基于低温热年代学约束下的秦岭北麓构造抬升过程研究进展

刘文博 ,  陶霓 ,  彭建兵 ,  杨钊 ,  申艳军 ,  李振洪 ,  梁探星 ,  王琛

地球科学 ›› 2025, Vol. 50 ›› Issue (10) : 4155 -4176.

PDF (5879KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (10) : 4155 -4176. DOI: 10.3799/dqkx.2025.070

基于低温热年代学约束下的秦岭北麓构造抬升过程研究进展

作者信息 +

Progress of Tectonic Uplift Process in Northern Foothill of Qinling Mountains Based on Constraints of Low-Temperature Thermochronology

Author information +
文章历史 +
PDF (6019K)

摘要

秦岭北麓的构造抬升过程对理解区域地质与生态演化具有重要意义.随着地质勘探技术的进步和区域地质研究的深入,秦岭北麓的构造抬升过程逐渐揭示出更多的细节.根据已报道的低温热年代学数据,该区域晚白垩世以来至少发生了3次主要的冷却-隆升事件:晚白垩世(95~75 Ma)的缓慢冷却,冷却速率约2.8 °C/Ma,剥露速率约0.12 km/Ma;始新世-渐新世(47~27 Ma)的快速冷却,冷却速率约6.1 ˚C/Ma,剥露速率约0.24 km/Ma以及晚新生代(10 Ma)以来的持续冷却,冷却速率约 2.1 ˚C/Ma,剥露速率约0.083 km/Ma,剥露抬升的方向呈现出从西南向东北逐渐迁移的趋势.这一迁移趋势与青藏高原东北缘约10~8 Ma的构造扩展密切相关,特别是毗邻的渭河盆地自晚中新世约7.3 Ma以来持续快速沉积、沉降,与秦岭北麓的隆升形成鲜明的构造响应,进一步印证了青藏高原东北缘扩展背景下区域构造活动的联动性与协同演化特征.这些结果表明,新生代以来秦岭北麓构造抬升及相邻渭河盆地沉积演化,均受到青藏高原东北向扩展的影响.这些结果不仅为区域构造动力学研究提供了关键的热年代学约束,也为进一步探讨秦岭北麓地区的地质演化及其与其他区域的构造关系提供依据.

Abstract

The tectonic uplift of the northern foothill of the Qinling Mountains is of great significance for understanding its geological and ecological evolution. With the advancement of geological exploration techniques and the deepening of regional geological studies, more details of the tectonic uplift processes of the northern foothill of the Qinling Mountains have been gradually revealed. According to published low-temperature thermochronological data, at least three major cooling and exhumation episodes are revealed since the Late Cretaceous: a slow cooling during the Late Cretaceous (95-75 Ma), with a cooling rate of 2.8 °C/Ma and an exhumation rate of 0.12 km/Ma, a rapid cooling during the Eocene-Oligocene (47-27 Ma), with a cooling rate of 6.1 ˚C/Ma and an exhumation rate of 0.24 km/Ma, and a continuing slow cooling since the Late Miocene(10 Ma), with a cooling rate of 2.1 ˚C/Ma and an exhumation rate of only 0.083 km/Ma, with the cooling and exhumation migrating towards the northeast. This migration trend is closely related to the tectonic expansion of the northeast margin of the Tibetan Plateau at about 10-8 Ma. Meanwhile, the adjacent Weihe Basin has been undergoing rapid sedimentation and subsidence since the Late Miocene (7.3 Ma), forming a distinctive tectonic response to the uplift of the northern foothill of the Qinling Mountains, which further confirms the linkage and synergistic evolution of the regional tectonic activities in the context of the northeastern margin of the Qinghai-Tibetan Plateau. These results indicate that the tectonic uplift of the northern foothill of the Qinling Mountains and the sedimentary evolution of the neighboring Weihe Basin since the Cenozoic have been influenced by the northeastern expansion of the Qinghai-Tibetan Plateau. These results not only provide key thermochronological constraints for the study of regional tectonic dynamics, but also provide a basis for further discussion of the geological evolution of the northern Qinling Mountains and its tectonic relationship with other regions.

Graphical abstract

关键词

秦岭北麓 / 剥露 / 构造抬升 / 低温热年代学 / 构造地质学.

Key words

northern foothill of Qinling Mountains / exhumation / tectonic uplift / low-temperature thermochronology / structural geology

引用本文

引用格式 ▾
刘文博,陶霓,彭建兵,杨钊,申艳军,李振洪,梁探星,王琛. 基于低温热年代学约束下的秦岭北麓构造抬升过程研究进展[J]. 地球科学, 2025, 50(10): 4155-4176 DOI:10.3799/dqkx.2025.070

登录浏览全文

4963

注册一个新账户 忘记密码

秦岭北麓位于北秦岭构造带,横跨商州-丹凤断裂带和洛南-奕川-方城断裂带之间(何重果等,2023;玉雪玲等,2024),是一处东西绵延数百千米的狭长复合地质体.作为秦岭造山带中构造最为复杂的地带,其内部地质体多呈透镜状分布,并表现出强烈挤压、走滑变形和新生构造面理等显著特征(张红,2008).秦岭北麓构造抬升过程影响着区域地貌、沉积环境以及生态系统的复杂演变,一直是地学界焦点研究区域(刘护军和薛祥煦,2004;邢作云等,2005;Sun et al.,2005;杨钊等,2006;玉雪玲等,2024).早期针对秦岭北麓的研究,多聚焦于传统地质构造分析,通过地层对比、褶皱断裂形态描述来勾勒抬升轮廓,但这类方法难以精准厘定时间尺度下的动态演化.低温热年代学方法能够捕捉岩石在冷却过程中蕴含的时间信息,对浅表地壳岩石冷却历程极为敏感,可以深入探究山脉的抬升剥露,将过去笼统模糊演化过程拆解为清晰的时间片段,例如磷灰石和锆石裂变径迹、(U-Th)/He定年等(郑德文等,2000;李齐等,2001;尹功明等,2001;Boyce et al.,2006;许长海等,2010;吕红华等,2013;Yu et al.,2013;杨莉等,2022;Tao et al.,2023;胡儒权和武丽艳,2024).近年来,低温热年代学研究揭示了秦岭北麓白垩纪以来的多期次剥露历史,特别是精确限定了10~8 Ma期间的快速剥露事件(王修喜等,2006;Yu et al.,2013Yang et al.,2017).这些成果实现了从定性推测到定量刻画剥露速率与剥露量的突破,为理解青藏高原东北缘扩展的远程效应提供了关键时间-温度约束(尹功明等,2001;万景林等,2005;Wang et al.,2022).白垩纪以来,秦岭北麓构造抬升与渭河盆地沉积作用及青藏高原东北缘的迁移过程密切相关,低温热年代学数据揭示了这一区域构造-沉积-地貌演化的时空耦合关系.秦岭北麓多体系低温热年代学数据的积累与更新,为区域热历史重建提供了更为精确与充分的数据依据与约束,亟需系统梳理、整合与科学分析.同时,结合沉积相、沉积环境及地层年代学研究,可以系统重建秦岭北麓紧邻盆地的沉积历史,追踪物源区变迁,通过沉积过程镜像倒推主控构造活动及相关控制机制.整合跨学科分析手段,如地震勘探、重力测量和磁法勘探等地球物理方法,还可以精确揭示造山带深部断层分布、地壳结构等构造特征(彭建兵和李振洪,2022),进一步约束秦岭北麓的深部构造-热过程.
当今信息化和数字化迅猛发展,人工智能(AI)、大数据(Big Data)和大型模型的应用愈发广泛和深入.笔者相信这些科技革新也必将深刻改变日后低温热年代学数据的获取与分析方式,显著深化对热演化过程及区域地质演化的认知程度.因此,本文全面回顾秦岭北麓构造抬升相关研究,聚焦低温热年代学视角下关键发现,以期为深化理解这一复杂地质过程提供详尽综述与前瞻性思考.

1 地质简介

秦岭位于中国中部,是中国南北地理、气候和动植物的天然分界线,自东向西延伸2 000 km,东起河南伏牛山,横穿陕西中部,西至甘肃迭山,南北以汉江和渭河盆地为分界线(Ratschbacher et al.,2003Dong et al.,2011).秦岭造山带主要由华北地块南部、扬子地块北缘和秦岭地块3个构造单元构成(张国伟等,2001),其地质体架构主要由3大套构造岩层单元组成:(1)晚太古代-早元古代变质结晶杂岩系基底;(2)早-中元古代火山-沉积浅变质岩系;(3)晚元古代-中三叠世发育的裂谷型火山建造,其后演化为两类古大陆边缘沉积和裂陷沉积,并伴随不同类型蛇绿岩和花岗岩形成.秦岭的构造演化历史可划分为两个主要阶段:中生代俯冲-碰撞造山阶段和新生代陆内造山阶段.作为中央造山带的重要组成部分,秦岭造山带西与昆仑-祁连造山带相接,东与大别-苏鲁造山带相连,构成了横亘在中国中部的重要地质界线.该造山带的形成始于古生代至晚三叠世期间华北板块与华南板块(扬子板块)的陆-陆碰撞事件,其后经历了复杂的多期次陆内构造叠加改造(张国伟和孟庆任,1995;姜春发等,2000;李曙光等,2005;杨钊等,2008;Dong et al.,2016;李占轲等,2025),最终形成了现今的构造格局;新生代期间,陆内断陷盆地和造山带前后陆盆地沉积发育,并伴随构造-岩浆活动(张国伟和孟庆任,1995;杨钊等,2008).秦岭北麓地处华北板块与扬子板块碰撞拼合的关键地带,是地质构造运动的关键承载区域(徐盼盼等,2024).该区域发育的秦岭北麓断裂带作为渭河盆地与秦岭山地的重要边界,由一系列北倾、高角度的正断层组成,具有显著的活动性特征.新生代以来,秦岭北麓以垂直运动为主,并伴有左旋走滑运动(侯建军等,1995).区域地貌特征显示,秦岭北麓山脉平均海拔在2 000~2 500 m,呈现西高东低地势特点,最高峰太白山,海拔约3 767 m,位于山脉东西侧,紧邻渭河盆地(肖霖,2018;图1).秦岭北麓因受到山前正断层的强烈活动和断块掀斜作用影响,表现出显著的快速隆升.这种强烈的构造活动导致该区域与相邻的渭河盆地之间形成了超过3 000 m的显著地貌高差.渭河盆地作为响应单元,自新生代早期开始发育,堆积了厚度超过7 000 m的河流-湖泊相沉积层(韩恒悦等,2001),完整记录了区域构造-地貌演化历史,最终塑造了现今的“盆-山”构造格局.

