嘉黎断裂带易贡-察隅段第四纪活动性特征
Quaternary Activity Characteristics of the Yiong⁃Zayu Segment of the Jiali Fault Zone
,
,
嘉黎断裂带通常被认为是控制青藏高原东南缘物质向东南挤出的重要边界构造之一,但其第四纪是否仍在活动以及活动特征如何一直存在争议. 在前人工作基础上,通过高分辨率遥感影像解译、DEM数据分析和详细的地表调查,并结合震源机制解和GPS观测等数据,分析研究了嘉黎断裂带易贡-察隅段的第四纪活动性及特征. 结果表明,嘉黎断裂带易贡-察隅段在第四纪期间未显示出明显的右旋走滑活动特征,仅在局部段落发育小规模的北西或近东西向的正断层活动. GPS速率分析也显示,嘉黎断裂带易贡-察隅段的现今右旋走滑活动不明显,而表现出以伸展变形为主,这与震源机制解反映出的沿断裂带主要发生正断型地震的特征向吻合. 综合分析认为,伴随青藏高原东南缘地区构造变形方式由早期向东横向挤出转变为围绕东构造结的顺时针旋转运动,嘉黎断裂带易贡-察隅段第四纪期间整体上已不活动,不再是调节物质向东挤出运动的边界走滑断裂,而局部的小规模正断层活动可能与东构造结强挤压背景下引起的局部张裂或者冰川融化引发地壳回弹作用相关. 新的研究结果支持藏东-川西地区第四纪构造变形模式更符合深部通道流驱动下的围绕东构造结顺时针旋转-挤出模式,而非横向或侧向挤出模式.
The Jiali Fault Zone is one of the major active tectonic structures along the southeastern margin of the Tibetan Plateau, playing a crucial role in regional seismicity and geomorphic evolution. This study systematically analyzes the tectonic activity of the Yiong⁃Zayu segment of the Jiali Fault Zone by integrating high⁃resolution remote sensing imagery, DEM data, field investigations, and focal mechanism solutions.The results indicate that the Jiali Fault Zone has exhibited weak tectonic activity since the Quaternary, with no significant evidence of right⁃lateral strike⁃slip motion. Instead, localized NW⁃ and nearly E⁃W⁃trending normal faulting has been observed along certain segments, and seismic activity is predominantly characterized by local normal⁃faulting earthquakes. GPS velocity analysis reveals that the fault exhibits low horizontal slip rates, with deformation primarily characterized by extension, suggesting that it does not function as a major boundary fault.By integrating previous studies, we further infer that the formation of local normal faults is primarily influenced by localized shear stress or post⁃glacial rebound. Moreover, the kinematic model of southeastern Tibet is more consistent with a clockwise rotational extrusion mechanism.
嘉黎断裂带 / 青藏高原 / 构造地貌 / 正断层 / 顺时针旋转-挤出模式 / 构造学.
Jiali Fault Zone / Tibetan Plateau / tectonic geomorphology / normal fault / clockwise rotational extrusion model / tectonics
| [1] |
Adams, K. D., Wesnousky, S. G., Bills, B. G., 1999. Isostatic Rebound, Active Faulting, and Potential Geomorphic Effects in the Lake Lahontan Basin, Nevada and California. Geological Society of America Bulletin, 111(12): 1739-1756. https://doi.org/10.1130/0016⁃7606(1999)1111739:irafap>2.3.co;2 |
| [2] |
Armijo, R., Tapponnier, P., Han, T. L., 1989. Late Cenozoic Right⁃Lateral Strike⁃Slip Faulting in Southern Tibet. Journal of Geophysical Research: Solid Earth, 94(B3): 2787-2838. https://doi.org/10.1029/JB094iB03p02787 |
| [3] |
Chen, P.G., He, X.H., Xu, S.F., et al., 2023. Earthquake Relocation and Regional Stress Field around the Eastern Himalayan Syntaxis. Reviews of Geophysics and Planetary Physics, 54(6): 667-683 (in Chinese with English abstract). |
| [4] |
Chung, L., 2014. Activity of the Eastern Karakoram⁃Jiali Fault Zone in Tibet(Dissertation). National Taiwan University, Taibei,81-107(in Chinese). |
| [5] |
Gao, Y., Wu, Z. H., Zuo, J. M., et al., 2024. Spatial⁃Temporal Activity of Quaternary Faults at Southern End of Nyalam⁃Coqen Rift, Southern Tibet. Earth Science, 49(7): 2552-2569 (in Chinese with English abstract). |
| [6] |
Grosset, J., Mazzotti, S., Vernant, P., 2023. Glacial⁃Isostatic⁃Adjustment Strain Rate⁃Stress Paradox in the Western Alps and Impact on Active Faults and Seismicity. Solid Earth, 14(10): 1067-1081. https://doi.org/10.5194/se⁃14⁃1067⁃2023 |
| [7] |
Hampel, A., Hetzel, R., 2006. Response of Normal Faults to Glacial⁃Interglacial Fluctuations of Ice and Water Masses on Earth’s Surface. Journal of Geophysical Research: Solid Earth, 111(B6): 1-13. https://doi.org/10.1029/2005JB004124 |
| [8] |
