广东大宝山多金属矿床叠加成因:硫化物Re⁃Os和Rb⁃Sr年龄及原位微量元素证据

王磊 , 王祥东 , 胡军 , 金鑫镖 , 张熊 , 谭娟娟

地球科学 ›› 2025, Vol. 50 ›› Issue (07) : 2548 -2565.

PDF (11406KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (07) : 2548 -2565. DOI: 10.3799/dqkx.2025.104

广东大宝山多金属矿床叠加成因:硫化物Re⁃Os和Rb⁃Sr年龄及原位微量元素证据

作者信息 +

Superimposed Mineralization of Dabaoshan Polymetallic Deposit in Guangdong Province: Evidence from Sulfide Re⁃Os and Rb⁃Sr Dating and In⁃Situ Trace Element Analysis

Author information +
文章历史 +
PDF (11679K)

摘要

大宝山是钦杭成矿带内一个重要的大型多金属矿床,其是否存在海底喷流沉积成矿作用尚存在争议.对该矿床不同类型的硫化物进行了同位素定年和原位微量元素分析.获得的磁黄铁矿Re-Os和闪锌矿Rb-Sr等时线年龄分别为(366±33)Ma 和(166.3±2.5)Ma.磁黄铁矿整体呈现Co低、Ni高、Se高、Te低的特点,Co/Ni比值几乎均小于1,指示其沉积成因的特征.闪锌矿相对富集Fe、Mn、Cd、Ga、In、Sn等元素,具有较低的Zn/Cd和Cd/Fe比值,较低的Co含量和较高的Sn含量,指示其喷流沉积成因.综合认为大宝山多金属矿床经历了中泥盆世喷流沉积成矿和中侏罗世岩浆热液叠加成矿.在400 ℃左右的成矿温度下,硫化物Re-Os同位素体系保持封闭,原位成分仍记录了早期沉积成因特征,这一发现在华南块状硫化物矿床成因研究中可供借鉴.

Abstract

The Dabaoshan deposit is a large-sized polymetallic deposit within the Qin-Hang Metallogenic Belt, and it is still controversial whether there has been submarine exhalative sedimentation. In this study, we conducted isotopic dating and in-situ elemental analysis of various sulfides in the deposit, having obtained Re-Os isochron age of (366±33) Ma for pyrrhotites and Rb-Sr isochron age of (166.3±2.5) Ma for sphalerite, respectively. The pyrrhotite is characterized by low concentrations of Co and Te, and high concentrations of Ni and Se, with Co/Ni ratios predominantly below 1, indicating a sedimentary origin. Additionally, sphalerite is relatively enriched in elements such as Fe, Mn, Cd, Ga, In, and Sn, exhibiting relatively low Zn/Cd and Cd/Fe ratios, low Co content, and high Sn content, indicating a sedimentary exhalative origin. Generally, the Dabaoshan polymetallic deposit experienced mineralization through Devonian exhalative sedimentation mineralization, followed by Jurassic magmatic-hydrothermal superimposition. The Re-Os isotope system of sulfides remained stable at a mineralization temperature around 400 °C, preserving the in-situ geochemical signatures of the initial sedimentary processes. The findings provide valuable insights into the genesis of massive sulfide deposits in South China.

Graphical abstract

关键词

磁黄铁矿Re⁃Os定年 / 闪锌矿Rb⁃Sr定年 / 原位微量元素 / 叠加成矿 / 大宝山多金属矿床 / 矿床学.

Key words

pyrrhotites Re⁃Os dating / sphalerite Rb⁃Sr dating / in⁃situ composition / superimposed mineralization / Dabaoshan polymetallic deposit / ore deposit

引用本文

引用格式 ▾
王磊,王祥东,胡军,金鑫镖,张熊,谭娟娟. 广东大宝山多金属矿床叠加成因:硫化物Re⁃Os和Rb⁃Sr年龄及原位微量元素证据[J]. 地球科学, 2025, 50(07): 2548-2565 DOI:10.3799/dqkx.2025.104

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

斑岩铜系统可以孕育一些分布广泛的矿化类型,包括以侵入岩为中心的斑岩矿床、随围岩变化有矽卡岩型、碳酸盐岩充填交代型、热液脉型,以及末梢的沉积岩中赋存的Au 等矿床(Sillitoe, 2010).当斑岩铜系统中发育的远矽卡岩矿床以层状产出时,与海底喷流沉积型矿床较难区分.华南地区分布有20个以上赋存于晚古生代沉积盆地中的块状硫化物矿床,这些矿床多又受到燕山期岩浆热液的改造和叠加(徐克勤等, 1996;Gu et al., 2007).在某一地区或单个矿床中往往出现块状硫化物、脉型、矽卡岩型、斑岩型矿体共存现象(Gu et al., 2007),其中块状硫化物矿体的成因往往在海底喷流沉积和岩浆热液型之间存在争论,影响了对整个区域矿床成因的认识.

位于钦杭成矿带南段附近的大宝山多金属矿床主要包括赋存于泥盆系的层状‒似层状Cu⁃Pb⁃Zn多金属矿和与侏罗纪花岗岩相关的斑岩型‒矽卡岩型Mo⁃W矿,以及风化淋滤型褐铁矿(图1).由于层状‒似层状矿体中缺乏合适的直接定年矿物,加之矿区侏罗纪岩浆‒热液‒成矿作用强烈,导致其长期存在泥盆纪海底喷流沉积成矿(刘孝善和周顺之, 1984; 葛朝华和韩发, 1986; 徐克勤等, 1996; Gu et al., 2007Ye et al., 2011)和侏罗纪岩浆热液成矿(刘姤群等, 1985; 蔡锦辉和刘家齐, 1993; Wang et al., 2011)之争,少数学者还持志留纪火山块状硫化物成矿(伍静等, 2014)的观点.本文对采自大宝山矿区层状‒似层状Cu⁃Pb⁃Zn多金属矿中的磁黄铁矿、闪锌矿分别开展了Re⁃Os和Rb⁃Sr同位素定年,揭示了泥盆纪和侏罗纪两期成矿事件,并结合硫化物结构和原位微量元素成分探讨了矿床成因.

