扬子克拉通北缘中元古代神农架群构造属性:来自碎屑锆石U⁃Pb年代学的约束

卢山松 , 童喜润 , 吴年文 , 江拓 , 王志先 , 周涛 , 王江 , 邱啸飞

地球科学 ›› 2025, Vol. 50 ›› Issue (07) : 2613 -2627.

PDF (3599KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (07) : 2613 -2627. DOI: 10.3799/dqkx.2025.088

扬子克拉通北缘中元古代神农架群构造属性:来自碎屑锆石U⁃Pb年代学的约束

作者信息 +

Mesoproterozoic Tectonic Characteristics of Shennongjia Group in Northern Margin of Yangtze Craton: Constraints from Detrital Zircon U⁃Pb Geochronology

Author information +
文章历史 +
PDF (3684K)

摘要

为了解扬子克拉通北缘中元古代地质构造演化过程,对扬子克拉通北缘神农架群矿石山组、石槽河组、台子组沉积地层进行了碎屑锆石U-Pb年龄分析.结果显示,神农架群碎屑锆石的峰值年龄在~1.60 Ga、2.00~2.10 Ga和2.50~ 2.70 Ga,同时还存在少量2.20~2.30 Ga和>2.80 Ga锆石年龄.碎屑锆石年龄谱的结果显示神农架群的沉积时限应为1.10~1.60 Ga.通过对比扬子克拉通中元古代地层和扬子陆核区碎屑锆石年龄谱,扬子克拉通西缘和北缘总体不具有相似的年龄分布特征,指示二者在中元古代可能具有相对独立的构造演化过程;神农架群和打鼓石群具有相似的年龄分布,但二者在1.40~1.60 Ga期间不同的锆石年龄峰值指示二者在中元古代可能经历了不同的演化过程.结合前人的研究资料,扬子克拉通在中元古代之前可能呈现为多个相互独立的陆块,并在古元古代‒中元古代的构造演化过程中先后拼合到扬子克拉通基底中.

Abstract

To understand the Mesoproterozoic geotectonic evolution of the northern margin of the Yangtze Craton, the U-Pb dating of detrital zircons from the sedimentary strata of the Kuangshishan, Shicaohe, and Taizi formations within the Shennongjia Group has been conducted. The results reveal prominent detrital zircon age peaks at ~1.60 Ga, 2.00-2.10 Ga, and 2.50- 2.70 Ga, with minor populations at 2.20-2.30 Ga and rare zircons older than 2.80 Ga. The age distributions suggest that the Shennongjia Group was deposited between 1.10 and 1.60 Ga.Comparative analysis of detrital zircon age spectra from Mesoproterozoic strata across the Yangtze Craton and its continental nucleus indicates distinct age distributions between the western and northern margins, implying relatively independent tectonic evolutionary processes during the Mesoproterozoic. While the Shennongjia Group and the Dagushi Group exhibit similar age spectra, their differing peak ages in the 1.40-1.60 Ga interval suggest divergent evolutionary histories during this period. Integrating the findings with those of the previous studies, we propose that the Yangtze Craton likely comprised multiple independent microcontinents before the Mesoproterozoic, which were progressively amalgamated into the cratonic basement during Paleoproterozoic to Mesoproterozoic tectonic events.

Graphical abstract

关键词

神农架群 / 碎屑锆石 / U⁃Pb年龄 / 中元古代 / 扬子克拉通 / 地质年代学.

Key words

Shennongjia Group / detrital zircon / U⁃Pb age / Mesoproterozoic / Yangtze Craton / geochronology

引用本文

引用格式 ▾
卢山松,童喜润,吴年文,江拓,王志先,周涛,王江,邱啸飞. 扬子克拉通北缘中元古代神农架群构造属性:来自碎屑锆石U⁃Pb年代学的约束[J]. 地球科学, 2025, 50(07): 2613-2627 DOI:10.3799/dqkx.2025.088

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

古‒中元古代是地质历史上一段重要时期,其间地球经历了Columbia(Nuna)超大陆的聚合和裂解过程,对全球矿产资源、板块构造演化等均具有关键意义(杜远生等, 2023).近二十年,尽管许多地质学家对Columbia超大陆聚合‒离散过程做了详细的研究,但对其重建方案仍存在诸多的争论(Rogers and Santosh, 2002Zhao et al., 2002Meert and Santosh, 2017Cawood et al., 2018).扬子克拉通作为中国南方最重要的前寒武纪基底之一,前人普遍认为其参与了Columbia超大陆的聚合和离散,但对于其在超大陆中的具体位置、聚合及裂解的具体时限等问题还存在很大的争议(Wang and Zhou, 2014Wang et al., 2016Cui et al., 2020Zhang et al., 2022).制约该问题解决的主要原因是扬子克拉通鲜少有前寒武纪岩石的出露区,基底岩系受到了显生宙地层的大面积覆盖,除了在扬子克拉通核部崆岭地区出露较大面积的太古宙基底岩石,其余仅在扬子克拉通北缘‒西南缘地区零星分布了少数古‒中元古代地质体(田辉和李怀坤, 2022; Jin et al., 2023),这些岩石成为揭示扬子克拉通早期地质演化历史的关键研究对象.

位于扬子克拉通北缘的神农架群作为目前华南地区为数不多保存较好的中元古代地层,对其开展相关的地质研究,对于了解中元古代时期扬子克拉通大陆地壳的生长、增生和岩石圈构造演化过程具有重要的意义.然而神农架群的研究程度一直相对偏低,近十年来的主要进展体现于其同位素年代学领域,相关成果包括:在郑家垭组安山质熔结凝灰岩和玄武岩中获得了(1 103±8) Ma(Qiu et al., 2011)和(1 063±16) Ma(Qiu et al., 2015)的锆石U⁃Pb年龄;在野马河组凝灰岩中获得了 (1 215.8±2.4) Ma的锆石U⁃Pb年龄、在大岩坪组砂屑硅质白云岩碎屑锆石中获得的最年轻U⁃Pb年龄峰值为1.40 Ga左右、侵入石槽河组的辉长辉绿岩岩脉的锆石U⁃Pb年龄为(1 083.2±4.6) Ma、斜锆石年龄为(1 115±9) Ma(李怀坤等, 2013a).除此之外,在马槽园群中也获得了~1.10 Ga的锆石U⁃Pb年龄(邓奇等, 2013; 邱艳生等, 2013; Wang et al., 2013a),但对于它在神农架群中的位置目前还存在较大的争议;最近,尽管年龄误差相对偏大,在野马河组和矿石山组中最近也分别获得了 (1 223±152) Ma和(1 285.7±66.6) Ma的碳酸盐岩激光原位U⁃Pb年龄(Jiang et al., 2024).基于以上的年龄结果,目前研究者多主张将神农架群的沉积时代限定在1.10~1.40 Ga之间.对于神农架群的沉积上限,目前研究者已取得广泛的共识,但由于神农架群未见底界,因此对于沉积下限还存在不同的看法.

