基于低温热年代学约束下的秦岭北麓构造抬升过程研究进展
刘文博 , 陶霓 , 彭建兵 , 杨钊 , 申艳军 , 李振洪 , 梁探星 , 王琛
地球科学 ›› 2025, Vol. 50 ›› Issue (10) : 4155 -4176.
基于低温热年代学约束下的秦岭北麓构造抬升过程研究进展
Progress of Tectonic Uplift Process in Northern Foothill of Qinling Mountains Based on Constraints of Low-Temperature Thermochronology
,
秦岭北麓的构造抬升过程对理解区域地质与生态演化具有重要意义.随着地质勘探技术的进步和区域地质研究的深入,秦岭北麓的构造抬升过程逐渐揭示出更多的细节.根据已报道的低温热年代学数据,该区域晚白垩世以来至少发生了3次主要的冷却-隆升事件:晚白垩世(95~75 Ma)的缓慢冷却,冷却速率约2.8 °C/Ma,剥露速率约0.12 km/Ma;始新世-渐新世(47~27 Ma)的快速冷却,冷却速率约6.1 ˚C/Ma,剥露速率约0.24 km/Ma以及晚新生代(10 Ma)以来的持续冷却,冷却速率约 2.1 ˚C/Ma,剥露速率约0.083 km/Ma,剥露抬升的方向呈现出从西南向东北逐渐迁移的趋势.这一迁移趋势与青藏高原东北缘约10~8 Ma的构造扩展密切相关,特别是毗邻的渭河盆地自晚中新世约7.3 Ma以来持续快速沉积、沉降,与秦岭北麓的隆升形成鲜明的构造响应,进一步印证了青藏高原东北缘扩展背景下区域构造活动的联动性与协同演化特征.这些结果表明,新生代以来秦岭北麓构造抬升及相邻渭河盆地沉积演化,均受到青藏高原东北向扩展的影响.这些结果不仅为区域构造动力学研究提供了关键的热年代学约束,也为进一步探讨秦岭北麓地区的地质演化及其与其他区域的构造关系提供依据.
The tectonic uplift of the northern foothill of the Qinling Mountains is of great significance for understanding its geological and ecological evolution. With the advancement of geological exploration techniques and the deepening of regional geological studies, more details of the tectonic uplift processes of the northern foothill of the Qinling Mountains have been gradually revealed. According to published low-temperature thermochronological data, at least three major cooling and exhumation episodes are revealed since the Late Cretaceous: a slow cooling during the Late Cretaceous (95-75 Ma), with a cooling rate of 2.8 °C/Ma and an exhumation rate of 0.12 km/Ma, a rapid cooling during the Eocene-Oligocene (47-27 Ma), with a cooling rate of 6.1 ˚C/Ma and an exhumation rate of 0.24 km/Ma, and a continuing slow cooling since the Late Miocene(10 Ma), with a cooling rate of 2.1 ˚C/Ma and an exhumation rate of only 0.083 km/Ma, with the cooling and exhumation migrating towards the northeast. This migration trend is closely related to the tectonic expansion of the northeast margin of the Tibetan Plateau at about 10-8 Ma. Meanwhile, the adjacent Weihe Basin has been undergoing rapid sedimentation and subsidence since the Late Miocene (7.3 Ma), forming a distinctive tectonic response to the uplift of the northern foothill of the Qinling Mountains, which further confirms the linkage and synergistic evolution of the regional tectonic activities in the context of the northeastern margin of the Qinghai-Tibetan Plateau. These results indicate that the tectonic uplift of the northern foothill of the Qinling Mountains and the sedimentary evolution of the neighboring Weihe Basin since the Cenozoic have been influenced by the northeastern expansion of the Qinghai-Tibetan Plateau. These results not only provide key thermochronological constraints for the study of regional tectonic dynamics, but also provide a basis for further discussion of the geological evolution of the northern Qinling Mountains and its tectonic relationship with other regions.
秦岭北麓 / 剥露 / 构造抬升 / 低温热年代学 / 构造地质学.
