铌钽铁矿U⁃Pb年代学方法研究进展

涂家润 , 张妍 , 周红英 , 崔玉荣 , 李国占 , 吴磊 , 李志丹

地球科学 ›› 2025, Vol. 50 ›› Issue (07) : 2498 -2510.

PDF (1241KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (07) : 2498 -2510. DOI: 10.3799/dqkx.2025.091

铌钽铁矿U⁃Pb年代学方法研究进展

作者信息 +

Progress in U⁃Pb Dating Methods of Columbite⁃Tantalite Minerals

Author information +
文章历史 +
PDF (1269K)

摘要

铌钽铁矿具有高封闭温度、高铀含量及低普通铅特征,是开展U-Pb定年的理想矿物,其同位素年代学能为稀有金属花岗岩及花岗伟晶岩成因机制研究提供关键约束.铌钽铁矿U-Pb定年方法主要包括同位素稀释‒热电离质谱法(ID-TIMS)、激光剥蚀电感耦合等离子体质谱法(LA-ICP-MS)及二次离子质谱法(SIMS).系统梳理了三种定年方法的基本原理、发展脉络、技术优势及现存问题,并重点总结了近年来该方法在稀有金属矿床成矿时代厘定、成矿过程解析等领域的应用进展.由于铌钽铁矿端元成分复杂多变,且常用的微区原位测年方法(LA-ICP-MS/SIMS)普遍存在基体效应的影响,实现多期次成矿事件中铌钽铁矿U-Pb年龄的高精度、高准确度测定仍是当前技术难点及未来研究重点.

Abstract

Columbite-tantalite, characterized by high closure temperature, high uranium content, and low common lead, is an ideal mineral for U-Pb dating. Its isotopic chronology provides critical constraints on the genetic mechanisms of rare-metal granites and pegmatites. The main U-Pb dating methods for columbite-tantalite include isotope dilution-thermal ionization mass spectrometry (ID-TIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and secondary ion mass spectrometry (SIMS). This paper systematically reviews the basic principles, development history, technical advantages, and existing challenges of these three dating techniques, with a focus on summarizing recent application advancements in constraining ore-forming epochs and deciphering metallogenic processes of rare-metal deposits. The study reveals that it remains the current technical bottleneck and future research priority to achieve high-precision and accurate U-Pb age determinations for columbite-tantalite across polyphase mineralization events due to the complex and variable end-member compositions of columbite-tantalite and the pervasive matrix effects inherent in commonly used in-situ dating methods (LA-ICP-MS/SIMS). Future studies should focus on developing mineral compositional reference materials and optimizing analytical protocols to overcome these limitations.

Graphical abstract

关键词

铌钽铁矿 / U⁃Pb定年 / 基体效应 / 标样 / LA⁃ICP⁃MS / ID⁃TIMS / 高精度 / 稀有金属 / 地质年代学.

Key words

columbite-tantalite / U-Pb dating / matrix effect / reference materials / LA-ICP-MS / ID-TIMS / high precision / rare⁃metal / geochronology

引用本文

引用格式 ▾
涂家润,张妍,周红英,崔玉荣,李国占,吴磊,李志丹. 铌钽铁矿U⁃Pb年代学方法研究进展[J]. 地球科学, 2025, 50(07): 2498-2510 DOI:10.3799/dqkx.2025.091

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

铌(Nb)、钽(Ta)具有熔点高、延展性好、耐磨损性强、抗腐蚀性强和超导性等优点,已广泛应用于新能源、航空航天、医疗器械、电子信息等高新科技领域,是不可替代的稀有金属材料,被誉为“工业味精”.近些年,随着高新技术发展,对Nb、Ta的需求也急剧加大,美国、欧洲、澳大利亚等发达国家均将Nb、Ta列为战略性关键矿产资源.在中国,Nb、Ta属于紧缺战略性矿产,对外依存度高达90%(王登红, 2019;翟明国等, 2019).

Nb、Ta均位于化学元素周期表第VB族,属于同族元素,它们在物理、化学以及矿物学性质等方面都有许多相似之处,常以共伴生矿物存在于自然界中(谭东波等,2018).其中,铌钽铁矿(columbite⁃tantalite,简称Coltan)是获取战略金属Nb和Ta的重要矿物,主要分布在花岗岩型、花岗伟晶岩型、碱性岩型和碳酸岩型铌钽矿床中(李建康等, 2019;王汝成等, 2020).铌钽铁矿是一种复杂的氧化物型矿物,常以粒状、束状、放射状、自行柱状、板状集合体形式存在,其化学组成为(Fe,Mn)(Nb,Ta)2O6,其中Fe和Mn以及Nb和Ta分别皆为完全类质同象,可以互相替换形成不同端元铌钽铁矿.按照端元成分Fe和Mn、Nb和Ta原子数的二等分法可以分为4个亚种矿物:铌铁矿((Fe1~0.5Mn0~0.5)(Nb2~1Ta0~1)O6)、铌锰矿((Fe0~0.5Mn1~0.5)(Nb2~1Ta0~1)O6)、钽铁矿((Fe1~0.5Mn0~0.5)(Nb0~1Ta2~1)O6)、钽锰矿((Fe0~0.5Mn1~0.5)(Nb0~1Ta2~1)O6)(Cerny and Ercit, 1985).此外,还常有Ti、Sn、W、Y、U、Zr等离子混入.

铌钽铁矿是稀有金属花岗岩和花岗伟晶岩矿床中的重要矿物,其矿物特征和主要端元成分Nb、Ta、Fe、Mn的组成变化,能够有效反演矿床岩浆热液的演化过程(熊欣等, 2021;Ryznar et al.,2023;蒋少涌等,2024).在稀有金属花岗岩和花岗伟晶岩中,首选的定年矿物锆石常因U含量太高,容易出现蜕晶质化和热液蚀变现象,甚至重结晶形成曲晶石,造成年龄结果出现较大偏差(Dickin, 1995Rayner et al.,2005).铌钽铁矿具有高封闭温度、富U和低普通Pb特征,是U⁃Pb定年的理想矿物(Romer and Wright, 1992Romer and Smeds, 1994Smith et al.,2004Che et al.,2015Melcher et al.,2015).相较于采用锆石或者岩体进行间接测年的方法,铌钽铁矿年代学研究能够更加直接和准确地限定稀有金属铌钽矿床的成矿年龄(Baumgartner et al.,2006Deng et al.,2013;毛禹杰等, 2021).李杭等(2020)对吐格曼稀有金属花岗伟晶岩中的铌钽铁矿、锡石以及锆石进行了U⁃Pb测年研究,铌钽铁矿、锡石测年结果在误差范围内一致,而锆石的测年结果年轻近10 Ma.这是由于锆石中铀含量较高(几千到上万ppm)发生了蜕晶化作用,此时测定的锆石年龄代表的是经流体交代甚至发生重结晶导致U⁃Pb同位素体系重置的时间,不再代表伟晶岩的初始结晶年龄(杨红等, 2017).准确测定成矿年龄可以初步判断附近岩体是否与成矿有关,从而为矿床成因研究和指导找矿工作提供理论依据(王倩等, 2019;Ryznar et al.,2023).我国华南分布有大量的稀有金属矿床,而稀有金属矿物以铌钽矿为主,通过铌钽矿物U⁃Pb定年,有助于建立华南稀有金属成矿时代框架(诸泽颖,2018).因此,开展铌钽铁矿U⁃Pb年代学研究具有重要意义.

