CLM5⁃FATES模式对中国长白山针阔混交林分布的模拟
Simulation of Mixed Needleleaf and Broadleaf Forest Distribution in Changbai Mountain of China Using CLM5⁃FATES Model
,
长白山阔叶红松林是全球为数不多的大面积原始针阔混交林,对其开展模拟研究尤为必要.本研究基于植被功能性状的新一代动态全球植被模式CLM5-FATES(Community Land Model version 5-Functionally Assembled Terrestrial Ecosystem Simulator),选取25 ℃时最大羧化速率、比叶面积和叶寿命三个叶片特性参数,对长白山针阔混交林分布进行模拟,探讨模式中长白山针阔混交林分布的参数敏感性,检验模式对长白山针阔混交林分布的模拟能力.研究表明,不同的性状参数组合显著影响该地区两种植被类型分布的模拟结果,且25 ℃时最大羧化速率和比叶面积的影响大于叶寿命.适当的性状参数组合下,模式能再现观测结果中的长白山针阔混交林分布.本研究验证了该模式在长白山针阔混交林的适用性,可为进一步的气候植被相互作用研究提供重要支持.
The broadleaved Korean pine forest in Changbai Mountain is one of the few large-area primary mixed needleleaf and broadleaf forest in the world, so it is particularly necessary to conduct simulation research on it. This study is based on the new generation dynamic vegetation model CLM5-FATES (Community Land Model version 5-Functionally Assembled Terrestrial Ecosystem Simulator), by selecting the maximum carboxylation rate at 25 , specific leaf area, and leaf longevity to simulate the distribution of mixed needleleaf and broadleaf forest in Changbai Mountain. This paper explores the parameter sensitivity of the distribution of mixed needleleaf and broadleaf forest in the model, and investigates the model’s ability to simulate the distribution of these forests. The study finds that different combinations of trait parameters significantly affect the distribution of vegetation types in the region. The maximum carboxylation rate at 25 and specific leaf area have a greater impact compared to leaf longevity. Under an appropriate combination of trait parameters, the model can reproduce the observed distribution of mixed needleleaf and broadleaf forest in Changbai Mountain. This study validates the applicability of the model to the mixed needleleaf and broadleaf forest in Changbai Mountain, providing crucial support for further research on climate-vegetation interactions.
性状 / 动态全球植被模型 / 常绿针叶林 / 落叶阔叶林 / 气候学 / 生态系统.
traits / dynamic global vegetation model / evergreen needleleaf forest / deciduous broadleaf forest / climatology / ecosystems
| [1] |
Aboelyazeed, D., Xu, C. G., Hoffman, F. M., et al., 2023. A Differentiable, Physics⁃Informed Ecosystem Modeling and Learning Framework for Large⁃Scale Inverse Problems: Demonstration with Photosynthesis Simulations. Biogeosciences, 20(13): 2671-2692. https://doi.org/10.5194/bg⁃20⁃2671⁃2023 |
| [2] |
Argles, A. P. K., Moore, J. R., Cox, P. M., 2022. Dynamic Global Vegetation Models: Searching for the Balance between Demographic Process Representation and Computational Tractability. PLOS Climate, 1(9): e0000068. https://doi.org/10.1371/journal.pclm.0000068 |
| [3] |
Bao, Y., Wang, Y. Q., Nan, S. L., et al., 2023. Evaluation of Vegetation Characteristics over Qinghai⁃Xizang Plateau Simulated by a Vegetation Dynamic Model. Plateau Meteorology, 42(2): 333-343 (in Chinese with English abstract). |
| [4] |
Bonan, G. B., 2008. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science, 320(5882): 1444-1449. https://doi.org/10.1126/science.1155121 |
| [5] |
Bonan, G. B., Doney, S. C., 2018. Climate, Ecosystems, and Planetary Futures: The Challenge to Predict Life in Earth System Models. Science, 359(6375): eaam8328. https://doi.org/10.1126/science.aam8328 |
| [6] |
Bonan, G. B., Lucier, O., Coen, D. R., et al., 2024. Reimagining Earth in the Earth System. Journal of Advances in Modeling Earth Systems, 16(8): e2023MS004017. https://doi.org/10.1029/2023MS004017 |
| [7] |
