粤北下庄铀矿田辉绿岩岩石地球化学、磷灰石U⁃Pb年龄及其与铀成矿关系
李海东 , 钟福军 , 刘文泉 , 潘家永 , 田世洪 , 曹栩 , 郑国栋
地球科学 ›› 2025, Vol. 50 ›› Issue (11) : 4405 -4423.
粤北下庄铀矿田辉绿岩岩石地球化学、磷灰石U⁃Pb年龄及其与铀成矿关系
Petrogeochemistry, Apatite U⁃Pb Geochronology of Diabase, and Its Relationship with Uranium Mineralization in Xiazhuang Uranium Ore Field, North Guangdong
,
粤北下庄铀矿田发育五组近似等间距展布的北西西向辉绿岩脉,其与铀成矿关系密切.为查明辉绿岩成因及其与铀成矿关系,通过辉绿岩岩石地球化学、磷灰石U-Pb年代学及成矿期石英H-O同位素分析,结合区域构造背景,系统研究了辉绿岩的成岩时代、成因及其对铀成矿的控制机制.结果表明:(1)辉绿岩形成于两期岩浆活动(200~180 Ma和150~ 140 Ma),分别对应早侏罗世和晚侏罗世;(2)辉绿岩富集大离子亲石元素和强不相容元素;稀土元素球粒陨石标准化配分曲线呈右倾型,无明显Eu、Ce负异常,具有板内玄武岩属性,源于地幔部分熔融并受俯冲流体交代;(3)早期辉绿岩(200~180 Ma)可作为有利的赋矿围岩,与其侵位相关的深大断裂为成矿流体提供通道,断裂与辉绿岩交切部位易于形成交点型铀矿化,其成矿流体具壳幔混合来源特征;晚期辉绿岩(150~140 Ma)不仅继承了早期辉绿岩的作用,还为138~122 Ma阶段的铀成矿提供了地幔流体和矿化剂ΣCO2,促进了碎裂蚀变岩型铀矿化的形成,其成矿流体主要来源于地幔流体.
The Xiazhuang uranium ore field in North Guangdong is characterized by five sets of approximately equidistant NWW-trending diabase dikes, which are closely related to uranium mineralization. To determine the genesis of diabase and its relationship with uranium mineralization. This study systematically investigates the diagenetic age, genesis of diabase, and its controlling mechanisms on uranium mineralization through geochemical analysis of diabase, apatite U-Pb geochronology, and H-O isotopic analysis of ore-forming quartz, combined with regional tectonic background. Results indicate that: (1) The diabase was formed during two magmatic events (200-180 Ma and 150-140 Ma), corresponding to the Early Jurassic and Late Jurassic, respectively. (2) The diabase is enriched in large-ion lithophile elements (LILEs) and highly incompatible elements. The chondrite-normalized rare earth element (REE) patterns exhibit right-leaning trends and no significant Eu or Ce anomalies, indicating an intraplate basalt affinity derived from partial mantle melting with metasomatism by subduction-related fluids. (3) The early-stage diabase (200-180 Ma) served as favorable host rocks for uranium mineralization. The deep-seated faults associated with diabase emplacement provided pathways for ore-forming fluids, and the intersections between faults and diabase facilitated the formation of vein-type uranium deposits with crust-mantle hybrid fluids. The late-stage diabase (150-140 Ma) not only inherited the role of the early-stage diabase but also contributed mantle-derived fluids and mineralizing agents (ΣCO₂) during the 138-122 Ma uranium mineralization stage, promoting the formation of fractured alteration-type uranium deposits dominated by mantle-derived fluids.
