考虑动态渗流的散粒体滑坡-涌浪过程两相SPH模拟
彭铭 , 赵庆新 , 李爽 , 褚卫江 , 朱艳 , 葛向铭 , 陈昉健
地球科学 ›› 2025, Vol. 50 ›› Issue (10) : 3795 -3808.
考虑动态渗流的散粒体滑坡-涌浪过程两相SPH模拟
Two-Phase SPH Simulation of Granular Landslide-Tsunamis Processes Considering Dynamic Seepage
,
滑坡-涌浪是一种典型的多灾种耦合系统,具有跨介质灾种转化的复杂效应.基于黎曼光滑粒子流体动力学(Riemann-SPH),构建了考虑动态渗流的两相SPH滑坡-涌浪分析模型并验证了其准确性:动态渗流作用的引入使得散粒体滑坡-涌浪过程中的动量交换机制更加完整,最大波浪幅值am和最大波浪高度Hm的误差分别降低24.72%和41.95%以上.研究发现,滑动面倾角α与滑坡前缘倾角β对涌浪具有协同调控作用:随着α增大,am和Hm均呈现先增后减的单峰变化趋势;β的影响则呈现出分段特征:当α+β<90°时,am和Hm随角度和增大显著增长,超过该阈值后表现出非单调性变化,表明存在滑坡体积增加与有效作用面积缩减的竞争机制.此外,α的增大强化了渗流、紊流与摩擦等耗散效应,加剧涌浪能量衰减.相关成果可为滑坡-涌浪灾害防治提供科学支撑.
The landslide-tsunami is a typical multi-hazard coupled system, characterized by complex effects resulting from the transmedia transformation of hazards. In this paper it proposes a two-phase Riemann-SPH model for landslide-tsunami simulation that incorporates dynamic seepage and is validated against laboratory experiments. The incorporation of dynamic seepage effects enhances the completeness of the momentum exchange mechanism in the granular landslide-tsunami process, reducing the errors in the maximum wave amplitude (am) and maximum wave height (Hm) by at least 24.72% and 41.95%, respectively. The results reveal a synergistic regulation of tsunami characteristics by the sliding surface inclination (α) and the landslide leading edge inclination (β): as α increases, the am and Hm exhibit a single-peaked, nonlinear increase-then-decrease trend. The influence of β shows a distinct piecewise pattern: when α+β<90°, both am and Hm increase significantly with the angle. Beyond this threshold, non-monotonic variations appear, reflecting a competition between the increasing landslide volume and the decreasing effective impact area. Moreover, increasing α enhances seepage, turbulent and frictional dissipation effects, accelerating energy decay. These findings provide scientific support for the mitigation of landslide-tsunami hazards.
滑坡-涌浪灾害链 / 黎曼光滑粒子流体动力学 / 动态渗流 / 滑动面倾角 / 滑坡前缘倾角 / 水土耦合 / 工程地质学.
landslide-tsunami hazard chain / Riemann-SPH / dynamic seepage / sliding surface inclination / landslide leading edge inclination / fluid-soil coupling / engineering geology
| [1] |
Barla, G., Paronuzzi, P., 2013. The 1963 Vajont Landslide: 50th Anniversary. Rock Mechanics and Rock Engineering, 46(6): 1267-1270. https://doi.org/10.1007/s00603-013-0483-7 |
| [2] |
Clous, L., Abadie, S., 2019. Simulation of Energy Transfers in Waves Generated by Granular Slides. Landslides, 16(9): 1663-1679. https://doi.org/10.1007/s10346-019-01180-0 |
| [3] |
Cui, P., Zhu, X. H., 2011. Surge Generation in Reservoirs by Landslides Triggered by the Wenchuan Earthquake. Journal of Earthquake and Tsunami, 5(5): 461-474. https://doi.org/10.1142/s1793431111001194 |
| [4] |
Dai, Z. L., Lan, B. S., Jiang, M. T., et al., 2025. Numerical Modeling of Submarine Landslide Motion and Impact Behavior Based on the SPH Method. Journal of Ocean University of China, 24(2): 365-376. https://doi.org/10.1007/s11802-025-5853-8 |
| [5] |
Evers, F. M., Hager, W. H., 2016. Spatial Impulse Waves: Wave Height Decay Experiments at Laboratory Scale. Landslides, 13(6): 1395-1403. https://doi.org/10.1007/s10346-016-0719-1 |
| [6] |
Evers, F. M., Hager, W. H., Boes, R. M., 2019. Spatial Impulse Wave Generation and Propagation. Journal of Waterway, Port, Coastal, and Ocean Engineering, 145(3): 04019011. https://doi.org/10.1061/(asce)ww.1943-5460.0000514 |
| [7] |
Fornaciai, A., Favalli, M., Nannipieri, L., 2019. Numerical Simulation of the Tsunamis Generated by the Sciara Del Fuoco Landslides (Stromboli Island, Italy). Scientific Reports, 9(1): 18542. https://doi.org/10.1038/s41598-019-54949-7 |
| [8] |
