中国民用生物质和煤炭燃烧细颗粒物中二噁英的排放特征及排放清单
吴剑 , 彭勇 , 孔少飞 , 胡尧 , 覃旭菁 , 吴铮 , 祁士华
地球科学 ›› 2025, Vol. 50 ›› Issue (09) : 3441 -3453.
中国民用生物质和煤炭燃烧细颗粒物中二噁英的排放特征及排放清单
Emission Characteristics and Inventory of PCDD/Fs in Fine Particulate Matter from Domestic Biomass and Coal Combustion in China
基于稀释通道采样系统开展室内模拟燃烧实验,采用同位素稀释高分辨气相色谱‒高分辨质谱法,分析了民用生物质和煤炭燃烧细颗粒物(PM2.5)中二噁英(PCDD/Fs)的排放特征并计算得到其排放因子.结合中国燃料消耗和人口密度数据,基于“自下而上”的方法构建了中国民用生物质和煤炭燃烧PM2.5中PCDD/Fs的排放清单.研究结果表明:(1)民用生物质和煤炭燃烧PM2.5中PCDD/Fs的质量浓度在0.181~4.700 pg/m3之间,国际毒性当量(I-TEQ)浓度范围为0.081~2.300 pg I-TEQ/m3,其中,2,3,7,8-四氯二苯并对二噁英(2,3,7,8-T4CDD)(P<0.01,R2=0.90)这一单体同系物的质量浓度与总I-TEQ浓度存在强相关性,可作为民用生物质和煤炭燃烧PM2.5中PCDD/Fs毒性的良好指标.(2)民用生物质和煤炭燃烧PM2.5中PCDD/Fs的质量浓度排放因子分别为(1.82±0.97) ng/kg和(4.09±2.76) ng/kg;I-TEQ浓度排放因子分别为(0.40±0.21) ng I-TEQ/kg和(0.53±0.24) ng I-TEQ/kg.(3)2021年,民用生物质和煤炭燃烧PM2.5中PCDD/Fs的排放量为90.0 g I-TEQ,从空间上看,PCDD/Fs的高排放区主要集中在东北和华东地区,排放高值大于8 μg I-TEQ/km2.与前人研究相比,垃圾焚烧(22.56 g I-TEQ)和工业燃烧(208 g I-TEQ)PM2.5中PCDD/Fs的排放量分别是民用生物质和煤炭燃烧排放量的0.2倍和1.5倍.这表明,民用生物质和煤炭燃烧是PM2.5中PCDD/Fs排放不容忽视的重要来源.(4)民用生物质和煤炭燃烧PM2.5中PCDD/Fs排放导致的个人吸入的平均健康风险分别为(9.5±7.2)×10-5和(3.1±1.7)×10-5,分别是从事各类工业生产活动的职业工人((2.88±2.45)×10-5)的3.3倍和1.1倍.
Indoor simulation combustion experiments were performed using a dilution tunnel sampling system. The emission characteristics of PCDD/Fs in PM2.5 from domestic biomass and coal combustion were analyzed using isotope dilution high-resolution gas chromatography/mass spectrometry (HRGC/HRMS), with subsequent calculation of emission factors. By integrating China’s fuel consumption and population density data, we developed a “bottom-up” emission inventory for PM2.5-bound PCDD/Fs from domestic biomass and coal combustion in China. The key findings are as follows: (1) The mass concentrations of PCDD/Fs in PM2.5 from domestic biomass and coal combustion ranged from 0.181 to 4.700 pg/m3, with international toxic equivalent (I-TEQ) concentrations of 0.081 to 2.300 pg I-TEQ/m3. Congener analysis revealed that 2,3,7,8-T4CDD (P <0.01, R2=0.90) showed strong correlations with I-TEQ concentration, suggesting its potential as reliable toxicity indicators for PM2.5-bound PCDD/Fs from domestic biomass and coal combustion. (2) The mass-based emission factors of PCDD/Fs in PM2.5 were (1.82±0.97) ng/kg for biomass combustion and (4.09±2.76) ng/kg for coal combustion. The corresponding I-TEQ emission factors were (0.40±0.21) ng I-TEQ/kg (domestic biomass) and (0.53±0.24) ng I-TEQ/kg (domestic coal). (3) In 2021, the total emissions of PCDD/Fs in PM2.5 from domestic biomass and coal combustion reached 90.0 g I-TEQ. With spatial analysis showing emission hotspots (>8 μg I-TEQ/km2) concentrated in Northeast and East China. Compared to previous studies, the emissions of PCDD/Fs in PM2.5 from waste incineration (22.56 g I-TEQ) and industrial combustion (208 g I-TEQ) were 0.2 times and 1.5 times those from domestic biomass and coal combustion, respectively. These results highlight that domestic biomass and coal combustion represent non-negligible and substantial sources of PCDD/Fs in PM2.5. (4) The estimated inhalation cancer risks were (9.5±7.2)×10-5 for domestic biomass combustion and (3.1±1.7)×10-5 for domestic coal combustion, representing 3.3-fold and 1.1-fold increases respectively over occupational exposure risks for industrial workers ((2.88±2.45)×10-5).