2 秦岭北麓低温热年代学研究现状

低温热年代学技术(如锆石、磷灰石裂变径迹与(U-Th)/He定年)主要记录岩石或矿物冷却过程(Reiners et al.,2006).其中,(U-Th)/He测年记录了矿物冷却至封闭温度区间后母体同位素238U、235U、232Th、147Sm发生α衰变产生并保留4He过程的时间信息(Farley et al.,1996Farley,2002Reiners et al.,2005).裂变径迹定年法的基本原理是通过统计裂变产生的晶格损伤痕迹的密度及研究其退火特性,实现对矿物最新一期冷却退火年代的限定(Gleadow and Dubby,1981;Donelick et al.,2005).通过测定矿物的低温热年代学年龄,可以定量重建岩石从地壳深部经剥露至地表的温度-时间(t-T)热历史.具体到造山带,热历史不仅限定了造山带隆升的时限和速率,还能通过抬升剥露区剥蚀量与沉积区物源供给量、沉积厚度的相关性分析,为造山带-盆地构造-地貌演化过程提供重要的定量依据(Hendrix et al.,1994Reiners et al.,2003;丁汝鑫等,2012;Ge et al.,2013Wang et al.,2013;葛翔等,2016;Tao et al.,2017,2019;彭恒等,2018;Shen et al.,2020;沈传波等,2023;刘文博等,2025).通过系统收集整理秦岭北麓的低温热年代学数据,以及基于这些数据的时间-温度热历史反演模拟曲线结果,对比分析重建研究区的热演化历史轨迹,进而对显著冷区阶段进行识别、提取.这些阶段往往对应着由显著构造活动引起的剥露事件(李海兵等,2008;常健等,2011;吕红华等,2013;Shen et al.,2016Monteiro et al.,2018).那么,热演化历史上冷却阶段的时限、速率、幅度等参数,即可有效约束对应剥露事件的时间、速率和厚度.此外,剥露过程形成的碎屑被搬运、沉积、埋藏于邻近盆地中,又以经典的“盆山耦合”机制影响盆地沉积物源供应、沉积速率等响应记录.构造过程-山体剥露-盆地记录三者之间通过上述过程形成有机联系的互馈链条.低温热年代学体系封闭温度通常低于300 ℃,锆石和磷灰石(U-Th)/He及裂变径迹封闭温度区间分别为160~200 ℃和200~300 ℃与40~80 ℃和80~120 ℃(Fitzgerald et al.,1995;Ketcham et al.,1999;Farley,2000Chew and Spikings,2015).磷灰石裂变径迹与(U-Th)/He体系响应浅部地壳热过程(Donelick et al.,2005Reiners et al.,2006),后者由于更低的封闭温度区间对更晚期剥露事件尤为敏感.

低温热年代学作为一种高精度的时间分辨率工具,在重建秦岭北麓隆升剥露历史研究中具有独特优势.该方法通过获取精确的定量热年代学数据,不仅能够有效识别不同构造事件的发生时序,还可深入解析各构造事件之间的时空耦合关系.这些高精度的低温热年代学数据为检验和完善现有秦岭北麓构造演化模型提供了关键约束,从而显著提升了秦岭造山带构造演化过程研究的精细化程度.特别是在揭示区域构造-热事件的叠加关系、厘定多期构造活动的时限等方面,低温热年代学方法展现出不可替代的优势,已广泛应用于造山带演化过程重建和古地貌恢复等领域,其通过精确测定矿物封闭温度年龄,为岩石剥露速率的定量限定提供了可靠的技术支撑(黄勇等,2021).剥露速率=(封闭温度-样品现今温度)/(地温梯度×年龄值),样品现今温度为现今地表温度,年龄值为样品封闭温度所对应的年龄,根据黄勇等(2021)取地温梯度为25 ℃/km,所求出的剥露速率是样品从该年龄至今的平均剥露速率.

本文系统收集并整理了秦岭北麓及周边地区已发表的低温热年代学数据(附表1),包括磷灰石和锆石(U-Th)/He及裂变径迹等多组数据.通过DensityPlotter软件(Vermeesch,2012)进行分析(图2),结果显示,ZFT年龄分布范围为(38±2.4)~(185±8) Ma,显示3个峰值,年龄主要集中于40~60 Ma之间,占比94%(图2c),指示始新世-渐新世冷却过程,时间上可能与印度-欧亚板块碰撞远程效应有关;ZHe年龄分布范围为(56.9±6.2)~(164.3±10.2) Ma,显示5个年龄峰值,分别是57.1 Ma、73.6 Ma、100.2 Ma、129.6 Ma和162.7 Ma,其中73.6 ±1.8 Ma占比24%(图2d),反映晚白垩世冷却;AFT年龄分布范围为(9.7±1.3)~(170±9) Ma,90%集中于20~70 Ma之间,对应年龄峰值为29 Ma(图2a),代表了晚渐新世的一次冷却事件;AHe年龄分布范围为(13.6±0.9)~(91±3.2) Ma,呈现5个明显峰值,其中主峰年龄为26.62 Ma(占比32.3%;图2b),与AFT主峰接近,但反映更浅部的冷却历史,表明晚渐新世-早中新世存在冷却剥露过程(图2b),可能与青藏高原东北缘的走滑断裂活动相关(Kind et al.,2002Wang et al.,2013).4个体系ZFT、ZHe、AFT和AHe的年龄序列符合岩石从深部向浅部逐步冷却的规律,揭示秦岭北麓自白垩纪以来经历晚白垩世(2.8 ˚C/Ma)、始新世-渐新世(6.1 ˚C/Ma)以及晚新生代(2.1 ˚C/Ma)以来的3个时期的冷却剥露.

在秦岭北麓冷却-抬升过程研究中,前人工作主要集中在低温热年代学,例如磷灰石和锆石(U-Th)/He及裂变径迹法(万景林等,2000;尹功明等,2001;吴中海等,2003;Enkelmann et al.,2006;杨鹏等,2018;Yu et al.,2022).万景林等(2000)通过对华山花岗岩样品进行磷灰石裂变径迹分析发现,华山岩体至少从始新世或渐新世开始就已经抬升,但主要抬升过程发生在新生代后期.这个抬升过程不是持续不断的,而是以缓慢抬升和快速抬升交替出现的方式进行,抬升了约0.8 km(表1).尹功明等(2001)通过分析华山花岗岩岩体中的磷灰石裂变径迹数据,获得了约40~20 Ma的冷却年龄(附表1),剥露速率约0.1 km/Ma,抬升幅度为1.81 km(表1).李齐等(2001)通过黑云母39Ar/40Ar法及钾长石MDD法(Multiple Diffusion Domain,钾长石多扩散域理论;Lovera et al.,1989),获得了太白山和华山在约120~80 Ma之间的快速冷却事件,此阶段的冷却速率为4 ℃/Ma(表1).吴中海等(2003)基于秦岭中部发育夷平面及该区域裂变径迹数据,认为华山在晚白垩世以来至少经历了3次快速隆升阶段,共抬升了约8.52 km(表1).万景林等(2005)通过对秦岭北部太白山裂变径迹进行分析,揭示了秦岭地区约100~80 Ma和约40 Ma(附表1)的两次冷却事件.Enkelmann et al.(2006)Chen et al.(2015)利用低温热年代学数据对西秦岭新生代以来剥露历史进行研究,结果显示晚中新世(10~8 Ma)以来西秦岭地区具有加速剥露历史,这与青藏高原同一时期快速向北东方向扩展有关(Yu et al.,2013;Yang et al.,2017).王修喜等(2006)通过对天水盆地沉积物示踪,获得了西秦岭在约23 Ma和约14 Ma的两次构造事件,剥露速率分别为0.34 km/Ma和1.05 km/Ma(表1).Liu et al.(2013)结合太白山、华山及北秦岭其他区域裂变径迹数据,提出秦岭地区新生代经历了掀斜式变形,约50 Ma时发生小幅度快速冷却,可能是印度与欧亚板块碰撞引起的远程应力响应;约10 Ma发生大幅度快速剥露冷却,可能与青藏高原东北缘快速隆升和对外扩张有联系,同时渭河盆地逐渐伸展,呈现盆-山耦合模式.渭北地区始新世-渐新世以来的快速抬升和剥蚀作用,与北秦岭造山带的快速隆升及渭河盆地的断陷作用密切相关(肖晖等,2013).任战利等(2014)通过磷灰石和锆石裂变径迹分析,认为渭北隆起自约40 Ma以来持续快速抬升,其过程与北秦岭造山带隆升同步,并与渭河盆地的快速沉降呈耦合关系.杨鹏等(2018)对渭北隆起磷灰石裂变径迹结果分析(图3),表明渭河盆地晚中新世约7.3 Ma(附表1)以来发生快速沉积,与太白山10~9.6 Ma、华山8~5 Ma及渭北隆起约5 Ma以来的快速隆升耦合关系明显.Wang et al.(2022)分别在终南山和华山采集花岗岩样品进行磷灰石裂变径迹定年,其年龄范围分别为14.0~46.6 Ma和27.2~58.4 Ma(图3),热史模拟表明,终南山经历了白垩纪早期、古近纪早期和渐新世3段快速剥露冷却历史.Yu et al.(2022)在太白山西北部采集了14个花岗岩样品,其磷灰石(U-Th)/He 定年结果表明太白山在晚渐新世开始了一个快速冷却过程.Wang et al.(2023)对西秦岭白垩纪-第三纪玄武岩进行了K-Ar定年,结果揭示了两次冷却事件,分别是太平洋-欧亚俯冲的远场效应(123~90 Ma)和青藏高原向东北边缘挤压(21~15 Ma).雷万杉等(2025)通过磷灰石和锆石(U-Th)/He定年分析揭示了熊耳山太华群片麻岩自晚白垩世以来的4个阶段冷却历史(表1),剥露速率分别为0.159 km/Ma(94.1~74 Ma)、0.034 km/Ma(57~40 Ma)、0.129 km/Ma(40~30 Ma)和0.005 km/Ma(30 Ma至今).秦岭北麓及周边地区的构造抬升活动具有明显的阶段性特征,主要可分为3个阶段(表1):白垩纪、早新生代和晚新生代.研究数据显示剥露速率、冷却速率和抬升幅度均表现出逐渐增加的趋势.不同区域的抬升活动存在差异,尤其是华山地区在晚新生代的抬升活动最为显著.值得注意的是,剥露速率与冷却速率之间存在一定的正相关关系,表明构造活动的增强伴随着地壳的快速抬升和冷却.