northern foothill of Qinling Mountains / exhumation / tectonic uplift / low-temperature thermochronology / structural geology
| [1] |
Boyce, J. W., Hodges, K. V., Olszewski, W. J., et al., 2006. Laser Microprobe (U-Th)/He Geochronology. Geochimica et Cosmochimica Acta, 70(12): 3031-3039. https://doi.org/10.1016/j.gca.2006.03.019 |
| [2] |
Chang, J., Qiu, N. S., Zuo, Y. H., et al., 2011. The New Evidence on Tectonic Uplift in Kepingtage Area, Tarim, China: Constraints from (U-Th)/He Ages. Chinese Journal of Geophysics, 54(1): 163-172 (in Chinese with English abstract). |
| [3] |
Chen, H., Hu, J. M., Wu, G. L., et al., 2015. Apatite Fission-Track Thermochronological Constraints on the Pattern of Late Mesozoic–Cenozoic Uplift and Exhumation of the Qinling Orogen, Central China.Journal of Asian Earth Sciences, 114: 649-673. https://doi.org/10.1016/j.jseaes.2014.10.004 |
| [4] |
Chew, D. M., Spikings, R. A., 2015. Geochronology and Thermochronology Using Apatite: Time and Temperature, Lower Crust to Surface. Elements, 11(3): 189-194. https://doi.org/10.2113/gselements.11.3.189 |
| [5] |
Ding, R. X., Chen, G. N., Zhou, Z. Y., et al., 2012. The Paleoelevation Reconstruction of Late Cretaceous Dabie Orogen by Low-Temperature Thermochronological Modelling Data. Journal of Jilin University (Earth Science Edition), 42(S1): 247-253(in Chinese with English abstract). |
| [6] |
Ding, R. X., Wang, L., Xu, C. H., et al., 2009. Quantitative Contrast of Dabie Orogenic Erosion and Adjacent Sedimentary Basins Deposition through Thermal History Modelling of Fission Track. Advances in Earth Science, 24(8): 942-946 (in Chinese with English abstract). |
| [7] |
Donelick, R. A., O’sullivan,P.B., Ketcham,R.A., 2005. Apatite Fission-Track Analysis. Reviews in Mineralogy and Geochemistry, 58(1): 49-94. https://doi.org/10.2138/rmg.2005.58.3 |
| [8] |
Dong, Y. P., Safonova, I., Wang, T., 2016. Tectonic Evolution of the Qinling Orogen and Adjacent Orogenic Belts. Gondwana Research, 30: 1-5. https://doi.org/10.1016/j.gr.2015.12.001 |
| [9] |
Dong, Y. P., Yang, Z., Sun, S. S., et al., 2022. Qinling Uplift Process and How to Control the Climate Environment.Earth Science, 47(10): 3834-3836 (in Chinese). |
| [10] |
Dong, Y. P., Zhang, G. W., Neubauer, F., et al., 2011. Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 41(3): 213-237. https://doi.org/10.1016/j.jseaes.2011.03.002 |
| [11] |
Enkelmann, E., Ratschbacher, L., Jonckheere, R., et al., 2006. Cenozoic Exhumation and Deformation of Northeastern Tibet and the Qinling: Is Tibetan Lower Crustal Flow Diverging around the Sichuan Basin?Geological Society of America Bulletin, 118(5-6): 651-671. https://doi.org/10.1130/b25805.1 |
| [12] |
Farley, K. A., 2000. Helium Diffusion from Apatite: General Behavior as Illustrated by Durango Fluorapatite. Journal of Geophysical Research:Solid Earth, 105(B2): 2903-2914. https://doi.org/10.1029/1999JB900348 |
| [13] |
Farley, K. A., 2002. (U-Th)/He Dating: Techniques, Calibrations, and Applications. Reviews in Mineralogy and Geochemistry, 47(1): 819-844. https://doi.org/10.2138/rmg.2002.47.18 |
| [14] |
Farley, K. A., Wolf, R. A., Silver, L. T., 1996. The Effects of Long Alpha-Stopping Distances on (U-Th)/He Ages. Geochimica et Cosmochimica Acta, 60(21): 4223-4229. https://doi.org/10.1016/S0016-7037(96)00193-7 |
| [15] |
Fitzgerald, P. G., Sorkhabi, R. B., Redfield, T. F., et al., 1995. Uplift and Denudation of the Central Alaska Range: A Case Study in the Use of Apatite Fission Track Thermochronology to Determine Absolute Uplift Parameters. Journal of Geophysical Research: Solid Earth, 100(B10): 20175-20191. https://doi.org/10.1029/95JB02150 |
| [16] |
Gao, T. Y., 2023. The Structure of the Crust beneath Eastern Tibetan Plateau (Dissertation). Institute of Geophysics China Earthquake Administation, Beijing (in Chinese with English abstract). |
| [17] |
Ge, X., Shen, C. B., Mei, L. F., 2016. Low-Temperature Thermochronological Constraints on the Mesozoic-Cenozoic Paleotopograph in the Huangling Massif. Geotectonica et Metallogenia, 40(4): 654-662 (in Chinese with English abstract). |
| [18] |