Cheng, K., Chen, Y. L., Xiang, T. Y., et al., 2024. A 2020 Forest Age Map for China with 30 m Resolution. Earth System Science Data, 16(2): 803-819. https://doi.org/10.5194/essd⁃16⁃803⁃2024 |
| [8] |
Cheng, Y. Y., Leung, L. R., Huang, M. Y., et al., 2022. Modeling the Joint Effects of Vegetation Characteristics and Soil Properties on Ecosystem Dynamics in a Panama Tropical Forest. Journal of Advances in Modeling Earth Systems, 14(1): e2021MS002603. https://doi.org/10.1029/2021MS002603 |
| [9] |
Dai, Y. J., Zeng, X. B., Dickinson, R. E., et al., 2003. The Common Land Model. Bulletin of the American Meteorological Society, 84(8): 1013-1024. https://doi.org/10.1175/bams⁃84⁃8⁃1013 |
| [10] |
Fisher, R. A., Koven, C. D., Anderegg, W. R. L., et al., 2018. Vegetation Demographics in Earth System Models: A Review of Progress and Priorities. Global Change Biology, 24(1): 35-54. https://doi.org/10.1111/gcb.13910 |
| [11] |
Fisher, R. A., Muszala, S., Verteinstein, M., et al., 2015. Taking off the Training Wheels: The Properties of a Dynamic Vegetation Model without Climate Envelopes, CLM4.5(ED). Geoscientific Model Development, 8(11): 3593-3619. https://doi.org/10.5194/gmd⁃8⁃3593⁃2015 |
| [12] |
Han, S. J., 2012. China Ecosystem Location Observation and Research Dataset, Forest Ecosystem Volume: Changbaishan Station from 2001 to 2008, Jilin. China Agriculture Press, Beijing (in Chinese). |
| [13] |
Hao, Z. Q., Li, B.H., Zhang, J., et al., 2008. Broad⁃Leaved Korean Pine (Pinus Koraiensis) Mixed Forest Plot in Changbaishan (CBS) of China: Community Composition and Structure. Journal of Plant Ecology, 32(2): 238-250 (in Chinese with English abstract). |
| [14] |
Kattge, J., Knorr, W., Raddatz, T., et al., 2009. Quantifying Photosynthetic Capacity and Its Relationship to Leaf Nitrogen Content for Global⁃Scale Terrestrial Biosphere Models. Global Change Biology, 15(4): 976-991. https://doi.org/10.1111/j.1365⁃2486.2008.01744.x |
| [15] |
Koven, C. D., Knox, R. G., Fisher, R. A., et al., 2020. Benchmarking and Parameter Sensitivity of Physiological and Vegetation Dynamics Using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) at Barro Colorado Island, Panama. Biogeosciences, 17(11): 3017-3044. https://doi.org/10.5194/bg⁃17⁃3017⁃2020 |
| [16] |
Lawrence, D. M., Fisher, R. A., Koven, C. D., et al., 2019. The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty. Journal of Advances in Modeling Earth Systems, 11(12): 4245-4287. https://doi.org/10.1029/2018MS001583 |
| [17] |
Li, S. Q., Zhang, X., Lu, Z. Y., et al., 2024. Progress of Vegetation Modelling and Future Research Prospects. Science China Earth Sciences, 54(9): 2762-2782 (in Chinese). |
| [18] |
Li, X., Ma, H. Q., Ran, Y. H., et al., 2021. Terrestrial Carbon Cycle Model⁃Data Fusion: Progress and Challenges. Science China Earth Sciences, 51(10): 1650-1663 (in Chinese). |
| [19] |
Liu, C. C., He, N. P., Li, Y., et al., 2024. Current and Future Trends of Plant Functional Traits in Macro⁃Ecology. Chinese Journal of Plant Ecology, 48(1): 21-40 (in Chinese with English abstract). |
| [20] |
Liu, K. J., He, N. P., Hou, J. H., 2022. Spatial Patterns and Influencing Factors of Specific Leaf Area in Typical Temperate Forests. Acta Ecologica Sinica, 42(3): 872-883 (in Chinese with English abstract). |
| [21] |
Liu, Y. L., Holm, J. A., Koven, C. D., et al., 2024. Large Divergence of Projected High Latitude Vegetation Composition and Productivity Due to Functional Trait Uncertainty. Earth’s Future, 12(8): e2024EF004563. https://doi.org/10.1029/2024EF004563 |
| [22] |