He, Z.H., Yang, D.M., Wang, T.W., 2006. Zircon SHRIMP U⁃Pb Age and Petrochemical and Geochemical Features of Mesozoic Muscovite Monzonitic Granite at Ningzhong, Tibet. Acta Petrologica Sinica, 22(3): 653-660 (in Chinese with English abstract). |
| [9] |
Li, C. Y., Zhang, P. Z., Zhang, J. X., et al., 2007. Late⁃Quaternary Activity and Slip Rate of the Western Qinling Fault Zone at Huangxianggou. Quaternary Sciences, 27(1): 54-63 (in Chinese with English abstract). |
| [10] |
Li, H.R., Bai, L., Zhan, H.L., 2021. Research Progress of Jiali Fault Activity. Reviews of Geophysics and Planetary Physics, 52(2): 182-193 (in Chinese with English abstract). |
| [11] |
Li, Z.J., Wang, Y., Liu, L.J., et al., 2025. Lithospheric Deformation and Corresponding Deep Geodynamic Process of the SE Tibetan Plateau. Science China Earth Sciences, 55(5):1351-1376 (in Chinese with English abstract). |
| [12] |
Liu, S. J., Lan, H. X., Strom, A., et al., 2024. Spatial Segmentation of Jiali Fault’s Holocene Activity in the Southeastern Tibetan Plateau. NPJ Natural Hazards, 1: 42. https://doi.org/10.1038/s44304⁃024⁃00038⁃3 |
| [13] |
Liu, Y.H.,Zhang, Y.F.,Shan, X.J., et al., 2019,Use of Seismic Waveforms and Insar Data for Determination of the Seismotectonics of the Mainling Ms6.9 Earthquake on Nov.18, 2017. Seismology and Geology, 34(3):896-907 (in Chinese with English abstract). |
| [14] |
Miao, S. Q., Hu, Z. K., Zhang, L., et al., 2021. Geomorphic Analysis of Strike⁃Slip Faulting at the Top of Alluvial Fan: a Case Study at Ahebiedou River on the Eastern Margin of Tacheng Basin, Xinjiang, China. Seismology and Geology, 43(3): 488-503 (in Chinese with English abstract). |
| [15] |
Molnar, P., Lyon⁃Caent, H., 1989. Fault Plane Solutions of Earthquakes and Active Tectonics of the Tibetan Plateau and Its Margins. Geophysical Journal International, 99(1): 123-154. https://doi.org/10.1111/j.1365⁃246X.1989.tb02020.x |
| [16] |
Molnar, P., Tapponnier, P., 1978. Active Tectonics of Tibet. Journal of Geophysical Research: Solid Earth, 83(B11): 5361-5375. https://doi.org/10.1029/JB083iB11p05361 |
| [17] |
Nichols, G., 2009. Sedimentology and Stratigraphy. Ladybird, UK,420-425. |
| [18] |
Ren, J. W., Shen, J., Cao, Z. Q., et al., 2000. Quaternary Faulting of Jiali Fault, Southeast Tibetan Plateau. Seismology and Geology, 22(4): 344-350 (in Chinese with English abstract). |
| [19] |
Royden, L. H., Burchfiel, B. C., King, R. W., et al., 1997. Surface Deformation and Lower Crustal Flow in Eastern Tibet. Science, 276(5313): 788-790. https://doi.org/10.1126/science.276.5313.788 |
| [20] |
Song, J., 2010. Study on Current Movement Characteristics and Numerical Simulation of the Main Faults Around the Eastern Himalayan Syntaxis(Dissertation). Institute of Geology, China Earthquake Administration, Beijing, 34-43 (in Chinese with English abstract). |
| [21] |
Song, J., Tang, F. T., Deng, Z. H., et al., 2013. Late Quaternary Movement Characteristic of Jiali Fault in Tibetan Plateau. Acta Scientiarum Naturalium Universitatis Pekinensis, 49(6): 973-980 (in Chinese with English abstract). |
| [22] |
Steffen, R., Wu, P., Steffen, H., et al., 2014. On the Implementation of Faults in Finite⁃Element Glacial Isostatic Adjustment Models. Computers & Geosciences, 62: 150-159. https://doi.org/10.1016/j.cageo.2013.06.012 |
| [23] |
Stewart, I. S., Sauber, J., Rose, J., 2000. Glacio⁃Seismotectonics: ice Sheets, Crustal Deformation and Seismicity. Quaternary Science Reviews, 19(14/15): 1367-1389. https://doi.org/10.1016/S0277⁃3791(00)00094⁃9 |
| [24] |
Tang, F. T., Song, J., Cao, Z. Q., et al., 2010. The Movement Characters of Main Faults around Eastern Himalayan Syntaxis Revealed by the Latest GPS Data. Chinese Journal of Geophysics, 53(9): 2119-2128 (in Chinese with English abstract). |
| [25] |
