各潜在滑动面及系统失效概率,为边坡防治提供了科学依据和参考.
The identification of geological structures and the quantification of uncertainties in strength parameters are crucial for assessing the stability of rock slopes. This study proposes a system reliability analysis method for multi-slip surface slopes based on geological structure detection. The method integrates multichannel analysis of Love waves (MALW) and first-arrival travel time tomography (FATT) to achieve complementary detection of weak layers and faults. Elastic wave velocities are used to reduce the strength parameters of weak layers, and their probabilistic distributions are statistically derived. By incorporating parameter uncertainties, the surface displacement of slopes and the failure probabilities of individual slip surfaces and the entire system are calculated. Case studies indicate that multi-mode dispersion curves achieve higher inversion accuracy for both deep and shallow weak layers compared to fundamental-mode dispersion curves, and Love waves are less affected by undulations at rock layer interfaces than Rayleigh waves. Slope faults exhibit characteristic wave fluctuations within specific ranges in first-arrival travel time records. Inversion based on these features enables the localization of local faults.In the case of multi-slip surface slopes, deep slip surfaces are identified as the primary controlling factor, and the system failure probability is more significantly affected by the coefficient of variation of the internal friction angle than by cohesion. This method effectively detects geological structures, locates weak layers and faults, and quantifies uncertainties in strength parameters, providing a scientific basis for slope stability analysis and mitigation measures.
岩质边坡 / 参数不确定性 / 系统可靠度分析 / 地质结构探测 / 工程地质学.
rock slope / parameter uncertainty / system reliability analysis / geological structure detection / engineering geology
| [1] |
Akay, B., Karaboga, D., 2009. Parameter Tuning for the Artificial Bee Colony Algorithm.Springer, Berlin, Heidelberg, 608-619. |
| [2] |
Bucher, C. G., Bourgund, U., 1990. A Fast and Efficient Response Surface Approach for Structural Reliability Problems. Structural Safety, 7(1): 57-66. https://doi.org/10.1016/0167-4730(90)90012-E |
| [3] |
Choi, J. H., Edwards, P., Ko, K., et al., 2016. Definition and Classification of Fault Damage Zones: A Review and a New Methodological Approach. Earth-Science Reviews, 152: 70-87. https://doi.org/10.1016/j.earscirev.2015.11.006 |
| [4] |
Crosta, G. B., di Prisco, C., Frattini, P., et al., 2014. Chasing a Complete Understanding of the Triggering Mechanisms of a Large Rapidly Evolving Rockslide. Landslides, 11(5): 747-764. https://doi.org/10.1007/s10346-013-0433-1 |
| [5] |
Dou, J., Xiang, Z. L., Xu, Q., et al., 2023. Application and Development Trend of Machine Learning in Landslide Intelligent Disaster Prevention and Mitigation. Earth Science, 48(5): 1657-1674 (in Chinese with English abstract). |
| [6] |
Dou, J., Xing, K., Wang, L. Z., et al., 2025. Air-Space-Ground Synergistic Observations for Rapid Post-Seismic Disaster Assessment of 2025 Ms6.8 Xigazê Earthquake, Xizang. Journal of Earth Science. https://doi.org/10.1007/s12583-025-0160-2 |
| [7] |
Dunne, J., Beresford, G., 1995. A Review of the τ-p Transform, Its Implementation and Its Applications in Seismic Processing. Exploration Geophysics, 26(1): 19-36. https://doi.org/10.1071/eg995019 |
| [8] |
Ferreira, S. L. C., Bruns, R. E., Ferreira, H. S., et al., 2007. Box-Behnken Design: An Alternative for the Optimization of Analytical Methods. Analytica Chimica Acta, 597(2): 179-186. https://doi.org/10.1016/j.aca.2007.07.011 |
| [9] |
Gao, L. L., Xia, J. H., Pan, Y. D., 2014. Misidentification Caused by Leaky Surface Wave in High-Frequency Surface Wave Method. Geophysical Journal International, 199(3): 1452-1462.https://doi.org/10.1093/gji/ggu337 |