Ge, X., Shen, C. B., Yang, Z., et al., 2013. Low-Temperature Thermochronology Constraints on the Mesozoic-Cenozoic Exhumation of the Huangling Massif in the Middle Yangtze Block, Central China. Journal of Earth Science, 24(4): 541-552. https://doi.org/10.1007/s12583-013-0348-8 |
| [19] |
Gleadow, A. J. W., Duddy, I. R., 1981. A Natural Long-Term Track Annealing Experiment for Apatite. Nuclear Tracks, 5(1-2): 169-174. https://doi.org/10.1016/0191-278X(81)90039-1 |
| [20] |
Han, H. Y., Mi, F. S., Liu, H. Y., 2001. Geomorphological Structure in the Weihe Basin and Neotectonic Movement. Journal of Seismological Research, 24(3): 251-257 (in Chinese with English abstract). |
| [21] |
Han, W., Li, C. F., Li, W. H., et al., 2020. Constraints of Tectonic Evolution of Mesozoic and Cenozoic in Yiyang Area of Western Henan by Fission Track. Chinese Journal of Geology (Scientia Geologica Sinica), 55(4): 1290-1297 (in Chinese with English abstract). |
| [22] |
He, C.G., Li, J. W., Kontak, D. J., et al., 2023. An Early Cretaceous Gold Mineralization Event in the Triassic West Qinling Orogen Revealed from U-Pb Titanite Dating of the Ma’anqiao Gold Deposit. Scientia Sinica (Terrae), 53(2): 300-318 (in Chinese). |
| [23] |
Heberer, B., Anzenbacher, T., Neubauer, F., et al., 2014. Polyphase Exhumation in the Western Qinling Mountains, China: Rapid Early Cretaceous Cooling along a Lithospheric-Scale Tear Fault and Pulsed Cenozoic Uplift. Tectonophysics, 617: 31-43. https://doi.org/10.1016/j.tecto.2014.01.011 |
| [24] |
Hendrix, M. S., Dumitru, T. A., Graham, S. A., 1994. Late Oligocene-Early Miocene Unroofing in the Chinese Tian Shan: An Early Effect of the India-Asia Collision. Geology, 22(6): 487. https://doi.org/10.1130/0091-7613(1994)0220487:loemui>2.3.co;2 |
| [25] |
Hou, J. J., Han, M. K., Zhang, B. Z., et al., 1995. Geomorphic Expressions of the Activity along North Qinling Piedmont Fault Zone in the Late Quaternary Period.Acta Geographica Sinica, 50(2): 138-146 (in Chinese with English abstract). |
| [26] |
Hu, R. Q., Wu, L. Y., 2024. Advances of the (U-Th)/He Thermochronology and Its Applications. Acta Mineralogica Sinica, 44(2): 273-286 (in Chinese with English abstract). |
| [27] |
Huang, Y., Fu, S. L., Zhao, C. H., et al., 2021. Low-Temperature Thermochronology and Its Applications for Studying Ore Deposits. Bulletin of Mineralogy, Petrology and Geochemistry, 40(4): 958-973 (in Chinese with English abstract). |
| [28] |
Jiang, C. F., Wang, Z.Q., Li, J.Y., et al., 2000. Open-Close Structure of Central Orogenic Belt.Geological Publishing House,Beijing (in Chinese). |
| [29] |
Ketcham, R. A., Donelick, R. A., Carlson, W. D., 1999. Variability of Apatite Fission-Track Annealing Kinetics; III, Extrapolation to Geological Time Scales. American Mineralogist, 84(9): 1235-1255. https://doi.org/10.2138/am-1999-0903 |
| [30] |
Kind, R., Yuan, X., Saul, J., et al., 2002. Seismic Images of Crust and Upper Mantle beneath Tibet: Evidence for Eurasian Plate Subduction. Science, 298(5596): 1219-1221. https://doi.org/10.1126/science.1078115 |
| [31] |
Lei, W. S., Zhang, R., Li, S. Z., et al., 2025. Exhumation Processes of the Metamorphic Basement of the Taihua Group in the Southern Margin of the North China Craton: Evidence from (U-Th)/He Thermochronology. Acta Geologica Sinica, 99(6): 1964-1978 (in Chinese with English abstract). |
| [32] |
Li, D. W., Xia, Y. P., Xu, L. G., 2009. Coupling and Formation Mechanism of Continental Intraplate Basin and Orogen—Examples from the Qinghai-Tibet Plateau and Adjacent Basins. Earth Science Frontiers, 16(3): 110-119 (in Chinese with English abstract). |
| [33] |
Li, H. B., Franck, V., Nicolas, A., et al., 2008. Rapid Uplifting in the Process of Strike-Slip along the Karakorum Fault Zone in Western Tibet: Evidence from 40Ar/39Ar Thermochronology. Acta Petrologica Sinica, 24(7): 1552-1566 (in Chinese with English abstract). |
| [34] |
Li, Q., Wang, Y., Wan, J. L., et al., 2001. Thermochronological Evidence of Tectonic Uplift for the Middle Area of Qinling in Meso-Cenozoic. Bulletin of Mineralogy, Petrology and Geochemistry, 20(4): 263-265 (in Chinese with English abstract). |
| [35] |