辉绿岩 / 岩石成因 / 下庄铀矿田 / 磷灰石U⁃Pb年龄 / 交点型铀矿化 / 碎裂蚀变岩型铀矿化 / 地球化学 / 矿床学.
diabase / petrogenesis / Xiazhuang uranium ore field / apatite U⁃Pb age / intersection uranium mineralization type / cataclastic altered uranium mineralization type / geochemistry / ore deposits
| [1] |
Bonnetti, C., Liu, X. D., Mercadier, J., et al., 2018. The Genesis of Granite⁃Related Hydrothermal Uranium Deposits in the Xiazhuang and Zhuguang Ore Fields, North Guangdong Province, SE China: Insights from Mineralogical, Trace Elements and U⁃Pb Isotopes Signatures of the U Mineralisation. Ore Geology Reviews, 92: 588-612. https://doi.org/10.1016/j.oregeorev.2017.12.010 |
| [2] |
Chen, C. M., Zhou, Y., Feng, Z. H., et al., 2024. Identification of Neoproterozoic Gabbro from Diancangshan in West Yunnan and Its Geotectonic Implication. Earth Science, 49(12): 4434-4449 (in Chinese with English abstract). |
| [3] |
Cochrane, R., Spikings, R. A., Chew, D., et al., 2014. High Temperature (>350 ℃) Thermochronology and Mechanisms of Pb Loss in Apatite. Geochimica et Cosmochimica Acta, 127: 39-56. https://doi.org/10.1016/j.gca.2013.11.028 |
| [4] |
Deng, P., Shen, W. Z., Ling, H. F., et al., 2003. Uranium Mineralization Related to Mantle Fluid: A Case Study of the Xianshi Deposit in the Xiazhuang Uranium Orefield. Geochimica, 32(6): 520-528 (in Chinese with English abstract). |
| [5] |
He, D. B., 2017. Comparative Study of Different Types of Uranium Deposits in the Xiazhuang Ore Field, North Guangdong, China (Dissertation). Beijing Research Institute of Uranium Geology, Beijing (in Chinese with English abstract). |
| [6] |
Hu, R. Z., Li, C. Y., Ni, S. J., et al., 1993. Research on ΣCO2 Source in Ore⁃Forming Hydrothermal Solution of Granite⁃Type Uranium Deposit, South China. Science in China (Series B), 23(2): 189-196 (in Chinese). |
| [7] |
Hughes, J. M., Rakovan, J., 2002. The Crystal Structure of Apatite, Ca5(PO4)3(F, OH, Cl). Reviews in Mineralogy and Geochemistry, 48(1): 1-12. https://doi.org/10.2138/rmg.2002.48.1 |
| [8] |
La Flèche, M. R., Camiré, G., Jenner, G. A., 1998. Geochemistry of Post⁃Acadian, Carboniferous Continental Intraplate Basalts from the Maritimes Basin, Magdalen Islands, Québec, Canada. Chemical Geology, 148(3-4): 115-136. https://doi.org/10.1016/S0009⁃2541(98)00002⁃3 |
| [9] |
Lai, Z. X., 2015. The Geochemical Character of Intermediate⁃Basic Dikes and Its Control on Uranium Deposits in Xiazhuang Ore Field. Uranium Geology, 31(3): 370-376 (in Chinese with English abstract). |
| [10] |
Li, X. H., Hu, R. Z., Rao, B., 1997. Geochronology and Geochemistry of Cretaceous Mafic Dikes from Northern Guangdong, SE China. Geochimica, 26(2): 14-31 (in Chinese with English abstract). |
| [11] |
Li, Z. Y., Huang, Z. Z., Li, X. Z., et al., 2010. Magmatic Rocks and Uranium Mineralization in Guidong, Nanling. Geological Publishing House, Beijing (in Chinese). |
| [12] |
Liu, H. B., Jin, G. S., Li, J. J., et al., 2013. Determination of Stable Isotope Composition in Uranium Geological Samples. World Nuclear Geoscience, 30(3): 174-179 (in Chinese with English abstract). |
| [13] |
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA⁃ICP⁃MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 |
| [14] |
Liu, J. H., 1997. Application of Isotopic Methods in the Study on Xiazhuang Granite Type Hydrothermal Uranium Deposits. Volcanology & Mineral Resources, 18(4): 292-297 (in Chinese with English abstract). |