1 地质背景

1.1 区域地质

华南陆块由扬子和华夏地块在元古代沿着钦杭结合带拼合而成(Zhao and Cawood, 2012),自元古代以来经历了多期的构造‒岩浆‒成矿作用(Hu and Zhou, 2012Mao et al., 2013).钦杭成矿带(或钦杭结合带)在扬子和华夏地块元古代基底的基础上经历了中生代的活化,使其成为华南地区最为重要的Cu⁃Pb⁃Zn⁃Au⁃Ag多金属成矿带,不仅分布有元古代海底喷流型铜锌矿床,还发育有更多与中生代中‒酸性花岗岩类有关的铜多金属矿床和钨锡多金属矿床(蒋少涌等, 2008; Mao et al., 2013,2021).此外,在华南地区晚古生代的沉积盆地中赋存20多个块状硫化物矿床(Gu et al., 2007),如桂北和粤北盆地中‒上泥盆统赋存的泗顶铅锌矿、大宝山铜多金属矿、凡口铅锌矿等;闽西、萍乡‒乐平和信江盆地中‒上石炭统发育的城门山铜矿、武山铜矿、东乡铜矿、永平铜矿等;下扬子盆地中石炭统发育的铜官山铜矿、新桥铜多金属矿、冬瓜山铜金矿等.这些块状硫化物矿床多又受到燕山期岩浆热液的改造和叠加(徐克勤等, 1996; Gu et al., 2007),其成因多存在海底喷流沉积和岩浆热液成矿的争论(Gu et al., 2007; 周涛发等, 2010; Guo et al., 2011Li et al., 2018).

1.2 矿床地质

大宝山多金属矿床位于钦杭成矿带的南段附近,北东向吴川‒四会断裂与近东西向大东山‒贵东构造岩浆带的交汇部位(图1a、1b).矿区出露地层主要有寒武系高滩组浅变质砂页岩及板岩,中‒下泥盆统老虎头组砂岩及砂砾岩,中泥盆统棋梓桥组下段砂泥质碳酸盐岩、上段中酸性火山碎屑沉积岩,上泥盆统天子岭组灰岩,下侏罗统金鸡组砂页岩.褶皱主要为大宝山向斜,轴向以北北西为主,轴部为中泥盆统棋梓桥组.断裂主要有近东西向、北东‒南北向及北北西向三组.矿区内岩浆活动较为强烈,主要有大宝山花岗闪长斑岩和船肚花岗闪长岩,大宝山、九曲岭、丘坝及徐屋英安岩(图1c).其中,花岗闪长(斑)岩高精度锆石U⁃Pb年龄为160~175 Ma(Wang et al., 2011Li et al., 2012;刘莎等, 2012),英安岩高精度锆石U⁃Pb年龄介于426~450 Ma(毛伟等, 2013; 伍静等, 2014; Su et al., 2019Wang et al., 2019).此外,矿区还出露少量的辉绿岩和玄武岩,形成时代为燕山期和/或印支期(毛伟等, 2013; Wang et al., 2019).

矿区矿化类型多样,主要包括层状‒似层状Cu⁃Pb⁃Zn多金属矿、层状菱铁矿、斑岩型‒矽卡岩型Mo⁃W矿以及风化淋滤型褐铁矿(铁帽).矿区斑岩型‒矽卡岩型Mo⁃W矿化与大宝山花岗闪长(斑)和船肚花岗闪长岩相关(图1c),其成矿时代和矿床成因已形成共识(Wang et al., 2011).层状‒似层状Cu⁃Pb⁃Zn多金属矿主要赋存于中泥盆统棋梓桥组碳酸盐岩地层中,呈层状、似层状、透镜状和脉状赋存于大宝山向斜核部(图2图3).矿石矿物主要为黄铜矿、黄铁矿、磁黄铁矿、方铅矿和闪锌矿(图4).其中,0号勘探线以北(北采场)以黄铜矿‒黄铁矿矿石、黄铜矿‒磁黄铁矿矿石为主,0号勘探线以南(南采场)以铅锌矿石为主.蚀变主要有钾长石化、黑云母化、绿泥石化、硅化、绢云母化、碳酸盐化等.层状‒似层状矿体的上部晚泥盆世碎屑岩中发育似层状、透镜状菱铁矿体,顶部为风化淋滤而成的褐铁矿(刘姤群等,1985;蔡锦辉和刘家齐,1993).

2 样品及测试方法

本次从大宝山矿区层状‒似层状矿体中分选出5件磁黄铁矿样品进行Re⁃Os同位素定年,8件闪锌矿样品进行Rb⁃Sr同位素定年.采集了15件硫化物矿石样品,切片抛光至80~100 μm,进行LA⁃ICP⁃MS原位微量元素分析.样品详细信息见表1.

2.1 磁黄铁矿Re⁃Os同位素测试

硫化物矿石在玛瑙研钵中破碎后,使用磁性分离及重液分离技术分离磁黄铁矿,手工挑选以保证纯度大于99%.样品在超声波浴中用Milli⁃Q去离子水冲洗至少20 min,然后在玛瑙研钵中粉碎至200 目.Re⁃Os同位素分析在国家地质实验测试中心Re⁃Os同位素实验室完成.在密封的Carius管中溶解磁黄铁矿样品(Shirey and Walker, 1995),使用热表面电离质谱仪Triton⁃plus对同位素比值进行测定.详细的分析方法和流程见文献(Shirey and Walker, 1995Smoliar et al., 1996Du et al., 2004).测试数据采用Isoplot软件进行等时线成图.