碎屑锆石U⁃Pb测年作为一种重要的研究工具,已被广泛应用于地层学研究中,并成为一种常规技术手段.它能够为地层年代学、物源分析、古地理重建以及地壳演化研究提供关键信息,极大地推动了地质学相关领域的深入发展.尽管前人已对神农架群碎屑锆石开展了一定的研究(肖志斌, 2012; 李怀坤等, 2013a; 徐大良等, 2016),但神农架群的地层层序还存在争议,尤其对于沉积下限未能获得很好限定.因此,有必要对神农架群其他层位做进一步研究.基于此,本文对神农架群开展了系统的碎屑锆石年代学研究,通过碎屑锆石U⁃Pb年龄数据,分析了神农架群的沉积时代和沉积物源特征,并结合前人的研究成果,探讨了神农架群的构造属性.

1 区域地质概况

研究区位于扬子克拉通西北缘的鄂西神农架‒崆岭地区,位于我国地势第二阶梯的东部边缘,属大巴山脉东延余脉,北以青峰断裂与秦岭造山带为界,南东与黄陵隆起相邻,整体上为中高山地貌,山脉走向与区域地质构造方向线一致.神农架群位于扬子陆块黄陵背斜西北约70 km的神农架构造穹窿,总出露面积约为1 830 km2图1).

神农架群最早由李铨和冷坚(1987)提出了11组的划分方案,具体方案为自下向上由鹰窝洞组、大岩坪组、乱石沟组、大窝坑组、矿石山组、台子组、野马河组、温水河组、石槽河组、送子园组以及瓦岗溪组构成.其中台子组和矿石山组之间平行不整合接触,并由此分为上下两个亚群.Qiu et al.(2011)和李怀坤等(2013a)沿用了该方案,仅建议在神农架群顶部新建郑家垭组.刘成新等(2006)在进行1∶25万区域地质调查时将神农架群合并为4个组,自下而上分别为郑家垭组、大岩坪岩楔、石槽河组、大窝坑组和矿石山组,并从原神农架群解体出新元古代青白口纪凉风垭组.然而,该方案并未获得研究者的广泛认同.还有研究者(耿元生等, 2017; 旷红伟等, 2018)也提出了不同的方案,将神农架群分为上中下三个亚群并调整了地层的顺序,从底向上由下亚群(大岩坪组、马槽园组、乱石沟组、大窝坑组、矿石山组)、中亚群(台子组、野马河组、温水河组、石槽河组、)、上亚群(送子园组、瓦岗溪组)组成.相比之前的分组方案,该方案主要对马槽园群(组)存在不同的认识.目前,被广泛接受的仍然是李铨和冷坚(1987)的方案,仅在顶部增加了郑家垭组.本文将沿用该划分方案来进行讨论(图2).

神农架群的岩性主要为藻礁白云岩、泥粉晶白云岩、粉砂岩等,夹砾岩、细砂岩、泥岩、多层火山岩和铁矿层.主体形成于局限台地相至台地边缘礁滩相的碳酸盐岩陆棚区,顶部郑家垭组以碎屑岩为主,夹火山熔结凝灰岩和熔岩.神农架群未见底,构造地层厚度超过13 km.

2 样品采集及分析方法

本文沿神农架公路切面采集了3件神农架群全岩样品,分别为矿石山组板岩(16KSSZr)、石槽河组泥质板岩(16SCHZr)和台子组粉砂质板岩(16TZZr).每件样品重量为~10 kg,由河北省廊坊市宇能岩石矿物分选技术服务有限公司完成锆石分选工作.样品破碎后通过传统重磁技术方法分离出锆石,随机挑选并将其粘在环氧树脂上进行制靶,经抛光等步骤处理后用于开展透射光、反射光及阴极发光(CL)照相,并以此为基础选择合适区域进行锆石U⁃Pb定年分析.锆石制靶、透射光、反射光及阴极发光(CL)照相均在北京锆年领航科技有限公司完成.

锆石的U⁃Pb年龄测定在中国地质调查局武汉地质调查中心实验测试室完成.测试仪器为RESOlution 193 nm ArF准分子激光剥蚀系统与iCAP Q型ICP⁃MS联机使用.测试激光束斑直径为29 μm,激光频率3 Hz,能量密度为4 J/cm2.每个样品点的分析时间为90 s,其中背景信号15 s,激光剥蚀时间为45 s,尾吹30 s.测定时采用锆石国际标准物质91500来校正年龄数据,采用锆石国际标准物质Plešovice进行数据质量监控.单个数据点误差采用1σ表示,每分析5~7个样品点分析91500和监控标样Plešovice两次,Plešovice的测试结果为(339±2.1) Ma(2σn=68),与其推荐值((337.13±0.37) Ma; Sláma et al., 2008)在误差范围内一致.以NIST SRM610为微量元素含量外标,29Si作为内标元素,采用单内标+外标的方法进行含量的定量计算.锆石U⁃Pb同位素组成原始数据采用ICPMSDataCal软件(ver. 12.2)进行处理(Liu et al., 2008b).锆石U⁃Pb年龄计算以及谐和图的绘制均采用ISOPLOT软件完成(Ludwig, 2003).

3 数据结果

由3个样品分选出来的锆石主要呈无色或浅黄色自形、半自形晶体,部分锆石由于受到破碎作用晶型不完整,少数锆石具有明亮且窄的增生边.锆石形态以短柱状、长柱状或浑圆状为主,粒径普遍较小,以50~60 μm为主,少数锆石可达70~90 μm,长宽比在1∶1~1∶3之间.部分锆石存在一定的磨圆现象,显示出碎屑锆石的形貌特征,但多数锆石棱角分明可能指示搬运距离较短.锆石CL照片基本都表现出明显的振荡环带(图3),所有测量点的Th/U比值均大于0.1,指示锆石符合岩浆成因特征.由于锆石颗粒较小,在分析测试时经常会出现锆石被打穿的现象,本次研究共分析了超过500个锆石颗粒,最终获得了299个有效数据,打穿及年龄谐和度小于90%的样品未做统计.由于神农架群为>1.0 Ga的地层,因而本文选择207Pb/206Pb年龄(且年龄谐和度大于90%)作为锆石的年龄参与数据统计.