| [15] |
Lu, J. J., Wu, L. Q., Ling, H. F., et al., 2006. The Origin of the Huangpi⁃Zhangguangying Diabase⁃Dykes in the Xiazhuang Uranium Ore District of Northern Guangdong Province: Evidence from Trace Elements and Nd⁃Sr⁃Pb⁃O Isotopes. Acta Petrologica Sinica, 22(2): 397-406 (in Chinese with English abstract). |
| [16] |
Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. |
| [17] |
Luo, J. C., Qi, Y. Q., Wang, L. X., et al., 2019. Ar⁃Ar Dating of Mafic Dykes from the Xiazhuang Uranium Ore Field in Northern Guangdong, South China: A Reevaluation of the Role of Mafic Dyke in Uranium Mineralization. Acta Petrologica Sinica, 35(9): 2660-2678 (in Chinese with English abstract). |
| [18] |
Nie, B., Zhang, W. L., 2018. Ar⁃Ar Age of the Diabase and Its Relationship with Uranium Mineralization in Huangsha Mining District, Southern Jiangxi Province. Mineral Resources and Geology, 32(3): 390-396 (in Chinese with English abstract). |
| [19] |
Pochon, A., Poujol, M., Gloaguen, E., et al., 2016. U⁃Pb LA⁃ICP⁃MS Dating of Apatite in Mafic Rocks: Evidence for a Major Magmatic Event at the Devonian⁃ Carboniferous Boundary in the Armorican Massif (France). American Mineralogist, 101(11): 2430-2442. https://doi.org/10.2138/am⁃2016⁃5736 |
| [20] |
Sun, L. Q., Wang, K. X., Dai, J. W., et al., 2024. Petrogenesis of Haidewula Diabase, Eastern Kunlun Orogenic Belt and Its Geological Implications. Earth Science, 49(4): 1261-1276 (in Chinese with English abstract). |
| [21] |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 |
| [22] |
Thomson, S. N., Gehrels, G. E., Ruiz, J., et al., 2012. Routine Low⁃Damage Apatite U⁃Pb Dating Using Laser Ablation⁃Multicollector⁃ICPMS. Geochemistry, Geophysics, Geosystems, 13(2): Q0AA21. https://doi.org/10.1029/2011GC003928 |
| [23] |
Tian, X. L., 2016. Geochemistry Characteristics and Relationship with Uranium Deposite of Zhuguang Mountain and Guidong Region (Dissertation).China University of Geosciences, Beijing (in Chinese with English abstract). |
| [24] |
Wang, G. C., 2016. Petrogenesis of Mesozoic Intrusive Rocks in Northwest Fujian and South Jiangxi Province and Their Geodynamic Implications (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract). |
| [25] |
Wang, L. X., Ma, C. Q., Lai, Z. X., et al., 2015. Early Jurassic Mafic Dykes from the Xiazhuang Ore District (South China): Implications for Tectonic Evolution and Uranium Metallogenesis. Lithos, 239: 71-85. https://doi.org/10.1016/j.lithos.2015.10.008 |
| [26] |
Wang, X. C., Zhang, B. T., Zhang, Z. H., 1991. A Study of the Relationship between the Dark Dyke and the Uranium Mineralization. Mineral Deposits, 10(4): 359-370 (in Chinese with English abstract). |
| [27] |
Wang, Y. J., Fan, W. M., Cawood, P. A., et al., 2008. Sr⁃Nd⁃Pb Isotopic Constraints on Multiple Mantle Domains for Mesozoic Mafic Rocks beneath the South China Block Hinterland. Lithos, 106(3-4): 297-308. https://doi.org/10.1016/j.lithos.2008.07.019 |
| [28] |
Wang, Y. L., Zhang, C. J., Xiu, S. Z., 2001. Th/Hf⁃Ta/Hf Identification of Tectonic Setting of Basalts. Acta Petrologica Sinica, 17(3): 413-421 (in Chinese with English abstract). |
| [29] |