2.2 闪锌矿Rb⁃Sr同位素测试

硫化物矿石在玛瑙研钵中破碎后,使用磁性分离及重液分离技术分离闪锌矿,手工挑选以保证纯度大于99%.称取闪锌矿样品100~200 mg在玛瑙研钵中粉碎至200目,在超声波浴中用超纯水洗涤.然后,将每个样品加入适量的85Rb+84Sr混合稀释剂,用1 mol/L HCl溶解后备做Rb、Sr分离.溶解后的清液采用AG⁃50w×8阳离子树脂交换法分离和纯化Rb和Sr,在中国地质调查局武汉地质调查中心热电离质谱仪(Triton Ti TIMS)上进行Rb和Sr同位素分析,质谱分析中采用88Sr/86Sr值 (8.375 21)校正Sr同位素质量分馏效应.整个分析过程采用标准物质NBS 987、NBS 607和GBW04411进行质量监控,标准物质测定值与推荐值在误差范围内一致,整个流程空白低于5×10-10 g.使用Isoplot软件计算Rb⁃Sr等时线年龄.

2.3 硫化物原位微量元素分析

硫化物原位 LA⁃ICP⁃MS微量元素分析在国家地质实验测试中心完成,使用213 nm激光器耦合ELEMENT2 双聚焦扇形磁场等离子体质谱(德国Finnigan公司)联用的LA⁃ICP⁃MS系统.激光剥蚀束斑直径为40 μm、频率为10 Hz、能量密度约12 J/cm2,20 s气体空白+40 s样品剥蚀+20 s冲洗.信号检测采用低分辨率电场扫描,跳峰采集,每个元素检测时间为5 ms.每个样品同时测试7Li~238U等60余种同位素,每20个未知样品点插入一组标样.NIST SRM 610、KL2⁃G和MASS⁃1作为外标进行数据校正,数据处理采用基体归一法,以57Fe为内标.不同元素的检测限见附表.详细的工作条件和分析流程见袁继海等(2015).

3 结果

3.1 硫化物结构

通过详细的野外和镜下观察,本次在大宝山矿区层状‒似层状矿体中识别出4类磁黄铁矿和2类闪锌矿.第一类磁黄铁矿(Po⁃1):呈细粒星散状,分布在泥盆系棋梓桥组灰岩中,呈他形粒状,粒径一般<50 μm,偶见星散状黄铜矿(Ccp⁃1)与该类磁黄铁矿共生(图4a和图5a).第二类磁黄铁矿(Po⁃2):呈脉状或团块状,为粗粒嵌晶结构,粒径一般1~1.5 mm,与第一类磁黄铁矿常出现在同一块标本上,构成斑杂状矿石(图4a和图5b).可见“三联晶”结构,周边偶见黄铜矿(Ccp⁃1).第三类磁黄铁矿(Po⁃3):呈粗粒块状,常见“三联晶”结构,被热液矿物组合(钾长石和黑云母等)交代,形成筛状构造(图4b、4c和图5c、5d).第四类磁黄铁矿(Po⁃4):与黄铜矿、闪锌矿共生,呈不规则状粗粒晶体(图4e和图5e).磁黄铁矿生成顺序为:Po⁃1最早形成,受后期热液流体影响重结晶加大,局部出现Po⁃2,进一步的热液流体作用导致Po⁃2结晶加大为Po⁃3和Po⁃4,后被黄铜矿和闪锌矿交代.第一类闪锌矿(Spl⁃1)见于北采场铜锌矿中,与黄铜矿(Ccp⁃2)、磁黄铁矿(Po⁃4)共生.共生序列为磁黄铁矿>黄铜矿>闪锌矿(图5e).第二类闪锌矿(Spl⁃2)见于南采场铅锌矿中,与方铅矿共生.共生序列为闪锌矿>方铅矿(图4f和图5f).

3.2 硫化物原位微量元素成分

对上述4类磁黄铁矿和2类闪锌矿分别进行了116个点和20个点的LA⁃ICP⁃MS原位微量元素成分分析.不同元素的最小值、最大值、平均值和标准方差列于表2(低于检测限的分析点未参与统计,原始数据见附表),不同类型磁黄铁矿微量元素变化趋势见图6.

Po⁃1中Co为(0.02~5.15)×10-6(平均1.63×10-6),Ni为(13.7~179)×10-6(平均96.6×10-6),Co/Ni比值为0.001~0.052;Sn为(0.08~24.5)×10-6(平均4.32×10-6),Se为(4.59~76.4)×10-6(平均30.3×10-6),Te为(0.02~0.53)×10-6(平均0.17×10-6).其他亲硫元素Cu、Pb、Zn、Ag和Bi平均含量依次为3.41×10-6、4.20×10-6、9.50×10-6、0.891×10-6和15.6×10-6.

Po⁃2中Co含量(0.10~2.00)×10-6(平均1.03×10-6)低于Po⁃1、Ni含量(0.07~197)×10-6(平均92.0×10-6)与Po⁃1接近,Co/Ni比值为0.002~0.018.Te(平均0.06×10-6)、Bi(平均1.33×10-6)含量低于Po⁃1,Se(平均41.0×10-6)和Cu(平均71.8×10-6)含量高于Po⁃1.Pb(平均3.59×10-6)、Zn(平均9.02×10-6)、Ag(平均0.917×10-6)含量与Po⁃1接近.Po⁃2中Cu含量极高值可能是由含Cu矿物包裹体造成的.