Li, S. G., Li, Q. L., Hou, Z. H., et al., 2005. Cooling History and Exhumation Mechanism of the Ultrahigh-Pressure Metamorphic Rocks in the Dabie Mountains, Central China. Acta Petrologica Sinica, 21(4): 1117-1124 (in Chinese with English abstract). |
| [36] |
Li, Z. K., Hu, J., Zhang, J., et al., 2025. Distribution and Resources of Dispersed Metals in Pb-Zn Deposits of Qinling Orogenic Belt. Earth Science, 50(6): 2083-2106 (in Chinese with English abstract). |
| [37] |
Liu, D. S., Ding, M. L., Gao, F. Q., 1960. Cenozoic Stratigraphic Profile in Lantian, Xi’an. Chinese Journal of Geology (Scientia Geologica Sinica), 3(4): 199-208 (in Chinese). |
| [38] |
Liu, H. J., Xue, X. X., 2004. Discussion on the Cenozoic and Its Chronology in the Weihe River Basin. Journal of Earth Sciences and Enivronment, 26(4): 1-5 (in Chinese with English abstract). |
| [39] |
Liu, J. H., Zhang, P. Z., Lease, R. O., et al., 2013. Eocene Onset and Late Miocene Acceleration of Cenozoic Intracontinental Extension in the North Qinling Range-Weihe Graben: Insights from Apatite Fission Track Thermochronology. Tectonophysics, 584: 281-296. https://doi.org/10.1016/j.tecto.2012.01.025 |
| [40] |
Liu, J. H., Zhang, P. Z., Zheng, D. W., et al., 2010. The Cooling History of Cenozoic Exhumation and Uplift of the Taibai Mountain, Qinling, China: Evidence from the Apatite Fission Track (AFT) Analysis. Chinese Journal of Geophysics, 53(10): 2405-2414 (in Chinese with English abstract). |
| [41] |
Liu, J. R., 2023. Late Quaternary Activity and Tectonic Deformation Kinematics of Dextral Strike-Slip Faults in the Northeast Margin of the Tibetan Plateau, China (Dissertation). Institute of Geology, China Earthquake Administration,Beijing (in Chinese with English abstract). |
| [42] |
Liu, S. F., 1998. The Coupling Mechanism of Basin and Orogen in the Western Ordos Basin and Adjacent Regions of China. Journal of Asian Earth Sciences, 16(4): 369-383. https://doi.org/10.1016/S0743-9547(98)00020-8 |
| [43] |
Liu, S. F., Zhang, G. W., 2005. Fundamental Ideas, Contents and Methods in Study of Basin and Mountain Relationships. Earth Science Frontiers, 12(3): 101-111 (in Chinese with English abstract). |
| [44] |
Liu, W. B., Tao, N., Sun, J. B., et al., 2025. A Review on the Zircon Laser In-Situ Microanalytical U-Th-Pb-He Double Dating. Bulletin of Mineralogy, Petrology and Geochemistry, 44(1): 162-177 (in Chinese with English abstract). |
| [45] |
Lovera, O. M., Richter, F. M., Harrison, T. M., 1989. The 40Ar/39Ar Thermochronometry for Slowly Cooled Samples Having a Distribution of Diffusion Domain Sizes.Journal of Geophysical Research: Solid Earth, 94(B12): 17917-17935. https://doi.org/10.1029/JB094iB12p17917 |
| [46] |
Lu, H. J., Wang, E., Shi, X. H., et al., 2012. Cenozoic Tectonic Evolution of the Elashan Range and Its Surroundings, Northern Tibetan Plateau as Constrained by Paleomagnetism and Apatite Fission Track Analyses. Tectonophysics, 580: 150-161. https://doi.org/10.1016/j.tecto.2012.09.013 |
| [47] |
Lyu, H. H., Chang, Y., Wang, W., et al., 2013. Early Miocene Rapid Stripping in Tianshan Mountains: Apatite Fission Track and (U-Th)/He Low Temperature Thermochronological Evidence. Scientia Sinica (Terrae), 43(12): 1964-1974 (in Chinese). |
| [48] |
Meng, Q.R., 2017. Origin of the Qinling Mountains. Scientia Sinica (Terrae), 47(4): 412-420 (in Chinese). |
| [49] |
Meng, W., Guo, X. Y., Li, Y. H., et al., 2022. Tectonic Stress Field and Dynamic Characteristics in the Northeastern Margin of the Tibetan Plateau. Chinese Journal of Geophysics, 65(9): 3229-3251 (in Chinese with English abstract). |
| [50] |
Mercier, J. L., Vergely, P., Zhang, Y. Q., et al., 2013. Structural Records of the Late Cretaceous-Cenozoic Extension in Eastern China and the Kinematics of the Southern Tan-Lu and Qinling Fault Zone (Anhui and Shaanxi Provinces, PR China). Tectonophysics, 582: 50-75. https://doi.org/10.1016/j.tecto.2012.09.015 |
| [51] |
Monteiro, H. S., Vasconcelos, P. M. P., Farley, K. A., et al., 2018. Age and Evolution of Diachronous Erosion Surfaces in the Amazon: Combining (U-Th)/He and Cosmogenic 3He Records. Geochimica et Cosmochimica Acta, 229: 162-183. https://doi.org/10.1016/j.gca.2018.02.045 |