Tapponnier, P., Molnar, P., 1976. Slip⁃Line Field Theory and Large⁃Scale Continental Tectonics. Nature, 264(5584): 319-324. https://doi.org/10.1038/264319a0 |
| [26] |
Taylor, M., Yin, A., 2009. Active Structures of the Himalayan⁃Tibetan Orogen and Their Relationships to Earthquake Distribution, Contemporary Strain Field, and Cenozoic Volcanism. Geosphere, 5(3): 199-214. https://doi.org/10.1130/ges00217.1 |
| [27] |
Taylor, M., Yin, A., Ryerson, F. J., et al., 2003. Conjugate Strike⁃Slip Faulting along the Bangong⁃Nujiang Suture Zone Accommodates Coeval East⁃West Extension and North⁃South Shortening in the Interior of the Tibetan Plateau. Tectonics, 22(4):1-25. https://doi.org/10.1029/2002TC001361 |
| [28] |
Wang, E., Burchfiel, B. C., 1997. Interpretation of Cenozoic Tectonics in the Right⁃Lateral Accommodation Zone between the Ailao Shan Shear Zone and the Eastern Himalayan Syntaxis. International Geology Review, 39(3): 191-219. https://doi.org/10.1080/00206819709465267 |
| [29] |
Wang, H., Li, K. J., Chen, L. C., et al., 2020. Evidence for Holocene Activity on the Jiali Fault, an Active Block Boundary in the Southeastern Tibetan Plateau. Seismological Research Letters, 91(3): 1776-1780. https://doi.org/10.1785/0220190371 |
| [30] |
Wang, M., Shen, Z. K., 2020. Present⁃Day Crustal Deformation of Continental China Derived from GPS and Its Tectonic Implications. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774. https://doi.org/10.1029/2019JB018774 |
| [31] |
Wang, S. Y., Ai, M., Wu, C. Y., et al., 2018. Application of Dem Generation Technology from High Resolution Satellite Image in Quantitative Active Tectonics Study: a Case Study of Fault Scarps in the Southern Margin of Kumishi Basin. Seismology and Geology, 40(5): 999-1017 (in Chinese with English abstract). |
| [32] |
Wang, X. N., Tang, F. T., Shao, C. R., 2018. The Current Movement Characters of Main Faults Surrounding the Namcha Barwa Syntaxis. Technology for Earthquake Disaster Prevention, 13(2): 267-275 (in Chinese with English abstract). |
| [33] |
Wu, Z.H., Long, C.X., Fan, T.Y., et al., 2015. The Arc Rotational⁃Shear Active Tectonic System on the Southeastern Margin of Tibetan Plateau and Its Dynamic Characteristics and Mechanism. Geological Bulletin of China, 34(1): 1-31 (in Chinese with English abstract). |
| [34] |
Xiang, S.Y.M., Ma, X. M., Ze, R., et al., 2007. Record of Apatite Fission Track of the Differential Uplift in both Sides of Jiali Fault Belt since Late Cenozoic. Earth Science, 32(5): 615-621 (in Chinese with English abstract). |
| [35] |
Xu, Z. Q., Li, H. B., Tang, Z. M., et al., 2011. The Transformation of the Terrain Structures of the Tibet Plateau through Large⁃Scale Strike⁃Slip Faults. Acta Petrologica Sinica, 27(11): 3157-3170 (in Chinese with English abstract). |
| [36] |
Zhang, J.J., Ji, J.Q., Zhong, D.L., et al., 2003. Discussion on the Tectonic Pattern and Formation Process of the South Ngangla Ring of the Eastern Himalayas. Science in China (Series D), 4:373-383 (in Chinese). |
| [37] |
Zhao, T. X., Su, X. N., Zhu, Q., et al., 2024. The Crustal Deformation Characteristics of Typical Tectonic Region in the Western Segment of the Jiali Fault Derived from GPS Observations. Science of Surveying and Mapping, 49(3): 27-35 (in Chinese with English abstract). |
| [38] |
Zhao, Y.F., Gong, W.B.,Jiang, W., et al., 2021. Multi⁃Stage Characteristics and Tectonic Significance of the Jiali Fault in Guxiang⁃Tongmai Section, South Tibet. Geoscience, 35(1): 220-233 (in Chinese with English abstract). |
| [39] |
Zhong, N., Guo, C.B., Huang, X.L., et al., 2022. Late Quaternary Activity and Paleoseismic Records of the Middle South Section of the Jiali⁃Zayu Fault. Acta Geologica Sinica. 95(12): 3642-3659(in Chinese with English abstract). |
中国地质调查局项目(DD20230600601)
科技基础资源调查专项课题(2021YFB2301401)
国家自然科学基金项目(42472287)
/
| 〈 |
|
〉 |