与Po⁃1和Po⁃2相比,Po⁃3中Co(平均0.49×10-6)、Ni(平均44.3×10-6)含量相对较低,Co/Ni比值为0.001~0.124;Se(平均20.7×10-6)、Zn(平均6.54×10-6)、Ag(平均0.755×10-6)含量相对较低.不考虑Po⁃2中Cu的极高值,Cu(平均5.30×10-6)含量略高于Po⁃1和Po⁃2.

与前三类磁黄铁矿相比,Po⁃4中Co含量(平均3.28×10-6)最高,Ni含量(平均 40.1×10-6)与Po⁃3接近、低于Po⁃1和Po⁃2,Co/Ni比值为0.011~0.895;Cu(平均320×10-6)、Zn(平均378×10-6)、Bi(平均15.2×10-6)、Ag(平均2.919×10-6)、Cd(平均3.99×10-6)和In(平均0.912×10-6)含量最高,但Te(平均0.05×10-6)、Tl(平均0.06×10-6)含量相对较低.Cu、Zn、Cd、Bi含量的极高值可能反映 Po⁃4中存在矿物包裹体(如含铜矿物和含锌矿物).

与Spl⁃2相比,Spl⁃1具有较高的Fe((81 247~ 86 160)×10-6,平均83 558×10-6)、Cu((152~ 2 059)×10-6,平均756×10-6)、Ag((4.00~20.8)×10-6,平均10.8×10-6)、In((177~321)×10-6,平均250×10-6)、Bi((0.32~8.29)×10-6,平均3.29×10-6),较低的Mn((456~1 120)×10-6,平均707×10-6)、Ga((5.90~9.76)×10-6,平均7.93×10-6)、Sn((0.39~40.8)×10-6,平均5.55×10-6)、Ge((0.10~1.81)×10-6,平均1.11×10-6).

Spl⁃2具有较高的Mn((3 608~4 164)×10-6,平均4 011×10-6)、Ga((82.4~113)×10-6,平均101×10-6)、Sn((6.46~23.4)×10-6,平均12×10-6),较低的Fe((58 570~60 467)×10-6,平均59 807×10-6)、Cu((220~603)×10-6,平均285×10-6)、Ag((0.99~8.67)×10-6,平均3.42×10-6)、In(147~163)×10-6,平均155×10-6)和Bi((0.002~0.034)×10-6,平均0.02×10-6).Zn(平均680 192×10-6)、Cd(平均5 281×10-6)、Ge(平均1.42×10-6)和As(平均0.91×10-6)含量与Spl⁃1接近.

3.3 磁黄铁矿Re⁃Os同位素年龄

Re⁃Os同位素分析数据列于表3. 5件磁黄铁矿样品的Re含量为(0.335 5~1.224 0)×10-9,Os含量为(0.007 3~0.070 6)×10-9187Re/188Os比值为37.17~221.5,187Os/188Os比值为0.456 5~1.583 8.它们拟合的Re⁃Os等时线年龄为(366±33) Ma(n= 5,MSWD=8.7,Osi=0.242±0.060),与应立娟等(2017)报道的7件磁黄铁矿Re⁃Os样品一起拟合的Re⁃Os等时线年龄为(384±41) Ma(n=12, MSWD=78,Osi=0.269±0.079)(图7),属于中泥盆世.

3.4 闪锌矿Rb⁃Sr同位素年龄

闪锌矿Rb⁃Sr同位素分析数据列于表4. 8件闪锌矿样品Rb含量范围为0.066 8×10-6~0.782 6×10-6,Sr含量范围为0.027 0×10-6~0.312 4×10-6,测试的87Rb/86Rb比值为2.216~39.77,87Sr/86Sr比值为0.712 53~0.803 92,所有样品87Rb/86Rb与87Sr/86Sr具有良好的线性关系.Rb⁃Sr等时线年龄计算时λRb值采用1.42×10-11 a-187Rb/86Rb和87Sr/86Sr比值误差给定1.5%,置信度95%.计算获得的闪锌矿Rb⁃Sr等时线年龄为166.3±2.5 Ma(MSWD=1.8), 初始锶同位素组成(87Sr/86Sr)i为0.708 7±0.000 8(图8).1/Sr与87Sr/86Sr无明显的线性关系,表明拟合的等时线不是伪等时线,反映的是Pb⁃Zn矿化时间(Nakai et al. 1993).

4 讨论

4.1 叠加成矿期次

大宝山多金属矿床已有的高精度成矿年龄数据汇总于图9.辉钼矿Re⁃Os同位素测年将大宝山矿区斑岩‒矽卡岩型Mo⁃W矿化时代精确限定在163~166 Ma(Wang et al., 2011; Li et al., 2012; 瞿泓滢等, 2014; 向建华等, 2018).然而,大宝山矿区层状‒似层状Cu⁃Pb⁃Zn多金属矿化时代仍存在是古生代还是中生代的争议.蔡锦辉和刘家齐(1993)获得的层状‒似层状矿体中含矿石英脉Rb⁃Sr等时线年龄为(168.7±5.8) Ma.杜国民等(2012)获得的层状‒似层状矿体中黄铁矿Rb⁃Sr等时线年龄为(168±5) Ma,石英Rb⁃Sr等时线年龄为(162±4) Ma.然而,应立娟等(2017)获得的层状‒似层状矿体中磁黄铁矿Re⁃Os等时线年龄为(410±16) Ma,向建华等(2018)报道的层状黄铁矿‒菱铁矿中黑色碳质泥岩夹层Re⁃Os等时线年龄为(387.6±9.9) Ma.本次对层状‒似层状矿体中磁黄铁矿进行了Re⁃Os同位素测年,5件样品获得的等时线年龄为(366±33) Ma,与应立娟等(2017)7件Re⁃Os同位素测年样品一起拟合的等时线年龄为(384±41) Ma,与黑色碳质泥岩的年龄一致((387.6±9.9) Ma; 向建华等, 2018),与中泥盆世时代相吻合.层状‒似层状矿体中获得的闪锌矿Rb⁃Sr等时线年龄为(166.3±2.5) Ma,与黄铁矿/石英Rb⁃Sr等时线年龄和矿区斑岩‒矽卡岩型Mo⁃W矿化时代一致.