| [52] |
Peng, H., Wang, J. Q., Zattin, M., et al., 2018. Late Triassic-Early Jurassic Uplifting in Eastern Qilian Mountain and Its Geological Significance: Evidence from Apatite Fission Track Thermochronology. Earth Science, 43(6): 1983-1996 (in Chinese with English abstract). |
| [53] |
Peng, J. B., 1993. Fractile Geometric Features of the Two Margin Active Faults in the Weihe Basin. Journal of Chang’an University Earth Science Edition, 15(1): 52-60 (in Chinese with English abstract). |
| [54] |
Peng, J. B., Li, Z. H., 2022. Can Geo-Big Data Help Geological Disaster Prediction? Earth Science, 47(10): 3900-3901 (in Chinese). |
| [55] |
Peng, J. B., Shen, Y. J., Jin, Z., et al., 2023a. Key Thoughts on the Study of Eco-Geological Environment System in Qinling Mountains. Acta Ecologica Sinica, 43(11): 4344-4358(in Chinese with English abstract). |
| [56] |
Peng, J. B., Zhang, Y. S., Huang, D., et al., 2023b. Interaction Disaster Effects of the Tectonic Deformation Sphere, Rock Mass Loosening Sphere, Surface Freeze-Thaw Sphere and Engineering Disturbance Sphere on the Tibetan Plateau. Earth Science, 48(8): 3099-3114(in Chinese with English abstract). |
| [57] |
Rao, S., Jiang, G. Z., Gao, Y. J., et al., 2016. The Thermal Structure of the Lithosphere and Heat Source Mechanism of Geothermal Field in Weihe Basin. Chinese Journal of Geophysics, 59(6): 2176-2190 (in Chinese with English abstract). |
| [58] |
Ratschbacher, L., Hacker, B. R., Calvert, A., et al., 2003. Tectonics of the Qinling (Central China): Tectonostratigraphy, Geochronology, and Deformation History. Tectonophysics, 366(1-2): 1-53. https://doi.org/10.1016/S0040-1951(03)00053-2 |
| [59] |
Reiners, P. W., 2005. Zircon (U-Th)/He Thermochronometry.Reviews in Mineralogy and Geochemistry, 58(1): 151-179. https://doi.org/10.2138/rmg.2005.58.6 |
| [60] |
Reiners, P. W., Brandon, M. T., 2006. Using Thermochronology to Understand Orogenic Erosion.Annual Review of Earth and Planetary Sciences, 34: 419-466. https://doi.org/10.1146/annurev.earth.34.031405.125202 |
| [61] |
Reiners, P. W., Zhou,Z.Y., Ehlers,T.A., 2003. Post-Orogenic Evolution of the Dabie Shan, Eastern China, from (U-Th)/He and Fission-Track Thermochronology. American Journal of Science, 303(6): 489-518. https://doi.org/10.2475/ajs.303.6.489 |
| [62] |
Ren, Z. L., Cui, J. P., Guo, K., et al., 2015. Fission-Track Analysis of Uplift Times and Processes of the Weibei Uplift in the Ordos Basin. Chinese Science Bulletin, 60(14): 1298-1309 (in Chinese). |
| [63] |
Ren, Z. L., Cui, J. P., Li, J. B., et al., 2014. Tectonic-Thermal History Reconstruction of Ordovician in the Weibei Uplift of Ordos Basin. Acta Geologica Sinica, 88(11): 2044-2056 (in Chinese with English abstract). |
| [64] |
Shen, C. B., Ge, X., Wu, Y., et al., 2023. Progress and Development Trends of Fault Activities Dating Technologies in Basins. Earth Science, 48(2): 735-748 (in Chinese with English abstract). |
| [65] |
Shen, C. B., Hu, D., Min, K., et al., 2020. Post-Orogenic Tectonic Evolution of the Jiangnan-Xuefeng Orogenic Belt: Insights from Multiple Geochronometric Dating of the Mufushan Massif, South China. Journal of Earth Science, 31(5): 905-918. https://doi.org/10.1007/s12583-020-1346-2 |
| [66] |
Shen, X. M., Tian, Y. T., Li, D. W., et al., 2016. Oligocene-Early Miocene River Incision near the First Bend of the Yangze River: Insights from Apatite (U-Th-Sm)/He Thermochronology. Tectonophysics, 687: 223-231. https://doi.org/10.1016/j.tecto.2016.08.006 |
| [67] |
Shen, Y. J., Chen, X., Peng, J. B., et al., 2024. Background Characteristics of Ecological Geological Environment System in Qinling Mountains and Assumption of Its Theoretical System. Earth Science, 49(6): 2103-2119 (in Chinese with English abstract). |
| [68] |
Shi, X. H., Yang, Z., Dong, Y. P., et al., 2018. Transient Geomorphic Characteristics of the Upper Jialing River Basin, West Qinling, Northeastern Tibetan Plateau. Chinese Journal of Geology (Scientia Geologica Sinica), 53(3): 819-834 (in Chinese with English abstract). |
| [69] |