微粒排放 / 二噁英 / 民用生物质 / 民用煤炭 / 排放特征 / 排放清单 / 大气污染.
particulate emissions / PCDD/Fs / domestic biomass / domestic coal / emission characteristics / emission inventory / air pollution
| [1] |
Akagi, S. K., Yokelson, R., Wiedinmyer, C., et al., 2011. Emission Factors for Open and Domestic Biomass Burning for Use in Atmospheric Models. Atmospheric Chemistry and Physics, 11(9): 4039-4072. |
| [2] |
Andreae, M. O., Merlet, P., 2001. Emission of Trace Gases and Aerosols from Biomass Burning. Global Biogeochemical Cycles, 15(4): 955-966. https://doi.org/10.1029/2000GB001382 |
| [3] |
Black, R. R., Meyer, C. P., Touati, A., et al., 2012. Emission Factors for PCDD/PCDF and Dl⁃PCB from Open Burning of Biomass. Environment International, 38(1): 62-66. https://doi.org/10.1016/j.envint.2011.07.003 |
| [4] |
Chang, S. S., Lee, W. J., Holsen, T. M., et al., 2014. Emissions of Polychlorinated⁃p⁃Dibenzo Dioxin, Dibenzofurans (PCDD/Fs) and Polybrominated Diphenyl Ethers (PBDEs) from Rice Straw Biomass Burning. Atmospheric Environment, 94: 573-581. https://doi.org/10.1016/j.atmosenv.2014.05.067 |
| [5] |
Chen, C. M., 2004. The Emission Inventory of PCDD/PCDF in Taiwan. Chemosphere, 54(10): 1413-1420. https://doi.org/10.1016/j.chemosphere.2003.10.039 |
| [6] |
Chen, D. Y., Peng, P. A., Hu, J. F., et al., 2011. The Emission Characteristics of Dioxins in Biomass Burning. Environmental Chemistry, 30(7): 1271-1279 (in Chinese with English abstract). |
| [7] |
Chen, L. L., Huang, T., Chen, K. J., et al., 2020. Gridded Atmospheric Emission Inventory of PCDD/Fs in China. Environmental Science, 41(2): 510-519 (in Chinese with English abstract). |
| [8] |
Chen, W. S., Shen, Y. H., Hsieh, T. Y., et al., 2011. Fate and Distribution of Polychlorinated Dibenzo⁃p⁃Dioxins and Dibenzofurans in a Woodchip⁃Fuelled Boiler. Aerosol and Air Quality Research, 11(3): 282-289. https://doi.org/10.4209/aaqr.2010.11.0098 |
| [9] |
Chen, Y. J., Sheng, G. Y., Bi, X. H., et al., 2005. Emission Factors for Carbonaceous Particles and Polycyclic Aromatic Hydrocarbons from Residential Coal Combustion in China. Environmental Science & Technology, 39(6): 1861-1867. https://doi.org/10.1021/es0493650 |
| [10] |
Chen, Z. J., Tan, Y. Y., Xu, J., 2022. Economic and Environmental Impacts of the Coal⁃to⁃Gas Policy on Households: Evidence from China. Journal of Cleaner Production, 341: 130608. https://doi.org/10.1016/j.jclepro.2022.130608 |
| [11] |
Cheng, Y. Y., Lu, M. F., Lin, J. J. M., 2015. Emission Factors for Dioxin for Coal Burning, Secondary Smelting and Alloying of Aluminum, and Cement Kiln Processes. Advanced Materials Research, 1102: 27-32. https://doi.org/10.4028/www.scientific.net/amr.1102.27 |
| [12] |
Dindal, A., Thompson, E., Strozier, E., et al., 2011. Application of GC⁃HRMS and GC×GC⁃TOFMS to Aid in the Understanding of a Dioxin Assay’s Performance for Soil and Sediment Samples. Environmental science & technology, 45(24): 10501-10508. |
| [13] |