Wang, Z. Q., Li, Z. Y., Zhang, G. Y., et al., 2007. Geochemical Characteristics and the Provenance of Cretaceous Basic Dikes in Zhongdong Area of Xiazhuang Uranium Ore Field. Uranium Geology, 23(4): 218-225, 248 (in Chinese with English abstract). |
| [30] |
Wu, L. Q., Tan, Z. Z., Liu, R. Z., et al., 2003. Discussion on Uranium Ore⁃Formation Age in Xiazhuang Ore⁃Field, Northern Guandong. Uranium Geology, 19(1): 28-33 (in Chinese with English abstract). |
| [31] |
Xiang, Y. X., Wu, J. H., 2012. SHRIMP Zircon U⁃Pb Age of Yutian Group Basalts in Longnan Area of Southern Jiangxi Province and Its Geological Significance. Geological Bulletin of China, 31(5): 716-725 (in Chinese with English abstract). |
| [32] |
Zhang, D., Zhao, K. D., Chen, W., et al., 2018a. Early Jurassic Mafic Dykes from the Aigao Uranium Ore Deposit in South China: Geochronology, Petrogenesis and Relationship with Uranium Mineralization. Lithos, 308: 118-133. https://doi.org/10.1016/j.lithos.2018.02.028 |
| [33] |
Zhang, F. F., Wang, X. L., Sun, Z. M., et al., 2018b. Geochemistry and Zircon⁃Apatite U⁃Pb Geochronology of Mafic Dykes in the Shuangxiwu Area: Constraints on the Initiation of Neoproterozoic Rifting in South China. Precambrian Research, 309: 138-151. https://doi.org/10.1016/j.precamres.2017.04.008 |
| [34] |
Zhang, X. H., Huang, J. H., Zhang, B., et al., 2024. Sensitive Corresponding to Tectonic Transform of South China Block during Mesozoic: A Case Study on the Wuchuan⁃Sihui Strike⁃Slip Fault Zone. Acta Petrologica Sinica, 40(12): 3923-3948 (in Chinese with English abstract). |
| [35] |
Zhang, Z. S., 2011. Magmatism and Its Relationship with Uranium Mineralization in the Xiazhuang Uranium Ore Field. China Atomic Energy Press,Beijing (in Chinese). |
| [36] |
Zhao, J. H., Zhou, M. F., 2007. Geochemistry of Neoproterozoic Mafic Intrusions in the Panzhihua District (Sichuan Province, SW China): Implications for Subduction⁃Related Metasomatism in the Upper Mantle. Precambrian Research, 152(1-2): 27-47. https://doi.org/10.1016/j.precamres.2006.09.002 |
| [37] |
Zhong, F. J., Xia, F., Wang, L., et al., 2023. Geochronology and Geochemistry of Dolerite in the Lujing Uranium Ore Field of Central Zhuguangshan Complex, and Its Relationship with Uranium Mineralization. Acta Geologica Sinica, 97(8): 2593-2608 (in Chinese with English abstract). |
| [38] |
Zhou, J., Jiang, Y. H., Xing, G. F., et al., 2013. Geochronology and Petrogenesis of Cretaceous A⁃Type Granites from the NE Jiangnan Orogen, SE China. International Geology Review, 55(11): 1359-1383. https://doi.org/10.1080/00206814.2013.774199 |
| [39] |
Zhu, B., Ling, H. F., Shen, W. Z., et al., 2006. Isotopic Geochemistry of Shituling Uranium Deposit, Northern Guangdong Province, China. Mineral Deposits, 25(1): 71-82 (in Chinese with English abstract). |
| [40] |
Zhu, W. G., Zhong, H., Li, X. H., et al., 2010. The Early Jurassic Mafic⁃Ultramafic Intrusion and A⁃Type Granite from Northeastern Guangdong, SE China: Age, Origin, and Tectonic Significance. Lithos, 119(3-4): 313-329. https://doi.org/10.1016/j.lithos.2010.07.005 |
铀资源探采与核遥感全国重点实验室(东华理工大学)自主部署项目(2025QZ⁃KF⁃01)
国家自然科学基金项目(42272090)
国家自然科学基金项目(42362011)
国家自然科学基金项目(42002095)
中国核工业地质局项目(202239)
中国地质调查局花岗岩成岩成矿地质研究中心开放基金项目(PMGR202107)
中国铀业有限公司‒东华理工大学核资源与环境国家重点实验室联合创新基金项目(NRE2021⁃01)
中国铀业有限公司‒东华理工大学核资源与环境国家重点实验室联合创新基金项目(NRE2021⁃09)
中国铀业有限公司‒东华理工大学核资源与环境国家重点实验室联合创新基金项目(2022NRE⁃LH⁃05)
/
| 〈 |
|
〉 |