基于应变特性的土工格栅加筋珊瑚砂超静孔压发展模型
Development Model of Excess Pore Pressure for Geogrid Reinforced Coral Sand Based on Strain Characteristics
,
,
地震荷载下珊瑚砂中超静孔压增长,直至液化,是导致结构破坏的关键因素.开展了一系列不排水动三轴试验,研究土工格栅层数、相对密实度Dr和循环应力比CSR对加筋珊瑚砂超静孔压和轴向应变发展特性的影响.试验结果表明:土工格栅加筋及增加格栅层数可减小珊瑚砂中超静孔压和轴向应变发展速率,提高珊瑚砂抗液化强度.在相同循环振次比下,加筋珊瑚砂中超静孔压发展远高于硅质砂;随着CSR的增加,加筋珊瑚砂超静孔压发展曲线逐渐由S型过渡到双曲线型,而经典的Seed孔压应力模型难以描述该种孔压发展趋势变化的特性.提出了基于应变特性的加筋珊瑚砂超静孔压发展模型,该模型可较好地预测不同Dr和CSR下加筋珊瑚砂超静孔压发展趋势,可为我国南海珊瑚砂岛礁区基础设施抗震设计和基于有效应力的稳定性分析提供理论依据.
The accumulation of excess pore pressure in coral sand under seismic loading until liquefaction is a key factor leading to structural damage. A series of undrained cyclic triaxial tests were conducted in this study to investigate the effects of geogrid reinforcement layer, relative density (Dr) and cyclic stress ratio (CSR) on the development of excess pore pressure and axial strain in reinforced coral sand. The results indicate that geogrid reinforcement as well as an increase in the number of geogrid layers reduce the development rate of excess pore pressure and axial strain, thereby improving the liquefaction resistance of coral sand. The pore pressure of coral sand is much higher than that of siliceous sand under the same cyclic vibration ratio, and the pore pressure development curve of reinforced coral sand gradually transitions from an S-type to a hyperbolic type with the increase of cyclic stress ratio, thus the classic Seed pore pressure stress model is difficult to describe its pore pressure development trend. Based on the above findings, a strain-based excess pore pressure development model for geogrid-reinforced coral sand is proposed. This model accurately predicts the development trend of excess pore pressure in reinforced coral sand under different Dr and CSR, which provides a theoretical basis for the seismic design of infrastructure and stability analysis using effective stress in coral sand island reef area of the South China Sea.
珊瑚砂 / 土工格栅加筋 / 液化 / 超静孔压 / 轴向应变 / 工程地质学.
coral sand / geogrid reinforcement / liquefaction / excess pore pressure / axial strain / engineering geology
| [1] |
Akosah, S., Zhou, L., Chen, J.F., et al., 2024. Experimental Investigation on Cyclic Behavior of Geogrid-Reinforced Coral Sand from the South China Sea. Marine Georesources & Geotechnology, 42(6): 707-720. https://doi.org/10.1080/1064119x.2023.2214933 |
| [2] |
Asadi, M. S., Asadi, M. B., Orense, R. P., et al., 2018. Undrained Cyclic Behavior of Reconstituted Natural Pumiceous Sands. Journal of Geotechnical and Geoenvironmental Engineering, 144(8): 04018045. https://doi.org/10.1061/(asce)gt.1943-5606.0001912 |
| [3] |
Chen, G. X., Ma, W. J., Qin, Y., et al., 2021. Liquefaction Susceptibility of Saturated Coral Sand Subjected to Various Patterns of Principal Stress Rotation. Journal of Geotechnical and Geoenvironmental Engineering, 147(9): 04021093. https://doi.org/10.1061/(asce)gt.1943-5606.0002590 |
| [4] |
Chen, G. X., Wu, Q., Zhou, Z. L., et al., 2020. Undrained Anisotropy and Cyclic Resistance of Saturated Silt Subjected to Various Patterns of Principal Stress Rotation. Géotechnique, 70(4): 317-331. https://doi.org/10.1680/jgeot.18.p.180 |
| [5] |
