基于高分七号影像和DSM差分技术的2025年西藏定日Ms6.8地震同震地表形变
刘俊涛 , 刘小利 , 贾治革 , 唐家铮 , 阮巧喆 , 黄宇 , 邓德贝尔 , 李凡 , 邵延秀
地球科学 ›› 2025, Vol. 50 ›› Issue (08) : 3284 -3300.
基于高分七号影像和DSM差分技术的2025年西藏定日Ms6.8地震同震地表形变
Coseismic Surface Deformation of the 2025 Ms6.8 Dingri Earthquake in Tibet, China Based on GaoFen⁃7 Imagery and DSM Differencing Technique
,
,
精细的同震地表变形是理解断层浅层破裂机制和准确评估地震危害的关键参数. 首次利用中国高分七号光学影像和数字地表模型差分技术获取了2025年1月7日西藏定日地震高分辨率的同震地表垂向形变场,揭示的发震断层地表形迹与垂向位移特征与正断活动为主的登么错断裂吻合,表明本次地震为正断型地震. 本次地震造成长42 km的地表形变带,垂向位移幅度、形变梯度和形变带宽度具有明显的分段性,与断层几何复杂性和动态破裂过程有关. 自北向南分为N22°E的扎南拉段、N160°E的登么错湖段和N25°E的措果乡段;显著变形集中发生在扎南拉段,最大垂向位移约2.97±0.20 m;登么错段地表变形最微弱,可能与断层走向变化有关. 沿同震形变带多处宽度达100~150 m,表明在断层周围上百米范围内的弥散性变形可能被忽视或被低估,有必要开展高精度地连续形变测量.
High⁃precision coseismic surface deformation is a key parameter for understanding shallow fault rupture mechanisms and accurately assessing seismic hazard. For the first time, GaoFen⁃7 imagery and Digital Surface Model (DSM) differencing technique were employed to obtain high⁃resolution coseismic surface vertical deformation associated with the January 7, 2025 Dingri Ms6.8 earthquake in Tibet, China. The revealed surface trace of the seismogenic fault and vertical deformation characteristics coincide with the Dengmocuo Fault dominated by normal faulting, indicating that the earthquake was a normal⁃faulting event. This earthquake generated a 42⁃kilometer⁃long surface deformation zone, with distinct segmentation in both deformation amplitude, gradient and width related to fault geometric complexity and dynamic rupture process. The deformation zone is divided into three segments from north to south: the N22°E⁃trending Zhananla segment, the N160°E⁃trending Dengmocuo Lake segment, and the N25°E⁃trending Cuoguoxiang segment. Pronounced deformation occurred in the Zhananla segment, reaching a maximum vertical displacement of approximately 2.97±0.20 m meters. The surface deformation observed along the Dengmocuo Lake segment is the least pronounced, potentially attributable to a change in the fault's orientation.The width of the coseismic deformation zone on fault segments spans 100 to 150 meters, suggesting that the diffuse deformation occurring within a limited volume surrounding the faults may be overlooked or underestimated, so it is necessary to carry out high⁃precision continuous monitoring.
定日地震 / 登么错断裂 / 同震地表变形 / 高分七号影像 / 数字地表模型 / 天然地震.
Dingri earthquake / Dengmocuo Fault / coseismicsurface deformation / GaoFen⁃7 imagery (GF⁃7) / Digital surface model (DSM) / earthquake
| [1] |
Armijo, R., Tapponnier, P., Mercier, J. L., et al., 1986. Quaternary Extension in Southern Tibet: Field Observations and Tectonic Implications. Journal of Geophysical Research: Solid Earth, 91(B14): 13803-13872. https://doi.org/10.1029/JB091iB14p13803 |
| [2] |
Barnhart, W. D., Gold, R. D., Hollingsworth, J., 2020. Localized Fault⁃Zone Dilatancy and Surface Inelasticity of the 2019 Ridgecrest Earthquakes. Nature Geoscience, 13(10): 699-704. https://doi.org/10.1038/s41561⁃020⁃0628⁃8 |
| [3] |
Besl, P. J., McKay, N. D., 2002. A Method for Registration of 3⁃D Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2): 239-256. https://doi.org/10.1109/34.121791 |
| [4] |
Cao, H. Y., Zhang, X. W., Zhao, C. G., et al., 2020. System Design and Key Technolongies of the GF⁃7 Satellite. Chinese Space Science and Technology, 40(5): 1-9 (in Chinese with English abstract). |
| [5] |
Chen, H., Qu, C. Y., Zhao, D. Z., et al., 2024. Large⁃Scale Extensional Strain in Southern Tibet from Sentinel⁃1 InSAR and GNSS Data. Geophysical Research Letters, 51(19): e2024GL110512. https://doi.org/10.1029/2024GL110512 |
| [6] |
Fan, X. D., Wang, Y. Y., Tang, X. M., 2023. Block Adjustment without GCPS and Accuracy Verification for GF⁃7 Satellite Stereo Images. Remote Sensing Information, 38(5): 73-80 (in Chinese with English abstract). |
| [7] |