矿石山组(16KSSZr)样品的锆石最终获得了87个有效数据,Th/U比值介于0.34~1.78之间,都具有明显的振荡环带(图3),指示其符合岩浆成因特征.锆石年龄谱显示其年龄主要分布为1.93~2.15 Ga(年龄峰值为2.06 Ga)、2.50~2.80 Ga(年龄峰值为2.54 Ga、2.67 Ga和2.74 Ga)、2.96~3.15 Ga(年龄峰值为3.00 Ga和3.08 Ga),1.70~1.85 Ga是最小的年龄峰值,其峰值年龄为1.79 Ga,基本代表了矿石山组的沉积下限.除此之外还存在少量2.20~2.50 Ga和3.24 Ga的次要峰值年龄.

台子组(16TZZr) 样品的锆石最终获得了65个有效数据,Th/U比值介于0.21~1.56之间,都具有明显的振荡环带(图3),指示其符合岩浆成因特征.锆石年龄谱显示其年龄主要分布为1.54~1.75 Ga(年龄峰值为1.59 Ga)、1.91~ 2.20 Ga(年龄峰值为1.98 Ga、2.06 Ga和 2.15 Ga)、2.40~3.05 Ga(年龄峰值为2.48 Ga、2.58 Ga、2.70 Ga和2.88 Ga),1.54~1.75 Ga是最小的年龄峰值,其峰值年龄为1.59 Ga,基本代表了台子组的沉积下限.除此之外还存在2.30 Ga的次要峰值年龄.

石槽河组(16SCHZr)样品的锆石最终获得了147个有效数据,Th/U比值介于0.14~1.68之间(除5颗锆石外其余均大于0.4),都具有明显的振荡环带(图3),指示其符合岩浆成因特征.锆石年龄谱显示其年龄主要分布为1.40~ 1.85 Ga(年龄峰值为1.60 Ga)、1.85~2.25 Ga(年龄峰值为2.0 Ga、2.10 Ga和2.17 Ga)、2.30~ 2.76 Ga(年龄峰值为2.48 Ga、2.60 Ga、 2.70 Ga),1.40~1.85 Ga是最小的年龄峰值,其峰值年龄为1.60 Ga,基本代表了石槽河组的沉积下限.除此之外还存在2.80~3.25 Ga的次要峰值年龄.

4 讨论

4.1 神农架群沉积时限

神农架群的形成时代长时间以来都不明确.李铨和冷坚(1987)依据台子组上部炭质页岩的U⁃Pb等时线年龄和野马河组白云岩Pb⁃Pb等时线年龄将其置于1.00~1.65 Ga,上下亚群的界线为1.40 Ga.近年来,一些研究者分别在郑家垭组(Qiu et al.,2011)、野马河组和石漕河组(李怀坤等, 2013a)中获得了火山岩夹层的高精度U⁃Pb年龄,并在大岩坪组碎屑锆石中获得了最年轻的峰值为1.40 Ga左右.通过这些锆石年龄,李怀坤等(2013a)将神农架群沉积时限限定于1.10~1.40 Ga之间并获得了后续研究者的认可.但如前文所述,由于神农架群未见底界,对其沉积时代下限的问题目前还存在争议,部分研究者认为其底界可能在~1.60 Ga (卢山松等, 2016),甚至~1.80 Ga (赵小明等, 2022).

本文共对神农架群中部和偏上部3个地层组中超过500颗碎屑锆石进行了分析,最终获得有效数据299个,所有的锆石阴极发光都具有明显的振荡环带且Th/U比值均大于0.2,指示其均为岩浆成因的锆石.通过锆石年龄谱(图4)可以看出矿石山组、石槽河组和台子组中最小年龄峰值分别为~1.80 Ga、~1.60 Ga和~1.60 Ga,3个组的年龄合并统计后最小年龄峰值为~1.60 Ga,该年龄明显大于李怀坤等(2013a)在大岩坪组中获得的最小锆石年龄(~1.40 Ga),这与其他部分研究者具有类似的研究结果.例如,肖志斌(2012)对神农架群不同层位的石英砂岩进行了碎屑锆石 U⁃Pb年代学研究,结果显示其主要峰值为 ~1.60 Ga、~1.80 Ga、~2.0 Ga和~2.70 Ga,不同的层位中均未出现~1.40 Ga的锆石年龄.结合矿石山组的Pb⁃Pb等时线年龄为(1 632±75) Ma(卢山松等,2016),本文认为神农架群的沉积下限可能早于1.40 Ga,沉积时限在1.10~1.60 Ga之间.

此外,对于最小年龄峰值还需要特别注意两点,一是矿石山组中未出现~1.60 Ga的年龄峰值,指示矿石山组沉积时代应为~1.60 Ga岩浆事件之前,石槽河组和台子组沉积时代应为 ~1.60 Ga岩浆事件之后,因此矿石山组应为下伏地层,同时将神农架群的沉积上限限定于 ~1.60 Ga是合适的;二是石槽河组、台子组和矿石山组作为大岩坪组的上覆地层,本文及肖志斌(2012)的研究中均未出现~1.40 Ga的锆石年龄(大岩坪组锆石最小年龄峰值),同时彭楠等(2023)在神农顶剖面及铁厂河剖面的台子组中获得的最年轻锆石峰值为1 288 Ma,与本文的结果明显不同,指示地层的层序可能还存在一定的问题,后续需要对神农架群的地层时代及层序做更多及更深入的工作.

4.2 神农架群沉积物源

对比矿石山组、台子组和石槽河组的碎屑锆石年龄谱(图4),矿石山组的主要年龄峰值为2.10 Ga、2.50~2.70 Ga和3.00~3.10 Ga,石槽河组的主要年龄峰值为~1.60 Ga、2.00~2.10 Ga、2.50~2.70 Ga,台子组的主要年龄峰值为~1.60 Ga、2.00~2.20 Ga、2.50~2.90 Ga.

综合来看,古元古代锆石年龄(2.00~ 2.10 Ga)是神农架群最主要的年龄峰值,与全球范围内1.80~2.10 Ga的Columbia超大陆演化事件相对应.扬子克拉通存在与该事件相关的岩浆记录(Wu et al., 2012Lu et al., 2017),与岩浆活动相对应的构造热事件记录则更为普遍,在扬子陆核变沉积岩、斜长角闪岩中均发现了~2.00 Ga高压变质事件(邱啸飞等, 2017;陈超等, 2020;韩庆森等, 2020;付强等, 2023).

新太古代锆石年龄(2.50~2.70 Ga)是神农架群的次要年龄峰值,在扬子陆核区内部(Guo et al., 2015;邱啸飞等, 2019)及其北缘的南秦岭‒大别地区也有岩浆活动的零星分布(张宗清等, 2001; Wu et al., 2008Hu et al., 2013),神农架群的碎屑物质可能来源于这些岩体.