裂变径迹年代学研究表明,秦岭北麓自新生代以来存在阶段性冷却加速,其中从渐新世至中新世,裂变径迹年龄逐渐变年轻,表明山体剥露速率加快,抬升作用增强.基于不同海拔高度采样分析表明,海拔越高,裂变径迹年龄越老,这一规律与山体抬升过程中岩石从深部向浅部逐渐冷却剥露的地质过程相吻合,精准勾勒出抬升过程中的时间节奏(Stockli,2005).这些研究成果为揭示秦岭北麓地区中新生代构造演化及变形历史提供了重要年代学证据.尽管由于采样位置、样品差异以及测年方法的局限性,不同学者对秦岭北麓新生代隆升时限和速率的热年代学研究结果存在差异,但总体来看,秦岭北麓的隆升经历了几个主要阶段:晚白垩世的缓慢隆升;始新世-渐新世中期快速隆升(孟庆任,2017);晚中新世起再次快速隆升并持续到第四纪.

3 秦岭北麓热演化历史

秦岭北麓不仅是构造和地貌演化的重要区域,也是热演化研究的热点地区.其独特的构造环境和复杂的地质历史,深刻影响了岩石圈的演化和地表环境的形成.为了深入了解秦岭北麓的热演化历史,笔者需要探究其地温演化特征以及与构造运动之间的关系.

万景林等(2005)对太白山采集的14个花岗岩样品进行磷灰石裂变径迹分析.热历史模拟图清晰地揭示出,太白山山体自晚白垩世起,经历了两段显著的快速抬升(图4a):(1)100~80 Ma,剥露速率约为0.12 km/Ma,累计剥露厚度约为2.4 km,此阶段主要受印支期主造山运动后碰撞阶段的陆内变形作用驱动(万景林等,2005);(2)发生于约40 Ma,剥露速率约为0.08 km/Ma,剥露厚度约为1.6 km,此次剥露事件受印度-欧亚板块碰撞远程效应的驱动(刘建辉等,2010;Liu et al.,2013;史小辉等,2018).

杨鹏等(2018)基于Ketcham et al.(1999)所构建的退火模型,根据研究区地质状况的复杂性与独特性,将已精准掌握的区域地质背景设定为关键边界约束条件,应用AFTSolve软件进行热史反演模拟,得出渭北地区西南缘-东北缘(麟游地区-永寿地区-礼泉东庄-韩城下白矾)的隆升演化历史(图4b).45~32 Ma之后,渭北隆起的隆升态势发生显著变化,剥露速率呈现出加快的趋势.位于渭北隆起南带的礼泉东庄地区,以及处于北带的韩城下白矾地区,情况尤为突出.约5 Ma,这两个地区遭受更为强烈的隆升作用,剥露速率再度增加,最终抬升至地表.

韩伟等(2020)对豫西宜阳地区二叠系地层开展了系统的裂变径迹研究,获得的磷灰石裂变径迹年龄范围为49~41 Ma.结合区域构造运动背景分析表明,秦岭造山带在始新世至渐新世期间受到喜马拉雅运动的强烈影响,导致区域剥露速率显著加快.研究结果显示,宜阳地区在49~41 Ma期间开始经历明显的构造抬升过程,这一发现为理解秦岭造山带新生代构造演化提供了重要的年代学约束.

王晓悦(2021)在北秦岭宝鸡岩体采集了3个花岗岩样品进行磷灰石裂变径迹、(U-Th)/He和锆石(U-Th)/He测试,其结果识别出两期快速冷却:晚侏罗世-早白垩世(160~110 Ma),区域发生快速隆升,冷却速率约为1.4 ℃/Ma,随后进入长期缓慢冷却的阶段,这一时期的快速冷却归因于羌塘地块和拉萨地块在秦岭造山带的西南方向碰撞;20 Ma至今,区域发生第2次快速隆升,对应的冷却速率为3.0 ℃/Ma,此阶段与青藏高原的隆升变形有关.

Yu et al.(2022)沿着秦岭山脉最高峰太白山西北部采集了14个花岗岩样品,进行磷灰石(U-Th)/He定年,其年龄范围为(63.8±1.2)~(14.4±0.4) Ma,然后利用QTQt模拟软件进行热演化史模拟,其结果表明在晚渐新世开始了一个快速冷却,剥露速率约为0.3 km/Ma.

Wang et al.(2022)对华山和终南山的花岗岩样品进行磷灰石(U-Th)/He定年,并使用HeFTy软件进行热史反演模拟.华山热历史模拟图(图4d)显示了早新生代的一个剥露冷却期,时间范围相对较宽,约为65~45 Ma,其隆升厚度约为2.4 km.在HS20-04样品上的模拟表明在渐新世冷却速度较快.终南山热历史模拟图(图4c)显示了在早白垩世发生了快速冷却事件,ZNS20-03样品在始新世早期(约50~45 Ma,剥露速率约为0.48 km/Ma)发生了快速冷却,其他3个样品还显示了渐新世的快速冷却.此外,ZNS20-06样品在20~10 Ma发生了冷却,剥露速率约为0.16 km/Ma.综合华山和终南山热历史模拟曲线,表明秦岭自中生代以来有3个快速冷却剥露阶段,即早白垩世、早新生代和渐新世.

雷万杉等(2025)对熊耳山太华群片麻岩开展了系统的热年代学研究,成功揭示了该区域自晚白垩世以来的冷却剥露历史.研究通过磷灰石和锆石(U-Th)/He定年分析,识别出4个特征明显的冷却阶段(图4e):第1阶段(94~57 Ma)表现为快速冷却(冷却速率约5.58 ℃/Ma);第2阶段(57~40 Ma)转为缓慢冷却(冷却速率约1.18 ℃/Ma);第3阶段(40~30 Ma)再次出现加速冷却(冷却速率约4.5 ℃/Ma);第4阶段(30 Ma至今)呈现缓慢冷却特征(冷却速率约0.167 ℃/Ma).

造山带受到构造抬升时,高海拔样品因更早剥露进入封闭温度区间而记录较老的冷却年龄,若后期未被剥露则该冷却年龄被保留.秦岭地区已报道的冷却年龄在空间分布上呈现出明显差异.秦岭东段AFT年龄范围为10~79 Ma(图5a),表现为典型的年龄-海拔正相关模式,较年轻的AFT年龄(部分<30 Ma)反映晚新生代以来的隆升,可能与华北克拉通南缘的构造活动有关;秦岭西段AFT(图5b)与AHe(图5c)年龄范围分别为:40~95 Ma和18~62 Ma,都呈现正相关的年龄-海拔模式,年龄跨度较大,表明该区域经历了多期冷却剥露过程:晚白垩世缓慢冷却;始新世-渐新世快速冷却以及晚新生代以来的持续冷却.结合区域构造背景,秦岭西段剥露隆升的方向呈现出从西南向东北逐渐迁移的趋势,这种迁移趋势很可能是青藏高原东北缘自10~8 Ma以来向东北方向扩展所致.

综合上述学者研究,其低温热年代学年龄随海拔升高呈现系统性增加的趋势,这一特征表明秦岭北麓经历了长期的构造抬升过程,其中高海拔地区由于经历更长时间的冷却历史而表现出较大的年龄值.年龄-海拔关系为定量估算区域剥露速率和识别抬升模式提供了关键约束,同时也为揭示构造活动的时间序列和强度变化提供了重要依据,反映剥蚀作用与构造抬升的耦合关系.

4 讨论

4.1 主要冷却阶段及时空迁移特征

秦岭北麓紧邻华北板块,受板块碰撞边界效应直接冲击,冷却隆升强度远超南麓,构造变形、岩石剥露集中于北麓(张国伟和孟庆任,1995),形成北陡南缓山势,热年代学年龄在北麓梯度变化更为明显,凸显冷却程度的南北差异.