当前,铌钽铁矿U⁃Pb定年方法主要包括同位素稀释‒热电离质谱法(ID⁃TIMS)(Romer and Wright, 1992)、激光剥蚀电感耦合等离子体质谱法(LA⁃ICP⁃MS)(Smith et al.,2004Che et al.,2015)以及二次离子质谱法(SIMS)(Legros et al.,2019).其中,ID⁃TIMS U⁃Pb定年方法通过化学溶解、同位素稀释剂添加和离子交换色谱纯化等化学前处理流程,在高精度热电离质谱仪上实现U⁃Pb同位素比值的精准测量.LA⁃ICP⁃MS和SIMS U⁃Pb定年方法属于微区原位测年方法,LA⁃ICP⁃MS利用激光剥蚀实现矿物微区分析,SIMS 则通过离子束轰击获取样品表面信息.本文将对铌钽铁矿U⁃Pb定年方法进行全面综述,总结各方法的特征及优缺点,并展望铌钽铁矿U⁃Pb年代学未来研究的重点方向.

1 铌钽铁矿U⁃Pb定年方法

1.1 ID⁃TIMS U⁃Pb定年

ID⁃TIMS U⁃Pb定年是测定铌钽铁矿U⁃Pb年龄的经典方法.该方法基本原理较为简单,主要是通过测定未知样品溶液添加稀释剂前后U、Pb同位素比值的变化,来计算原样品溶液的238U、206Pb等同位素含量,从而得到U⁃Pb年龄(涂家润等,2024).其实验流程可简要描述如下:首先在高温高压条件下采用强酸对铌钽铁矿进行彻底溶解,随后利用离子交换柱进行一系列化学处理分离出U和Pb元素,确保目标元素纯度达到质谱分析要求;接着将分离纯化后的样品与磷酸‒硅胶发射剂混合后加载到金属铼灯丝上,在热电离质谱仪上通过梯度升温实现元素离子化,通过多接收杯检测器分别采集 U和Pb 同位素信号,最后经计算获得矿物的U⁃Pb同位素组成及年龄.

作为同位素稀释技术与质谱分析的有机结合,ID⁃TIMS具有独特优势:通过同位素比值获得待测同位素含量,无需依赖标准矿物的基体匹配校正,从根本上解决了标样短缺难题;化学清洗以及分离流程可有效消除普通Pb污染,确保年龄数据的可靠性;单次测定的精度可达±0.1%~0.5%,且可覆盖中新生代至太古代的全地质时间尺度.然而,该方法存在明显局限性:复杂的化学前处理流程(包括消解、分离和纯化)通常需要一周以上时间,且对实验人员操作技能要求极高;与微区分析相比,需要更多的样品来溶解,对于复杂矿物很可能只能获得混合年龄.这些技术瓶颈促使研究者不断探索微量化流程优化,以提升该方法的时效性和适用性.

铌钽铁矿U⁃Pb定年研究可追溯到20世纪50年代,主要采用ID⁃TIMS进行测年.Aldrich et al.(1956)首次报道了采用ID⁃TIMS测定Brown Derby伟晶岩中铌钽铁矿的U⁃Pb年龄,由于方法的流程本底高和样品用量大(50~100 mg),所得U⁃Pb年龄并不谐和,并未引起重视.30多年后,Romer and Wright(1992)对方法进行了改进,先依次采用热的(70~90 ℃)20% HF、7 mol/L HNO3、6 mol/L HCl进行溶蚀浸泡清洗,除去长石、硫化物等包裹体以及蜕晶质部分的U和Pb;然后采用40% HF溶解样品,接着通过离子交换柱AG1×8分离提纯U元素和Pb元素,再采用磷酸‒硅胶作为发射剂与样品混合后加载到金属铼灯丝上,最后采用热电离质谱对同位素比值进行测定.后续铌钽铁矿ID⁃TIMS U⁃Pb年龄测定基本使用该化学前处理流程(Romer and Smeds, 1994,19961997Romer and Lehmann, 1995Küster et al.,2009Dewaele et al.,2011Melcher et al.,2015Glynn et al.,2017Legros et al.,2019Xiang et al.,2023).

国内天津地质调查中心同位素实验室依托良好的超净实验室环境和30多年的副矿物ID⁃TIMS U⁃Pb测年基础,对铌钽铁矿开展了ID⁃TIMS U⁃Pb测年工作,也初步建立了铌钽铁矿ID⁃TIMS U⁃Pb定年分析流程,并测定了钽锰矿的ID⁃TIMS U⁃Pb年龄(何晗晗等, 2020),且为铌铁矿微区测年标样OXF提供了年龄定值结果(Qing et al.,2024).

1.2 LA⁃ICP⁃MS U⁃Pb定年

LA⁃ICP⁃MS由联用的激光剥蚀(LA)进样系统和电感耦合等离子质谱(ICP⁃MS)检测系统共同组成.当前激光剥蚀进样系统主要为193 nm的ArF准分子激光系统,配备可视化光学系统,能对铌钽铁矿在微区尺度下进行原位剥蚀取样.样品剥蚀产生的气溶胶颗粒通过载气(He)传输至质谱检测系统进行电离和检测,获得U、Pb同位素组成.质谱检测系统有四级杆电感耦合等离子体质谱(Q⁃ICP⁃MS)(罗涛等,2025)、扇形磁场电感耦合等离子体质谱(SF⁃ICP⁃MS)(赵令浩等,2024)以及多接收电感耦合等离子体质谱 (MC⁃ICP⁃MS)(崔玉荣等,2024;李国占等,2024).该方法的优势在于可以不需要挑选矿物就能直接进行原位分析,操作相对简便,分析速度快,经济高效,且空间分辨率也较高.三种质谱检测系统中,Q⁃ICP⁃MS应用更为广泛,与激光联用之后的 LA⁃Q⁃ICP⁃MS能同时提供微区原位的元素含量和同位素比值信息(罗涛和胡兆初,2022;吴炳伟等,2024).

Smith et al.(2004)首次报道了铌钽铁矿 LA⁃MC⁃ICP⁃MS U⁃Pb年龄测定方法,由于没有铌钽铁矿标样,采用独居石作为外标进行数据校正.之后陆续有一些研究人员参照该方法的思路,以非基体匹配标样进行U⁃Pb分馏校正,来测定铌钽铁矿微区原位U⁃Pb年龄(Dill et al.,2007Dewaele et al.,2011Melleton et al.,2012).比如Deng et al.(2013)以锆石标样91500作为校正外标,获得小秦岭地区花岗伟晶岩中的铌锰矿LA⁃ICP⁃MS U⁃Pb年龄.然而,采用非基体匹配矿物标样进行外标校正,通常难以消除基体效应的影响,所得年龄易随仪器参数改变而出现较大偏差(刘志超等, 2011).Che et al.(2015)指出,铌钽铁矿LA⁃ICP⁃MS U⁃Pb定年,采用锆石91500作为外标校正得到的年龄比ID⁃TIMS测定的参考年龄偏小10%左右,并提出可以采用马达加斯加伟晶岩中的铌钽铁矿单晶标样Coltan139(Che et al.,2015),该标样ID⁃TIMS U⁃Pb定值年龄为(505.4±1.0) Ma(德国地学研究中心实验室)、(506.2±5.0) Ma(加拿大多伦多大学实验室)(Melcher et al.,2015).Coltan139标样的应用,掀起后续铌钽铁矿LA⁃ICP⁃MS U⁃Pb年代学研究的热潮,极大地促进了铌钽铁矿微区原位U⁃Pb定年技术在花岗岩和伟晶岩年代学中的应用研究(Xie et al.,2016Tang et al.,2017Yan et al.,2018Zhou et al.,2018Che et al.,2019Feng et al.,2019,2020Fei et al.,2020;李杭等,2020;王锦荣等,2020;王伟等,2020;Xiang et al.,2020;毛禹杰等,2021;Zhao et al.,2021;白洪阳等,2022;Liu et al.,2022;王核等,2022;Yuan et al.,2022;李乐广等,2023;李雪姣,2023;孙文礼等,2023;姚玉增等,2023;何小虎等,2024).目前各实验室铌钽铁矿LA⁃ICP⁃MS U⁃Pb定年方法多数以Coltan139作为标样来进行基体效应校正.