Chen, J.F., Akosah, S., Ma, C., et al., 2023. Large-Scale Triaxial Tests of Reinforced Coral Sand with Different Grain Size Distributions. Marine Georesources & Geotechnology, 41(5): 544-554. https://doi.org/10.1080/1064119x.2022.2068462 |
| [6] |
Ding, X. M., Luo, Z. G., Ou, Q., 2022. Mechanical Property and Deformation Behavior of Geogrid Reinforced Calcareous Sand. Geotextiles and Geomembranes, 50(4): 618-631. https://doi.org/10.1016/j.geotexmem.2022.03.002 |
| [7] |
Fang, Y., Ikuo, T., Ghalandarzadeh, A., et al., 2001. Mechanism of Deformation and Failure of Gravity-Type Quay Walls under Earthquake Liquefaction. Earth Science, 26(4): 415-418 (in Chinese with English abstract). |
| [8] |
Gao, R., Ye, J. H., 2019. Experimental Investigation on the Dynamic Characteristics of Calcareous Sand from the Reclaimed Coral Reef Islands in the South China Sea. Rock and Soil Mechanics, 40(10): 3897-3908, 3919(in Chinese with English abstract). |
| [9] |
Goodarzi, S., Shahnazari, H., 2018. Strength Enhancement of Geotextile-Reinforced Carbonate Sand. Geotextiles and Geomembranes, 47(2): 128-139. https://doi.org/10.1016/j.geotexmem.2018.12.004 |
| [10] |
Hussain, M., Sachan, A., 2019. Dynamic Characteristics of Natural Kutch Sandy Soils. Soil Dynamics and Earthquake Engineering, 125: 105717. https://doi.org/10.1016/j.soildyn.2019.105717 |
| [11] |
Lee, K. L., Albaisa, A., 1974. Earthquake Induced Settlements in Saturated Sands. Journal of the Geotechnical Engineering Division, 100(4): 387-406. https://doi.org/10.1061/ajgeb6.0000034 |
| [12] |
Li, W. Y., Huang, Y., 2023. Model Tests on the Effect of Dip Angles on Flow Behavior of Liquefied Sand. Journal of Earth Science, 34(2): 381-385. https://doi.org/10.1007/s12583-021-1498-8 |
| [13] |
Li, X., Liu, J. K., Nan, J. Y., 2022. Prediction of Dynamic Pore Water Pressure for Calcareous Sand Mixed with Fine-Grained Soil under Cyclic Loading. Soil Dynamics and Earthquake Engineering, 157: 107276. https://doi.org/10.1016/j.soildyn.2022.107276 |
| [14] |
Liu, H. L., Zhang, Y., Guo, W., et al., 2021. A Prediction Model of Dynamic Pore Water Pressure for MICP-Treated Calcareous Sand. Chinese Journal of Rock Mechanics and Engineering, 40(4): 790-801 (in Chinese with English abstract). |
| [15] |
Ma, W. J., Chen, G. X., Li, L., et al., 2019. Experimental Study on Liquefaction Characteristics of Saturated Coral Sand in Nansha Islands under Cyclic Loading. Chinese Journal of Geotechnical Engineering, 41(5): 981-988 (in Chinese with English abstract). |
| [16] |
Ma, W. J., Chen, G. X., Qin, Y., et al., 2020. Experimental Studies on Effects of Initial Major Stress Direction Angles on Liquefaction Characteristics of Saturated Coral Sand. Chinese Journal of Geotechnical Engineering, 42(3): 592-600 (in Chinese with English abstract). |
| [17] |
Maheshwari, B. K., Singh, H. P., Saran, S., 2012. Effects of Reinforcement on Liquefaction Resistance of Solani Sand. Journal of Geotechnical and Geoenvironmental Engineering, 138(7): 831-840. https://doi.org/10.1061/(asce)gt.1943-5606.0000645 |
| [18] |
Mao, W. W., Li, W., Rasouli, R., et al., 2023. Numerical Simulation of Liquefaction-Induced Settlement of Existing Structures. Journal of Earth Science, 34(2): 339-346. https://doi.org/10.1007/s12583-021-1531-y |
| [19] |