Massoud, E. C., Xu, C. G., Fisher, R. A., et al., 2019. Identification of Key Parameters Controlling Demographically Structured Vegetation Dynamics in a Land Surface Model: CLM4.5(FATES). Geoscientific Model Development, 12(9): 4133-4164. https://doi.org/10.5194/gmd⁃12⁃4133⁃2019 |
| [23] |
Peng, J. M., Liu, S. F., Dai, Y. J., et al., 2020. Evaluation of Common Land Model Based on International Land Model Benchmarking System. Climatic and Environmental Research, 25(6): 649-666 (in Chinese with English abstract). |
| [24] |
Peng, S. S., Yue, C., Chang, J. F., 2020. Developments and Applications of Terrestrial Biosphere Model. Chinese Journal of Plant Ecology, 44(4): 436-448 (in Chinese with English abstract). |
| [25] |
Piao, S. L., Liu, Q., Chen, A. P., et al., 2019. Plant Phenology and Global Climate Change: Current Progresses and Challenges. Global Change Biology, 25(6): 1922-1940. https://doi.org/10.1111/gcb.14619 |
| [26] |
Shi, M. J., Keller, M., Bomfim, B., et al., 2024. Functionally Assembled Terrestrial Ecosystem Simulator (FATES) for Hurricane Disturbance and Recovery. Journal of Advances in Modeling Earth Systems, 16(1): e2023MS003679. https://doi.org/10.1029/2023MS003679 |
| [27] |
Sui, Y., Wei, M., Liu, B., 2025. Biophysical Impacts of Global Deforestation on Near⁃Surface Air Temperature in China: Results from Land Use Model Intercomparison Project Simulations. Advances in Atmospheric Sciences, 42(6): 1141-1155. https://doi.org/10.1007/s00376⁃024⁃4149⁃z |
| [28] |
Viovy, N., 2018. CRUNCEP Version 7—Atmospheric Forcing Data for the Community Land Model. Research data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder, CO. https://doi.org/10.5065/PZ8F⁃F017 |
| [29] |
Wang, D. Y., Zeng, X. D., Song, X., 2024. Evaluation of CMIP6 Models in Simulating the Sensitivity of Leaf Area Index to Temperature and Precipitation Changes over China. Chinese Journal of Atmospheric Sciences, 48(5): 1961-1977 (in Chinese with English abstract). |
| [30] |
Wright, I. J., Reich, P. B., Westoby, M., et al., 2004. The Worldwide Leaf Economics Spectrum. Nature, 428(6985): 821-827. https://doi.org/10.1038/nature02403 |
| [31] |
Xia, J. Y., Lu, R. L., Zhu, C., et al., 2020. Response and Adaptation of Terrestrial Ecosystem Processes to Climate Warming. Chinese Journal of Plant Ecology, 44(5): 494-514 (in Chinese with English abstract). |
| [32] |
Xie, X. Y., Li, A. N., Jin, H. A., 2018. The Simulation Models of the Forest Carbon Cycle on a Large Scale: A Review. Acta Ecologica Sinica, 38(1): 41-54 (in Chinese with English abstract). |
| [33] |
Yang, Y. Z., Wang, H., Zhu, Q. A., et al., 2018. Research Progresses in Improving Dynamic Global Vegetation Models (DGVMS) with Plant Functional Traits. Chinese Science Bulletin, 63(25): 2599-2611 (in Chinese with English abstract). |
| [34] |
Zhang, Z. S., Li, S. L., Wang, H. J., et al., 2022. Introduction of Crossing Disciplines between Geology and Atmospheric Science. Earth Science, 47(10): 3569-3579 (in Chinese with English abstract). |
| [35] |
Zhao, D. S., Wang, K., Cui, Y. P., 2023. Feedback Mechanisms and Regulatory Effects of Vegetation Change on Climate. Acta Ecologica Sinica, 43(19): 7830-7840 (in Chinese with English abstract). |
| [36] |
Zhu, Q., Zhou, W. M., Jia, X., et al., 2019. Ecological Vulnerability Assessment on Changbai Mountain National Nature Reserve and Its Surrounding Areas, Northeast China. Chinese Journal of Applied Ecology, 30(5): 1633-1641 (in Chinese with English abstract). |
国家自然科学基金项目(42305041)
/
| 〈 |
|
〉 |