1.3 SIMS U⁃Pb定年

SIMS U⁃Pb定年是通过采用高能量的一次离子束轰击样品表面,使样品表面的原子或分子被溅射出来并电离成二次离子,然后对这些二次离子进行U、Pb同位素分析,从而获得样品中U、Pb元素及其同位素的含量信息,计算出U⁃Pb年龄.与LA⁃ICP⁃MS相比,SIMS U⁃Pb定年的灵敏度更高、样品用量更小,可以取表面很浅区域的样品便可以完成分析.然而,由于仪器昂贵、费用较高,在铌钽铁矿U⁃Pb测年中应用极少,直到2019年才有首篇报道的文章(Legros et al.,2019).Legros et al.(2019)采用SIMS对不同端元成分的铌钽铁矿(铌铁矿、钽铁矿、钽锰矿、重钽铁矿)进行详细的U⁃Pb定年分析,并将结果与ID⁃TIMS测定值进行对比,发现由于Mn和Fe相对原子质量相近,其Mn/(Mn+Fe)比值对基体效应无显著影响,而Nb、Ta相对原子质量差异大,Ta/(Nb+Ta)比值差异存在较为显著的基体效应,并建立了206Pb/238USIMS206Pb/238UID⁃TIMS的比值与 Ta/(Nb+Ta) 的相关性方程,为后续铌钽铁矿微区原位U⁃Pb测年提供了重要借鉴.

2 铌钽铁矿U⁃Pb定年存在问题

2.1 ID⁃TIMS U⁃Pb定年精度的问题

当前已建立锆石CA⁃ID⁃TIMS高精度U⁃Pb定年的标准方法,单次年龄测定精度可优于0.1%,加权平均年龄精度可达0.05%(Mattinson, 2005Schaltegger et al.,2021).与锆石CA⁃ID⁃TIMS流程类似,铌钽铁矿ID⁃TIMS U⁃Pb定年在样品溶解前也先进行化学溶蚀(CA)清洗,选择性地除去蜕晶质部分和含有普通铅的长石、硫化物等包裹体(Romer and Wright, 1992).不同的是,锆石先采用高温(900 ℃左右)退火进行放射性损伤愈合之后再进行化学溶蚀(CA)除去蜕晶质化的影响,而铌钽铁矿化学溶蚀前并未进行高温退火,只在70 °C条件下依次用20% HF、6 mol/L HCl和7 mol/L HNO3浸泡洗涤(Romer and Smeds,1996).Smith et al.(2004)选取了伟晶岩中的5个铌钽铁矿样品(包含2个铌铁矿、1个铌锰矿、1个钽铁矿、1个钽锰矿)进行ID⁃TIMS U⁃Pb测年,采用上述化学溶蚀流程清洗样品,结果发现每个样品的ID⁃TIMS U⁃Pb年龄数据呈散点分布且存在反向不谐和现象,并且大部分年龄数据点位于谐和线上方(即206Pb/238U年龄比207Pb/206Pb年龄大).这是由于富U区域易发生α衰变导致晶格损伤,破坏了U⁃Pb体系封闭性从而导致Pb迁移入贫U区域.当放射性损伤持续或者发生重结晶作用时,采用当前的酸浸泡溶蚀流程来清洗样品并不彻底,残留的包裹体或者蜕晶质区域将导致U⁃Pb年龄出现不谐和现象(Smith et al.,2004),降低了ID⁃TIMS U⁃Pb定年分析的精度.郝媛媛(2023)利用显微激光拉曼光谱证实了铌钽铁矿蜕晶质化与其U⁃Pb年龄谐和度呈负相关关系.向路(2020)采用ID⁃TIMS测定元宝山地区的钨铌铁矿样品的U⁃Pb年龄,所得结果靠近谐和线呈离散分布,也认为是样品浸泡清洗不彻底所致.

在铌钽铁矿ID⁃TIMS U⁃Pb测年技术中,针对不同端元组成的矿物采用统一化学前处理流程的合理性值得深入探讨.笔者团队研究发现(何晗晗等,2020;Qing et al., 2024),由于端元矿物化学性质的显著差异(如Nb/Ta比值变化导致晶格稳定性不同),其酸溶行为表现出较强的差异:在相同实验条件下(HF体系,220 ℃封闭溶解),铌钽铁矿样品有的可在3 d内可完全溶解,而有的溶解了10 d仍存在未溶残渣.这种溶解动力学差异可能导致样品代表性偏差,进而影响同位素比值测定的准确性和精密度.

此外,离子交换分离纯化过程中,现行柱色谱淋洗分离流程是否适用于不同端元成分铌钽铁矿需要相应实验验证.由于Nb/Ta与U/Pb在强酸性条件下的络合行为存在差异,不同Nb/Ta比值的矿物可能需要调整淋洗液的酸浓度、用量或引入络合剂以优化分离效率.这些参数的优化对于消除Nb/Ta对U⁃Pb同位素比值的质谱干扰、提高纯化产物的化学纯度至关重要.在未来研究中可根据需要,探索建立端元成分‒溶解动力学‒分离效率的量化关系,开发基于矿物成分的个性化前处理方案,以实现不同端元铌钽铁矿U⁃Pb同位素的高效分离与纯化.

2.2 微区原位U⁃Pb测年基体效应问题

微区原位U⁃Pb测年基体效应的产生与样品本身的成分复杂性密切相关.铌钽铁矿有4个端元成分:Fe⁃Mn、Nb⁃Ta.从相对原子质量上看,Fe(56)与Mn(55)相差不大,而Nb(93)和Ta(181)却相差了近一倍.Legros et al.(2019)采用SIMS和ID⁃TIMS对端元成分不同的铌钽铁矿(含铌铁矿、钽铁矿、钽锰矿、重钽铁矿)进行U⁃Pb定年分析,结果表明Mn/(Fe+Mn)比值变化对SIMS基体效应影响不大,而Ta/(Ta+Nb)比值变化对SIMS基体效应影响很大.比如对钽铁矿CT3进行SIMS U⁃Pb测年,采用钽铁矿CT1为外标进行校正,所得年龄与ID⁃TIMS定值年龄在误差范围内一致;而采用铌铁矿Buranga为外标进行校正,所得年龄与ID⁃TIMS定值年龄相比偏差高达17%,说明铌铁矿和钽铁矿存在明显的基体效应,采用铌铁矿为标样来校正钽铁矿样品无法获得准确的定年结果.此外,Legros et al.(2019)还指出,(206Pb/238U)SIMS/(206Pb/238U)ID⁃TIMS比值会随着端元成分Ta/(Nb+Ta)的比值呈现线性变化,即便以铌铁矿为标样校正铌铁矿样品,如果Nb、Ta含量差异较大也会导致年龄出现一定程度偏差.因此,当铌钽铁矿样品与标样的Nb、Ta端元成分不同时,SIMS U⁃Pb定年存在明显的基体效应,极大地影响测年结果的准确度.