Stockli, D. F., 2005. Application of Low-Temperature Thermochronometry to Extensional Tectonic Settings. Reviews in Mineralogy and Geochemistry, 58(1): 411-448. https://doi.org/10.2138/rmg.2005.58.16 |
| [70] |
Sun, J. M., 2005. Long-Term Fluvial Archives in the Fen Wei Graben, Central China, and Their Bearing on the Tectonic History of the India-Asia Collision System during the Quaternary. Quaternary Science Reviews, 24(10-11): 1279-1286. https://doi.org/10.1016/j.quascirev.2004.08.018 |
| [71] |
Tao, N., Duan, J., Danišík, M., et al., 2023. Paleozoic Tectonothermal Evolution of the Jinchuan Ni-Cu Sulfide Deposit, NW China: New Constraints from 40Ar/39Ar and (U-Th)/He Thermochronology. Journal of Asian Earth Sciences, 250: 105622. https://doi.org/10.1016/j.jseaes.2023.105622 |
| [72] |
Tao, N., Jiao, R. H., Liu, Y. D., et al., 2025. Thermotectonic History of the Longshou Shan: From Paleozoic Tethys Subduction to Cenozoic Tibetan Plateau Growth. Tectonophysics,895: 230560.https://doi.org/10.1016/j.tecto.2024.230560 |
| [73] |
Tao, N., Li, Z. X., Danišík, M., et al., 2017. Thermochronological Record of Middle–Late Jurassic Magmatic Reheating to Eocene Rift-Related Rapid Cooling in the SE South China Block. Gondwana Research, 46: 191-203. https://doi.org/10.1016/j.gr.2017.03.003 |
| [74] |
Tao, N., Li, Z. X., Danišík, M., et al., 2019. Post-250 Ma Thermal Evolution of the Central Cathaysia Block (SE China) in Response to Flat-Slab Subduction at the Proto-Western Pacific Margin. Gondwana Research, 75: 1-15. https://doi.org/10.1016/j.gr.2019.03.019 |
| [75] |
Teng, Z. H., Wang, X. H., 1996. Studies of the Tectonic Uplift at the Cenozoic Era and the Regionally Environmental Effects in the Qinling Orogenic Belt. Geology of Shaanxi, 14(2): 33-42 (in Chinese with English abstract). |
| [76] |
Vermeesch, P., 2012. On the Visualisation of Detrital Age Distributions. Chemical Geology, 312: 190-194. https://doi.org/10.1016/j.chemgeo.2012.04.021 |
| [77] |
Wan, J. L., Li, Q., Wang, Y., 2000. The Fission Track Evidence of Huashan Batholith Uplifting in Mesozoic-Cenozoic. Seismology and Geology, 22(1): 53-58 (in Chinese with English abstract). |
| [78] |
Wan, J. L., Wang, Y., Li, Q., et al., 2005. Apatite Fission Track Study of Taibai Mountain Uplift in the Mesozoic-Cenozoic. Nuclear Techniques, 28(9): 712-716 (in Chinese with English abstract). |
| [79] |
Wang, B., Chang, H., Duan, K. Q., 2017. The Tectonic Uplift and Its Environmental Effects of the Qinling Mountains during the Cenozoic Era: Progress and Problems. Advances in Earth Science, 32(7): 707-715 (in Chinese with English abstract). |
| [80] |
Wang, J. M., 1987. The Fenwei Rift and Its Recent Periodic Activity. Tectonophysics, 133(3-4): 257-275. https://doi.org/10.1016/0040-1951(87)90269-1 |
| [81] |
Wang, J. Q., Liu, C. Y., Gao, F., et al., 2015. Pre-Cenozoic Geological Characteristics and Oil-Gas Significance in Weihe Basin, Shaanxi Province. Geological Bulletin of China, 34(10): 1981-1991 (in Chinese with English abstract). |
| [82] |
Wang, Q. Q., Pei, X. Z., 1990. The Structural Features and the Evolution of the Weihe Rift Basin. Journal of Chang’an University Earth Science Edition, 12(1): 40-49 (in Chinese with English abstract). |
| [83] |
Wang, T. Y., Zeng, Z. C., Yang, T., et al., 2019. Time Limit of Lishan Uplift and Its Geological Significance. Geology of Shaanxi, 37(1): 42-48 (in Chinese with English abstract). |
| [84] |
Wang, W. T., Huang, R., Wu, Y., et al., 2023. Cenozoic Clockwise Rotation of the Northeastern Tibetan Plateau: Paleomagnetic Evidence from Volcanic Sequences in the West Qinling Mountain. Global and Planetary Change,224: 104097.https://doi.org/10.1016/j.gloplacha.2023.104097 |
| [85] |
Wang, W. T., Zhang, P. Z., Liu, C. C., et al., 2016. Pulsed Growth of the West Qinling at ~30 Ma in Northeastern Tibet: Evidence from Lanzhou Basin Magnetostratigraphy and Provenance. Journal of Geophysical Research:Solid Earth, 121(11): 7754-7774.https://doi.org/10.1002/2016JB013279 |
| [86] |
Wang, X. X., Li, J. J., Song, C. H., et al., 2006. Cenozoic Uplift of West Qinling, Northeast Margin of Tibetan Plateau: The Record of Detrital Apatite Fission Track Data in Tianshui Basin. Acta Sedimentologica Sinica, 24(6): 783-789 (in Chinese with English abstract). |