Duan, F., Cong, S. Q., Shuang, W., et al., 2012. Co⁃combustion Characteristics of Municipal Sewage Sludge and Different Bituminous Coals. Chinese Journal of Environmental Engineering, 6(8): 2865-2869 (in Chinese with English abstract). |
| [14] |
Energy Statistics Division of the National Bureau of Statistics, 2015. China Energy Statistical Yearbook. China Statistics Press, Beijing, 130-304 (in Chinese). |
| [15] |
Fu, J. Y., 2014. China Kilometer Grid Population Distribution Dataset. http://www.geodoi.ac.cn/webcn/doi.aspx?Id=131 (in Chinese). |
| [16] |
Fu, Z. Q., Lin, S. M., Tian, H. Z., et al., 2022. A Comprehensive Emission Inventory of Hazardous Air Pollutants from Municipal Solid Waste Incineration in China. Science of the Total Environment, 826: 154212. https://doi.org/10.1016/j.scitotenv.2022.154212 |
| [17] |
Gao, H. C., Ni, Y. W., Zhang, H. J., et al., 2009. Stack Gas Emissions of PCDD/Fs from Hospital Waste Incinerators in China. Chemosphere, 77(5): 634-639. https://doi.org/10.1016/j.chemosphere.2009.08.017 |
| [18] |
Grandesso, E., Gullett, B., Touati, A., et al., 2011. Effect of Moisture, Charge Size, and Chlorine Concentration on PCDD/F Emissions from Simulated Open Burning of Forest Biomass. Environmental Science & Technology, 45(9): 3887-3894. https://doi.org/10.1021/es103686t |
| [19] |
Hites, R. A., 2011. Dioxins: An Overview and History. Environmental Science & Technology, 45(1): 16-20. https://doi.org/10.1021/es1013664 |
| [20] |
Hu, J. C., Wu, J., Xu, C. Y., et al., 2021. Characterization and Health Risks of PCDD/Fs, PCBS, and PCNS in the Soil around a Typical Secondary Copper Smelter. Environmental Science, 42(3): 1141-1151 (in Chinese with English abstract). |
| [21] |
Hu, J. C., Zheng, M. H., Liu, W. B., et al., 2013. Occupational Exposure to Polychlorinated Dibenzo⁃p⁃Dioxins and Dibenzofurans, Dioxin⁃Like Polychlorinated Biphenyls, and Polychlorinated Naphthalenes in Workplaces of Secondary Nonferrous Metallurgical Facilities in China. Environmental Science & Technology, 47(14): 7773-7779. https://doi.org/10.1021/es4016475 |
| [22] |
Kong, S. F., Bai, Z. P., Lu, B., 2014. Comparative Analysis on Emission Factors of Carbonaceous Components in PM2.5 and PM10 from Domestic Fuels Combustion. China Environmental Science, 34(11): 2749-2756 (in Chinese with English abstract). |
| [23] |
Lammel, G., Heil, A., Stemmler, I., et al., 2013. On the Contribution of Biomass Burning to POPs (PAHs and PCDDS) in Air in Africa. Environmental Science & Technology, 47(20): 11616-11624. https://doi.org/10.1021/es401499q |
| [24] |
Lavric, E. D., Konnov, A. A., De Ruyck, J., 2004. Dioxin Levels in Wood Combustion—A Review. Biomass and Bioenergy, 26(2): 115-145. https://doi.org/10.1016/S0961⁃9534(03)00104⁃1 |
| [25] |
Lei, M., Hai, J., Cheng, J., et al., 2017. Emission Characteristics of Toxic Pollutants from an Updraft Fixed Bed Gasifier for Disposing Rural Domestic Solid Waste. Environmental Science and Pollution Research International, 24(24): 19807-19815. https://doi.org/10.1007/s11356⁃017⁃9615⁃z |