对于中元古代锆石年龄,矿石山组以微弱的 ~1.80 Ga的峰值年龄与台子组和石槽河组相区别,后两者则表现出明显的~1.60 Ga的峰值,尤其是台子组明显缺少~1.80 Ga的锆石年龄,显示神农架群不同层位物源可能存在显著差异.对于~1.80 Ga的年龄峰值,该年龄可能与Columbia超大陆裂解相关(Xiong et al., 2009Peng et al.,2009Zhang et al., 2011),而对于~1.60 Ga的年龄峰值,前人研究认为神农架群1.40~1.60 Ga的碎屑物可能来源于扬子地块周缘的华夏地块、澳大利亚地块或劳伦大陆(Qiu et al., 2011; 李怀坤等, 2013a).但亦有部分学者认为该期碎屑物质也许来自于扬子陆块未出露的基底,而非其他陆块(Wang et al., 2013b; 徐大良等, 2016).

值得注意的是,除了以上年龄峰值,神农架群不同层位>3.00 Ga的锆石年龄组成也存在明显的差异,表现在矿石山组具有明显的3.00~3.10 Ga年龄峰值,石槽河组只有零星的中太古代锆石年龄数据,台子组则完全缺失>3.0 Ga的锆石.已有研究显示,扬子陆核区最主要的早前寒武纪基底岩性为太古宙TTG片麻岩,3.00~3.10 Ga年龄峰值的出现可能指示扬子陆核区是矿石山组的物质源区,而缺乏>3.00 Ga锆石的石槽河组和台子组则暗示扬子陆核区已不再是神农架群的主要源区.

综合以上的分析,神农架群>1.80 Ga的碎屑锆石可能主要来自于扬子陆核区,而<1.80 Ga的碎屑锆石受构造环境的变化,其物质来源可能不再是扬子陆核区,对于其具体的物源区还需要做更深入的研究.

4.3 扬子克拉通中元古代地层间的关系

本次研究还统计了扬子克拉通中元古代地层(昆阳群、会理群、东川群、打鼓石群和神农架群)和扬子陆核区(崆岭地区)的碎屑锆石年龄数据,并对其进行了对比(图5),其中扬子陆核区选取的是>1.00 Ga的锆石年龄数据.

昆阳群、东川群、会理群均位于扬子克拉通西缘,但碎屑锆石年龄谱显示其物源并不相同(图5).东川群以显著的~2.30 Ga年龄峰值区别于其他地质体,在扬子克拉通西缘(昆阳群和东川群)和北缘(打鼓石群和神农架群)均未出现该期记录,仅扬子陆核区存在少量该时期的锆石.同时相当数量 >3.40 Ga的古老锆石记录在其他地质体中也均未出现.相对于昆阳群和会理群,东川群还缺少1.00~1.20 Ga年龄记录;昆阳群虽然统计的锆石数目最多,但其锆石年龄谱最简单,年龄最大峰值为 ~1.60 Ga,同时缺少~1.40 Ga和>3.00 Ga的锆石记录;会理群则是以显著的~1.40 Ga和 ~1.70 Ga两个年龄峰值区别于其他基底地层.

神农架群和打鼓石群均位于扬子克拉通北缘.二者具有相似的年龄谱分布特征,但打鼓石群以缺失1.40~1.60 Ga年龄记录与神农架群相区别,指示二者在中元古代具有不同的物质来源.值得注意的是,神农架群的年龄谱中可以明显看出存在很多小的峰值,这与其他地质体图谱较为简单相区别,暗示神农架群可能存在多种物源的可能.

对比扬子克拉通西缘(昆阳群、东川群和会理群)和北缘(打鼓石群和神农架群),两陆缘区基底岩系的年龄谱间存在较明显差异.西缘以~1.00 Ga、 ~1.60 Ga和~1.85 Ga为主要年龄峰值,北缘则以~2.10 Ga和~2.70 Ga为主要的年龄峰值,指示扬子克拉通西缘和北缘具有不同的物质来源.

4.4 碎屑锆石对扬子克拉通中元古代构造属性的指示意义

扬子克拉通北缘是否在中元古代之前具有统一基底目前存在很大争议(白晓等, 2011; Qiu et al., 2011; 卢山松等, 2017; 涂城等, 2021; 徐琼等, 2021),而关于中元古代神农架群的构造属性则是对该问题予以约束的关键.尽管前人对神农架群的构造属性已进行了一些讨论,但目前仍主要聚焦于中元古代晚期.例如,李怀坤等(2013a, 2016)认为~1.10 Ga侵入于石槽河组的基性岩墙可与其他大陆同一时期的基性岩墙侵入事件完全对比;同时,~1.20 Ga的火山事件可能与Columbia超大陆裂解事件关系密切,而神农架群与马槽园群的不整合面则可能代表了扬子和华夏最早发生拼合的构造事件,是Rodinia超大陆汇聚事件在华南陆块的表现.邱啸飞等(2013)和徐大良等(2016)结合黄陵背斜崆岭杂岩中识别出的~1.00 Ga蛇绿混杂岩,认为中元古代晚期神农架群演变为陆缘岛弧环境,可能与格林威尔运动相关.田辉等(2018)对神农架群的碳、氧同位素特征进行了研究,认为1.10~1.20 Ga存在的碳同位素负偏可能代表了超大陆裂解拉伸向汇聚挤压的转变,是对Rodinia超大陆汇聚事件的响应.综合来看,研究者普遍认为在中元古代晚期神农架群可能记录了一次俯冲与地壳增生过程,与Rodinia超大陆汇聚相关.

然而,相比较而言对于神农架群中元古代早期的构造属性讨论则相对较少.部分学者曾对扬子克拉通北缘的打鼓石群、扬子陆核区和神农架群之间的相互关系进行了初步研究,但得出的结论存在较大分歧(邱啸飞等, 2013, 2014; 李怀坤等, 2016; 徐大良等, 2016; 孔令耀等, 2017; 刘浩等, 2017).例如,邱啸飞等(2014)在总结分析了前人碎屑锆石年龄和Hf⁃O同位素组成特征的基础上,指出扬子陆核区并非神农架群沉积地层的物源区,在新元古代之前二者为相互独立的微陆块;孔令耀等(2017)在对比了碎屑锆石年龄结果后也得出类似的结论.然而,李怀坤等(2016)对打鼓石群和神农架群上亚群的凝灰岩锆石进行了深入研究,系统总结了其U⁃Pb年龄、Hf同位素组成、岩石组合、沉积环境以及古生物特征,结果表明这两个地层单元具有可比性,共同记录了~1.20 Ga的哥伦比亚超大陆裂解事件.