| [10] |
Guo, R., Li, M. K., Yang, F., et al., 2019. First Arrival Traveltime Tomography Using Supervised Descent Learning Technique. Inverse Problems, 35(10): 105008. https://doi.org/10.1088/1361-6420/ab32f7 |
| [11] |
Jean, V., 1984. SH-Wave Propagation in Heterogeneous Media; Velocity-Stress Finite-Difference Method. Geophysics, 49(11): 1933-1942. https://doi.org/10.1190/1.1441605 |
| [12] |
Jiang, S. H., Liu, Y., Zhang, H. L., et al., 2020. Quantitatively Evaluating the Effects of Prior Probability Distribution and Likelihood Function Models on Slope Reliability Assessment. Rock and Soil Mechanics, 41(9): 3087-3097 (in Chinese with English abstract). |
| [13] |
Jiang, S.H., Li, D.Q., Cao, Z.J., et al., 2015. Efficient System Reliability Analysis of Slope Stability in Spatially Variable Soils Using Monte Carlo Simulation. Journal of Geotechnical and Geoenvironmental Engineering, 141(2): 04014096. https://doi.org/10.1061/(asce)gt.1943-5606.0001227 |
| [14] |
Karaboga, D., Akay, B., 2009. A Comparative Study of Artificial Bee Colony Algorithm. Applied Mathematics and Computation, 214(1): 108-132. https://doi.org/10.1016/j.amc.2009.03.090 |
| [15] |
Knopoff, L., 1964. A Matrix Method for Elastic Wave Problems. Bulletin of the Seismological Society of America, 54(1): 431-438. https://doi.org/10.1785/BSSA0540010431 |
| [16] |
Li, J. P., Cheng, Y. G., Li, D. Q., et al., 2016. System Reliability Analysis of Spatially Variable Soil Slopes Using the Multiple Response Surfaces Method. Rock and Soil Mechanics, 37(1): 147-155, 165(in Chinese with English abstract). |
| [17] |
Li, W. L., Xu, Q., Lu, H. Y., et al., 2019. Tracking the Deformation History of Large-Scale Rocky Landslides and Its Enlightenment. Geomatics and Information Science of Wuhan University, 44(7): 1043-1053 (in Chinese with English abstract). |
| [18] |
Liu, G. F., Feng, K., Yan, C. G., et al., 2023. Probabilistic Evaluation of Excavation Unloading Response of Rock Slope Considering the Uncertainty of Mechanical Parameters. Rock and Soil Mechanics, 44(7): 2115-2128 (in Chinese with English abstract). |
| [19] |
Liu, H., Zhou, H. W., Liu, W. G., et al., 2010. Tomographic Velocity Model Building of the near Surface with Velocity-Inversion Interfaces: A Test Using the Yilmaz Model. Geophysics, 75(6): U39-U47. https://doi.org/10.1190/1.3502665 |
| [20] |
Liu,G. F., Feng, K., Yan, C. G., et al., 2023. Probabilistic Evaluation of Excavation Unloading Response of Rock Slope Considering the Uncertainty of Mechanical Parameters.Rock and Soil Mechanics, 44(7): 2115-2128 (in Chinese with English abstract). |
| [21] |
Luo, Y. H., Xia, J. H., Liu, J. P., et al., 2007. Joint Inversion of High-Frequency Surface Waves with Fundamental and Higher Modes. Journal of Applied Geophysics, 62(4): 375-384. https://doi.org/10.1016/j.jappgeo.2007.02.004 |
| [22] |
Luu, K., Noble, M., Gesret, A., et al., 2018. A Parallel Competitive Particle Swarm Optimization for Non-Linear First Arrival Traveltime Tomography and Uncertainty Quantification. Computers & Geosciences, 113: 81-93. https://doi.org/10.1016/j.cageo.2018.01.016 |
| [23] |
Meza-Fajardo, K. C., Papageorgiou, A. S., 2008. A Nonconvolutional, Split-Field, Perfectly Matched Layer for Wave Propagation in Isotropic and Anisotropic Elastic Media: Stability Analysis. Bulletin of the Seismological Society of America, 98(4): 1811-1836. https://doi.org/10.1785/0120070223 |
| [24] |
Mi, B. B., Xia, J. H., Shen, C., etal., 2018. Dispersion Energy Analysis of Rayleigh and Love Waves in the Presence of Low-Velocity Layers in Near-Surface Seismic Surveys. Surveys in Geophysics, 39(2): 271-288. https://doi.org/10.1007/s10712-017-9440-4 |
| [25] |