(1)晚白垩世(95~75 Ma). 板块碰撞的后续应力持续作用,秦岭北麓处于强烈挤压环境,地壳加厚引发岩石圈深部热调整,开启初步冷却进程(王斌等,2017).冷却速率约 2.8°C/Ma,剥露速率约0.12 km/Ma.秦岭北麓构造抬升历程中的冷却阶段,与区域构造运动紧密交织,呈现出阶段性特征.

(2)始新世-渐新世(47~27 Ma). 始新世起拉张环境渐显,秦岭北麓断裂带活动性增强.秦岭北缘断裂差异运动显著,下盘抬升,上盘沉降,山脉隆升剥蚀加速(刘建辉等,2010),岩石快速趋近地表冷却速率显著加快.冷却速率约6.1 ˚C/Ma,剥露速率约0.24 km/Ma.磷灰石裂变径迹等热年代学数据清晰捕捉到这一冷却加速时段.

(3)晚中新世(10 Ma). 晚中新世迎来冷却高峰期.冷却速率约 2.1˚C/Ma,剥露速率约0.083 km/Ma.受青藏高原强烈隆升远程效应影响,秦岭北麓遭受强烈构造挤压与地壳缩短,山体急剧隆升,大量岩石短时间内从深部抬升至浅部低温环境,各热年代学体系均佐证该阶段快速冷却事实.西秦岭因更靠近青藏高原,较早感知印度板块碰撞的应力传递,于始新世前后率先启动冷却隆升,随后冷却前沿逐步向东拓展(史小辉等,2018),至晚中新世,东秦岭响应强烈,全域完成快速冷却格局塑造.

秦岭北麓在晚白垩世至新生代以来发生的快速冷却,以拉张断块、剪切平移、逆冲推覆构造为主要形式的强烈板内变形演化阶段,主要表现为强烈的伸展和急剧隆升并伴随大规模岩浆活动,构造沿断裂发育、叠加、改造,主断裂多表现为不同性质的多期活动(肖霖,2018).从中生代至新生代,冷却过程呈渐进强化态势.早期,板块碰撞余波下的冷却微弱且局限.新生代后,伴随全球板块格局重塑,秦岭北麓冷却作用随一次次构造运动而递进,从缓慢起步、局部活跃,到全域快速冷却,各阶段冷却中心也在山脉内部动态迁移,与断裂活动、岩浆侵入中心变迁协同,勾勒出较为复杂时空演化轨迹.

4.2 渭河盆地的沉积响应及渭北隆起的隆升响应

将盆地和造山带视为一个整体进行研究,这种“盆山耦合”思想为笔者理解造山带构造演化提供了新视角(Liu,1998;刘护军和薛祥煦,2004;邢作云等,2005;丁汝鑫等,2009).渭河盆地与秦岭构造隆升过程紧密相关,这一研究思路长期以来一直是地学界关注的焦点(Wang et al.,1987Liu,1998;刘护军和薛祥煦,2004;邢作云等,2005;Sun et al.,2005;Wang et al.,2012Mercier et al.,2013;王建强等,2015;Wang et al.,2016).

位于秦岭山脉北缘西端的太白山(3 767 m)与北侧渭河盆地(约400 m)之间形成了显著的高度差异,构成了典型的盆山耦合构造(肖霖,2018).这一耦合构造表明,秦岭山脉的隆升与渭河盆地的沉降是同步进行的,并且二者均受到秦岭北缘断裂的控制(彭建兵,1993;邢作云等,2005;Yu et al.,2022).新生代,秦岭地区构造运动十分活跃,尤其是秦岭北缘断裂带,其强烈的活动使得渭河盆地北部持续下陷,形成了厚达6 000~7 000 m的沉积层,并被第四纪风积黄土覆盖.这种剧烈构造运动造就了秦岭南北坡高低不同的独特地貌特征.秦岭北缘断裂不仅在秦岭地质构造的形成和演化中起着至关重要的作用,也对周边地区的地貌形态有很大的影响.刘东生等(1960)对渭河盆地的地层进行研究,表明位于渭河盆地南缘的蓝田地区新生界最底部为红河组,由一套冲积扇和河流沉积组成(张玉萍,1978).地质资料显示,秦岭地区新生代以来的构造活动主要沿平行于秦岭山脉的边界断层进行,表现为伸展构造变形(邢作云等,2005).另一方面,山体隆升与盆地沉降是一个耦合过程.源区山体在经历隆升剥蚀后,其剥蚀物质被搬运至相邻的盆地中,从而在盆地中的沉积记录可以用来推测源区山体的构造活动(沈传波等,2023).新生代以来,渭北地区便开启了新一轮的隆升历程.在新生代早期,约50 Ma之前,隆升活动主要集中于渭北地区西南缘,东北缘相对平静.直至大约45~32 Ma之际,渭北隆起的东北缘迎来了关键的隆升期,此时西南缘的快速隆升态势依旧不减,二者叠加,促使渭北隆起整体进入快速隆升的节奏(图6).而这一隆升活跃的时段,与渭河盆地基底加速沉降的时间节点大体契合(杨鹏等,2018).渭河盆地沉积始于始新世,自约10 Ma以来加速了剥蚀(Liu et al.,2013Yu et al.,2013).自早更新世以来,固市凹陷和西安凹陷的沉降速率呈现出显著增大的态势,现今渭北隆起依旧保持着持续且快速隆升状态,这种隆升与渭河盆地自1.2 Ma以来的整体快速沉降之间存在着紧密的耦合关系(刘护军和薛祥煦,2004;任战利等,2015;Yu et al.,2023).渭北隆起在新生代的隆升过程与渭河盆地的沉积-构造演化,无论是在时间维度上所展现出的一致性,还是在空间分布上呈现出的镜像关系,均体现出极为明显的耦合特征(图6).渭河盆地的研究表明,从始新世到中新世,盆地沉积作用主要集中在秦岭北缘断裂带,并且盆地沉积速率在约25 Ma时显著增加(Liu et al.,2013Heberer et al.,2014).

4.3 构造过程

大陆岩石圈表面两大基本构造单元包括盆地和造山带,它们之间具有密切联系.尤其是沉积盆地与其相应盆缘造山带在空间上相互依赖,物质上相互弥补,构造上相互影响,演化过程中在时间上保持同步,地表形态则通过调整与平衡展现出紧密的耦合关系(刘少峰等,2005;李德威等,2009).

秦岭造山带始于三叠纪经历了强烈的陆内造山作用,最终造就了现今秦岭地区的构造格局(张国伟等,2001;李曙光等,2005;彭建兵等,2023b;申艳军等,2024).根据前人研究资料(王全庆和裴先治,1990;滕志宏和王晓红,1996;韩恒悦等,2001;尹功明等,2001;吴中海等,2003;刘护军和薛祥煦,2004;刘建辉等,2010;Liu et al.,2013Heberer et al.,2014;张国伟和孟庆任,2019;董云鹏等,2022),其隆升过程可分为3个阶段:(1)晚白垩世-古新世,北秦岭及华北地块南缘处于压扭性构造环境,构造挤压导致抬升,早期地貌被夷平;(2)始新世以来(图7a),构造环境转变为伸展环境,北缘断裂上盘发生沉降,下盘抬升,秦岭开始隆升剥蚀;(3)现今秦岭山脉的高耸形态主要形成于晚中新世-第四纪(图7).其中,晚中生代的燕山造山运动和新生代的喜马拉雅造山运动代表了秦岭的陆内造山运动,其构造活动继承、改造并奠定了现今秦岭深部的“立交桥”构造和浅部的花状构造样式并与地表作用一起刻画了现今秦岭的主体地形地貌(张国伟等,2001).秦岭北麓在晚白垩世-古近纪经历了缓慢隆升剥露;进入始新世至渐新世,受喜马拉雅造山运动的强烈影响,秦岭北麓发生快速隆升(刘建辉等,2010;Shen et al.,2020);新生代晚期,该区域重新转入相对缓慢的隆升剥露阶段.

秦岭在新生代持续隆升、剥露,导致现今秦岭山脉与渭河盆地之间在不到40 km的距离内形成高达3 300 m的巨大高差,并造成新生代地层出露有限(肖霖,2018).秦岭、渭北隆起和渭河盆地在隆升、沉降和构造演化过程中表现出明显的同步性和耦合关系,特别是在时空和地表形态上的协调演变.在57~40 Ma,太白山和华山先后进入快速冷却阶段,并且在40~33 Ma,太白山和华山发生大规模隆升,与渭河盆地约在40 Ma基底快速沉降的时间对应(杨鹏等,2018).印度板块与欧亚板块碰撞导致青藏高原隆升和向外挤出,这直接影响了研究区周边构造单元演化.约40 Ma,渭河盆地基底加速沉降以及周围构造单元隆升是青藏高原隆升和挤压的远程响应.

晚新生代以来,青藏高原的东北向生长呈现渐进式激活特征(图8).研究表明,青藏高原生长前缘在始新世时期主要位于班公湖断裂带,随后在始新世至中新世期间(约45~20 Ma)逐渐向东北方向迁移至金沙江缝合带(Zhao et al.,1993,2011Kind et al., 2002Wang et al.,2013;高天扬,2023).断裂活动的时空演化特征显示,鄂拉山断裂的走滑活动始于中中新世(约15 Ma;Yuan et al.,2011Lu et al.,2012Zhang et al.,2012;刘金瑞,2023),龙首山断裂形成于约10~5 Ma(Tao et al.,2025).这些断裂系统的时空分布呈现出明显的从西南向东北方向递进迁移的规律(Zhang et al.,2023).