本研究在神农架群沉积地层中获得的碎屑锆石年龄主要均大于1.40 Ga,为讨论神农架群中元古代早期的构造属性以及扬子克拉通内部不同早前寒武纪地体之间相互对比提供了依据.神农架群与扬子克拉通其他类似时代地层(如打鼓石群)碎屑锆石年龄组成的对比研究表明,神农架群和打鼓石群碎屑锆石年龄谱分布特征存在显著差异,具体体现在打鼓石群明显缺失了1.40~1.60 Ga年龄记录,指示二者在中元古代可能经历了不同的演化过程.此外,扬子克拉通西缘(以昆阳群、东川群和会理群为代表)和扬子克拉通北缘中元古代地层(以神农架群和打鼓石群为代表)的碎屑锆石组成也同样存在明显差异,这表明扬子克拉通不同地质单元可能具有各自独立的构造演化历史.而值得注意的是,有关神农架群的物源分析显示其内部不同层位的碎屑物质来源也可能不同.这样的现象在扬子克拉通西缘也同时存在,会理群、东川群和昆阳群等地层在其内部均显示出明显不同的碎屑锆石年龄分布特征(Sun et al., 2022),同样支持扬子克拉通地质构造单元之间存在不同的构造演化模式.

近年来在扬子陆核区的一些研究显示,扬子克拉通北缘可能存在多期俯冲相关岩浆作用或残留洋片的记录(Peng et al., 2012Deng et al., 2017Han et al., 2017).例如,Han et al. (2017)在崆岭杂岩内识别出一条呈北东向带状展布的一套经历了古元古代(1.95~2.10 Ga)强烈韧性变形变质的无序变沉积岩系及呈透镜状夹于变质沉积岩系的变镁铁‒超镁铁质岩岩块/岩片组成的构造蛇绿混杂岩,认为其可能指示了扬子克拉通北缘一次古元古代的碰撞事件,代表扬子克拉通与古元古代全球 Columbia超大陆聚合有关的俯冲‒消减事件以及大陆增生过程;Peng et al. (2012)在黄陵背斜南部太平溪、邓村一带也识别出一套年龄为0.97~1.12 Ga的镁铁质‒超镁铁质侵入岩浆岩组合,并认为其代表了中元古代末残余洋壳的蛇绿岩带; Deng et al.(2017)进一步对该套蛇绿岩带进行了详细的划分,包括中元古代(约1.12 Ga)MORB型蛇绿岩单元和新元古代(0.97~1.00 Ga)岛弧型岩浆岩单元.结合本文研究结果和区域上这些新的发现,认为扬子克拉通在新元古代之前呈现为多个相互独立的陆块,在古元古代‒新元古代的构造演化过程中可能先后拼合到扬子克拉通,该过程代表了扬子克拉通对Rodinia超大陆聚合的重要响应.

5 结论

(1)神农架群碎屑锆石年龄峰值主要集中于~1.60 Ga、2.00~2.10 Ga和2.50~2.70 Ga,同时还存在少量2.20~2.30 Ga和>2.80 Ga锆石年龄,其沉积时限应在1.10~1.60 Ga之间,年龄谱的分布特征还指示矿石山组与台子组和石槽河组具有不同的物质源区.

(2)扬子克拉通北缘(神农架群和打鼓石群)总体具有相似的年龄谱,但1.40~1.60 Ga年龄记录存在明显差异,指示二者在中元古代具有不同的物质来源.

(3)碎屑锆石年龄数据对比结果显示扬子克拉通西缘和北缘具有不同的物质来源,指示二者可能经历了不同的构造演化过程.

(4)扬子克拉通在中元古代之前可能为多个相互独立的微陆块,在古元古代‒中元古代的构造演化过程中逐步拼合到扬子克拉通基底中.

参考文献

[1]

Bai, X., Ling, W. L., Duan, R. C., et al., 2011. Nd Isotope Evolution Characteristics of Mesoproterozoic⁃ Paleozoic Sedimentary Strata in the Core of Yangtze Craton and Its Geological Significance. Scientia Sinica Terrae, 41(7): 972-983 (in Chinese).

[2]

Cawood, P. A., Zhao, G. C., Yao, J. L., et al., 2018. Reconstructing South China in Phanerozoic and Precambrian Supercontinents. Earth⁃Science Reviews, 186: 173-194. https://doi.org/10.1016/j.earscirev.2017.06.001

[3]

Chen, C., Yuan, J. L., Guo, P., et al., 2020. ~2.0 Ga Regional Metamorphic Event in Yangtze Block and Its Heuristic Significance to the Geological Differences Evolutionary between North and South Huangling. Geology in China, 47(4): 899-913 (in Chinese with English abstract).

[4]

Cui, X. Z., Lin, S. F., Wang, J., et al., 2021. Latest Mesoproterozoic Provenance Shift in the Southwestern Yangtze Block, South China: Insights into Tectonic Evolution in the Context of the Supercontinent Cycle. Gondwana Research, 99: 131-148. https://doi.org/10.1016/j.gr.2021.06.022

[5]

Cui, X. Z., Wang, J., Ren, G. M., et al., 2020. Paleoproterozoic Tectonic Evolution of the Yangtze Block: New Evidence from ca. 2.36 to 2.22 Ga Magmatism and 1.96 Ga Metamorphism in the Cuoke Complex, SW China. Precambrian Research, 337: 105525. https://doi.org/10.1016/j.precamres.2019.105525

[6]

Deng, H., Peng, S. B., Polat, A., et al., 2017. Neoproterozoic IAT Intrusion into Mesoproterozoic MOR Miaowan Ophiolite, Yangtze Craton: Evidence for Evolving Tectonic Settings. Precambrian Research, 289: 75-94. https://doi.org/10.1016/j.precamres.2016.12.003

[7]

Deng, Q., Wang, J., Wang, Z. J., et al., 2013. New Evidence for the Age of the Macaoyuan Group on the Northern Margin of the Yangtze Block, South China—Implications for Stratigraphic Correlation and Palaeogeographic Framework. Geological Bulletin of China, 32(4): 631-638 (in Chinese with English abstract).

[8]

Du, Y. S., Yu, W. C., Zhou, Q., et al., 2023. Discussion about the Coupling Relationship between the Breakup of Supercontinent and the Large⁃Scale Manganese Accumulation in China. Journal of Palaeogeography (Chinese Edition), 25(6): 1211-1234 (in Chinese with English abstract).

[9]

Fu, Q., Wei, J. Q., Fan, B. C., et al., 2023. Paleoproterozoic Metamorphic Evolution of the Yangtze Craton: Evidence from the Huangling Dome Garnet⁃Amphibolite. Acta Petrologica et Mineralogica, 42(2): 173-190 (in Chinese with English abstract).

[10]

Geng, Y. S., Kuang, H. W., Liu, Y. Q., et al., 2017. Subdivision and Correlation of the Mesoproterozoic Stratigraphy in the Western and Northern Margins of Yangtze Block. Acta Geologica Sinica, 91(10): 2151-2174 (in Chinese with English abstract).