而对于采用LA⁃ICP⁃MS进行铌钽铁矿U⁃Pb定年分析,是否端元成分不同时也存在基体效应?Yang et al.(2024)选择新疆东天山造山带镜儿泉 Li⁃Be⁃Nb⁃Ta矿床的铌钽铁矿样品JEQ⁃2,采用 LA⁃MC⁃ICP⁃MS进行了相关研究.针对JEQ⁃2样品的同一晶粒不同区域进行测定,以铌铁矿标样Coltan139作为外标进行校正,出现了三期年龄,约250 Ma(高Nb#区域)、270 Ma(中Nb#区域)和290 Ma(低Nb#区域);而以钽铁矿标样CT1作为外标进行校正,获得三期年龄值约为210 Ma(低Ta#区域)、230 Ma(中Ta#区域)和250 Ma(高Ta#区域),如图1所示,图中Nb#代表Nb/(Nb+Ta)、Ta#代表Ta/(Nb+Ta).然而,具有该类化学分带的铌钽铁矿与均质铌钽铁矿都是岩浆同期产物,不应当存在三期年龄.在铌钽铁矿晶体结构中,Nb和Ta互为类质同象,Ta含量低时,其Nb含量则高;Ta含量高时,其Nb含量则低.因此,采用Nb含量高的铌铁矿标样Coltan139校正高Nb区域样品得到的年龄约为250 Ma,采用Ta含量高的钽铁矿标样CT1校正同一样品的高Ta区域也获得年龄值约250 Ma.这说明,对该铌钽铁矿同一晶粒样品进行LA⁃ICP⁃MS U⁃Pb定年分析,出现三期年龄是样品和校正标样之间的Nb、Ta含量不同所导致.Nb、Ta含量的差异会产生基体效应,从而影响测年结果的准确性.

基体效应校正最常用的方法就是采用与样品完全基体匹配的标样进行校正.对于端元成分复杂的铌钽铁矿,尤其是具有多种成因、多期次生长和成分环带复杂的样品,同一晶粒中也存在Nb和Ta含量差异大的区域.如果只是简单采取单一或者有限的几个标样进行校正,可能无法精准地对各个区域、各个阶段产生的基体效应进行有效补偿,从而影响最终测定结果的准确性.因此,采用LA⁃ICP⁃MS进行铌钽铁矿U⁃Pb定年,应先采用电子探针测定样品的Nb、Ta、Fe、Mn值等主要化学成分,在对样品的成分特征有较为详细了解的基础上,圈定待测年的区域,并选择匹配的标样(Nb、Ta成分接近)来进行基体效应校正,才能确保获得更为准确可靠的定年结果.

2.3 标样的缺乏和不稳定性

铌钽铁矿微区原位U⁃Pb年代学研究中,采用基体匹配标样进行外标校正对数据准确性至关重要.当前该领域面临的核心挑战包括:①各LA⁃ICP⁃MS实验室中铌钽铁矿标样仍比较匮乏,有的标样仍存在局部均质性不足问题;②不同实验室间标准物质的差异可能导致数据可比性不足;③铌钽铁矿复杂的成分体系(如Ta/Nb比值变化)要求特定成分匹配的标准物质,而高Ta端元标准物质在LA⁃ICP⁃MS实验室中尤为稀缺.

针对上述问题,研发新的微区原位测年标样和建立标准化分析流程已成为提升铌钽铁矿U⁃Pb年代学分析精度的核心任务(Yang et al.,2023).近年来,Xiang et al.(2023)成功研制出低普通铅铌铁矿标准物质SN3,其ID⁃TIMS测定的206Pb/238U加权平均年龄为(404.0±1.3)Ma(MSWD=2.2,n=7);Qing et al.(2024)进一步开发了铌铁矿标样OXF,通过ID⁃TIMS获得的U⁃Pb谐和年龄为(262.85±0.61)Ma(MSWD=0.15,n=6).上述新标样的研发进一步丰富了铌钽铁矿微区原位U⁃Pb测年的标样体系,表1统计了当前文献中已报道的适用于铌钽铁矿微区U⁃Pb定年分析的标样.值得注意的是,多数铌钽铁矿标样都含有不可忽略且可变的普通铅,而U、Pb含量适中且普通铅极低的理想标样仍较为匮乏.此外,当前铌钽铁矿标准样品的储备主要集中于低钽端元区域,而高钽端元标样的数量仍显匮乏(图2).未来研究中,应着重加强高钽端元标准样品的研发与储备,以完善该矿物体系的微区原位U⁃Pb定年分析的测试基准.

3 铌钽铁矿U⁃Pb年代学方法应用现状

铌钽铁矿因其高U含量和较高封闭温度,成为高分异花岗伟晶岩U⁃Pb定年的理想载体,在稀有金属成矿时代直接厘定中发挥着关键作用. Yuan et al.(2022)采用LA⁃ICP⁃MS U⁃Pb定年方法,对东秦岭南阳山大型稀有金属伟晶岩矿床中的铌钽矿物开展系统分析,获得407 Ma的U⁃Pb年龄,为该区域稀有金属成矿事件提供了精确的时间坐标.姚玉增等(2023)通过LA⁃HR⁃ICP⁃MS技术对华北克拉通北缘辽宁新宾李家堡子花岗伟晶岩中的铌钽铁矿进行原位定年,成功获取2.51~2.49 Ga的成矿年龄数据.该成果不仅确立了中国已知最古老的铌钽矿床,更揭示了华北克拉通与全球其他古老克拉通类似,具备早前寒武纪大规模铌钽成矿的潜质.郑有业等(2024)针对喜马拉雅成矿带西段扎果普锂铌钽矿床,通过系统选取低品位与高品位矿石中的铌钽铁矿单矿物,利用LA⁃ICP⁃MS技术分别获得(24.0±0.8)Ma和(23.8±0.5)Ma 的高精度年龄数据.两组年龄在误差范围内完全一致,表明该矿床很可能经历了一期锂‒铌‒钽成矿作用,成矿时代集中于24~23 Ma.

铌钽铁矿U⁃Pb年代学数据结合其矿物学、地球化学特征,能够深入揭示稀有金属成矿过程及相关地质体的演化历史.在一些具有复杂内部结构的铌钽铁矿中,不同部位的U⁃Pb年龄差异可反映出成矿过程中的多阶段演化.如孙文礼等(2023)在柴北缘茶卡北山花岗伟晶岩型锂铍矿床中,通过对铌钽铁矿内部结构、主量元素组成分析出两期铌钽铁矿:早期是具有振荡环带和均一不分带等简单内部结构的铌铁矿‒铌锰矿,属于岩浆成因;晚期是具有交代镶边、交代蠕虫等复杂内部结构的铌铁矿‒钽铁矿,属于交代成因,表明该矿床经历了岩浆结晶和后期热液交代的成矿过程.以Coltan139为校正标样,采用LA⁃ICP⁃MS对两期铌钽铁矿进行 U⁃Pb年代学测定,获得了(228.6±2.5)Ma和(229.8±4.9)Ma两组在误差范围内一致的年龄结果,并未获得明显期次的区分,也有可能是受到了铌钽铁矿微区测年的基体效应或者测定精度影响.李雪姣(2023)发现喜马拉雅东部拉隆岩体伟晶岩中存在两期铌钽铁矿——早期钽含量较低的铌铁矿和晚期交代结晶的富钽铌铁矿和钽铁矿,仅选择了早期钽含量小于0.15的铌铁矿进行U⁃Pb测年,获得铌铁矿的形成年龄为(22.3±0.3)Ma,指示了新喜马拉雅期(25~14 Ma)该淡色花岗岩体具有铌钽成矿潜力.聂潇等(2023)从宁陕地区绿柱石‒铌铁矿型伟晶岩中鉴别出两期铌钽铁矿,仅对早期铌钽铁矿进行了LA⁃ICP⁃MS U⁃Pb测年((206.3±1.5)Ma),认为该年龄代表伟晶岩的侵位时间;文中并未报道晚期的铌钽铁矿年代学研究结果,而仅测定了其内部包裹体晶质铀矿的U⁃Pb年龄为(199.2±1.5)Ma,代表伟晶岩流体结晶的时间.何小虎等(2024)在研究滇西龙陵县黄草坝花岗伟晶岩时,发现铌钽铁矿的内部结构简单、环带不发育且无热液交代特征,判断为岩浆成因,但是采用LA⁃ICP⁃MS分析得到三组U⁃Pb年龄(差异高达10 Ma).