| [87] |
Wang, X. X., Zattin, M., Li, J. J., et al., 2013. Cenozoic Tectonic Uplift History of Western Qinling: Evidence from Sedimentary and Fission-Track Data. Journal of Earth Science, 24(4): 491-505. https://doi.org/10.1007/s12583-013-0345-y |
| [88] |
Wang, X. Y., 2021. The Cooling and Denudation History of Mesozoic and Cenozoic in the Western Qinling Mountains: Constraints from Low-Temperature Chronology (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). |
| [89] |
Wang, Y. Z., Li, C. P., Hao, Y. Q., et al., 2022. Multi-Stage Growth in the North Margin of the Qinling Orogen, Central China, Revealed by Both Low-Temperature Thermochronology and River Profile Inversion. Tectonics, 41(4): e2021TC007029. https://doi.org/10.1029/2021TC007029 |
| [90] |
Wang, Z. C., Zhang, P. Z., Garzione, C. N., et al., 2012. Magnetostratigraphy and Depositional History of the Miocene Wushan Basin on the NE Tibetan Plateau, China: Implications for Middle Miocene Tectonics of the West Qinling Fault Zone. Journal of Asian Earth Sciences, 44: 189-202. https://doi.org/10.1016/j.jseaes.2011.06.009 |
| [91] |
Wu, Z. H., Wu, Z. H., Wan, J. L., et al., 2003. Cenezoic Uplift and Denudation History of Huashan Mountains: Evidence from Fission Track Thermo-Chronology of Huashan Granite. Geological Science and Technology Information, 22(3): 27-32 (in Chinese with English abstract). |
| [92] |
Xiao, H., Li, J. X., Han, W., et al., 2013. The Tectonic Uplift Time and Evolution Characteristics of Weibei Uplift in the South Edge of Ordos Basin. Journal of Xi’an University of Science and Technology, 33(5): 576-582, 593(in Chinese with English abstract). |
| [93] |
Xiao, L., 2018. U-Th/He Thermochronology: Methods and Their Application to Cenozoic Uplift in the Qinling Mountains (Dissertation). Institute of Geology, China Earthquake Administration, Beijing (in Chinese with English abstract). |
| [94] |
Xing, Z. Y., Zhao, B., Tu, M. Y., et al., 2005. Study on the Coupling Relationship between Fenwei Rift System and Orogenic Belt and Its Formation Mechanism. Earth Science Frontiers, 12(2): 247-262 (in Chinese with English abstract). |
| [95] |
Xu, C. H., Zhou, Z. Y., Chang, Y., et al., 2010. Relationship between the Formation of Daba Mountain Arc Tectonic Belt and the Uplift on Both Sides: FT and (U-Th)/He Low-Temperature Thermal Age Constraints. Scientia Sinica (Terrae), 40(12): 1684-1696 (in Chinese). |
| [96] |
Xu, M. Q., Zheng, W. J., Duan, L., et al., 2024. Magnetic Fabric Characteristic of Cenozoic Sediments from Lulehe Section in the Northern Qaidam Basin, China and Its Tectonic Implications. Journal of Earth Sciences and Environment, 46(3): 364-383 (in Chinese with English abstract). |
| [97] |
Xu, P. P., Shen, Y. J., Peng, J. B., et al., 2024. Typed Architecture of Valley Road in Northern Foothills of Qinling Mountains Based on Concept of Ecological-Economic-Social Collaborative Development. Earth Science, 49(12): 4564-4575 (in Chinese with English abstract). |
| [98] |
Yang, L., Yuan, W. M., Hong, S. J., et al., 2022. Fission Track Technology and Its Geological Applications. Geological Survey of China, 9(3): 104-112 (in Chinese with English abstract). |
| [99] |
Yang, P., Ren, Z. L., Zhang, J. G., et al., 2018. Discussion of the Coupling Relationships between the Cenozoic Sedimentary-Tectonic Migration of the Weihe Basin and the Uplift of the Weibei and East Qinling Areas. Chinese Journal of Geology (Scientia Geologica Sinica), 53(3): 876-892 (in Chinese with English abstract). |
| [100] |
Yang, Z., Dong, Y. P., Liu, X. M., et al., 2006. LA-ICP-MS Zircon U-Pb Dating of Gabbro in the Guanzizhen Ophiolite, Tianshui, West Qinling, China. Geological Bulletin of China, 25(11): 1321-1325 (in Chinese with English abstract). |
| [101] |
Yang, Z., Dong, Y. P., Zhou, D. W., et al., 2008. Geochemistry and Geologic Significance of Basic Rocks in the Xiaomoling Complex in the Zhashui Area, South Qinling, China. Geological Bulletin of China, 27(5): 611-617 (in Chinese with English abstract). |
| [102] |