[11]

Guo, J. L., Wu, Y. B., Gao, S., et al., 2015. Episodic Paleoarchean⁃Paleoproterozoic (3.3-2.0 Ga) Granitoid Magmatism in Yangtze Craton, South China: Implications for Late Archean Tectonics.Precambrian Research, 270: 246-266. https://doi.org/10.1016/j.precamres.2015.09.007

[12]

Han, Q. S., Peng, S. B., Kusky, T., et al., 2017. A Paleoproterozoic Ophiolitic Mélange, Yangtze Craton, South China: Evidence for Paleoproterozoic Suturing and Microcontinent Amalgamation. Precambrian Research, 293: 13-38. https://doi.org/10.1016/j.precamres.2017.03.004

[13]

Han, Q. S., Peng, S. B., Jiao, S. J., 2020. Discovery and Tectonic Implications of Paleoproterozoic Cold Subduction Low⁃Temperature/High⁃Pressure Eclogitic Metapelites, Yangtze Craton. Earth Science, 45(6): 1986-1998 (in Chinese with English abstract).

[14]

Hofmann, M., Linnemann, U., Rai, V., et al., 2011. The India and South China Cratons at the Margin of Rodinia⁃Synchronous Neoproterozoic Magmatism Revealed by LA⁃ICP⁃MS Zircon Analyses. Lithos, 123(1-4): 176-187. https://doi.org/10.1016/j.lithos.2011.01.012

[15]

Hu, J., Liu, X. C., Chen, L. Y., et al., 2013. A ~2.5 Ga Magmatic Event at the Northern Margin of the Yangtze Craton: Evidence from U⁃Pb Dating and Hf Isotope Analysis of Zircons from the Douling Complex in the South Qinling Orogen. Chinese Science Bulletin, 58(28): 3564-3579. https://doi.org/10.1007/s11434⁃013⁃5904⁃1

[16]

Huang, Y., Wang, X. L., Li, J. Y., et al., 2021. Early Neoproterozoic Tectonic Evolution of Northern Yangtze Block: Insights from Sedimentary Sequences from the Dahongshan Area. Precambrian Research, 365: 106382. https://doi.org/10.1016/j.precamres.2021.106382

[17]

Ji, L., 2015. Detrital Zircon U⁃Pb Geochronology and Tectonic Implication of the Paleo⁃ to Mesoproterzoic Strata in the Liangshan District, Western Yantgze Block, South China (Dissertation). China University of Geosciences, Beijing, 73-85 (in Chinese with English abstract).

[18]

Ji, X. X., Zhou, S., Chen, Q., et al., 2016. Provenance and Tectonic Setting of the Kunyang Group in Central Yunnan Province. Geology in China, 43(3): 857-878 (in Chinese with English abstract).

[19]

Jiang, Y. X., Hohl, S. V., Huang, X. T., et al., 2024. Proterozoic to Phanerozoic Case Studies of Laser Ablation Microanalysis for Microbial Carbonate U⁃Pb Geochronology. Geoscience Frontiers, 15(2): 101736. https://doi.org/10.1016/j.gsf.2023.101736

[20]

Jin, W., Liu, J. H., Tian, Y., et al., 2023. Mid⁃ Mesoproterozoic (ca. 1.37 Ga) Anorogenic Magmatism in the Dabie Orogen, Northern Yangtze Craton: Response to the Breakup of Columbia. Geological Society of America Bulletin, 136 (5-6): 2616-2635. https://doi.org/10.1130/b37141.1

[21]

Kong, L. Y., Mao, X. W., Chen, C., et al., 2017. Chronological Study on Detrital Zircons and Its Geological Significance from Mesoproterozoic Dagushi Group in the Dahongshan Area, North Margin of the Yangtze Block. Earth Science, 42(4): 485-501 (in Chinese with English abstract).

[22]

Kuang, H. W., Liu, Y. Q., Fan, Z. X., et al., 2018. Sedimentary Characteristics of the Mesoproterozoic Shennongjia Group in Northern Margin of Yangtze Craton. Journal of Palaeogeography (Chinese Edition), 20(4): 523-544 (in Chinese with English abstract).

[23]

Li, H. K., Tian, H., Zhou, H. Y., et al., 2016. Correlation between the Dagushi Group in the Dahongshan Area and the Shennongjia Group in the Shennongjia Area on the Northern Margin of the Yangtze Craton: Constraints from Zircon U⁃Pb Ages and Lu⁃Hf Isotopic Systematics. Earth Science Frontiers, 23(6): 186-201 (in Chinese with English abstract).

[24]

Li, H. K., Zhang, C. L., Xiang, Z. Q., et al., 2013a. Zircon and Baddeleyite U⁃Pb Geochronology of the Shennongjia Group in the Yangtze Craton and Its Tectonic Significance. Acta Petrologica Sinica, 29(2): 673-697 (in Chinese with English abstract).

[25]

Li, H. K., Zhang, C. L., Yao, C. Y., et al., 2013b. Zircon U⁃Pb Age and Hf Isotopic Composition of Mesoproterozoic Sedimentary Strata in the Western Margin of Yangtze River. Scientia Sinica Terrae, 43(8): 1287-1298 (in Chinese).

[26]

Li, Q., Leng, J., 1987. The Upper Precambrian in the Shennongjia Region. Science and Technology Publishing House, Tianjin (in Chinese).

[27]

Liu, C.X., Mao, X.W., Wei, Y.X., 2006. Report on the H49C001002 1/250 000 Regional Geologic Survey of the Shennongjia Forest Area Amplitude. National Geological Archives of China, Beijing (in Chinese).

[28]

Liu, H., Xu, D. L., Wei, Y. X., et al., 2017. Depositional Age of the Dagushi Group in the Dahong Mountain, Hubei Province: Evidence from U⁃Pb Ages of Detrital Zircons. Geological Bulletin of China, 36(5): 715-725 (in Chinese with English abstract).

[29]

Liu, W., Yang, X. Y., Shu, S. Y., et al., 2018. Precambrian Basement and Late Paleoproterozoic to Mesoproterozoic Tectonic Evolution of the SW Yangtze Block, South China: Constraints from Zircon U⁃Pb Dating and Hf Isotopes. Minerals, 8(8): 333. https://doi.org/10.3390/min8080333

[30]

Liu, X. M., Gao, S., Diwu, C. R., et al., 2008a. Precambrian Crustal Growth of Yangtze Craton as Revealed by Detrital Zircon Studies. American Journal of Science, 308(4): 421-468. https://doi.org/10.2475/04.2008.02

[31]

Liu, Y. S., Zong, K. Q., Kelemen, P. B., et al., 2008b. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh⁃Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1-2): 133-153. https://doi.org/10.1016/j.chemgeo.2007.10.016

[32]

Liu, X.Y., 2021. Zircon U⁃Pb Geochronology of the Kunyang Group in Central Yunnan and Its Geotectonic Significance (Dissertation). Chengdu University of Technology, Chengdu, 68-79 (in Chinese with English abstract).