铌钽铁矿是稀有金属花岗岩和花岗伟晶岩矿床的重要矿物,其矿物学特征与内部结构分带可有效示踪岩体的结晶演化历史.研究表明,该矿物的形成过程与伟晶岩岩浆‒热液系统的多阶段演化密切相关.Kaeter et al.(2018)通过对稀有金属伟晶岩中的铌钽铁矿进行详细的矿物学研究,认为铌钽铁矿的形成经历了3个阶段——岩浆结晶和流体出溶阶段、岩浆‒交代结晶阶段、晚期熔体结晶和热液沉淀阶段,正好反映了伟晶岩岩浆‒热液演化3个阶段特征.付建刚等(2023)在喜马拉雅成矿带嘎波锂矿中也识别出3个期次的铌钽铁矿:岩浆末期成分相对均一没有环带的铌铁矿、岩浆‒热液过渡期环带特征明显的铌铁矿和岩浆‒热液晚期富Ta、Mn交代的铌铁矿.在矿物学研究基础上,如何精准测定多期次铌钽铁矿的U⁃Pb年龄,是精确厘定矿床成矿时代和探讨铌钽成矿机制的迫切需求,也对当前铌钽铁矿U⁃Pb定年的准确度和精密度提出了更高的要求.

4 总结及展望

铌钽铁矿作为稀有金属花岗岩及花岗伟晶岩中的重要副矿物,其矿物学特征与端元组分(Nb、Ta、Fe、Mn)的变化规律可有效示踪矿床岩浆‒热液系统的演化过程.该矿物具有较高封闭温度、高铀含量和极低普通铅的特征,是开展U⁃Pb定年分析的理想对象,其年代学研究对揭示稀有金属花岗岩与花岗伟晶岩的成因机制具有重要科学价值.针对多期次矿化的复杂成矿系统,高精度测定不同世代铌钽铁矿的年龄已成为厘定成矿事件时序的关键手段.

近年来,铌钽铁矿U⁃Pb定年技术在方法学研究与应用拓展方面均取得重要突破,但受其复杂端元组成的制约,现有定年技术仍面临若干关键问题亟待解决.具体包括:(1)优化化学前处理流程,以解决铌钽铁矿样品ID⁃TIMS定年过程中反向不谐合线的干扰问题;(2)系统评估铌钽铁矿端元组分对LA⁃ICP⁃MS及SIMS微区原位U⁃Pb测年结果的基体效应影响;(3)构建基于端元组分差异的基体效应校正模型以提升铌钽铁矿测年精准度.上述技术难题的攻克将为准确解析多期次铌钽铁矿成矿事件的时空分布规律提供技术支撑.

展望未来,通过深化铌钽铁矿U⁃Pb年代学方法研究、发展多技术联合定年体系及研制标准化微区测年标样,将进一步提升该矿物U⁃Pb定年的精准度与可靠性,有助于推动稀有金属成矿理论创新和为战略性矿产资源勘查提供重要的年代学依据.

参考文献

[1]

Aldrich, L. T., Davis, G. L., Tilton, G. R., et al., 1956. Radioactive Ages of Minerals from the Brown Derby Mine and the Quartz Creek Granite near Gunnison, Colorado. Journal of Geophysical Research, 61(2): 215-232. https://doi.org/10.1029/JZ061i002p00215

[2]

Bai, H. Y., Wang, H., Yan, Q. H., et al., 2022. Columbite⁃Tantalite and Cassiterite Ages of Xuefengling Lithium Deposit in West Kunlun, Xinjiang and Their Geological Significancein. Acta Petrologica Sinica, 38(7): 2139-2152 (in Chinese with English abstract).

[3]

Baumgartner, R., Romer, R. L., Moritz, R., et al., 2006. Columbite⁃Tantalite⁃Bearing Granitic Pegmatites from the Serido Belt, Northeastern Brazil: Genetic Constraints from U⁃Pb Dating and Pb Isotopes. The Canadian Mineralogist, 44(1): 69-86. https://doi.org/10.2113/gscanmin.44.1.69

[4]

Cerny, P., Ercit, T. S., 1985. Some Recent Advances in the Mineralogy and Geochemistry of Nb and Ta in Rare⁃Element Granitic Pegmatites. Bulletin de Mineralogie, 108(3): 499-532. https://doi.org/10.3406/bulmi.1985.7846

[5]

Che, X. D., Wang, R. C., Wu, F. Y., et al., 2019. Episodic Nb⁃Ta Mineralisation in South China: Constraints from In Situ LA⁃ICP⁃MS Columbite⁃Tantalite U⁃Pb Dating. Ore Geology Reviews, 105: 71-85. https://doi.org/10.1016/j.oregeorev.2018.11.023

[6]

Che, X. D., Wu, F. Y., Wang, R. C., et al., 2015. In Situ U⁃Pb Isotopic Dating of Columbite⁃Tantalite by LA⁃ ICP⁃MS. Ore Geology Reviews, 65: 979-989. https://doi.org/10.1016/j.oregeorev.2014.07.008

[7]

Cui, Y. R., Yang, J., Tu, J. R., et al., 2024. Cassiterite U⁃Pb Dating with LA⁃MC⁃ICP⁃MS of the Laozhailing Cu⁃Sn Deposit, Yongzhou City, Hunan Province. Rock and Mineral Analysis, 43(6): 880-891 (in Chinese with English abstract).

[8]

Deng, X. D., Li, J. W., Zhao, X. F., et al., 2013. U⁃Pb Isotope and Trace Element Analysis of Columbite⁃(Mn) and Zircon by Laser Ablation ICP⁃MS: Implications for Geochronology of Pegmatite and Associated Ore Deposits. Chemical Geology, 344: 1-11. https://doi.org/10.1016/j.chemgeo.2013.02.014

[9]

Dewaele, S., Henjes⁃Kunst, F., Melcher, F., et al., 2011. Late Neoproterozoic Overprinting of the Cassiterite and Columbite⁃Tantalite Bearing Pegmatites of the Gatumba Area, Rwanda (Central Africa). Journal of African Earth Sciences, 61(1): 10-26. https://doi.org/10.1016/j.jafrearsci.2011.04.004

[10]

Dickin, A. P., 1995. Radiogenic Isotope Geology. Cambridge University Press, Cambridge, 101-135.