前人研究认为,磁黄铁矿Re⁃Os同位素系统封闭温度为300~400 ℃(Brenan et al., 2000),较高温度形成的磁黄铁矿的Re⁃Os同位素体系可能一直为开放体系,直至温度低于封闭温度(Huang et al., 2013),对磁黄铁矿进行Re⁃Os同位素定年可能得不到成矿年龄或得到失真的年龄(Huang et al., 2013;黄小文等, 2016;吕串等, 2023).但是,仍然有不少学者通过磁黄铁矿Re⁃Os同位素定年获得了理想的成矿年龄(Lü et al., 2011; 陈雷等, 2013; Zu et al., 2015Zuo et al., 2019; 吕晓强等, 2020).本次Re⁃Os定年样品为浸染状磁黄铁矿及经过热液流体改造而成的块状磁黄铁矿(具“三联晶”结构),其中,浸染状磁黄铁矿为单斜磁黄铁矿,形成温度低于254 ℃,块状磁黄铁矿为高温形成的六方磁黄铁矿(葛朝华和韩发, 1987).单斜磁黄铁矿形成时其Re⁃Os同位素体系应已保持封闭.在后期近410 ℃的成矿温度下(蔡锦辉和刘家齐, 1993),尽管磁黄铁矿已由单斜磁黄铁矿转变为六方磁黄铁矿,但其Re⁃Os同位素系统可能仍保持封闭,获得的Re⁃Os同位素年龄具有地质意义.因此,将约384 Ma解释为大宝山矿区早期成矿年龄,形成了层状‒似层状Cu⁃Pb⁃Zn多金属矿体或其雏形.本次获得的闪锌矿Rb⁃Sr等时线拟合良好,年龄与矿区黄铁矿和石英Rb⁃Sr同位素等时线年龄一致,也与矿区燕山期岩浆活动的时间和相关的Mo⁃W矿化时间一致((163.2±2.3)~(166.6±0.8) Ma; Wang et al., 2011; Li et al., 2012; 瞿泓滢等, 2014; 向建华等, 2018),记录了该期岩浆‒热液事件.因此,在约 165 Ma大宝山矿区发生了一次重要的岩浆‒热液‒成矿事件,形成了矿区斑岩‒矽卡岩型Mo⁃W矿,还可能使层状‒似层状Cu⁃Pb⁃Zn多金属矿进一步富集.

综上所述,本次年龄数据及已有资料证实,大宝山矿区层状‒似层状矿体存在中泥盆世(约384 Ma)成矿作用,经历了后期中侏罗世(约165 Ma)岩浆‒热液‒成矿作用的叠加.

4.2 矿床成因指示

大宝山矿区层状‒似层状矿体成因主要有3种不同认识,包括燕山期岩浆热液成矿(刘姤群等, 1985; 蔡锦辉等, 1993)、志留纪海底火山块状硫化物矿床(伍静等, 2014)及泥盆纪海底喷流沉积成矿(葛朝华和韩发, 1986; 徐克勤等, 1996; Gu et al.,2007; 宋世明等, 2007).持燕山期成矿观点的学者认为,矿区英安岩与花岗闪长(斑)岩为燕山期同源岩浆演化的产物,层状‒似层状矿体是该时期岩浆分异后的含矿热液顺层交代围岩的产物,与燕山期斑岩‒矽卡岩型Mo⁃W矿为同一成矿系统.但目前高精度的同位素年代学结果显示,矿区英安岩形成于志留纪(伍静等, 2014; Su et al., 2019; Wang et al., 2019),而花岗闪长(斑)岩形成于侏罗纪(Wang et al., 2011; 毛伟等, 2013),二者不属于同一套岩浆系统.持志留纪海底火山块状硫化物矿床观点的学者认为,英安岩、其底板岩石及赋矿地层同属于一套志留纪岩层(伍静等, 2014),但近期研究已证实赋矿地层形成于泥盆纪、英安岩底板岩石时代为侏罗纪(蔺东永等, 2024),它们与志留纪英安岩不是同一套地层.因此,志留纪海底火山块状硫化物成因可以排除.

那么,大宝山层状‒似层状矿体是否存在泥盆纪海底喷流沉积成矿呢?葛朝华和韩发(1987)通过钻孔观察,发现矿区火山熔岩厚达数百米,夹有最多3层具热水沉积特征且厚达数米的微晶钾长石岩,据此推测粤北大宝山一带泥盆纪海相火山熔岩是多幕火山作用形成的.刘孝善等(1984)在赋矿地层中发现了多种由硫化物组成的腕足类化石,并伴生有植物化石碎片及黄铁矿结核等,认为是沉积‒成岩作用的产物.Gu et al.(2007)提出大宝山多金属矿床是华南晚古生代盆地或坳陷中产出的大型块状硫化物矿床之一.目前,也已经在层状‒似层状矿体中获得了泥盆纪成矿年龄(向建华等, 2018).此外,本次对硫化物开展的精细矿物学和原位微量元素成分分析提供了大宝山矿区层状‒似层状矿体喷流沉积的新证据.