青藏高原在约10~8 Ma快速隆升和向东北扩展,与东秦岭的快速隆升(10~5 Ma;刘建辉等,2010)、渭北隆起(约5 Ma;任战利等,2014)的快速隆升以及渭河盆地晚中新世西安和固市凹陷的快速沉降(13.0~7.3 Ma)密切相关,这可能就是渭河盆地、渭北隆起和东秦岭造山带三者形成耦合关系的重要原因之一(杨鹏等,2018).晚新生代以来,由于青藏高原的东北向生长,北秦岭得到了强烈的活化和隆升(图8).青藏高原多次隆升事件对渭河盆地构造演化产生了重要影响.青藏高原早期隆升事件(45~38 Ma)早于渭河盆地主沉降期(张培震等,2006;许梦强等,2024),而中新世以来持续隆升与渭河盆地新近纪进入主沉降期、渭北隆起和东秦岭快速抬升期基本一致.这一时期,青藏高原隆升作用波及到周边地区(彭建兵等,2023a),加上太平洋板块俯冲和鄂尔多斯地块旋转带来的拉张应力,加剧了渭河盆地断裂活动和沉降作用(Yang et al.,2017).秦岭-大别造山带在20~15 Ma之间经历了快速隆升(Liu et al.,2013Chen et al.,2015).龙首山逆冲带记录了青藏高原在新生代早期和晚期的生长,中新世中期后的剥露主要是由青藏高原沿其东北边缘向华北克拉通的扩张所驱动的(Tao et al.,2025).龙首山自5 Ma以来已成为青藏高原的一部分,代表了高原东北部的活动变形边界,与秦岭北麓同期抬升.晚中新世时期,骊山开始隆升,与此同时,渭河盆地在游河期形成了西安凹陷和固市凹陷两个沉积中心.此外,约8 Ma时,渭河盆地周缘经历了一次强烈的区域隆升事件,该事件可能代表了青藏高原隆升与太平洋板块向欧亚板块俯冲共同作用的结果,并对秦岭的隆升过程产生了显著影响(王天毅等,2019).秦岭造山带持续隆升与渭河盆地加速沉降形成了差异(图7b),促进了秦岭造山带的剥蚀,为渭河盆地沉积提供了物质基础.此外,深部热物质被动上涌也为渭河盆地的形成提供了基础(饶松等,2016).秦岭隆升剥露后,其剥蚀物质被搬运至邻近盆地并沉积,这些盆地沉积物保存了丰富的源区基岩隆升剥露信息.然而,秦岭地区持续的隆升剥蚀作用导致新生代地层出露有限,仅见于渭河及其支流沿岸(渭河盆地)以及秦岭东段的山间盆地,例如洛南盆地、石门盆地和商丹盆地等.

5 结论

综合秦岭北麓构造抬升过程的低温热年代学研究进展,热年代学数据为秦岭北麓的抬升历史锚定了精确的时间节点与速率变化.从晚白垩世至新生代,多期次冷却、隆升事件被逐一揭示,构建起秦岭北麓构造演化动态时间表.

秦岭北麓晚白垩世以来的构造抬升与青藏高原隆升以及渭河盆地发育之间存在着极为紧密的内在联系.在晚白垩世(95~75 Ma)发生缓慢冷却,始新世-渐新世(47~27 Ma)快速冷却以及晚新生代(10 Ma)以来持续冷却.约10~8 Ma青藏高原东北缘向外挤压引起秦岭北麓抬升.渭北隆起、太白山、华山自晚白垩世以来的剥露抬升,产生大量剥蚀碎屑物,为渭河盆地提供了丰富的物源.渭河盆地自晚中新世约7.3 Ma以来的持续快速沉积、沉降,与秦岭北麓的抬升存在清晰的耦合关系.同时,山脉隆升造成的地势差加剧地表径流侵蚀搬运能力,促使沉积物源源不断输入盆地,盆地沉降则刚好容纳堆积这些碎屑,维持两者动态平衡.未来,借助更高精度低温热年代学技术,以及跨学科的盆地分析手段,有望进一步细化这一耦合关系,深化对区域地质演化的认知.

参考文献

[1]

Boyce, J. W., Hodges, K. V., Olszewski, W. J., et al., 2006. Laser Microprobe (U-Th)/He Geochronology. Geochimica et Cosmochimica Acta, 70(12): 3031-3039. https://doi.org/10.1016/j.gca.2006.03.019

[2]

Chang, J., Qiu, N. S., Zuo, Y. H., et al., 2011. The New Evidence on Tectonic Uplift in Kepingtage Area, Tarim, China: Constraints from (U-Th)/He Ages. Chinese Journal of Geophysics, 54(1): 163-172 (in Chinese with English abstract).

[3]

Chen, H., Hu, J. M., Wu, G. L., et al., 2015. Apatite Fission-Track Thermochronological Constraints on the Pattern of Late Mesozoic–Cenozoic Uplift and Exhumation of the Qinling Orogen, Central China.Journal of Asian Earth Sciences, 114: 649-673. https://doi.org/10.1016/j.jseaes.2014.10.004

[4]

Chew, D. M., Spikings, R. A., 2015. Geochronology and Thermochronology Using Apatite: Time and Temperature, Lower Crust to Surface. Elements, 11(3): 189-194. https://doi.org/10.2113/gselements.11.3.189

[5]

Ding, R. X., Chen, G. N., Zhou, Z. Y., et al., 2012. The Paleoelevation Reconstruction of Late Cretaceous Dabie Orogen by Low-Temperature Thermochronological Modelling Data. Journal of Jilin University (Earth Science Edition), 42(S1): 247-253(in Chinese with English abstract).

[6]

Ding, R. X., Wang, L., Xu, C. H., et al., 2009. Quantitative Contrast of Dabie Orogenic Erosion and Adjacent Sedimentary Basins Deposition through Thermal History Modelling of Fission Track. Advances in Earth Science, 24(8): 942-946 (in Chinese with English abstract).

[7]

Donelick, R. A., O’sullivan,P.B., Ketcham,R.A., 2005. Apatite Fission-Track Analysis. Reviews in Mineralogy and Geochemistry, 58(1): 49-94. https://doi.org/10.2138/rmg.2005.58.3

[8]

Dong, Y. P., Safonova, I., Wang, T., 2016. Tectonic Evolution of the Qinling Orogen and Adjacent Orogenic Belts. Gondwana Research, 30: 1-5. https://doi.org/10.1016/j.gr.2015.12.001

[9]

Dong, Y. P., Yang, Z., Sun, S. S., et al., 2022. Qinling Uplift Process and How to Control the Climate Environment.Earth Science, 47(10): 3834-3836 (in Chinese).

[10]

Dong, Y. P., Zhang, G. W., Neubauer, F., et al., 2011. Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 41(3): 213-237. https://doi.org/10.1016/j.jseaes.2011.03.002

[11]

Enkelmann, E., Ratschbacher, L., Jonckheere, R., et al., 2006. Cenozoic Exhumation and Deformation of Northeastern Tibet and the Qinling: Is Tibetan Lower Crustal Flow Diverging around the Sichuan Basin?Geological Society of America Bulletin, 118(5-6): 651-671. https://doi.org/10.1130/b25805.1

[12]

Farley, K. A., 2000. Helium Diffusion from Apatite: General Behavior as Illustrated by Durango Fluorapatite. Journal of Geophysical Research:Solid Earth, 105(B2): 2903-2914. https://doi.org/10.1029/1999JB900348

[13]

Farley, K. A., 2002. (U-Th)/He Dating: Techniques, Calibrations, and Applications. Reviews in Mineralogy and Geochemistry, 47(1): 819-844. https://doi.org/10.2138/rmg.2002.47.18

[14]

Farley, K. A., Wolf, R. A., Silver, L. T., 1996. The Effects of Long Alpha-Stopping Distances on (U-Th)/He Ages. Geochimica et Cosmochimica Acta, 60(21): 4223-4229. https://doi.org/10.1016/S0016-7037(96)00193-7

[15]

Fitzgerald, P. G., Sorkhabi, R. B., Redfield, T. F., et al., 1995. Uplift and Denudation of the Central Alaska Range: A Case Study in the Use of Apatite Fission Track Thermochronology to Determine Absolute Uplift Parameters. Journal of Geophysical Research: Solid Earth, 100(B10): 20175-20191. https://doi.org/10.1029/95JB02150

[16]

Gao, T. Y., 2023. The Structure of the Crust beneath Eastern Tibetan Plateau (Dissertation). Institute of Geophysics China Earthquake Administation, Beijing (in Chinese with English abstract).

[17]

Ge, X., Shen, C. B., Mei, L. F., 2016. Low-Temperature Thermochronological Constraints on the Mesozoic-Cenozoic Paleotopograph in the Huangling Massif. Geotectonica et Metallogenia, 40(4): 654-662 (in Chinese with English abstract).

[18]

Ge, X., Shen, C. B., Yang, Z., et al., 2013. Low-Temperature Thermochronology Constraints on the Mesozoic-Cenozoic Exhumation of the Huangling Massif in the Middle Yangtze Block, Central China. Journal of Earth Science, 24(4): 541-552. https://doi.org/10.1007/s12583-013-0348-8

[19]

Gleadow, A. J. W., Duddy, I. R., 1981. A Natural Long-Term Track Annealing Experiment for Apatite. Nuclear Tracks, 5(1-2): 169-174. https://doi.org/10.1016/0191-278X(81)90039-1

[20]

Han, H. Y., Mi, F. S., Liu, H. Y., 2001. Geomorphological Structure in the Weihe Basin and Neotectonic Movement. Journal of Seismological Research, 24(3): 251-257 (in Chinese with English abstract).