[11]

Dill, H. G., Gerdes, A., Weber, B., 2007. Cu⁃Fe⁃U Phosphate Mineralization of the Hagendorf⁃Pleystein Pegmatite Province, Germany: With Special Reference to Laser⁃Ablation Inductively⁃Coupled Plasma Mass Spectrometry (LA⁃ICP⁃MS) of Limonite⁃Cored Torbernite. Mineralogical Magazine, 71(4): 371-387. https://doi.org/10.1180/minmag.2007.071.4.371

[12]

Fei, G. C., Menuge, J. F., Li, Y. Q., et al., 2020. Petrogenesis of the Lijiagou Spodumene Pegmatites in Songpan⁃Garze Fold Belt, West Sichuan, China: Evidence from Geochemistry, Zircon, Cassiterite and Coltan U⁃Pb Geochronology and Hf Isotopic Compositions. Lithos, 364-365: 105555. https://doi.org/10.1016/j.lithos.2020.105555

[13]

Feng, Y. G., Liang, T., Linnen, R., et al., 2020. LA⁃ICP⁃MS Dating of High⁃Uranium Columbite from No. 1 Pegmatite at Dakalasu, the Chinese Altay Orogen: Assessing Effect of Metamictization on Age Concordance. Lithos, 362-363: 105461. https://doi.org/10.1016/j.lithos.2020.105461

[14]

Feng, Y. G., Liang, T., Zhang, Z., et al., 2019. Columbite U⁃Pb Geochronology of Kalu’an Lithium Pegmatites in Northern Xinjiang, China: Implications for Genesis and Emplacement History of Rare⁃Element Pegmatites. Minerals, 9(8): 456. https://doi.org/10.3390/min9080456

[15]

Fu, J. G., Li, G. M., Guo, W. K., et al., 2023. Mineralogical Characteristics of Columbite Group Minerals and Its Implications for Magmatic⁃Hydrothermal Transition in the Gabo Lithium Deposit, Himalayan Metallogenic Belt. Earth Science Frontiers, 30(5): 134-150 (in Chinese with English abstract).

[16]

Glynn, S. M., Master, S., Wiedenbeck, M., et al., 2017. The Proterozoic Choma⁃Kalomo Block, SE Zambia: Exotic Terrane or a Reworked Segment of the Zimbabwe Craton?Precambrian Research, 298: 421-438. https://doi.org/10.1016/j.precamres.2017.06.020

[17]

Hao, Y. Y., 2023. Raman Spectroscopic Characteristics of Columbite and the Implications for Columbite U⁃Pb Age Concordance (Dissertation). Chang’an University, Xi’an (in Chinese with English abstract).

[18]

He, H. H., Arkin, T., Wang, D. H., et al., 2020. Mineralogical Characteristics and TIMS U⁃Pb Dating of Tantalite⁃(Mn) from the Bieyesamas Rare Metal Deposit, Xinjiang. Rock and Mineral Analysis, 39(4): 609-619 (in Chinese with English abstract).

[19]

He, X. H., You, Y. Y., Ming, T. X., et al., 2024. Late Cretaceous⁃Eocene Granitic Pegmatite Rare⁃Metal Mineralization Events in the Western Yunnan Province: Constraints from U⁃Pb Dating of Columbite, Monazite, and Zircon. Acta Petrologica Sinica, 40(2): 510-538 (in Chinese with English abstract).

[20]

Jiang, S. Y., Zhang, H. X., Liu, S. Q., et al., 2024. The U⁃Pb Isotope Dating and Tracing Using Different Accessory Minerals in Pegmatite: Problems and Application. Acta Geologica Sinica, 98(5): 1573-1599 (in Chinese with English abstract).

[21]

Kaeter, D., Barros, R., Menuge, J. F., et al., 2018. The Magmatic⁃Hydrothermal Transition in Rare⁃Element Pegmatites from Southeast Ireland: LA⁃ICP⁃MS Chemical Mapping of Muscovite and Columbite⁃Tantalite. Geochimica et Cosmochimica Acta, 240: 98-130. https://doi.org/10.1016/j.gca.2018.08.024

[22]

Küster, D., Romer, R. L., Tolessa, D., et al., 2009. The Kenticha Rare⁃Element Pegmatite, Ethiopia: Internal Differentiation, U⁃Pb Age and Ta Mineralization. Mineralium Deposita, 44(7): 723-750. https://doi.org/10.1007/s00126⁃009⁃0240⁃8

[23]

Legros, H., Mercadier, J., Villeneuve, J., et al., 2019. U⁃Pb Isotopic Dating of Columbite⁃Tantalite Minerals: Development of Reference Materials and In Situ Applications by Ion Microprobe. Chemical Geology, 512: 69-84. https://doi.org/10.1016/j.chemgeo.2019.03.001

[24]

Li, G. Z., Tu, J. R., Cui, Y. R., et al., 2024. Maintenance and Breakdown Analysis of Neptune Mass Spectrometer Plasma Source. North China Geology, 47(4): 98-105 (in Chinese with English abstract).

[25]

Li, H., Hong, T., Yang, Z. Q., et al., 2020. Comparative Studying on Zircon, Cassiterite and Coltan U⁃Pb Dating and 40Ar/39Ar Dating of Muscovite Rare⁃Metal Granitic Pegmatites: A Case Study of the Northern Tugeman Lithium⁃Beryllium Deposit in the Middle of Altyn Tagh. Acta Petrologica Sinica, 36(9): 2869-2892 (in Chinese with English abstract).

[26]

Li, J. K., Li, P., Wang, D. H., et al., 2019. A Review of Niobium and Tantalum Metallogenic Regularity in China. Chinese Science Bulletin, 64(15): 1545-1566 (in Chinese).

[27]

Li, L. G., Wang, L. X., Zhu, Y. X., et al., 2023. Metallogenic Age and Process of Rare Metal⁃Bearing Pegmatites from the Northern Margin of Mufushan Complex, South China. Earth Science, 48(9): 3221-3244 (in Chinese with English abstract).

[28]

Li, X. J., 2023. Columbite⁃Group Minerals from the Pegmatite in the Lalong Pluton, Eastern Himalaya and the Two⁃Staged Nb⁃Ta Mineralization. Geological Journal of China Universities, 29(6): 847-861 (in Chinese with English abstract).

[29]

Liu, J. H., Wang, Q., Xu, C. B., et al., 2022. Geochronology of the Chakabeishan Li⁃(Be) Rare⁃Element Pegmatite, Zongwulong Orogenic Belt, Northwest China: Constraints from Columbite⁃Tantalite U⁃Pb and Muscovite⁃Lepidolite 40Ar/39Ar Dating. Ore Geology Reviews, 146: 104930. https://doi.org/10.1016/j.oregeorev.2022.104930

[30]

Liu, Z. C., Wu, F. Y., Guo, C. L., et al., 2011. Laser In⁃Situ ICP⁃MS Determination of U⁃Pb Age in Xenotime. Chinese Science Bulletin, 56(33): 2772-2781 (in Chinese).

[31]

Luo, T., Hu, Z. C., 2022. Recent Advances in U⁃Th⁃Pb Dating of Accessory Minerals by Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Earth Science, 47(11): 4122-4144 (in Chinese with English abstract).

[32]

Luo, T., Wang, H. L., Zhu, S. B., et al., 2025. Impacts of Common Lead on Apatite U⁃Pb Geochronology by LA⁃ICP⁃MS: Assessment and Correction Strategies. Rock and Mineral Analysis, 44(1): 51-62 (in Chinese with English abstract).