尽管不像利用黄铁矿原位微量元素分析矿床的成因那么普遍,但也有不少学者利用磁黄铁矿原位微量元素来讨论矿床成因(冷成彪, 2017; 刘武生等, 2019; Chu et al., 2022; 杨征坤等, 2022; Li et al., 2024).上述有限的研究表明,磁黄铁矿比同时期的黄铁矿具有更低的Co含量,Co/Ni比值从含矿相关的岩体到围岩逐渐减少,且沉积成因的磁黄铁矿Co/Ni比值小于1.不同成因矿床中磁黄铁矿原位微量元素组成存在一定的差异(图10).从图中可见,Ni、Se、Pb、Bi元素含量相对较高,Co、Sn、Ag、Te含量相对较低,Mn、Cu、Zn、As含量则存在一定变化.磁黄铁矿Co低、Ni高的特征,可能与Co主要优先富集在同时期形成的黄铁矿中有关,但本次研究几乎未发现同期的黄铁矿与磁黄铁矿共生(图5).整体而言,本次测试的磁黄铁矿微量元素特征与刘武生等(2019)测试的该矿床似层状矿体中磁黄铁矿结果基本一致,与西藏甲玛角岩型矿体中磁黄铁矿微量元素特征最为接近,这类矿体被解释为继承了沉积特征.而且,从Po⁃1到Po⁃4,Cu含量逐渐增加,Zn、Cd和Ag含量也呈递增趋势,Po⁃2和Po⁃4中少数分析点Cu、Zn含量的极高值,可能由含Cu、Zn矿物的包裹体引起.它们的Co/Ni比值几乎均小于1(图11),且呈逐渐增高趋势:Po⁃1(0.001~0.052)→Po⁃2(0.002~0.018)→Po⁃3(0.001~0.124)→Po⁃4(0.011~0.895).在Co⁃Ni协变图(图11)中,本次测试的磁黄铁矿绝大部分投影在沉积型成因区域及其附近.这些特征指示了磁黄铁矿的喷流沉积成因,同时暗示从Po⁃1到Po⁃4有外来热液流体的叠加(如120°“三联晶”共结边结构).此外,傅晓明等(2018)对矿区不同成因类型矿化中黄铁矿微量元素研究表明,层状‒似层状硫化物矿化中的黄铁矿相对富集Ni 和Ag,而Co、Cu、Zn等含量低,不同于斑岩矿化和矽卡岩矿化中黄铁矿相对富集Co、Ni、Se、As,认为层状‒似层状硫化物矿化经历了泥盆纪海底火山喷发成矿.向建华等(2018)收集了矿区以往分析的黄铁矿Co、Ni含量,Ni含量不到100×10-6,Co含量很少超过100×10-6,在Co⁃Ni协变图上,样品均落入海底喷流矿床范围或其附近.

本次测试的闪锌矿整体富集Fe、Mn、Cd、Ga、In、Sn等元素,相对而言,Spl⁃1的Fe、Cu、Ag、In、Bi含量更高,Spl⁃2则更富集Mn、Ga、Sn.它们的微量元素特征与Ye et al.(2011)测试的大宝山矿床闪锌矿成分基本吻合,与喷流沉积型铅锌矿床(如云南白牛厂、老厂)闪锌矿成分特征类似,但明显不同于MVT型矿床中闪锌矿成分特征(如贵州牛角塘、云南会泽和广东凡口,富Cd和贫Mn、Ga、In)(Ye et al., 2011Zhang et al., 2024),也不同于矽卡岩型矿床中闪锌矿成分特征(如云南核桃坪和鲁子园,富Fe、Co,贫In、Ga)(Ye et al., 2011).但不是所有矽卡岩中的闪锌矿都如此,黄沙坪矽卡岩矿床中闪锌矿除了富Fe外,In、Ga含量也比较高(Chu et al., 2022).在In⁃Ge、In⁃Fe、In⁃Cu、In⁃Sn、In+Sn⁃Cu+Ag和Cd/Fe⁃In/Fe关系图(图12)中,大宝山矿床闪锌矿投影点与受晚期热液叠加改造作用有关的喷流沉积型铅锌矿床分布于相同区域,而明显不同于矽卡岩型矿床和MVT型铅锌矿床.闪锌矿较低的Zn/Cd比值(117~138)和Cd/Fe比值(0.06~0.09),较低的Co含量(<3×10-6)和较高的Sn含量 (>1×10-6),与华南同生块状硫化物矿床中闪锌矿的特征十分类似(Ye et al., 2011),表明它们可能具有类似成因.此外,闪锌矿的87Sr/86Sr初始值 (0.708 7),与矿区花岗闪长(斑)岩的87Sr/86Sr初始值基本一致(0.707 7~0.709 8;笔者未发表数据),暗示其受到了中侏罗世岩浆‒热液事件的影响.

上述分析表明,大宝山矿区层状‒似层状矿体很可能经历了中泥盆世(约384 Ma)海底喷流沉积成矿作用,形成了层状‒似层状矿体或其雏形;后遭受了中侏罗世(约165 Ma)岩浆‒热液‒成矿作用的叠加,一方面形成了矿区斑岩‒矽卡岩型Mo⁃W矿体,另一方面对早期形成的层状‒似层状Cu⁃Pb⁃Zn矿体进行了叠加改造,使矿体进一步富集.在区域上,粤北盆地中泥盆统‒下石炭统发育,主要为一套滨海‒浅海相碳酸盐岩、碎屑岩沉积夹多期火山喷发沉积,同生断层为火山喷发及成矿流体喷溢提供了通道,形成了铜铅锌铁多金属硫化物矿床或雏形,包括分布于盆地边缘的凡口、杨柳塘、红岩、马口等矿床.因此,在粤北盆地边缘同生断层活动强烈、泥盆系‒石炭系发育的区域,是寻找喷流沉积矿床的有利区域.若区域上有燕山期中酸性岩浆‒热液活动的叠加,将有可能形成如大宝山、凡口等大型多金属矿床.