[21]

Han, W., Li, C. F., Li, W. H., et al., 2020. Constraints of Tectonic Evolution of Mesozoic and Cenozoic in Yiyang Area of Western Henan by Fission Track. Chinese Journal of Geology (Scientia Geologica Sinica), 55(4): 1290-1297 (in Chinese with English abstract).

[22]

He, C.G., Li, J. W., Kontak, D. J., et al., 2023. An Early Cretaceous Gold Mineralization Event in the Triassic West Qinling Orogen Revealed from U-Pb Titanite Dating of the Ma’anqiao Gold Deposit. Scientia Sinica (Terrae), 53(2): 300-318 (in Chinese).

[23]

Heberer, B., Anzenbacher, T., Neubauer, F., et al., 2014. Polyphase Exhumation in the Western Qinling Mountains, China: Rapid Early Cretaceous Cooling along a Lithospheric-Scale Tear Fault and Pulsed Cenozoic Uplift. Tectonophysics, 617: 31-43. https://doi.org/10.1016/j.tecto.2014.01.011

[24]

Hendrix, M. S., Dumitru, T. A., Graham, S. A., 1994. Late Oligocene-Early Miocene Unroofing in the Chinese Tian Shan: An Early Effect of the India-Asia Collision. Geology, 22(6): 487. https://doi.org/10.1130/0091-7613(1994)0220487:loemui>2.3.co;2

[25]

Hou, J. J., Han, M. K., Zhang, B. Z., et al., 1995. Geomorphic Expressions of the Activity along North Qinling Piedmont Fault Zone in the Late Quaternary Period.Acta Geographica Sinica, 50(2): 138-146 (in Chinese with English abstract).

[26]

Hu, R. Q., Wu, L. Y., 2024. Advances of the (U-Th)/He Thermochronology and Its Applications. Acta Mineralogica Sinica, 44(2): 273-286 (in Chinese with English abstract).

[27]

Huang, Y., Fu, S. L., Zhao, C. H., et al., 2021. Low-Temperature Thermochronology and Its Applications for Studying Ore Deposits. Bulletin of Mineralogy, Petrology and Geochemistry, 40(4): 958-973 (in Chinese with English abstract).

[28]

Jiang, C. F., Wang, Z.Q., Li, J.Y., et al., 2000. Open-Close Structure of Central Orogenic Belt.Geological Publishing House,Beijing (in Chinese).

[29]

Ketcham, R. A., Donelick, R. A., Carlson, W. D., 1999. Variability of Apatite Fission-Track Annealing Kinetics; III, Extrapolation to Geological Time Scales. American Mineralogist, 84(9): 1235-1255. https://doi.org/10.2138/am-1999-0903

[30]

Kind, R., Yuan, X., Saul, J., et al., 2002. Seismic Images of Crust and Upper Mantle beneath Tibet: Evidence for Eurasian Plate Subduction. Science, 298(5596): 1219-1221. https://doi.org/10.1126/science.1078115

[31]

Lei, W. S., Zhang, R., Li, S. Z., et al., 2025. Exhumation Processes of the Metamorphic Basement of the Taihua Group in the Southern Margin of the North China Craton: Evidence from (U-Th)/He Thermochronology. Acta Geologica Sinica, 99(6): 1964-1978 (in Chinese with English abstract).

[32]

Li, D. W., Xia, Y. P., Xu, L. G., 2009. Coupling and Formation Mechanism of Continental Intraplate Basin and Orogen—Examples from the Qinghai-Tibet Plateau and Adjacent Basins. Earth Science Frontiers, 16(3): 110-119 (in Chinese with English abstract).

[33]

Li, H. B., Franck, V., Nicolas, A., et al., 2008. Rapid Uplifting in the Process of Strike-Slip along the Karakorum Fault Zone in Western Tibet: Evidence from 40Ar/39Ar Thermochronology. Acta Petrologica Sinica, 24(7): 1552-1566 (in Chinese with English abstract).

[34]

Li, Q., Wang, Y., Wan, J. L., et al., 2001. Thermochronological Evidence of Tectonic Uplift for the Middle Area of Qinling in Meso-Cenozoic. Bulletin of Mineralogy, Petrology and Geochemistry, 20(4): 263-265 (in Chinese with English abstract).

[35]

Li, S. G., Li, Q. L., Hou, Z. H., et al., 2005. Cooling History and Exhumation Mechanism of the Ultrahigh-Pressure Metamorphic Rocks in the Dabie Mountains, Central China. Acta Petrologica Sinica, 21(4): 1117-1124 (in Chinese with English abstract).

[36]

Li, Z. K., Hu, J., Zhang, J., et al., 2025. Distribution and Resources of Dispersed Metals in Pb-Zn Deposits of Qinling Orogenic Belt. Earth Science, 50(6): 2083-2106 (in Chinese with English abstract).

[37]

Liu, D. S., Ding, M. L., Gao, F. Q., 1960. Cenozoic Stratigraphic Profile in Lantian, Xi’an. Chinese Journal of Geology (Scientia Geologica Sinica), 3(4): 199-208 (in Chinese).

[38]

Liu, H. J., Xue, X. X., 2004. Discussion on the Cenozoic and Its Chronology in the Weihe River Basin. Journal of Earth Sciences and Enivronment, 26(4): 1-5 (in Chinese with English abstract).

[39]

Liu, J. H., Zhang, P. Z., Lease, R. O., et al., 2013. Eocene Onset and Late Miocene Acceleration of Cenozoic Intracontinental Extension in the North Qinling Range-Weihe Graben: Insights from Apatite Fission Track Thermochronology. Tectonophysics, 584: 281-296. https://doi.org/10.1016/j.tecto.2012.01.025

[40]

Liu, J. H., Zhang, P. Z., Zheng, D. W., et al., 2010. The Cooling History of Cenozoic Exhumation and Uplift of the Taibai Mountain, Qinling, China: Evidence from the Apatite Fission Track (AFT) Analysis. Chinese Journal of Geophysics, 53(10): 2405-2414 (in Chinese with English abstract).

[41]

Liu, J. R., 2023. Late Quaternary Activity and Tectonic Deformation Kinematics of Dextral Strike-Slip Faults in the Northeast Margin of the Tibetan Plateau, China (Dissertation). Institute of Geology, China Earthquake Administration,Beijing (in Chinese with English abstract).

[42]

Liu, S. F., 1998. The Coupling Mechanism of Basin and Orogen in the Western Ordos Basin and Adjacent Regions of China. Journal of Asian Earth Sciences, 16(4): 369-383. https://doi.org/10.1016/S0743-9547(98)00020-8

[43]

Liu, S. F., Zhang, G. W., 2005. Fundamental Ideas, Contents and Methods in Study of Basin and Mountain Relationships. Earth Science Frontiers, 12(3): 101-111 (in Chinese with English abstract).

[44]

Liu, W. B., Tao, N., Sun, J. B., et al., 2025. A Review on the Zircon Laser In-Situ Microanalytical U-Th-Pb-He Double Dating. Bulletin of Mineralogy, Petrology and Geochemistry, 44(1): 162-177 (in Chinese with English abstract).

[45]

Lovera, O. M., Richter, F. M., Harrison, T. M., 1989. The 40Ar/39Ar Thermochronometry for Slowly Cooled Samples Having a Distribution of Diffusion Domain Sizes.Journal of Geophysical Research: Solid Earth, 94(B12): 17917-17935. https://doi.org/10.1029/JB094iB12p17917

[46]

Lu, H. J., Wang, E., Shi, X. H., et al., 2012. Cenozoic Tectonic Evolution of the Elashan Range and Its Surroundings, Northern Tibetan Plateau as Constrained by Paleomagnetism and Apatite Fission Track Analyses. Tectonophysics, 580: 150-161. https://doi.org/10.1016/j.tecto.2012.09.013

[47]

Lyu, H. H., Chang, Y., Wang, W., et al., 2013. Early Miocene Rapid Stripping in Tianshan Mountains: Apatite Fission Track and (U-Th)/He Low Temperature Thermochronological Evidence. Scientia Sinica (Terrae), 43(12): 1964-1974 (in Chinese).

[48]

Meng, Q.R., 2017. Origin of the Qinling Mountains. Scientia Sinica (Terrae), 47(4): 412-420 (in Chinese).

[49]

Meng, W., Guo, X. Y., Li, Y. H., et al., 2022. Tectonic Stress Field and Dynamic Characteristics in the Northeastern Margin of the Tibetan Plateau. Chinese Journal of Geophysics, 65(9): 3229-3251 (in Chinese with English abstract).

[50]

Mercier, J. L., Vergely, P., Zhang, Y. Q., et al., 2013. Structural Records of the Late Cretaceous-Cenozoic Extension in Eastern China and the Kinematics of the Southern Tan-Lu and Qinling Fault Zone (Anhui and Shaanxi Provinces, PR China). Tectonophysics, 582: 50-75. https://doi.org/10.1016/j.tecto.2012.09.015

[51]

Monteiro, H. S., Vasconcelos, P. M. P., Farley, K. A., et al., 2018. Age and Evolution of Diachronous Erosion Surfaces in the Amazon: Combining (U-Th)/He and Cosmogenic 3He Records. Geochimica et Cosmochimica Acta, 229: 162-183. https://doi.org/10.1016/j.gca.2018.02.045

[52]

Peng, H., Wang, J. Q., Zattin, M., et al., 2018. Late Triassic-Early Jurassic Uplifting in Eastern Qilian Mountain and Its Geological Significance: Evidence from Apatite Fission Track Thermochronology. Earth Science, 43(6): 1983-1996 (in Chinese with English abstract).

[53]

Peng, J. B., 1993. Fractile Geometric Features of the Two Margin Active Faults in the Weihe Basin. Journal of Chang’an University Earth Science Edition, 15(1): 52-60 (in Chinese with English abstract).