Olson, S. M., Green, R. A., Lasley, S., et al., 2012. Documenting Liquefaction and Lateral Spreading Triggered by the 12 January 2010 Haiti Earthquake. Earthquake Spectra, 27(1_suppl1): 93-116. https://doi.org/10.1193/1.3639270 |
| [20] |
Rui, S. J., Guo, Z., Si, T. L., et al., 2020. Effect of Particle Shape on the Liquefaction Resistance of Calcareous Sands. Soil Dynamics and Earthquake Engineering, 137: 106302. https://doi.org/10.1016/j.soildyn.2020.106302 |
| [21] |
Seed, H. B., Martin, P. P., Lysmer, J., 1976. Pore-Water Pressure Changes during Soil Liquefaction. Journal of the Geotechnical Engineering Division, 102(4): 323-346. https://doi.org/10.1061/ajgeb6.0000258 |
| [22] |
Shen, Y., Ma, Y. H., Rui, X. X., 2023. Experimental Study on Pore Water Pressure Characteristics and Accumulated Loss Energy of Saturated Calcareous Sand under Wave Loading. Rock and Soil Mechanics, 44(8): 2195-2204 (in Chinese with English abstract). |
| [23] |
Wang, L., Wang, Y. L., Yuan, X. M., et al., 2021. Experimental Study on Liquefaction Resistance of Hydraulic Fill Coralline Soils at Artificial Sites Based on Large-Scale Dynamic Triaxial Apparatus. Rock and Soil Mechanics, 42(10): 2819-2829 (in Chinese with English abstract). |
| [24] |
Wu, Q., Wang, L. Y., Liu, Q. F., et al., 2023. Experimental Study on Development Model of Excess Pore Pressure for Saturated Coral Sand Based on Shear Strain Characteristics. Chinese Journal of Geotechnical Engineering, 45(10): 2091-2099 (in Chinese with English abstract). |
| [25] |
Wu, Y., Cui, J., Li, C., et al., 2022. Experimental Study on the Effect of Fines on the Maximum Dynamic Shear Modulus of Coral Sand in a Hydraulic Fill Island-Reef. Chinese Journal of Rock Mechanics and Engineering, 41(1): 205-216 (in Chinese with English abstract). |
| [26] |
Wu, Y., Wu, Y. H., Ma, L. J., et al., 2024. Experimental Study on Dynamic Characteristics of Calcareous Sand-Gravel Mixtures from Islands in the South China Sea. Chinese Journal of Geotechnical Engineering, 46(1): 63-71 (in Chinese with English abstract). |
| [27] |
Xiao, P., Liu, H. L., Stuedlein, A. W., et al., 2019. Effect of Relative Density and Biocementation on Cyclic Response of Calcareous Sand. Canadian Geotechnical Journal, 56(12): 1849-1862. https://doi.org/10.1139/cgj-2018-0573 |
| [28] |
Yu, H. Z., Wang, R., Zhao, W. G., et al., 2006. Experimental Research on Development Pattern of Pore Water Pressure of Carbonate Sand under Wave Loads. Journal of Wuhan University of Technology, 28(11): 86-89 (in Chinese with English abstract). |
| [29] |
Zhou, L., Chen, J. F., Peng, M., et al., 2022. Liquefaction Behavior of Fiber-Reinforced Calcareous Sands in Unidirectional and Multidirectional Simple Shear Tests. Geotextiles and Geomembranes, 50(4): 794-806. https://doi.org/10.1016/j.geotexmem.2022.04.003 |
| [30] |
Zhou, L., Chen, J. F., Zhu, Y., et al., 2024. Liquefaction and Post-Liquefaction Behaviors of Unreinforced and Geogrid Reinforced Calcareous Sand. Geotextiles and Geomembranes, 52(3): 286-303. https://doi.org/10.1016/j.geotexmem.2023.11.002 |
| [31] |
Zhou, L., Chen, J. F., Zhuang, X. Y., 2023. Undrained Cyclic Behaviors of Fiber-Reinforced Calcareous Sand under Multidirectional Simple Shear Stress Path. Acta Geotechnica, 18(6): 2929-2943. https://doi.org/10.1007/s11440-022-01780-6 |
国家自然科学基金项目(42477169)
中央高校基本科研业务费专项资金资助项目(22120230302)
/
| 〈 |
|
〉 |