自然积雪与雪崩堆积体的剖面密度特征分析
Analysis on Density Profile Characteristics of Naturally Deposited Snow and Avalanche Deposition
,
,
为明确区域积雪雪崩情况,对2024年1月喀纳斯雪崩区两条典型公路沿线积雪密度进行原位测量分析.基于中国西北大陆性气候条件下干冷积雪特征,对比自然降雪和雪崩堆积情况下的积雪密度特征,揭示积雪密度在垂直剖面上的变化规律.结果显示,不同情况下积雪密度的变化趋势具有相似性,但自然积雪的密度梯度和最大值与雪崩堆积体存在显著差异.因此,可结合积雪垂直剖面密度分布特征与最大值,提出判别雪体为自然积雪或雪崩堆积体的方法.研究成果为野外自然积雪及雪崩堆积体的分析和识别提供了科学依据.
In order to clarify regional snow and avalanche conditions, the snow density along two typical highway lines in the Kanas avalanche area in January 2024 was measured. Based on the characteristics of dry and cold snow under the continental climate conditions of Northwest China, the density of naturally deposited snow and avalanche deposition is compared. The different characteristics of the density profiles at different conditions are identified. The results show that the trends of snow density profiles under the different conditions share similarities, but the density gradient and the maximum density change significantly from naturally deposited snow to avalanche deposition. Therefore, based on the characteristics of the vertical density profile and the maximum snow density, it can be identified whether a snow deposition is from natural snowfall or an avalanche. The outcomes provide a scientific basis for the analysis and identification of natural snow and avalanche deposits in the field.
喀纳斯雪崩 / 积雪密度 / 自然积雪 / 雪崩堆积体 / 工程地质学.
Kanas avalanche / snow density / naturally deposited snow / avalanche deposition / engineering geology
| [1] |
Bai, S. Z., Chen, Z., Zhuang, X. C., et al., 2014. Variations of Winter Snow Concentration Degree and Concentration Period in Altay Region. Journal of Arid Meteorology, 32(1): 99-107 (in Chinese with English abstract). |
| [2] |
Bouvet, L., Calonne, N., Flin, F., et al., 2023. Heterogeneous Grain Growth and Vertical Mass Transfer within a Snow Layer under a Temperature Gradient. The Cryosphere, 17(8): 3553-3573. https://doi.org/10.5194/tc-17-3553-2023 |
| [3] |
Calonne, N., Geindreau, C., Flin, F., et al., 2012.3-D Image-Based Numerical Computations of Snow Permeability: Links to Specific Surface Area, Density, and Microstructural Anisotropy. The Cryosphere, 6(5): 939-951. https://doi.org/10.5194/tc-6-939-2012 |
| [4] |
Christen, M., Kowalski, J., Bartelt, P., 2010. RAMMS: Numerical Simulation of Dense Snow Avalanches in Three-Dimensional Terrain. Cold Regions Science and Technology, 63(1-2): 1-14. https://doi.org/10.1016/j.coldregions.2010.04.005 |
| [5] |
Dai, L. Y., Che, T., Zhang, Y., et al., 2022. Microwave Radiometry Experiment for Snow in Altay, China: Time Series of In Situ Data for Electromagnetic and Physical Features of Snowpack. Earth System Science Data, 14(8): 3509-3530. https://doi.org/10.5194/essd-14-3509-2022 |
| [6] |
Dent, J. D., Burrell, K. J., Schmidt, D. S., et al., 1998. Density, Velocity and Friction Measurements in a Dry-Snow Avalanche. Annals of Glaciology, 26: 247-252. https://doi.org/10.3189/1998aog26-1-247-252 |
| [7] |
Dong, Z. W., Jiang, H. C., Baccolo, G., et al., 2023. Biological and Pollution Aerosols on Snow and Ice-Interplay between the Atmosphere and the Cryosphere. Journal of Earth Science, 34(6): 1951-1956. https://doi.org/10.1007/s12583-023-2004-2 |
| [8] |
Gao, P., Wei, W. S., Liu, M. Z., et al., 2010. Snow Density and Liquid Water Content within the Seasonal Snow Cover in the Western Tianshan Mountains. Journal of Glaciology and Geocryology, 32(4): 786-793 (in Chinese with English abstract). |