[54]

Peng, J. B., Li, Z. H., 2022. Can Geo-Big Data Help Geological Disaster Prediction? Earth Science, 47(10): 3900-3901 (in Chinese).

[55]

Peng, J. B., Shen, Y. J., Jin, Z., et al., 2023a. Key Thoughts on the Study of Eco-Geological Environment System in Qinling Mountains. Acta Ecologica Sinica, 43(11): 4344-4358(in Chinese with English abstract).

[56]

Peng, J. B., Zhang, Y. S., Huang, D., et al., 2023b. Interaction Disaster Effects of the Tectonic Deformation Sphere, Rock Mass Loosening Sphere, Surface Freeze-Thaw Sphere and Engineering Disturbance Sphere on the Tibetan Plateau. Earth Science, 48(8): 3099-3114(in Chinese with English abstract).

[57]

Rao, S., Jiang, G. Z., Gao, Y. J., et al., 2016. The Thermal Structure of the Lithosphere and Heat Source Mechanism of Geothermal Field in Weihe Basin. Chinese Journal of Geophysics, 59(6): 2176-2190 (in Chinese with English abstract).

[58]

Ratschbacher, L., Hacker, B. R., Calvert, A., et al., 2003. Tectonics of the Qinling (Central China): Tectonostratigraphy, Geochronology, and Deformation History. Tectonophysics, 366(1-2): 1-53. https://doi.org/10.1016/S0040-1951(03)00053-2

[59]

Reiners, P. W., 2005. Zircon (U-Th)/He Thermochronometry.Reviews in Mineralogy and Geochemistry, 58(1): 151-179. https://doi.org/10.2138/rmg.2005.58.6

[60]

Reiners, P. W., Brandon, M. T., 2006. Using Thermochronology to Understand Orogenic Erosion.Annual Review of Earth and Planetary Sciences, 34: 419-466. https://doi.org/10.1146/annurev.earth.34.031405.125202

[61]

Reiners, P. W., Zhou,Z.Y., Ehlers,T.A., 2003. Post-Orogenic Evolution of the Dabie Shan, Eastern China, from (U-Th)/He and Fission-Track Thermochronology. American Journal of Science, 303(6): 489-518. https://doi.org/10.2475/ajs.303.6.489

[62]

Ren, Z. L., Cui, J. P., Guo, K., et al., 2015. Fission-Track Analysis of Uplift Times and Processes of the Weibei Uplift in the Ordos Basin. Chinese Science Bulletin, 60(14): 1298-1309 (in Chinese).

[63]

Ren, Z. L., Cui, J. P., Li, J. B., et al., 2014. Tectonic-Thermal History Reconstruction of Ordovician in the Weibei Uplift of Ordos Basin. Acta Geologica Sinica, 88(11): 2044-2056 (in Chinese with English abstract).

[64]

Shen, C. B., Ge, X., Wu, Y., et al., 2023. Progress and Development Trends of Fault Activities Dating Technologies in Basins. Earth Science, 48(2): 735-748 (in Chinese with English abstract).

[65]

Shen, C. B., Hu, D., Min, K., et al., 2020. Post-Orogenic Tectonic Evolution of the Jiangnan-Xuefeng Orogenic Belt: Insights from Multiple Geochronometric Dating of the Mufushan Massif, South China. Journal of Earth Science, 31(5): 905-918. https://doi.org/10.1007/s12583-020-1346-2

[66]

Shen, X. M., Tian, Y. T., Li, D. W., et al., 2016. Oligocene-Early Miocene River Incision near the First Bend of the Yangze River: Insights from Apatite (U-Th-Sm)/He Thermochronology. Tectonophysics, 687: 223-231. https://doi.org/10.1016/j.tecto.2016.08.006

[67]

Shen, Y. J., Chen, X., Peng, J. B., et al., 2024. Background Characteristics of Ecological Geological Environment System in Qinling Mountains and Assumption of Its Theoretical System. Earth Science, 49(6): 2103-2119 (in Chinese with English abstract).

[68]

Shi, X. H., Yang, Z., Dong, Y. P., et al., 2018. Transient Geomorphic Characteristics of the Upper Jialing River Basin, West Qinling, Northeastern Tibetan Plateau. Chinese Journal of Geology (Scientia Geologica Sinica), 53(3): 819-834 (in Chinese with English abstract).

[69]

Stockli, D. F., 2005. Application of Low-Temperature Thermochronometry to Extensional Tectonic Settings. Reviews in Mineralogy and Geochemistry, 58(1): 411-448. https://doi.org/10.2138/rmg.2005.58.16

[70]

Sun, J. M., 2005. Long-Term Fluvial Archives in the Fen Wei Graben, Central China, and Their Bearing on the Tectonic History of the India-Asia Collision System during the Quaternary. Quaternary Science Reviews, 24(10-11): 1279-1286. https://doi.org/10.1016/j.quascirev.2004.08.018

[71]

Tao, N., Duan, J., Danišík, M., et al., 2023. Paleozoic Tectonothermal Evolution of the Jinchuan Ni-Cu Sulfide Deposit, NW China: New Constraints from 40Ar/39Ar and (U-Th)/He Thermochronology. Journal of Asian Earth Sciences, 250: 105622. https://doi.org/10.1016/j.jseaes.2023.105622

[72]

Tao, N., Jiao, R. H., Liu, Y. D., et al., 2025. Thermotectonic History of the Longshou Shan: From Paleozoic Tethys Subduction to Cenozoic Tibetan Plateau Growth. Tectonophysics,895: 230560.https://doi.org/10.1016/j.tecto.2024.230560

[73]

Tao, N., Li, Z. X., Danišík, M., et al., 2017. Thermochronological Record of Middle–Late Jurassic Magmatic Reheating to Eocene Rift-Related Rapid Cooling in the SE South China Block. Gondwana Research, 46: 191-203. https://doi.org/10.1016/j.gr.2017.03.003

[74]

Tao, N., Li, Z. X., Danišík, M., et al., 2019. Post-250 Ma Thermal Evolution of the Central Cathaysia Block (SE China) in Response to Flat-Slab Subduction at the Proto-Western Pacific Margin. Gondwana Research, 75: 1-15. https://doi.org/10.1016/j.gr.2019.03.019

[75]

Teng, Z. H., Wang, X. H., 1996. Studies of the Tectonic Uplift at the Cenozoic Era and the Regionally Environmental Effects in the Qinling Orogenic Belt. Geology of Shaanxi, 14(2): 33-42 (in Chinese with English abstract).

[76]

Vermeesch, P., 2012. On the Visualisation of Detrital Age Distributions. Chemical Geology, 312: 190-194. https://doi.org/10.1016/j.chemgeo.2012.04.021

[77]

Wan, J. L., Li, Q., Wang, Y., 2000. The Fission Track Evidence of Huashan Batholith Uplifting in Mesozoic-Cenozoic. Seismology and Geology, 22(1): 53-58 (in Chinese with English abstract).

[78]

Wan, J. L., Wang, Y., Li, Q., et al., 2005. Apatite Fission Track Study of Taibai Mountain Uplift in the Mesozoic-Cenozoic. Nuclear Techniques, 28(9): 712-716 (in Chinese with English abstract).

[79]

Wang, B., Chang, H., Duan, K. Q., 2017. The Tectonic Uplift and Its Environmental Effects of the Qinling Mountains during the Cenozoic Era: Progress and Problems. Advances in Earth Science, 32(7): 707-715 (in Chinese with English abstract).

[80]

Wang, J. M., 1987. The Fenwei Rift and Its Recent Periodic Activity. Tectonophysics, 133(3-4): 257-275. https://doi.org/10.1016/0040-1951(87)90269-1

[81]

Wang, J. Q., Liu, C. Y., Gao, F., et al., 2015. Pre-Cenozoic Geological Characteristics and Oil-Gas Significance in Weihe Basin, Shaanxi Province. Geological Bulletin of China, 34(10): 1981-1991 (in Chinese with English abstract).

[82]

Wang, Q. Q., Pei, X. Z., 1990. The Structural Features and the Evolution of the Weihe Rift Basin. Journal of Chang’an University Earth Science Edition, 12(1): 40-49 (in Chinese with English abstract).

[83]

Wang, T. Y., Zeng, Z. C., Yang, T., et al., 2019. Time Limit of Lishan Uplift and Its Geological Significance. Geology of Shaanxi, 37(1): 42-48 (in Chinese with English abstract).

[84]

Wang, W. T., Huang, R., Wu, Y., et al., 2023. Cenozoic Clockwise Rotation of the Northeastern Tibetan Plateau: Paleomagnetic Evidence from Volcanic Sequences in the West Qinling Mountain. Global and Planetary Change,224: 104097.https://doi.org/10.1016/j.gloplacha.2023.104097

[85]

Wang, W. T., Zhang, P. Z., Liu, C. C., et al., 2016. Pulsed Growth of the West Qinling at ~30 Ma in Northeastern Tibet: Evidence from Lanzhou Basin Magnetostratigraphy and Provenance. Journal of Geophysical Research:Solid Earth, 121(11): 7754-7774.https://doi.org/10.1002/2016JB013279

[86]

Wang, X. X., Li, J. J., Song, C. H., et al., 2006. Cenozoic Uplift of West Qinling, Northeast Margin of Tibetan Plateau: The Record of Detrital Apatite Fission Track Data in Tianshui Basin. Acta Sedimentologica Sinica, 24(6): 783-789 (in Chinese with English abstract).