Nocedal, J., Wright, S. J., 2006. Quasi-Newton Methods. In: Numerical Optimization. Springer Series in Operations Research and Financial Engineering. Springer, New York. |
| [26] |
Pan, Y. D., Gao, L. L., Bohlen, T., 2018. Time-Domain Full-Waveform Inversion of Rayleigh and Love Waves in Presence of Free-Surface Topography. Journal of Applied Geophysics, 152: 77-85. https://doi.org/10.1016/j.jappgeo.2018.03.006 |
| [27] |
Park, C. B., Miller, R. D., Xia, J. H., 1998. Imaging Dispersion Curves of Surface Waves on Multi-Channel Record. SEG Technical Program Expanded Abstracts, 1377-1380. https://doi.org/10.1190/1.1820161 |
| [28] |
Park, C. B., Miller, R. D., Xia, J. H., 1999. Multichannel Analysis of Surface Waves. Geophysics, 64(3): 800-808. https://doi.org/10.1190/1.1444590 |
| [29] |
Peng, M., Li, X. Y., Li, D. Q., et al., 2014. Slope Safety Evaluation by Integrating Multi-Source Monitoring Information. Structural Safety, 49: 65-74. https://doi.org/10.1016/j.strusafe.2013.08.007 |
| [30] |
Sun, Y., Huang, J. S., Jin, W., et al., 2019. Bayesian Updating for Progressive Excavation of High Rock Slopes Using Multi-Type Monitoring Data. Engineering Geology, 252: 1-13. https://doi.org/10.1016/j.enggeo.2019.02.013 |
| [31] |
Taillandier, C., Noble, M., Chauris, H., et al., 2009. First-Arrival Traveltime Tomography Based on the Adjoint-State Method. Geophysics, 74(6): WCB1-WCB10. https://doi.org/10.1190/1.3250266 |
| [32] |
Wang, L. Q., Liang, Y., Wu, Q., et al., 2010. Estimation Method of Rockmass Strength Parameters Based on Elastic Wave Velocity Ratio. Coal Geology & Exploration, 38(6): 37-42 (in Chinese with English abstract). |
| [33] |
Wang, X. R., Wang, H., Liang, R. Y., 2018. A Method for Slope Stability Analysis Considering Subsurface Stratigraphic Uncertainty. Landslides, 15(5): 925-936. https://doi.org/10.1007/s10346-017-0925-5 |
| [34] |
Wang, Z. N., Sun, C. Y., Wu, D. S., 2022. Near-Surface Site Characterization Based on Joint Iterative Analysis of First-Arrival and Surface-Wave Data. Surveys in Geophysics, 44(2): 357-386. https://doi.org/10.1007/s10712-022-09747-8 |
| [35] |
Xia, J. H., 2014. Estimation of Near-Surface Shear-Wave Velocities and Quality Factors Using Multichannel Analysis of Surface-Wave Methods. Journal of Applied Geophysics, 103: 140-151. https://doi.org/10.1016/j.jappgeo.2014.01.016 |
| [36] |
Xia, J. H., Xu, Y. X., Luo, Y. H., et al., 2012. Advantages of Using Multichannel Analysis of Love Waves (MALW) to Estimate Near-Surface Shear-Wave Velocity. Surveys in Geophysics, 33(5): 841-860. https://doi.org/10.1007/s10712-012-9174-2 |
| [37] |
Xie, H., Liu, L. B., 2015. Near-Surface Anisotropic Structure Characterization by Love Wave Inversion for Assessing Ground Conditions in Urban Areas. Journal of Earth Science, 26(6): 807-812. https://doi.org/10.1007/s12583-015-0619-7 |
| [38] |
Xu, Y. X., Xia, J. H., Miller, R. D., 2007. Numerical Investigation of Implementation of Air-Earth Boundary by Acoustic-Elastic Boundary Approach. Geophysics, 72(5): SM147-SM153. https://doi.org/10.1190/1.2753831 |
| [39] |
Yang, Z. Y., Yin, C. C., Nie, J. Y., et al., 2022. Probability Density Function Estimation of Geotechnical Parameters Considering the Three-Dimensional Spatial Variability Based on Multi-Source Site Investigation Data. Rock and Soil Mechanics, 43(6): 1571-1584 (in Chinese with English abstract). |
| [40] |
Zhao, H. K., 2004. A Fast Sweeping Method for Eikonal Equations. Mathematics of Computation, 74(250): 603-627. https://doi.org/10.1090/s0025-5718-04-01678-3 |
| [41] |
Zheng, Z. Y., Yu, H. B., Xu, H. Q., 2016. Numerical Analysis of Failure Modes and Stability of Soft and Hard Rock Interbedded Slope. Journal of Yangtze River Scientific Research Institute, 33(9): 102-106 (in Chinese with English abstract). |
国家自然科学基金-联合基金重点项目(U23A2044)
国家自然科学基金-国际合作项目(42061160480)
国家自然科学基金-面上项目(42071010)
国家自然科学基金-面上项目(42477195)
/
| 〈 |
|
〉 |