| [9] |
Hao, J. S., Huang, F. R., Liu, Y., et al., 2018. Avalanche Activity and Characteristics of Its Triggering Factors in the Western Tianshan Mountains, China. Journal of Mountain Science, 15(7): 1397-1411. https://doi.org/10.1007/s11629-018-4941-2 |
| [10] |
Hao, J. S., Mind’je, R., Feng, T., et al., 2021. Performance of Snow Density Measurement Systems in Snow Stratigraphies. Hydrology Research, 52(4): 834-846. https://doi.org/10.2166/nh.2021.133 |
| [11] |
Hao, J. S., Zhang, X. Q., Cui, P., et al., 2023. Impacts of Climate Change on Snow Avalanche Activity along a Transportation Corridor in the Tianshan Mountains. International Journal of Disaster Risk Science, 14(4): 510-522. https://doi.org/10.1007/s13753-023-00475-0 |
| [12] |
Hao, X. H., Wang, J., Che, T., et al., 2009. The Spatial Distribution and Properties of Snow Cover in Binggou Watershed, Qilian Mountains: Measurement and Analysis. Journal of Glaciology and Geocryology, 31(2): 284-292 (in Chinese with English abstract). |
| [13] |
Hopfinger, E. J., Tochon-Danguy, J. C., 1977. A Model Study of Powder-Snow Avalanches. Journal of Glaciology, 19(81): 343-356. https://doi.org/10.3189/s0022143000029373 |
| [14] |
Hu, L. Q., Huang, W. J., Yin, K. Q., et al., 2013. Estimation of Snow Water Resources and Its Distribution in Xinjiang. Advances in Water Science, 24(3): 326-332 (in Chinese with English abstract). |
| [15] |
Jost, G., Weiler, M., Gluns, D. R., et al., 2007. The Influence of Forest and Topography on Snow Accumulation and Melt at the Watershed-Scale. Journal of Hydrology, 347(1-2): 101-115. https://doi.org/10.1016/j.jhydrol.2007.09.006 |
| [16] |
Keshari, A. K., Satapathy, D. P., Kumar, A., 2010. The Influence of Vertical Density and Velocity Distributions on Snow Avalanche Runout. Annals of Glaciology, 51(54): 200-206. https://doi.org/10.3189/172756410791386409 |
| [17] |
Lehning, M., Bartelt, P., Brown, B., et al., 2002. A Physical SNOWPACK Model for the Swiss Avalanche Warning Part II. Snow Microstructure. Cold Regions Science and Technology, 35(3): 147-167. https://doi.org/10.1016/S0165-232X(02)00073-3 |
| [18] |
Li, X. Y., Sovilla, B., Jiang, C., et al., 2021. Three-Dimensional and Real-Scale Modeling of Flow Regimes in Dense Snow Avalanches. Landslides, 18(10): 3393-3406. https://doi.org/10.1007/s10346-021-01692-8 |
| [19] |
Ma, L. J., Qin, D. H., 2012. Temporal-Spatial Characteristics of Observed Key Parameters of Snow Cover in China during 1957-2009. Sciences in Cold and Arid Regions, 4(5): 384. https://doi.org/10.3724/sp.j.1226.2012.00384 |
| [20] |
Peng, D. D., Zhou, T. J., 2017. Why was the Arid and Semiarid Northwest China Getting Wetter in the Recent Decades? Journal of Geophysical Research(Atmospheres), 122(17): 9060-9075. https://doi.org/10.1002/2016JD026424 |
| [21] |
Song, M. Y., Li, Z. Q., Wang, F. T., et al., 2024. Influence of Sub-Cloud Secondary Evaporation Effects on the Stable Isotopes in Precipitation of Urumqi Glacier No. 1, Eastern Tianshan. Journal of Earth Science, 35(1): 177-189. https://doi.org/10.1007/s12583-021-1522-z |
| [22] |
Sovilla, B., Burlando, P., Bartelt, P., 2006. Field Experiments and Numerical Modeling of Mass Entrainment in Snow Avalanches. Journal of Geophysical Research(Earth Surface), 111(F3): F03007. https://doi.org/10.1029/2005JF000391 |
| [23] |