5 结论

(1)大宝山多金属矿床层状‒似层状矿体中磁黄铁矿整体呈Co低、Ni高、Se高、Te低的特点,Co/Ni比值几乎均小于1,指示其沉积成因的特征.闪锌矿相对富集Fe、Mn、Cd、Ga、In、Sn等元素,具有较低的Zn/Cd和Cd/Fe比值,较低的Co含量和较高的Sn含量,指示其喷流沉积成因.

(2)综合认为层状‒似层状矿体经历了中泥盆世(约384 Ma)海底喷流沉积成矿作用,遭受了后期中侏罗世(约165 Ma)岩浆‒热液‒成矿作用的叠加.

(3)在400 ℃左右的成矿温度下,硫化物Re⁃Os同位素体系保持封闭,原位微量元素成分仍记录了早期沉积成因特征,这一发现在华南块状硫化物矿床成因研究中可供借鉴.

参考文献

[1]

Brenan, J.M., Cherniak, D.J., Rose, L.A., 2000. Diffusion of Osmium in Pyrrhotite and Pyrite:Implications for Closure of the Re⁃Os Isotopic System. Earth and Planetary Science Letters, 180: 399-413. https://doi.org/10.1016/S0012⁃821X(00)00165⁃5

[2]

Cai, J. H., Liu, J. Q., 1993. Research and Its Application on the Inclusions Characteristics in the Dabaoshan Polymetallic Deposit, Northern Guangdong. Journal of Mineralogy and Petrology, 13(1): 33-40 (in Chinese with English abstract).

[3]

Chen, L., Wang, Z. Q., Zhao, Y. Y., et al., 2013. Re⁃Os Isotopic Dating of Pyrrhotite in the Linghou Cu Deposit, Jiande, Zhejiang Province and Its Geological Significance. Acta Geologica Sinica, 87(12): 1864-1873 (in Chinese with English abstract).

[4]

Chu, X.K., Li, B., Shen, P., et al., 2022. Trace Elements in Sulfide Minerals from the Huangshaping Copper⁃Polymetallic Deposit, Hunan, China: Ore Genesis and Element Occurrence. Ore Geology Reviews, 144: 104867.https://doi.org/10.1016/j.oregeorev.2022.104867

[5]

Du, A.D., Wu, S.Q., Sun, D.Z., et al., 2004. Preparation and Certification of Re⁃Os Dating Reference Materials: Molybdenites HLP and JDC.Geostandards and Geoanalytical Research, 28(1): 41-52.https://doi.org/10.1111/j.1751⁃908X.2004.tb01042.x

[6]

Du, G. M., Mei, Y. P., Cai, H., et al., 2012. Geochronology Research and Its Significance for Mo⁃W Polymetallic Deposit of Dabao Mountain in Northern Guangdong Province. Geology and Mineral Resources of South China, 28(3): 226-231 (in Chinese with English abstract).

[7]

Fu, X. M., Zhang, D. X., Dai, T. G., et al., 2018. Trace Element Record of Pyrite from Diverse Deposits-Examples from the Dabaoshan Polymetallic Deposit of Northern Guangdong, South China. Geotectonica et Metallogenia, 42(3): 505-519 (in Chinese with English abstract).

[8]

Ge, C. H., Han, F., 1986. Submarine Volcanic Hydrothermal Sedimentary Origin of the Dabaoshan Iron and Polymetallic Sulfide Deposit. Mineral Deposits, 5(1): 1-12 (in Chinese with English abstract).

[9]

Ge, C. H., Han, F., 1987. Geological and Geochemical Characteristics of Exhalative⁃Sedimentary Mineralization of the Dabaoshan Deposit in Guangdong Province. Science and Technology of China Press, Beijing, 111 (in Chinese).

[10]

Gu, L. X., Zaw, K., Hu, W. X., et al., 2007. Distinctive Features of Late Palaeozoic Massive Sulphide Deposits in South China. Ore Geology Reviews, 31(1-4): 107-138. https://doi.org/10.1016/j.oregeorev.2005.01.002

[11]

Guo, W. M., Lu, J. J., Jiang, S. Y., et al., 2011. Re⁃Os Isotope Dating of Pyrite from the Footwall Mineralization Zone of the Xinqiao Deposit, Tongling, Anhui Province: Geochronological Evidence for Submarine Exhalative Sedimentation. Chinese Science Bulletin, 56: 3860-3865. https://doi.org/10.1007/s11434⁃011⁃4770⁃y

[12]

Huang, X. W., Qi, L., Gao, J. F., et al., 2016. Some Thoughts on Sulfide Re⁃Os Isotope Dating. Bulletin of Mineralogy, Petrology and Geochemistry, 35(3): 432-440 (in Chinese with English abstract).

[13]

Huang, X. W., Zhou, M. F., Qi, L., et al., 2013. Re⁃Os Isotopic Ages of Pyrite and Chemical Composition of Magnetite from the Cihai Magmatic⁃Hydrothermal Fe Deposit, NW China. Mineralium Deposita, 48(8): 925-946. https://doi.org/10.1007/s00126⁃013⁃0467⁃2

[14]

Hu, R. Z., Zhou, M. F., 2012. Multiple Mesozoic Mineralization Events in South China—An Introduction to the Thematic Issue. Mineralium Deposita, 47:579-588. https://doi.org/10.1007/s00126⁃012⁃0431⁃6

[15]

Jiang, S. Y., Zhao, K. D., Jiang, Y. H., et al., 2008. Characteristics and Genesis of Mesozoic A⁃Type Granites and Associated Mineral Deposits in the Southern Hunan and Northern Guangxi Provinces along the Shi⁃Hang Belt, South China. Geological Journal of China Universities, 14(4): 496-509 (in Chinese with English abstract).