[33]

Lu, S. S., Jiang, T., Peng, S. G., et al., 2017. Comparison of Detrital Zircon U⁃Pb Geochronology between the Wudang Block and the Yangtze Continental Nucleus in Terms of Neorproterozoic Sedimentary Rocks. Acta Petrologica et Mineralogica, 36(5): 646-654 (in Chinese with English abstract).

[34]

Lu, S. S., Qiu, X. F., Jiang, T., et al., 2017. 2.2 Ga Subduction⁃Related Mafic Magmatic Rocks in the Kongling Complex: Evidence for the Assembly of the Columbia Supercontinent.Acta Geologica Sinica (English Edition), 91(5): 1926-1927. https://doi.org/10.1111/1755⁃6724.13426

[35]

Lu, S. S., Qiu, X. F., Tan, J. J., et al., 2016. The Pb⁃Pb Isochron Age of the Kuangshishan Formation in Shennongjia Area on the Northern Margin of the Yangtze Craton and Its Geological Implications. Earth Science, 41(2): 317-324 (in Chinese with English abstract).

[36]

Ludwig, K. R., 2003. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel (Berkeley Geochronology Center, Berkeley, California). BGC Special Publication, Berkeley, 55.

[37]

Meert, J. G., Santosh, M., 2017. The Columbia Supercontinent Revisited. Gondwana Research, 50: 67-83. https://doi.org/10.1016/j.gr.2017.04.011

[38]

Peng, M., Wu, Y. B., Wang, J., et al., 2009. Paleoproterozoic Mafic Dyke from Kongling Terrain in the Yangtze Craton and Its Implication. Chinese Science Bulletin, 54(6): 1098-1104. https://doi.org/10.1007/s11434⁃008⁃0558⁃0

[39]

Peng, N., Kuang, H. W., Liu, Y. Q., et al., 2023. Revision of the Mesoproterozoic Shennongjia Group Stratigraphic Succession in the Northern Margin of the Yangtze Craton. Acta Geologica Sinica, 97(12): 3902-3931 (in Chinese with English abstract).

[40]

Peng, S. B., Kusky, T. M., Jiang, X. F., et al., 2012. Geology, Geochemistry, and Geochronology of the Miaowan Ophiolite, Yangtze Craton: Implications for South China’s Amalgamation History with the Rodinian Supercontinent. Gondwana Research, 21(2-3): 577-594. https://doi.org/10.1016/j.gr.2011.07.010

[41]

Qiu, X. F., Ling, W. L., Liu, X. M., et al., 2011. Recognition of Grenvillian Volcanic Suite in the Shennongjia Region and Its Tectonic Significance for the South China Craton. Precambrian Research, 191(3-4): 101-119. https://doi.org/10.1016/j.precamres.2011.09.011

[42]

Qiu, X. F., Ling, W. L., Liu, X. M., et al., 2013. Zircon Hf Isotope of Shennongjia Volcanic Rocks on the Northern Margin of the Yangtze Craton. Geological Bulletin of China, 32(9): 1394-1401 (in Chinese with English abstract).

[43]

Qiu, X. F., Ling, W. L., Liu, X. M., 2014. Correlation between the Mesoproterozoic Yangtze Continental Nucleus and the Shennongjia Area: Constraints from Zircon Geochronological and Hf Isotope. Geological Science and Technology Information, 33(2): 1-8 (in Chinese with English abstract).

[44]

Qiu, X. F., Yang, H.M., Lu, S.S., et al., 2015. Geochronology and Geochemistry of Grenville⁃Aged (1 063±16 Ma) Metabasalts in the Shennongjia District, Yangtze Block: Implications for Tectonic Evolution of the South China Craton. International Geology Review, 57(1): 76-96. https://doi.org/10.1080/00206814.2014.991949

[45]

Qiu, X. F., Yang, H. M., Zhao, X. M., et al., 2019. Neoarchean Granitic Gneisses in the Kongling Complex, Yangtze Craton: Petrogenesis and Tectonic Implications. Earth Science, 44(2): 415-426 (in Chinese with English abstract).

[46]

Qiu, X. F., Zhao, X. M., Yang, H. M., et al., 2017. Paleoproterozoic Metamorphic Event in the Nucleus of the Yangtze Craton: Evidence from U⁃Pb Geochronology of the Metamorphic Zircons from the Khondalite. Geological Bulletin of China, 36(5): 706-714 (in Chinese with English abstract).

[47]

Qiu, Y. S., Hu, Z. X., Yang, Q. X., et al., 2013. LA⁃ICP⁃MS U⁃Pb Dating for the Macaoyuan Group in South China and Its Stratigraphic Significance. Resources Environment & Engineering, 27(3): 328-334 (in Chinese with English abstract).

[48]

Ren, G. M., Pang, W. H., Wang, L. Q., et al., 2020. Detrital Zircons of 3.8 Ga in Southwestern Yangtze Block and Its Geological Implications. Earth Science, 45(8): 3040-3053 (in Chinese with English abstract).

[49]

Rogers, J. J. W., Santosh, M., 2002. Configuration of Columbia, a Mesoproterozoic Supercontinent. Gondwana Research, 5(1): 5-22. https://doi.org/10.1016/S1342⁃937X(05)70883⁃2

[50]

Sláma, J., Košler, J., Condon, D. J., et al., 2008. Plešovice Zircon—A New Natural Reference Material for U⁃Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1-2): 1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005

[51]

Sun, L., Wang, W., Lu, G. M., et al., 2021. Neoproterozoic Geodynamics of South China and Implications on the Rodinia Configuration: The Kunyang Group Revisited. Precambrian Research, 363: 106338. https://doi.org/10.1016/j.precamres.2021.106338

[52]

Sun, L., Wang, W., Pandit, M. K., et al., 2022. Geochemical and Detrital Zircon Age Constraints on Meso⁃ to Neoproterozoic Sedimentary Basins in the Southern Yangtze Block: Implications on Proterozoic Geodynamics of South China and Rodinia Configuration. Precambrian Research, 378: 106779. https://doi.org/10.1016/j.precamres.2022.106779

[53]

Tian, H., Li, H. K., 2022. Revision of Mesoproterozoic Chronostratigraphic Sequence of the Yangtze Craton, China. North China Geology, 45(1): 69-78, 91 (in Chinese with English abstract).

[54]

Tian, H., Li, H. K., Liu, H., et al., 2018. Characteristics of C and O Isotopes of the Shennongjia Group in the Northern Margin of the Yangtze Craton and Their Constraints on Paleoenvironment and Depositional Age. Acta Geologica Sinica, 92(12): 2508-2533 (in Chinese with English abstract).