Sovilla, B., Sommavilla, F., Tomaselli, A., 2001. Measurements of Mass Balance in Dense Snow Avalanche Events. Annals of Glaciology, 32: 230-236. https://doi.org/10.3189/172756401781819058 |
| [24] |
Su, H. C., Wei, W. S., Han, P., 2003. Changes in Air Temperature and Evaporation in Xinjiang during Recent 50 Years. Journal of Glaciology and Geocryology, 25(2): 174-178 (in Chinese with English abstract). |
| [25] |
Tan, X. J., Wu, Z. N., Mu, X. M., et al., 2019. Spatiotemporal Changes in Snow Cover over China during 1960-2013. Atmospheric Research, 218: 183-194. https://doi.org/10.1016/j.atmosres.2018.11.018 |
| [26] |
Valero, C. V., Jones, K. W., Bühler, Y., et al., 2015. Release Temperature, Snow-Cover Entrainment and the Thermal Flow Regime of Snow Avalanches. Journal of Glaciology, 61(225): 173-184. https://doi.org/10.3189/2015jog14j117 |
| [27] |
Wang, B. X., Cheng, W. M., Xu, H., et al., 2024. Vegetation Differentiation Characteristics and Control Mechanisms in the Altay Region Based on Topographic Gradients. Ecological Indicators, 160: 111838. https://doi.org/10.1016/j.ecolind.2024.111838 |
| [28] |
Wang, S. P., Ding, Y. J., Jiang, F. Q., et al., 2017. Defining Indices for the Extreme Snowfall Events and Analyzing Their Trends in Northern Xinjiang, China. Journal of the Meteorological Society of Japan Ser. II, 95(5): 287-299. https://doi.org/10.2151/jmsj.2017-016 |
| [29] |
Wang, S. P., Jiang, F. Q., Hu, R. J., et al., 2013. Temporal and Spatial Variability of Extreme Snowfall Indices over Northern Xinjiang from 1959/1960 to 2008/2009. Natural Hazards and Earth System Sciences Discussions, 1(6): 7059-7092. https://doi.org/10.5194/nhessd-1-7059-2013 |
| [30] |
Wang, X., Baker, I., 2013. Observation of the Microstructural Evolution of Snow under Uniaxial Compression Using X-Ray Computed Microtomography. Journal of Geophysical Research: Atmospheres, 118(22):12371-12382. https://doi.org/10.1002/2013jd020352 |
| [31] |
Wei, W. S., Qin, D. H., Liu, M. Z., 2001. Properties and Structure of the Seasonal Snow Cover in the Northwest Regions of China. Arid Land Geography, 24(4): 310-313 (in Chinese with English abstract). |
| [32] |
Yang, D. Q., Zhang, Y. S., Zhang, Z. Z., 1992. A Study on the Snow Density in the Head Area of Urumqi River Basin. Acta Geographica Sinica, 47(3): 260-266 (in Chinese with English abstract). |
| [33] |
Yang, T., Li, Q., Liu, W. J., et al., 2020. Spatiotemporal Variability of Snowfall and Its Concentration in Northern Xinjiang, Northwest China. Theoretical and Applied Climatology, 139(3): 1247-1259. https://doi.org/10.1007/s00704-019-02994-7 |
| [34] |
Zhang, R. P., Liang, T. G., Feng, Q. S., et al., 2017. Evaluation and Adjustment of the AMSR2 Snow Depth Algorithm for the Northern Xinjiang Region, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(9): 3892-3903. https://doi.org/10.1109/JSTARS.2016.2620521 |
| [35] |
Zhang, W., Shen, Y. P., He, J. Q., et al., 2014. Snow Properties on Different Underlying Surfaces during Snow-Melting Period in the Altay Mountains: Observation and Analysis. Journal of Glaciology and Geocryology, 36(3): 491-499 (in Chinese with English abstract). |
| [36] |
Zhuang, X. C., Guo, C., Zhao, Z. B., et al., 2010. Snow Cover Variation Analysis in Altay Area of Xinjiang. Journal of Arid Meteorology, 28(2): 190-197 (in Chinese with English abstract). |
国家自然科学基金青年科学基金项目(42202312)
交通运输部行业重点科技项目(2022-ZD6-090)
/
| 〈 |
|
〉 |