Gold, R. D., Reitman, N. G., Briggs, R. W., et al., 2015. On⁃ and Off⁃Fault Deformation Associated with the September 2013 Mw 7.7 Balochistan earthquake: Implications for Geologic Slip Rate Measurements. Tectonophysics, 660: 65-78. https://doi.org/10.1016/j.tecto.2015.08.019 |
| [8] |
Hirschmuller, H., 2008. Stereo Processing by Semiglobal Matching and Mutual Information. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2): 328-341. https://doi.org/10.1109/TPAMI.2007.1166 |
| [9] |
Kapp, P., Guynn, J. H., 2004. Indian Punch Rifts Tibet. Geology, 32(11): 993. https://doi.org/10.1130/g20689.1 |
| [10] |
Klinger, Y., Okubo, K., Vallage, A., et al., 2018. Earthquake Damage Patterns Resolve Complex Rupture Processes. Geophysical Research Letters, 45(19): 10, 279-10, 287. https://doi.org/10.1029/2018GL078842 |
| [11] |
Leprince, S., Barbot, S., Ayoub, F., et al., 2007. Automatic and Precise Orthorectification, Coregistration, and Subpixel Correlation of Satellite Images, Application to Ground Deformation Measurements. IEEE Transactions on Geoscience and Remote Sensing, 45(6): 1529-1558. https://doi.org/10.1109/TGRS.2006.888937 |
| [12] |
Li, C. L., Li, T., Shan, X. J., et al., 2023. Extremely Large Off⁃Fault Deformation during the 2021 Mw 7.4 Maduo, Tibetan Plateau, Earthquake. Seismological Research Letters, 94(1): 39-51. https://doi.org/10.1785/0220220139 |
| [13] |
Li, D. D., Sui, Z. W., Long, X. X., et al., 2024. Geometry Processing and Accuracy Verification of Dual⁃Line Array Cameras of GF⁃7 Satellite. National Remote Sensing Bulletin, 28(3): 756-766 (in Chinese with English abstract). |
| [14] |
Liu, F. C., Pan, J. W., Li, H. B., et al., 2025. Co⁃Seismic Surface Rupture of the 2025 Mw7.1 Tingri Earthquake and Potential Seismic Risk in Southern Tibetan Plateau. Acta Geologica Sinica, 99(3): 685-703 (in Chinese with English abstract). |
| [15] |
Liu, J. H., Jónsson, S., Li, X., et al., 2025. Extensive Off⁃Fault Damage around the 2023 Kahramanmaraş Earthquake Surface Ruptures. Nature Communications, 16: 1286. https://doi.org/10.1038/s41467⁃025⁃56466⁃w |
| [16] |
Liu, X. L., Xia, T., Liu, J., et al., 2022. Distributed Characteristics of the Surface Deformations Associated with the 2021 MW7.4 Madoi Earthquake, Qinghai, China. Seismology and Geology, 44(2): 461-483 (in Chinese with English abstract). |
| [17] |
Nissen, E., Maruyama, T., Ramon Arrowsmith, J., et al., 2014. Coseismic Fault Zone Deformation Revealed with Differential lidar: Examples from Japanese Mw∼7 Intraplate Earthquakes. Earth and Planetary Science Letters, 405: 244-256. https://doi.org/10.1016/j.epsl.2014.08.031 |
| [18] |
Oskin, M.E., Arrowsmith, J.R., Corona, A.H., et al., 2012. Near⁃Field Deformation from the El Mayor⁃Cucapah Earthquake Revealed by Differential LiDAR. Science, 335(6069): 702-705. |
| [19] |
Shao, Y. X., Wang, A. S., Liu, J., et al., 2025. Preliminary Investigation on Surface Rupture and Coseismic Displacement of the January 7, 2025 Dingri Earthquake in Xizang. Earth Science, 50(5): 1677-1695 (in Chinese with English abstract). |
| [20] |
Shi, F., Liang, M. J., Luo, Q. X., et al., 2025. Seismogenic Fault and Coseismic Surface Deformation of the Dingri MS6.8 Earthquake in Xizang, China. Seismology and Geology, 47(1): 1-15 (in Chinese with English abstract). |
| [21] |
Tang, H. Z., Xie, J. F., Tang, X. M., et al., 2022. On⁃Orbit Radiometric Performance of GF⁃7 Satellite Multispectral Imagery. Remote Sensing, 14(4): 886. https://doi.org/10.3390/rs14040886 |
| [22] |
Tapponnier, P., Xu, Z. Q., Roger, F., et al., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671-1677. https://doi.org/10.1126/science. 105978 |
| [23] |
Tian, T. T., Wu, Z. H., 2023. Recent Prehistoric Major Earthquake Event of Dingmucuo Normal Fault in the Southern Segment of Shenzha⁃Dingjie Rift and Its Seismic Geological Significance. Geological Review, 69(S1): 53-55 (in Chinese with English abstract). |
| [24] |