Yang, Z., Shen, C. B., Ratschbacher, L., et al., 2017. Sichuan Basin and beyond: Eastward Foreland Growth of the Tibetan Plateau from an Integration of Late Cretaceous-Cenozoic Fission Track and (U-Th)/He Ages of the Eastern Tibetan Plateau, Qinling, and Daba Shan. Journal of Geophysical Research: Solid Earth, 122(6): 4712-4740. https://doi.org/10.1002/2016JB013751 |
| [103] |
Yin, G. M., Lu, Y. C., Zhao, H., et al., 2001. Cenozoic Tectonic Uplift of Huashan Mountain. Chinese Science Bulletin, 46(13): 1121-1123 (in Chinese). |
| [104] |
Yu, J. X., Zheng, D. W., Pang, J. Z., et al., 2022. Cenozoic Mountain Building in Eastern China and Its Correlation with Reorganization of the Asian Climate Regime. Geology, 50(7): 859-863. https://doi.org/10.1130/g49917.1 |
| [105] |
Yu, Q., Ren, Z. l., Li, R. X., et al., 2023. Different Burial-Cooling History of Triassic Strata between the Western Weibei Uplift and the Northwestern Weihe Basin in North-west China. Journal of Earth Science, 34(5): 1543-1555. https://doi.org/10.1007/s12583-021-1432-0 |
| [106] |
Yu, X. Q., Liu, J. L., Zhang, D. H., et al., 2013. Uprising Period and Elevation of the Wenyu Granitic Pluton in the Xiaoqinling District, Central China. Chinese Science Bulletin, 58(35): 4459-4471. https://doi.org/10.1007/s11434-013-5830-2 |
| [107] |
Yu, X.L., Li, J.W., Jin, X.Y., et al., 2024. Monazite U-Th-Pb and Sericite Rb-Sr Dating of the Xiajiadian Black Shale-Hosted Gold Deposit in the Qinling Orogen, Central China: Implications for Regional Gold Metallogeny.Scientia Sinica (Terrae), 54(8): 2515-2533 (in Chinese). |
| [108] |
Yuan, D. Y., Champagnac, J. D., Ge, W. P., et al., 2011. Late Quaternary Right-Lateral Slip Rates of Faults Adjacent to the Lake Qinghai, Northeastern Margin of the Tibetan Plateau. Geological Society of America Bulletin, 123(9-10): 2016-2030. https://doi.org/10.1130/b30315.1 |
| [109] |
Zhang, G. W., Guo, A. L., Dong, Y. P., et al., 2019. Rethinking of the Qinling Orogen. Journal of Geomechanics, 25(5): 746-768 (in Chinese with English abstract). |
| [110] |
Zhang, G. W., Meng, Q. R., Lai, S. C., 1995. Structure of Qinling Orogenic Belt. Science in China (Ser.B), 25(9): 994-1003 (in Chinese). |
| [111] |
Zhang, G. W., Zhang, B. R., Yuan X.C.,et al., 2001. Qinling Orogenic Beit and Continental Dynamics. Science Press, Beijing (in Chinese). |
| [112] |
Zhang, H. P., Craddock, W. H., Lease, R. O., et al., 2012. Magnetostratigraphy of the Neogene Chaka Basin and Its Implications for Mountain Building Processes in the North-Eastern Tibetan Plateau. Basin Research, 24(1): 31-50. https://doi.org/10.1111/j.1365-2117.2011.00512.x |
| [113] |
Zhang, H., 2008. U-Pb Chronology of Modern Fluvial Detrital Zircons in the Northern Foot of Qinling Mountains and Its Geological Significance (Dissertation). Northwest University, Xi’an (in Chinese with English abstract). |
| [114] |
Zhang, P. Z., Zheng, D. W., Yin, G. M., et al., 2006. Discussion on Late Cenozoic Growth and Rise of Northeastern Margin of the Tibetan Plateau. Quaternary Sciences, 26(1): 5-13 (in Chinese with English abstract). |
| [115] |
Zhang, Y. P., 1978. Cenozoic in Lantian Area of Shaanxi Province. Science Press, Beijing (in Chinese). |
| [116] |
Zhang, Y.P., Zhang, P.Z., Lease, R. O., et al., 2023. Oligocene–Miocene Northward Growth of the Tibetan Plateau: Insights from Intermontane Basins in the West Qinling Belt, NW China.Geological Society of America Bulletin,136(1-2):131-157. https://doi.org/10.1130/b36722.1 |
| [117] |
Zhao, W. J., Kumar, P., Mechie, J., et al., 2011. Tibetan Plate Overriding the Asian Plate in Central and Northern Tibet. Nature Geoscience, 4(12): 870-873. https://doi.org/10.1038/ngeo1309 |
| [118] |
Zhao, W. J., Nelson, K. D., Che, J., et al., 1993. Deep Seismic Reflection Evidence for Continental Underthrusting beneath Southern Tibet. Nature, 366(6455): 557-559. https://doi.org/10.1038/366557a0 |
| [119] |
Zheng, D. W., Wang, F., Zhang, P. Z., et al., 2000. Apatite U-Th/He Dating Method:A Low Temperature Thermochronometer. Seismology and Geology, 22(4): 427-435 (in Chinese with English abstract). |
国家自然科学基金项目(42341101)
国家自然科学基金项目(42473027)
陕西省自然科学基础研究计划项目(2025JCQYCX-033)
/
| 〈 |
|
〉 |