Fritz, H. M., 2001. Lituya Bay Case:Rockslide Impact and Wave Run-up. Science of Tsunami Hazards, 19, 3. |
| [9] |
Fritz, H. M., Hager, W. H., Minor, H. E., 2004. Near Field Characteristics of Landslide Generated Impulse Waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 130(6): 287-302. https://doi.org/10.1061/(asce)0733-950x(2004)130:6(287) |
| [10] |
Grilli, S. T., Tappin, D. R., Carey, S., et al., 2019. Modelling of the Tsunami from the December 22, 2018 Lateral Collapse of Anak Krakatau Volcano in the Sunda Straits, Indonesia. Scientific Reports, 9: 11946. https://doi.org/10.1038/s41598-019-48327-6 |
| [11] |
Heller, V., Spinneken, J., 2013. Improved Landslide-Tsunami Prediction: Effects of Block Model Parameters and Slide Model. Journal of Geophysical Research: Oceans, 118(3): 1489-1507. https://doi.org/10.1002/jgrc.20099 |
| [12] |
Heller, V., Spinneken, J., 2015. On the Effect of the Water Body Geometry on Landslide–Tsunamis: Physical Insight from Laboratory Tests and 2D to 3D Wave Parameter Transformation. Coastal Engineering, 104: 113-134. https://doi.org/10.1016/j.coastaleng.2015.06.006 |
| [13] |
Huang, B. L., Yin, Y. P., Du, C. L., 2016. Risk Management Study on Impulse Waves Generated by Hongyanzi Landslide in Three Gorges Reservoir of China on June 24, 2015. Landslides, 13(3): 603-616. https://doi.org/10.1007/s10346-016-0702-x |
| [14] |
Huang, C., Hu, C., An, Y., et al., 2023. Numerical Simulation of the Large-Scale Huangtian (China) Landslide-Generated Impulse Waves by a GPU-Accelerated Three-Dimensional Soil‒Water Coupled SPH Model. Water Resources Research, 59(6): e2022WR034157. https://doi.org/10.1029/2022wr034157 |
| [15] |
Jiang, Q., 2019. Unified Particle Method Research for Simulation of Landslides Generated Waves in Reservoir Bank (Dissertation). Ningbo Institute of Material Technology, Chinese Academy of Sciences, Ningbo(in Chinese with English abstract). |
| [16] |
Lee, C. H., Huang, Z. H., 2022. Effects of Grain Size on Subaerial Granular Landslides and Resulting Impulse Waves: Experiment and Multi-Phase Flow Simulation. Landslides, 19(1): 137-153. https://doi.org/10.1007/s10346-021-01760-z |
| [17] |
Lee, C. H., Lo, P. H., Shi, H. B., et al., 2022. Numerical Modeling of Generation of Landslide Tsunamis: A Review. Journal of Earthquake and Tsunami, 16(6): 2241001. https://doi.org/10.1142/s1793431122410019 |
| [18] |
Li, H. W., Xu, Z. G., Shi, J. Y., et al., 2024. Tsunami Potential Threat from the Ryukyu Trench on Chinese Coast Based on Subduction Zone Dynamics Parameters. Earth Science, 49(2): 403-413 (in Chinese with English abstract). |
| [19] |
Li, P. F., Jing, H. X., Li, G. D., 2024. Generation and Prediction of Water Waves Induced by Rigid Piston-Like Landslide. Natural Hazards, 120(3): 2683-2704. https://doi.org/10.1007/s11069-023-06300-7 |
| [20] |
Li, Q. W., Huang, B. L., Zhang, P., et al., 2024. Influence of the Degree of Landslide Fragmentation on the Characteristics of Landslide Impulse Wave. Rock and Soil Mechanics, 45(11): 3345-3354 (in Chinese with English abstract). |
| [21] |
Liu, J. X. Z., 2023. Partitioning Prediction Study of Landslide-Tsunamis in the Wu Gorge of the Three Gorges Reservoir Area(Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). |
| [22] |
Luo, M., Khayyer, A., Lin, P. Z., 2021. Particle Methods in Ocean and Coastal Engineering. Applied Ocean Research, 114: 102734. https://doi.org/10.1016/j.apor.2021.102734 |
| [23] |
Mao, Y. F., Guan, M. F., 2023. Mesh-Free Simulation of Height and Energy Transfer of Landslide-Induced Tsunami Waves. Ocean Engineering, 284: 115219. https://doi.org/10.1016/j.oceaneng.2023.115219 |
| [24] |