| [26] |
Lei, R. R., Xu, Z. C., Xing, Y., et al., 2021. Global Status of Dioxin Emission and China’s Role in Reducing the Emission. Journal of Hazardous Materials, 418: 126265. https://doi.org/10.1016/j.jhazmat.2021.126265 |
| [27] |
Li, H., Li, Y., Jin, Y., 2015a. Gaseous Emissions from the Co⁃Combustion of Wet Sludge and Coal. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 37(19): 2064-2072. https://doi.org/10.1080/15567036.2012.666622 |
| [28] |
Li, M., Tang, B., Zheng, J., et al., 2020. PCDD/Fs in Paired Hair and Serum of Workers from a Municipal Solid Waste Incinerator Plant in South China: Concentrations, Correlations, and Source Identification. Environment International, 144: 106064. https://doi.org/10.1016/j.envint.2020.106064 |
| [29] |
Li, Y. Q., Chen, T., Zhang, J., et al., 2015b. Mass Balance of Dioxins over a Cement Kiln in China. Waste Management, 36: 130-135. https://doi.org/10.1016/j.wasman.2014.11.027 |
| [30] |
Lin, L. F., Lee, W. J., Li, H. W., et al., 2007. Characterization and Inventory of PCDD/F Emissions from Coal⁃Fired Power Plants and Other Sources in Taiwan. Chemosphere, 68(9): 1642-1649. https://doi.org/10.1016/j.chemosphere.2007.04.002 |
| [31] |
Liu, F. J., Tang, J. Y., Liu, F. S., et al., 2023. Analysis of Influencing Factors of Aerosol Optical Depth in Beijing. Earth Science, 48(10): 3812-3819 (in Chinese with English abstract). |
| [32] |
Liu, H. B., Kong, S. F., Wang, W., et al., 2016. Emission Inventory of Heavy Metals in Fine Particles Emitted from Residential Coal Burning in China. Environmental Science, 37(8): 2823-2835 (in Chinese with English abstract). |
| [33] |
Lohmann, R., Jones, K. C., 1998. Dioxins and Furans in Air and Deposition: A Review of Levels, Behaviour and Processes. Science of the Total Environment, 219(1): 53-81. https://doi.org/10.1016/S0048⁃9697(98)00237⁃X |
| [34] |
Meng, W. J., Zhong, Q. R., Chen, Y. L., et al., 2019. Energy and Air Pollution Benefits of Household Fuel Policies in Northern China. Proceedings of the National Academy of Sciences of the United States of America, 116(34): 16773-16780. https://doi.org/10.1073/pnas.1904182116 |
| [35] |
Ni, H. Y., Han, Y. M., Cao, J. J., et al., 2015. Emission Characteristics of Carbonaceous Particles and Trace Gases from Open Burning of Crop Residues in China. Atmospheric Environment, 123: 399-406. https://doi.org/10.1016/j.atmosenv.2015.05.007 |
| [36] |
Pan, S. Y., Liou, Y. T., Chang, M. B., et al., 2021. Characteristics of PCDD/Fs in PM2.5 from Emission Stacks and the nearby Ambient Air in Taiwan. Scientific Reports, 11(1): 8093. https://doi.org/10.1038/s41598⁃021⁃87468⁃5 |
| [37] |
Penner, J. E., Dickinson, R. E., 1992. Effects of Aerosol from Biomass Burning on the Global Radiation Budget. Science, 256(5062): 1432-1434. https://doi.org/10.1126/science.256.5062.1432 |
| [38] |
Petit, P., Maître, A., Persoons, R., et al., 2019. Lung Cancer Risk Assessment for Workers Exposed to Polycyclic Aromatic Hydrocarbons in Various Industries. Environment International, 124: 109-120. https://doi.org/10.1016/j.envint.2018.12.058 |