[55]

Tu, C., Zhang, S. B., Su, K., et al., 2021. Zircon U⁃Pb Dating and Lu⁃Hf Isotope Results for Feidong Complex: Implications for Coherent Basement of the Yangtze Craton. Earth Science, 46(5): 1630-1643 (in Chinese with English abstract).

[56]

Wang, J., Deng, Q., Wang, Z. J., et al., 2013a. New Evidences for Sedimentary Attributes and Timing of the “Macaoyuan Conglomerates” on the Northern Margin of the Yangtze Block in Southern China. Precambrian Research, 235: 58-70. https://doi.org/10.1016/j.precamres.2013.06.003

[57]

Wang, L. J., Griffin, W. L., Yu, J. H., et al., 2013b. U⁃Pb and Lu⁃Hf Isotopes in Detrital Zircon from Neoproterozoic Sedimentary Rocks in the Northern Yangtze Block: Implications for Precambrian Crustal Evolution. Gondwana Research, 23(4): 1261-1272. https://doi.org/10.1016/j.gr.2012.04.013

[58]

Wang, W., Zhou, M. F., 2014. Provenance and Tectonic Setting of the Paleo⁃ to Mesoproterozoic Dongchuan Group in the Southwestern Yangtze Block, South China: Implication for the Breakup of the Supercontinent Columbia. Tectonophysics, 610: 110-127. https://doi.org/10.1016/j.tecto.2013.11.009

[59]

Wang, W., Cawood, P. A., Zhou, M. F., et al., 2016. Paleoproterozoic Magmatic and Metamorphic Events Link Yangtze to Northwest Laurentia in the Nuna Supercontinent. Earth and Planetary Science Letters, 433: 269-279. https://doi.org/10.1016/j.epsl.2015.11.005

[60]

Wu, Y. B., Gao, S., Zhang, H. F., et al., 2012. Geochemistry and Zircon U⁃Pb Geochronology of Paleoproterozoic Arc Related Granitoid in the Northwestern Yangtze Block and Its Geological Implications. Precambrian Research, 200-203: 26-37. https://doi.org/10.1016/j.precamres.2011.12.015

[61]

Wu, Y. B., Zheng, Y. F., Gao, S., et al., 2008. Zircon U⁃Pb Age and Trace Element Evidence for Paleoproterozoic Granulite⁃Facies Metamorphism and Archean Crustal Rocks in the Dabie Orogen. Lithos, 101(3-4): 308-322. https://doi.org/10.1016/j.lithos.2007.07.008

[62]

Xiao, J., Zhao, Z. D., Zhu, X. Y., et al., 2021. Detrital Zircon Chronology and Element Geochemistry of the Dongchuan Group in Yunnan Province and Its Geological Significance. Acta Petrologica Sinica, 37(4): 1270-1286 (in Chinese with English abstract).

[63]

Xiao, Z.B., 2012.Research of the Detrital Zircon from Mesoproterozoic Sedimentary Strata in the North Margin of Yangtze Craton, China (Dissertation). Northwest University, Xi’an, 28-39 (in Chinese with English abstract).

[64]

Xiong, Q., Zheng, J. P., Yu, C. M., et al., 2009. Zircon U⁃Pb Age and Hf Isotope of Quanyishang A⁃Type Granite in Yichang: Signification for the Yangtze Continental Cratonization in Paleoproterozoic. Chinese Science Bulletin, 54(3): 436-446. https://doi.org/10.1007/s11434⁃008⁃0401⁃7

[65]

Xu, D. L., Liu, H., Wei, Y. X., et al., 2016. Detrial Zircon U⁃Pb Dating of Zhengjiaya Formation from the Shengnongjia Area in the Northern Yangtze Block and Its Tectonic Implications. Acta Geologica Sinica, 90(10): 2648-2660 (in Chinese with English abstract).

[66]

Xu, Q., Jiang, T., Hou, L. C., et al., 2021. Detrital Zircon Compositions of U⁃Pb Ages and Hf Isotope for Sandstone of Liantuo Formation from Three Gorges Area, Yangtze Block and Its Geological Significance. Earth Science, 46(4): 1217-1230 (in Chinese with English abstract).

[67]

Zhang, L., Liu, H. J., Zhang, S. B., et al., 2022. Tectonic Switch of the North Yangtze Craton at ca. 2.0 Ga: Implications for Its Position in Columbia Supercontinent. Precambrian Research, 381: 106842. https://doi.org/10.1016/j.precamres.2022.106842

[68]

Zhang, L. J., Ma, C. Q., Wang, L. X., et al., 2011. Discovery of Paleoproterozoic Rapakivi Granite on the Northern Margin of the Yangtze Block and Its Geological Significance. Chinese Science Bulletin, 56(3): 306-318. https://doi.org/10.1007/s11434⁃010⁃4236⁃7

[69]

Zhang, S. B., Zheng, Y. F., Wu, Y. B., et al., 2006. Zircon U⁃Pb Age and Hf Isotope Evidence for 3.8 Ga Crustal Remnant and Episodic Reworking of Archean Crust in South China. Earth and Planetary Science Letters, 252(1-2): 56-71. https://doi.org/10.1016/j.epsl.2006.09.027

[70]

Zhang, Z. Q., Zhang, G. W., Tang, S. H., et al., 2001. On the Age of Metamorphic Rocks of the Yudongzi Group and the Archean Crystalline Basement of the Qinling Orogen. Acta Geologica Sinica, 75(2): 198-204 (in Chinese with English abstract).

[71]

Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2002. Review of Global 2.1-1.8 Ga Orogens: Implications for a Pre⁃Rodinia Supercontinent. Earth⁃Science Reviews, 59(1-4): 125-162. https://doi.org/10.1016/S0012⁃8252(02)00073⁃9

[72]

Zhao, X. F., Zhou, M. F., Li, J. W., et al., 2010. Late Paleoproterozoic to Early Mesoproterozoic Dongchuan Group in Yunnan, SW China: Implications for Tectonic Evolution of the Yangtze Block. Precambrian Research, 182(1-2): 57-69. https://doi.org/10.1016/j.precamres.2010.06.021

[73]

Zhao, X. M., An, Z. H., Qiu, X. F., et al., 2022. Redefinition of Meso⁃Neoproterozoic Stratigraphy in the Shennongjia⁃Kongling Area on the Northern Margin of Yangtze Craton—Discussion on the Bottom of the Shennongjia Group. South China Geology, 38(1): 46-55 (in Chinese with English abstract).

基金资助

国家自然科学基金项目(42272229)

国家自然科学基金项目(U2344210)

国家自然科学基金项目(41303026)

古生物与地质环境演化湖北省重点实验室开放研究基金项目(PEL⁃202205)

AI Summary AI Mindmap
PDF (3599KB)

125

访问

0

被引

详细

导航
相关文章

AI思维导图

/