[33]

Mao, Y. J., Shao, Y. J., Xiong, Y. Q., et al., 2021. Magmatic⁃Hydrothermal Metallogenic System in Nb⁃Ta⁃W⁃Sn⁃Pb⁃Zn Dengfuxian Orefield, Eastern Hunan: Constraint from U⁃Pb Geochronology of Columbite⁃Tantalite. Journal of Central South University (Science and Technology), 52(9): 2959-2972 (in Chinese with English abstract).

[34]

Mattinson, J. M., 2005. Zircon U⁃Pb Chemical Abrasion (“CA⁃TIMS”) Method: Combined Annealing and Multi⁃Step Partial Dissolution Analysis for Improved Precision and Accuracy of Zircon Ages. Chemical Geology, 220(1-2): 47-66. https://doi.org/10.1016/j.chemgeo.2005.03.011

[35]

Melcher, F., Graupner, T., Gäbler, H. E., et al., 2015. Tantalum⁃(Niobium⁃Tin) Mineralisation in African Pegmatites and Rare Metal Granites: Constraints from Ta⁃Nb Oxide Mineralogy, Geochemistry and U⁃Pb Geochronology. Ore Geology Reviews, 64: 667-719. https://doi.org/10.1016/j.oregeorev.2013.09.003

[36]

Melleton, J., Gloaguen, E., Frei, D., et al., 2012. How are the Emplacement of Rare⁃Element Pegmatites, Regional Metamorphism and Magmatism Interrelated in the Moldanubian Domain of the Variscan Bohemian Massif, Czech Republic? The Canadian Mineralogist, 50(6): 1751-1773. https://doi.org/10.3749/canmin.50.6.1751

[37]

Nie, X., Chen, L., Guo, X. Q., et al., 2023. Geochemical Analysis of Apatite and Columbite⁃Group Minerals of Berylcolumbite Pegmatites in Ningshan, Southern Qinling Orogen, China. Earth Science Frontiers, 30(5): 115-133 (in Chinese with English abstract).

[38]

Qing, L. Y., Luo, T., Hu, Z. C., et al., 2024. OXF: A New Natural Reference Material for Use in LA⁃ICP⁃MS U⁃Pb Columbite⁃Tantalite Geochronology. Journal of Analytical Atomic Spectrometry, 39(8): 2066-2077. https://doi.org/10.1039/d4ja00195h

[39]

Rayner, N., Stern, R. A., Carr, S. D., 2005. Grain⁃Scale Variations in Trace Element Composition of Fluid⁃Altered Zircon, Acasta Gneiss Complex, Northwestern Canada. Contributions to Mineralogy and Petrology, 148(6): 721-734. https://doi.org/10.1007/s00410⁃004⁃0633⁃8

[40]

Romer, R. L., Lehmann, B., 1995. U⁃Pb Columbite Age of Neoproterozoic Ta⁃Nb Mineralization in Burundi. Economic Geology, 90(8): 2303-2309. https://doi.org/10.2113/gsecongeo.90.8.2303

[41]

Romer, R. L., Smeds, S. A., 1994. Implications of U⁃Pb Ages of Columbite⁃Tantalites from Granitic Pegmatites for the Palaeoproterozoic Accretion of 1.90-1.85 Ga Magmatic Arcs to the Baltic Shield. Precambrian Research, 67(1-2): 141-158. https://doi.org/10.1016/0301⁃9268(94)90008⁃6

[42]

Romer, R. L., Smeds, S. A., 1996. U⁃Pb Columbite Ages of Pegmatites from Sveconorwegian Terranes in Southwestern Sweden. Precambrian Research, 76(1-2): 15-30. https://doi.org/10.1016/0301⁃9268(95)00023⁃2

[43]

Romer, R. L., Smeds, S. A., 1997. U⁃Pb Columbite Chronology of Post⁃Kinematic Palaeoproterozoic Pegmatites in Sweden. Precambrian Research, 82(1-2): 85-99. https://doi.org/10.1016/S0301⁃9268(96)00050⁃2

[44]

Romer, R. L., Wright, J. E., 1992. U⁃Pb Dating of Columbites: A Geochronologic Tool to Date Magmatism and Ore Deposits. Geochimica et Cosmochimica Acta, 56(5): 2137-2142. https://doi.org/10.1016/0016⁃7037(92)90337⁃I

[45]

Ryznar, J., Pršek, J., Włodek, A., et al., 2023. Mineralogy and Chemistry of Columbite⁃Tantalite from Bugarura⁃Kuluti Area, Karagwe⁃Ankole Belt, Rwanda: Indicators of Pegmatite and Granite Evolution. Ore Geology Reviews, 159: 105574. https://doi.org/10.1016/j.oregeorev.2023.105574

[46]

Schaltegger, U., Ovtcharova, M., Gaynor, S. P., et al., 2021. Long⁃Term Repeatability and Interlaboratory Reproducibility of High⁃Precision ID⁃TIMS U⁃Pb Geochronology. Journal of Analytical Atomic Spectrometry, 36(7): 1466-1477. https://doi.org/10.1039/d1ja00116g

[47]

Smith, S. R., Foster, G. L., Romer, R. L., et al., 2004. U⁃Pb Columbite⁃Tantalite Chronology of Rare⁃Element Pegmatites Using TIMS and Laser Ablation⁃Multi Collector⁃ICP⁃MS. Contributions to Mineralogy and Petrology, 147(5): 549-564. https://doi.org/10.1007/s00410⁃003⁃0538⁃y

[48]

Sun, W. L., Zhao, Z. D., Mo, X. X., et al., 2023. Geochemistry and Geochronology of Columbite⁃Tantalite Group Minerals from the Chakabeishan Pegmatite⁃Type Li⁃Be Deposit, North Qaidam Tectonic Belt. Acta Petrologica Sinica, 39(11): 3417-3433 (in Chinese with English abstract).

[49]

Tan, D. B., Li, D. Y., Xiao, Y. L., 2018. Geochemical Characteristics of Niobium and Tantalum: A Review of Twin Elements. Earth Science, 43(1): 317-332 (in Chinese with English abstract).

[50]

Tang, Y., Zhao, J. Y., Zhang, H., et al., 2017. Precise Columbite⁃(Fe) and Zircon U⁃Pb Dating of the Nanping No. 31 Pegmatite Vein in Northeastern Cathaysia Block, SE China. Ore Geology Reviews, 83: 300-311. https://doi.org/10.1016/j.oregeorev.2016.10.040

[51]

Tu, J. R., Zhou, H. Y., Cui, Y. R., et al., 2024. A High⁃Precision ID⁃TIMS U⁃Pb Dating Method of Apatite. Rock and Mineral Analysis, 43(4): 533-545 (in Chinese with English abstract).

[52]

Wang, D. H., 2019. Study on Critical Mineral Resources: Significance of Research, Determination of Types, Attributes of Resources, Progress of Prospecting, Problems of Utilization, and Direction of Exploitation. Acta Geologica Sinica, 93(6): 1189-1209 (in Chinese with English abstract).

[53]

Wang, H., Gao, H., Wang, S. M., et al., 2022. Zircon and Columbite⁃Tantalite U⁃Pb Geochronology of Li⁃Be Rare Metal Pegmatite and Its Geological Significance in Muji Area, West Kunlun, China. Acta Petrologica Sinica, 38(7): 1937-1951 (in Chinese with English abstract).