| [39] |
Qin, X. J., Kong, S. F., Wu, J., et al., 2025. Number Concentration Size Distribution and Emission Factors of Submicron Particles from Residential Coal Combustion. China Environmental Science, 45(2): 593-605 (in Chinese with English abstract). |
| [40] |
Quaß, U., Fermann, M. W., Bröker, G., 2000. Steps towards a European Dioxin Emission Inventory. Chemosphere, 40(9-11): 1125-1129. https://doi.org/10.1016/S0045⁃6535(99)00361⁃6 |
| [41] |
Salian, K., Strezov, V., Evans, T. J., et al., 2019. Application of National Pollutant Inventories for Monitoring Trends on Dioxin Emissions from Stationary Industrial Sources in Australia, Canada and European Union. PLoS One, 14(10): e0224328. https://doi.org/10.1371/journal.pone.0224328 |
| [42] |
Shih, T. S., Lee, W. J., Shih, M., et al., 2008. Exposure and Health⁃Risk Assessment of Polychlorinated Dibenzo⁃p⁃Dioxins and Dibenzofurans (PCDD/Fs) for Sinter Plant Workers. Environment International, 34(1): 102-107. https://doi.org/10.1016/j.envint.2007.07.010 |
| [43] |
Song, S. J., Chen, K. J., Huang, T., et al., 2023. New Emission Inventory Reveals Termination of Global Dioxin Declining Trend. Journal of Hazardous Materials, 443: 130357. https://doi.org/10.1016/j.jhazmat.2022.130357 |
| [44] |
Ssebugere, P., Sillanpää, M., Matovu, H., et al., 2019. Human and Environmental Exposure to PCDD/Fs and Dioxin⁃like PCBS in Africa: A Review. Chemosphere, 223: 483-493. https://doi.org/10.1016/j.chemosphere.2019.02.065 |
| [45] |
United States Environmental Protection Agency (USEPA), 2025. PCDD/Fs Emission Factor Database. https://www.epa.gov/air⁃emissions⁃factors⁃and⁃quantification/ap⁃42⁃compilation⁃air⁃emissions⁃factors⁃stationary⁃sources |
| [46] |
Wang, K., Tian, H. Z., Hua, S. B., et al., 2016. A Comprehensive Emission Inventory of Multiple Air Pollutants from Iron and Steel Industry in China: Temporal Trends and Spatial Variation Characteristics. Science of the Total Environment, 559: 7-14. https://doi.org/10.1016/j.scitotenv.2016.03.125 |
| [47] |
Ward, D. E., Hardy, C. C., 1991. Smoke Emissions from Wildland Fires. Environment International, 17(2-3): 117-134. https://doi.org/10.1016/0160⁃4120(91)90095⁃8 |
| [48] |
Wei, J. X., Li, H., Liu, J. G., et al., 2022. National and Provincial Dioxin Emissions from Municipal Solid Waste Incineration in China. Science of the Total Environment, 851: 158128. https://doi.org/10.1016/j.scitotenv.2022.158128 |
| [49] |
Wikström, E., Ryan, S., Touati, A., et al., 2003. Importance of Chlorine Speciation on de Novo Formation of Polychlorinated Dibenzo⁃p⁃Dioxins and Polychlorinated Dibenzofurans. Environmental Science & Technology, 37(6): 1108-1113. https://doi.org/10.1021/es026262d |
| [50] |
Wu, D., Qi, J., Li, Q., et al., 2021a. Extreme Exposure Levels of PCDD/Fs Inhaled from Biomass Burning Activity for Cooking in Typical Rural Households. Environmental Science & Technology, 55(11): 7299-7306. https://doi.org/10.1021/acs.est.1c00469 |