Meng, Z. Z., Zhang, J. X., Hu, Y. T., et al., 2023. Temporal Prediction of Landslide-Generated Waves Using a Theoretical-Statistical Combined Method. Journal of Marine Science and Engineering, 11(6): 1151. https://doi.org/10.3390/jmse11061151 |
| [25] |
Mohammed, F., Fritz, H. M., 2012. Physical Modeling of Tsunamis Generated by Three-Dimensional Deformable Granular Landslides. Journal of Geophysical Research (Oceans), 117(C11): C11015. https://doi.org/10.1029/2011JC007850 |
| [26] |
Paquier, A. E., Oudart, T., Le Bouteiller, C., et al., 2021. 3D Numerical Simulation of Seagrass Movement under Waves and Currents with GPUSPH. International Journal of Sediment Research, 36(6): 711-722. https://doi.org/10.1016/j.ijsrc.2020.08.003 |
| [27] |
Rauter, M., Viroulet, S., Gylfadóttir, S. S., et al., 2022. Granular Porous Landslide Tsunami Modelling—The 2014 Lake Askja Flank Collapse. Nature Communications, 13(1): 678. https://doi.org/10.1038/s41467-022-28296-7 |
| [28] |
Tang, G. Q., Lu, L., Teng, Y. F., et al., 2018. Impulse Waves Generated by Subaerial Landslides of Combined Block Mass and Granular Material. Coastal Engineering, 141: 68-85. https://doi.org/10.1016/j.coastaleng.2018.09.003 |
| [29] |
Viroulet, S., Sauret, A., Kimmoun, O., et al., 2013. Granular Collapse into Water: Toward Tsunami Landslides. Journal of Visualization, 16(3): 189-191. https://doi.org/10.1007/s12650-013-0171-4 |
| [30] |
Wu, H., Shi, A. C., Ni, W. D., et al., 2024a. Numerical Simulation on Potential Landslide–Induced Wave Hazards by a Novel Hybrid Method. Engineering Geology, 331: 107429. https://doi.org/10.1016/j.enggeo.2024.107429 |
| [31] |
Wu, H., Zhong, Q. M., Deng, Z., et al., 2024b. Numerical Investigation of the Effect of Landslide Relative Density on the Impulse Wave Amplitude. Ocean Engineering, 309: 118563. https://doi.org/10.1016/j.oceaneng.2024.118563 |
| [32] |
Xu, Q., Dong, X. J., 2011. Genetic Types of Large-Scale Landslides Induced by Wenchuan Earthquake. Earth Science, 36(6): 1134-1142 (in Chinese with English abstract). |
| [33] |
Xu, W. J., 2023. Research Advances in Disaster Dynamics of Landslide Tsunami. Journal of Engineering Geology, 31(6): 1929-1940 (in Chinese with English abstract). |
| [34] |
Yin, K. L., Liu, Y. L., Wang, Y., et al., 2012. Physical Model Experiments of Landslide-Induced Surge in Three Gorges Reservoir. Earth Science, 37(5): 1067-1074 (in Chinese with English abstract). |
| [35] |
Yu, M. L., Lee, C. H., 2019. Multi-Phase-Flow Modeling of Underwater Landslides on an Inclined Plane and Consequently Generated Waves. Advances in Water Resources, 133: 103421. https://doi.org/10.1016/j.advwatres.2019.103421 |
| [36] |
Zhang, C., Rezavand, M., Zhu, Y. J., et al., 2021. SPHinXsys: An Open-Source Multi-Physics and Multi-Resolution Library Based on Smoothed Particle Hydrodynamics. Computer Physics Communications, 267: 108066. https://doi.org/10.1016/j.cpc.2021.108066 |
| [37] |
Zhang, S. H., Zhang, C., Hu, X. Y., et al., 2024. A Riemann-Based SPH Method for Modelling Large Deformation of Granular Materials. Computers and Geotechnics, 167: 106052. https://doi.org/10.1016/j.compgeo.2023.106052 |
| [38] |
Zhu, C. W., Peng, C., Wu, W., et al., 2022. A Multi-Layer SPH Method for Generic Water–Soil Dynamic Coupling Problems. Part I: Revisit, Theory, and Validation. Computer Methods in Applied Mechanics and Engineering, 396: 115106. https://doi.org/10.1016/j.cma.2022.115106 |
| [39] |
Zhu, Y. F., An, C., 2024. Application of Uniform Slip Models to Tsunami Early Warning: A Case Study of 2021 Mw 8.2 Alaska Peninsula Earthquake. Earth Science, 49(2): 500-510 (in Chinese with English abstract). |
国家自然科学基金-联合基金重点项目(U23A2044)
广西重点研发计划项目(No.桂科AB25069121)
国家自然科学基金-青年基金项目(42207238)
福建省自然科学基金项目-面上项目(2022J011253)
/
| 〈 |
|
〉 |