[54]

Wang, J. R., Lyu, Z. H., Lyu, X. B., et al., 2020. LA⁃ICP⁃MS U⁃Pb Age of Columbite from the Daping Granite Porphyry⁃Type Rare Metal Deposit in Fujian Province and Its Geological Significance. Bulletin of Mineralogy, Petrology and Geochemistry, 39(3): 637-645 (in Chinese with English abstract).

[55]

Wang, Q., Hou, K. J., Zou, T. R., 2019. Isotopic Dating Method Suitable for Rare⁃Metal Deposits and Its Application. Acta Geologica Sinica, 93(6): 1523-1532 (in Chinese with English abstract).

[56]

Wang, R. C., Che, X. D., Wu, B., et al., 2020. Critical Mineral Resources of Nb, Ta, Zr, and Hf in China. Chinese Science Bulletin, 65(33): 3763-3777 (in Chinese).

[57]

Wang, W., Hou, K. J., Wang, D. H., et al., 2020. Columbite⁃Tantalite U⁃Pb Dating of Yanshanian Rare Metal Mineralization in Western Sichuan. Geology in China, 47(3): 890-891 (in Chinese with English abstract).

[58]

Wu, B. W., Sun, S. L., Zhang, J., et al., 2024. In⁃Situ U⁃Pb Dating, Hf Isotope Analyses of Zircons, and Geochemical Characteristics in the Volcanic Rocks of the Tiaojishan Formation in the Jinyang Basin, Western Liaoning Province. North China Geology, 47(4): 37-46 (in Chinese with English abstract).

[59]

Xiang, L., 2020. Neoproterozoic Tin⁃Niobium⁃Tantalum Metallogenesis in the Western Part of Jiangnan Orogen (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract).

[60]

Xiang, L., Wang, R. C., Romer, R. L., et al., 2020. Neoproterozoic Nb⁃Ta⁃W⁃Sn Bearing Tourmaline Leucogranite in the Western Part of Jiangnan Orogen: Implications for Episodic Mineralization in South China. Lithos, 360-361: 105450. https://doi.org/10.1016/j.lithos.2020.105450

[61]

Xiang, L., Wang, R. C., Romer, R. L., et al., 2023. Columbite SN3: A New Potential Reference Material for U⁃Pb Dating by LA⁃ICP⁃MS. Geostandards and Geoanalytical Research, 47(3): 609-628. https://doi.org/10.1111/ggr.12500

[62]

Xie, L., Wang, R. C., Che, X. D., et al., 2016. Tracking Magmatic and Hydrothermal Nb⁃Ta⁃W⁃Sn Fractionation Using Mineral Textures and Composition: A Case Study from the Late Cretaceous Jiepailing Ore District in the Nanling Range in South China. Ore Geology Reviews, 78: 300-321. https://doi.org/10.1016/j.oregeorev.2016.04.003

[63]

Xiong, X., Li, J. K., Wang, D. H., et al., 2021. Mineralogical Characteristics of Columbite⁃Tantalite Group Minerals in Zhawulong Granitic Pegmatite⁃Type Rare Metal Deposit of Western Sichuan and Their Geological Implications. Mineral Deposits, 40(4): 693-705 (in Chinese with English abstract).

[64]

Yan, Q. H., Qiu, Z. W., Wang, H., et al., 2018. Age of the Dahongliutan Rare Metal Pegmatite Deposit, West Kunlun, Xinjiang (NW China): Constraints from LA⁃ICP⁃MS U⁃Pb Dating of Columbite⁃(Fe) and Cassiterite. Ore Geology Reviews, 100: 561-573. https://doi.org/10.1016/j.oregeorev.2016.11.010

[65]

Yang, H., Wang, W., Liu, J. H., 2017. Zircon U⁃Pb Dating and Its Geological Significance of Granitic Pegmatites from the Kuandian and Sanjiazi Area in Eastern Liaoning Province. Acta Petrologica Sinica, 33(9): 2675-2688 (in Chinese with English abstract).

[66]

Yang, M., Yang, Y. H., Romer, R. L., et al., 2023. Characterization of Reference Materials for In Situ U⁃Pb Dating of Columbite Group Minerals by LA⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 38(9): 1816-1829. https://doi.org/10.1039/d3ja00162h

[67]

Yang, S., Zhang, L. L., Wang, R., et al., 2024. Application of High⁃Resolution Laser Multi Collector ICP⁃MS U⁃Pb Dating to Columbite⁃Group Minerals with Compositional Zonation: Reassessment of Matrix Effects among Columbite⁃Group Minerals. Journal of Analytical Atomic Spectrometry, 39(10): 2421-2432. https://doi.org/10.1039/d4ja00201f

[68]

Yao, Y. Z., Li, L. X., Fu, J. F., et al., 2023. Geochronological Constraints on Early Precambrian Granitic Pegmatite Type Nb⁃Ta Mineralization of the Lijiapuzi Deposit in North China Craton. Geological Bulletin of China, 42(6): 1047-1049 (in Chinese with English abstract).

[69]

Yuan, F., Jiang, S. Y., Wang, C. L., et al., 2022. U⁃Pb Geochronology of Columbite⁃Group Mineral, Cassiterite, and Zircon and Hf Isotopes for Devonian Rare⁃Metal Pegmatite in the Nanyangshan Deposit, North Qinling Orogenic Belt, China. Ore Geology Reviews, 140: 104634. https://doi.org/10.1016/j.oregeorev.2021.104634

[70]

Zhai, M. G., Wu, F. Y., Hu, R. Z., et al., 2019. Critical Metal Mineral Resources: Current Research Status and Scientific Issues. Bulletin of National Natural Science Foundation of China, 33(2): 106-111 (in Chinese with English abstract).

[71]

Zhao, L. H., Sun, D. Y., Hu, M. Y., et al., 2024. Simultaneous Determination of U⁃Pb Age and Trace Elements of Zircon by Laser Ablation Sector Field Inductively Coupled Plasma⁃Mass Spectrometry. Rock and Mineral Analysis, 43(1): 47-62 (in Chinese with English abstract).

[72]

Zhao, Z., Yang, X. Y., Lu, S. M., et al., 2021. Genesis of Late Cretaceous Granite and Its Related Nb⁃Ta⁃W Mineralization in Shangbao, Nanling Range: Insights from Geochemistry of Whole⁃Rock and Nb⁃Ta Minerals. Ore Geology Reviews, 131: 103975. https://doi.org/10.1016/j.oregeorev.2020.103975

[73]

Zheng, Y. Y., Chen, X., Gao, S. B., et al., 2024. Discovery and Prospecting Significance of Zhaguopu Li⁃Nb⁃Ta Deposit in the Western Himalayan Metallogenic Belt. Earth Science, 49(4): 1555-1564 (in Chinese with English abstract).

[74]

Zhou, Q. F., Qin, K. Z., Tang, D. M., et al., 2018. LA⁃ICP⁃MS U⁃Pb Zircon, Columbite⁃Tantalite and 40Ar⁃39Ar Muscovite Age Constraints for the Rare⁃Element Pegmatite Dykes in the Altai Orogenic Belt, NW China. Geological Magazine, 155(3): 707-728. https://doi.org/10.1017/S0016756816001096

[75]

Zhu, Z. Y., 2018. Mineralogy Study of Rare⁃Metal Granites in South China: Case Study of Huangshan and Songshugang Granite, Jiangxi Province (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract).

基金资助

国家自然科学基金项目(42473029)

国家自然科学基金项目(42473031)

国家自然科学基金项目(42103025)

AI Summary AI Mindmap
PDF (1241KB)

135

访问

0

被引

详细

导航
相关文章

AI思维导图

/