| [51] |
Wu, J., Kong, S. F., Wu, F. Q., et al., 2018. Estimating the Open Biomass Burning Emissions in Central and Eastern China from 2003 to 2015 Based on Satellite Observation. Atmospheric Chemistry & Physics, 18(16): 11623-11646. https://doi.org/10.5194/acp⁃18⁃11623⁃2018 |
| [52] |
Wu, J., Kong, S. F., Yan, Y. Y., et al., 2022. The Toxicity Emissions and Spatialized Health Risks of Heavy Metals in PM2.5 from Biomass Fuels Burning. Atmospheric Environment, 284: 119178. https://doi.org/10.1016/j.atmosenv.2022.119178 |
| [53] |
Wu, J., Kong, S. F., Zeng, X., et al., 2021b. First High⁃Resolution Emission Inventory of Levoglucosan for Biomass Burning and Non⁃Biomass Burning Sources in China. Environmental Science & Technology, 55(3): 1497-1507. https://doi.org/10.1021/acs.est.0c06675 |
| [54] |
Yang, L. L., Zheng, M. H., Zhao, Y. Y., et al., 2019. Unintentional Persistent Organic Pollutants in Cement Kilns Co⁃Processing Solid Wastes. Ecotoxicology and Environmental Safety, 182: 109373. https://doi.org/10.1016/j.ecoenv.2019.109373 |
| [55] |
Zhang, C. L., Bai, L., Yao, Q., et al., 2022. Emission Characteristics of Polychlorinated Dibenzo⁃p⁃Dioxins and Dibenzofurans from Industrial Combustion of Biomass Fuels. Environmental Pollution, 292: 118265. https://doi.org/10.1016/j.envpol.2021.118265 |
| [56] |
Zhang, G., Huang, X. X., Liao, W. B., et al., 2019. Measurement of Dioxin Emissions from a Small⁃Scale Waste Incinerator in the Absence of Air Pollution Controls. International Journal of Environmental Research and Public Health, 16(7): 1267. https://doi.org/10.3390/ijerph16071267 |
| [57] |
Zhang, M. M., Buekens, A., Li, X. D., 2017. Dioxins from Biomass Combustion: An Overview. Waste and Biomass Valorization, 8(1): 1-20. https://doi.org/10.1007/s12649⁃016⁃9744⁃5 |
| [58] |
Zhang, Y. X., Schauer, J. J., Zhang, Y. H., et al., 2008. Characteristics of Particulate Carbon Emissions from Real⁃World Chinese Coal Combustion. Environmental Science & Technology, 42(14): 5068-5073. https://doi.org/10.1021/es7022576 |
| [59] |
Zhao, Y., Nielsen, C. P., Lei, Y., et al., 2011. Quantifying the Uncertainties of a Bottom⁃Up Emission Inventory of Anthropogenic Atmospheric Pollutants in China. Atmospheric Chemistry & Physics, 11(5): 2295-2308. https://doi.org/10.5194/acp⁃11⁃2295⁃201110.5194/acpd⁃10⁃29075⁃2010 |
| [60] |
Zhou, Q., Yang, J. X., Liu, M. M., et al., 2018. Toxicological Risk by Inhalation Exposure of Air Pollution Emitted from China’s Municipal Solid Waste Incineration. Environmental Science & Technology, 52(20): 11490-11499. https://doi.org/10.1021/acs.est.8b03352 |
| [61] |
Zou, C., Han, J. L., Fu, H. Q., 2012. Emissions of PCDD/Fs from Steel and Secondary Nonferrous Productions. Procedia Environmental Sciences, 16: 279-288. https://doi.org/10.1016/j.proenv.2012.10.039 |
国家自然科学基金青年资助项目(42205116)
科技部国家重点研发计划课题(2023YFC3709900)
博士后科学基金面上项目(2022M712947)
/
| 〈 |
|
〉 |