Wang, H., Wright, T. J., Jing, L. Z., et al., 2019. Strain Rate Distribution in South⁃Central Tibet from Two Decades of InSAR and GPS. Geophysical Research Letters, 46(10): 5170-5179. https://doi.org/10.1029/2019GL081916 |
| [25] |
Wang, M., Shen, Z. K., 2020. Present⁃Day Crustal Deformation of Continental China Derived from GPS and Its Tectonic Implications. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774. https://doi.org/10.1029/2019JB018774 |
| [26] |
Wang, N., Li, Y. S., Shen, W. H., et al., 2025. Source Parameters and Rapid Simulation of Strong Ground Motion of the Ms 6.8 Earthquake on January 7, 2025 in Dingri(Xizang, China)Derived from InSAR Observation. Geomatics and Information Science of Wuhan University, 50(2): 404-411 (in Chinese with English abstract). |
| [27] |
Wells, D. L., Coppersmith, K. J., 1994. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bulletin of the Seismological Society of America, 84(4): 974-1002. https://doi.org/10.1785/bssa0840040974 |
| [28] |
Wesnousky, S. G., 2008. Displacement and Geometrical Characteristics of Earthquake Surface Ruptures: Issues and Implications for Seismic⁃Hazard Analysis and the Process of Earthquake Rupture. Bulletin of the Seismological Society of America, 98(4): 1609-1632. https://doi.org/10.1785/0120070111 |
| [29] |
Xu, X. H., Tong, X. P., Sandwell, D. T., et al., 2016. Refining the Shallow Slip Deficit. Geophysical Journal International, 204(3): 1843-1862. https://doi.org/10.1093/gji/ggv563 |
| [30] |
Xu, X. Y., 2019. Late Quaternary Activity of Kada Normal Fault in Shenzha⁃Dingjie Fault System in Southern Tibet and Its Environmental Effects(Dissertation). Institute of Geology, China Earthquake Administration, Beijing (in Chinese with English abstract). |
| [31] |
Xu, X., Chen, W., Ma, W., et al., 2002. Surface Rupture of the Kunlunshan Earthquake (ms 8.1), Northern Tibetan Plateau, China. Seismological Research Letters, 73(6): 884-892. https://doi.org/10.1785/gssrl.73.6.884 |
| [32] |
Xu, Y. R., Fu, G. C., Liang, Z. Y., et al., 2025. Preliminary Study on the Characteristics of Landslides and Soil Liquefaction Triggered by the Dingri MS6.8 Earthquake on January 7, 2025, Southern Tibetan Plateau. Earth Science, 50(5): 1813-1829 (in Chinese with English abstract). |
| [33] |
Yang, B., Wang, M., Xu, W., et al., 2017. Large⁃Scale Block Adjustment without Use of Ground Control Points Based on the Compensation of Geometric Calibration for ZY-3 Images. ISPRS Journal of Photogrammetry and Remote Sensing, 134: 1-14. https://doi.org/10.1016/j.isprsjprs. 2017.10.013. |
| [34] |
Yang, T., Wang, S. G., Fang, L. H., et al., 2025. Analysis of Earthquake Sequence and Seismogenic Structure of the 2025 MS6.8 Dingri Earthquake in Tibetan Plateau. Earth Science, 50(5): 1721-1732 (in Chinese with English abstract). |
| [35] |
Yang, W. C., Jiang, J. S., Qu, C., et al., 2019. A Study on Origin of Cenozoic Rifts in Qinghai⁃Xizang(Tibetan) Plateau. Geological Review, 65(2): 267-279(inChinesewithEnglishabstract). |
| [36] |
Yang, W. H., 2020. Digital Surface Model Generation of Weak Texture Regions in Optical Satellite Remote Sensing Images(Dissertation). Wuhan University, Wuhan(in Chinese with English abstract). |
| [37] |
Yin, A., 2000. Mode of Cenozoic East⁃West Extension in Tibet Suggesting a Common Origin of Rifts in Asia during the Indo⁃Asian Collision. Journal of Geophysical Research: Solid Earth, 105(B9): 21745-21759. https://doi.org/10.1029/2000JB900168 |
| [38] |
Zhao, J. M., Du, P. R., 2016. On the Initial Collision between the Indian and Eurasian Continents. Seismology and Geology, 38(3): 783-796 (in Chinese with English abstract). |
| [39] |
Zhou, Y., Parsons, B. E., Walker, R. T., 2018. Characterizing Complex Surface Ruptures in the 2013 Mw 7.7 Balochistan Earthquake Using Three⁃Dimensional Displacements. Journal of Geophysical Research: Solid Earth, 123(11): 10, 191-10, 211. https://doi.org/10.1029/2018JB016043 |
中国地震局地震研究所和应急管理部国家自然灾害防治研究院基本科研业务费专项资助项目(IS202226325)
中国国家自然科学基金项目(W2411033)
/
| 〈 |
|
〉 |