[87]

Wang, X. X., Zattin, M., Li, J. J., et al., 2013. Cenozoic Tectonic Uplift History of Western Qinling: Evidence from Sedimentary and Fission-Track Data. Journal of Earth Science, 24(4): 491-505. https://doi.org/10.1007/s12583-013-0345-y

[88]

Wang, X. Y., 2021. The Cooling and Denudation History of Mesozoic and Cenozoic in the Western Qinling Mountains: Constraints from Low-Temperature Chronology (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).

[89]

Wang, Y. Z., Li, C. P., Hao, Y. Q., et al., 2022. Multi-Stage Growth in the North Margin of the Qinling Orogen, Central China, Revealed by Both Low-Temperature Thermochronology and River Profile Inversion. Tectonics, 41(4): e2021TC007029. https://doi.org/10.1029/2021TC007029

[90]

Wang, Z. C., Zhang, P. Z., Garzione, C. N., et al., 2012. Magnetostratigraphy and Depositional History of the Miocene Wushan Basin on the NE Tibetan Plateau, China: Implications for Middle Miocene Tectonics of the West Qinling Fault Zone. Journal of Asian Earth Sciences, 44: 189-202. https://doi.org/10.1016/j.jseaes.2011.06.009

[91]

Wu, Z. H., Wu, Z. H., Wan, J. L., et al., 2003. Cenezoic Uplift and Denudation History of Huashan Mountains: Evidence from Fission Track Thermo-Chronology of Huashan Granite. Geological Science and Technology Information, 22(3): 27-32 (in Chinese with English abstract).

[92]

Xiao, H., Li, J. X., Han, W., et al., 2013. The Tectonic Uplift Time and Evolution Characteristics of Weibei Uplift in the South Edge of Ordos Basin. Journal of Xi’an University of Science and Technology, 33(5): 576-582, 593(in Chinese with English abstract).

[93]

Xiao, L., 2018. U-Th/He Thermochronology: Methods and Their Application to Cenozoic Uplift in the Qinling Mountains (Dissertation). Institute of Geology, China Earthquake Administration, Beijing (in Chinese with English abstract).

[94]

Xing, Z. Y., Zhao, B., Tu, M. Y., et al., 2005. Study on the Coupling Relationship between Fenwei Rift System and Orogenic Belt and Its Formation Mechanism. Earth Science Frontiers, 12(2): 247-262 (in Chinese with English abstract).

[95]

Xu, C. H., Zhou, Z. Y., Chang, Y., et al., 2010. Relationship between the Formation of Daba Mountain Arc Tectonic Belt and the Uplift on Both Sides: FT and (U-Th)/He Low-Temperature Thermal Age Constraints. Scientia Sinica (Terrae), 40(12): 1684-1696 (in Chinese).

[96]

Xu, M. Q., Zheng, W. J., Duan, L., et al., 2024. Magnetic Fabric Characteristic of Cenozoic Sediments from Lulehe Section in the Northern Qaidam Basin, China and Its Tectonic Implications. Journal of Earth Sciences and Environment, 46(3): 364-383 (in Chinese with English abstract).

[97]

Xu, P. P., Shen, Y. J., Peng, J. B., et al., 2024. Typed Architecture of Valley Road in Northern Foothills of Qinling Mountains Based on Concept of Ecological-Economic-Social Collaborative Development. Earth Science, 49(12): 4564-4575 (in Chinese with English abstract).

[98]

Yang, L., Yuan, W. M., Hong, S. J., et al., 2022. Fission Track Technology and Its Geological Applications. Geological Survey of China, 9(3): 104-112 (in Chinese with English abstract).

[99]

Yang, P., Ren, Z. L., Zhang, J. G., et al., 2018. Discussion of the Coupling Relationships between the Cenozoic Sedimentary-Tectonic Migration of the Weihe Basin and the Uplift of the Weibei and East Qinling Areas. Chinese Journal of Geology (Scientia Geologica Sinica), 53(3): 876-892 (in Chinese with English abstract).

[100]

Yang, Z., Dong, Y. P., Liu, X. M., et al., 2006. LA-ICP-MS Zircon U-Pb Dating of Gabbro in the Guanzizhen Ophiolite, Tianshui, West Qinling, China. Geological Bulletin of China, 25(11): 1321-1325 (in Chinese with English abstract).

[101]

Yang, Z., Dong, Y. P., Zhou, D. W., et al., 2008. Geochemistry and Geologic Significance of Basic Rocks in the Xiaomoling Complex in the Zhashui Area, South Qinling, China. Geological Bulletin of China, 27(5): 611-617 (in Chinese with English abstract).

[102]

Yang, Z., Shen, C. B., Ratschbacher, L., et al., 2017. Sichuan Basin and beyond: Eastward Foreland Growth of the Tibetan Plateau from an Integration of Late Cretaceous-Cenozoic Fission Track and (U-Th)/He Ages of the Eastern Tibetan Plateau, Qinling, and Daba Shan. Journal of Geophysical Research: Solid Earth, 122(6): 4712-4740. https://doi.org/10.1002/2016JB013751

[103]

Yin, G. M., Lu, Y. C., Zhao, H., et al., 2001. Cenozoic Tectonic Uplift of Huashan Mountain. Chinese Science Bulletin, 46(13): 1121-1123 (in Chinese).

[104]

Yu, J. X., Zheng, D. W., Pang, J. Z., et al., 2022. Cenozoic Mountain Building in Eastern China and Its Correlation with Reorganization of the Asian Climate Regime. Geology, 50(7): 859-863. https://doi.org/10.1130/g49917.1

[105]

Yu, Q., Ren, Z. l., Li, R. X., et al., 2023. Different Burial-Cooling History of Triassic Strata between the Western Weibei Uplift and the Northwestern Weihe Basin in North-west China. Journal of Earth Science, 34(5): 1543-1555. https://doi.org/10.1007/s12583-021-1432-0

[106]

Yu, X. Q., Liu, J. L., Zhang, D. H., et al., 2013. Uprising Period and Elevation of the Wenyu Granitic Pluton in the Xiaoqinling District, Central China. Chinese Science Bulletin, 58(35): 4459-4471. https://doi.org/10.1007/s11434-013-5830-2

[107]

Yu, X.L., Li, J.W., Jin, X.Y., et al., 2024. Monazite U-Th-Pb and Sericite Rb-Sr Dating of the Xiajiadian Black Shale-Hosted Gold Deposit in the Qinling Orogen, Central China: Implications for Regional Gold Metallogeny.Scientia Sinica (Terrae), 54(8): 2515-2533 (in Chinese).

[108]

Yuan, D. Y., Champagnac, J. D., Ge, W. P., et al., 2011. Late Quaternary Right-Lateral Slip Rates of Faults Adjacent to the Lake Qinghai, Northeastern Margin of the Tibetan Plateau. Geological Society of America Bulletin, 123(9-10): 2016-2030. https://doi.org/10.1130/b30315.1

[109]

Zhang, G. W., Guo, A. L., Dong, Y. P., et al., 2019. Rethinking of the Qinling Orogen. Journal of Geomechanics, 25(5): 746-768 (in Chinese with English abstract).

[110]

Zhang, G. W., Meng, Q. R., Lai, S. C., 1995. Structure of Qinling Orogenic Belt. Science in China (Ser.B), 25(9): 994-1003 (in Chinese).

[111]

Zhang, G. W., Zhang, B. R., Yuan X.C.,et al., 2001. Qinling Orogenic Beit and Continental Dynamics. Science Press, Beijing (in Chinese).

[112]

Zhang, H. P., Craddock, W. H., Lease, R. O., et al., 2012. Magnetostratigraphy of the Neogene Chaka Basin and Its Implications for Mountain Building Processes in the North-Eastern Tibetan Plateau. Basin Research, 24(1): 31-50. https://doi.org/10.1111/j.1365-2117.2011.00512.x

[113]

Zhang, H., 2008. U-Pb Chronology of Modern Fluvial Detrital Zircons in the Northern Foot of Qinling Mountains and Its Geological Significance (Dissertation). Northwest University, Xi’an (in Chinese with English abstract).

[114]

Zhang, P. Z., Zheng, D. W., Yin, G. M., et al., 2006. Discussion on Late Cenozoic Growth and Rise of Northeastern Margin of the Tibetan Plateau. Quaternary Sciences, 26(1): 5-13 (in Chinese with English abstract).

[115]

Zhang, Y. P., 1978. Cenozoic in Lantian Area of Shaanxi Province. Science Press, Beijing (in Chinese).

[116]

Zhang, Y.P., Zhang, P.Z., Lease, R. O., et al., 2023. Oligocene–Miocene Northward Growth of the Tibetan Plateau: Insights from Intermontane Basins in the West Qinling Belt, NW China.Geological Society of America Bulletin,136(1-2):131-157. https://doi.org/10.1130/b36722.1

[117]

Zhao, W. J., Kumar, P., Mechie, J., et al., 2011. Tibetan Plate Overriding the Asian Plate in Central and Northern Tibet. Nature Geoscience, 4(12): 870-873. https://doi.org/10.1038/ngeo1309

[118]

Zhao, W. J., Nelson, K. D., Che, J., et al., 1993. Deep Seismic Reflection Evidence for Continental Underthrusting beneath Southern Tibet. Nature, 366(6455): 557-559. https://doi.org/10.1038/366557a0

[119]

Zheng, D. W., Wang, F., Zhang, P. Z., et al., 2000. Apatite U-Th/He Dating Method:A Low Temperature Thermochronometer. Seismology and Geology, 22(4): 427-435 (in Chinese with English abstract).

基金资助

国家自然科学基金项目(42341101)

国家自然科学基金项目(42473027)

陕西省自然科学基础研究计划项目(2025JCQYCX-033)

AI Summary AI Mindmap
PDF (5879KB)

38

访问

0

被引

详细

导航
相关文章

AI思维导图

/