[16]

Li, C. Y., Zhang, H., Wang, F. Y., et al., 2012. The Formation of the Dabaoshan Porphyry Molybdenum Deposit Induced by Slab Rollback. Lithos, 150: 101-110. https://doi.org/10.1016/j.lithos.2012.04.001

[17]

Li, Y., Selby, D., Li, X. H., et al., 2018. Multisourced Metals Enriched by Magmatic⁃Hydrothermal Fluids in Stratabound Deposits of the Middle⁃Lower Yangtze River Metallogenic Belt, China. Geology, 46(5): 391-394. https://doi.org/10.1130/g39995.1

[18]

Li, Y. J., Ji, H., Xiong, J. J., et al., 2024. Micro⁃ Textures, In⁃Situ Trace Elemental and Sulfur Isotopic Analyses for Pyrite and Pyrrhotite from the Xiasai Ag⁃Pb⁃Zn⁃Sn Deposit, Central Yidun Terrane (SW China): Implication for Ore Formation. Ore Geology Reviews, 165: 105913. https://doi.org/10.1016/j.oregeorev.2024.105913

[19]

Lin, D. Y., Wang, L., Wang, X. D., et al., 2024. Depositional Age and Provenance of Ore⁃Hosting Strata in the Dabaoshan Copper Polymetallic Deposit, Northern Guangdong Province: Implication on Ore Genesis. Geological Bulletin of China, 43(9): 1565-1594 (in Chinese with English abstract).

[20]

Liu, G.Q., Yang, S.Y., Zhang, X.L., et al., 1985. A Preliminary Study on the Genesis of the Dabaoshan Polymetallic Deposit in Northern Guangdong. Acta Geologica Sinica, 59(1): 47-60 (in Chinese with English abstract).

[21]

Liu, S., Wang, C. L., Huang, W. T., et al., 2012. LA⁃ICP⁃MS Zircon U⁃Pb Age and Dynamic Background of the Dabaoshan Porphyry Associated with Mo⁃W Mineralization in Northern Guangdong Province. Geotectonica et Metallogenia, 36(3): 440-449 (in Chinese with English abstract).

[22]

Liu, W. S., Zhao, R. Y., Zhang, X., et al., 2019. The EPMA and LA⁃ICP⁃MS In⁃Situ Geochemical Features of Pyrrhotite and Pyrite in Dabaoshan Cu⁃Polymetallic Deposit, North Guangdong Province, and Their Constraint on Genetic Mechanism. Acta Geoscientica Sinica, 40(2): 291-306 (in Chinese with English abstract).

[23]

Liu, X. S., Zhou, S. Z., 1984. The Discovery of Sulfide Fossils in Strata⁃Bound Polymetalliferous Ore Deposit from Dabaoshan, Qujiang County, Guandong Province, with a Reference to Its Geological Significance. Journal of Nanjing University (Natural Sciences), 20(1): 139-143 (in Chinese with English abstract).

[24]

Leng, C. B., 2017. Genesis of Hongshan Cu Polymetallic Large Deposit in the Zhongdian Area, NW Yunnan: Constraints from LAICPMS Trace Elements of Pyrite and Pyrrhotite. Earth Science Frontiers, 24(6): 162-175 (in Chinese with English abstract).

[25]

Lyu, C., Gao, J. F., Qi, L., et al., 2023. Analytical Methods and Application of Sulfide Re⁃Os Isotope Dating of Mineral Deposits: Research Progress and Problems. Earth Science, 48(12): 4387-4403 (in Chinese with English abstract).

[26]

Lyu, L.S., Mao, J.W., Li, H.B., et al., 2011.Pyrrhotite Re⁃Os and SHRIMP Zircon U⁃Pb Dating of the Hongqiling Ni⁃Cu Sulfide Deposits in Northeast China. Ore Geology Reviews, 43(1): 106-119.https://doi.org/10.1016/j.oregeorev.2011.02.003

[27]

Lyu, X. Q., Mao, Q. G., Guo, N. X., et al., 2020. Re⁃Os Isotopic Dating of Pyrrhotite from Yueyawan Cu⁃Ni Sulfide Deposit in Kalatage Area of East Tianshan Mountain and Its Geological Significance. Earth Science, 45(9): 3475-3486 (in Chinese with English abstract).

[28]

Mao, J. W., Cheng, Y. B., Chen, M. H.,et al., 2013. Major Types and Time⁃Space Distribution of Mesozoic Ore Deposits in South China and Their Geodynamic Settings. Mineralium Deposita, 48(3): 267-294. https://doi:10.1007/s00126⁃012⁃0446⁃z

[29]

Mao, J. W., Zheng, W., Xie, G. Q., et al., 2021. Recognition of a Middle⁃Late Jurassic Arc⁃Related Porphyry Copper Belt along the Southeast China Coast: Geological Characteristics and Metallogenic Implications. Geology, 49(5): 592-596. https://doi.org/10.1130/g48615.1

[30]

Mao, W., Li, X. F., Yang, F. C., 2013. Zircon LA⁃ICP⁃MS U⁃Pb Ages of Granites at Dabaoshan Polymetallic Deposit and Its Geological Significance, Guangdong, South China. Acta Petrologica Sinica, 29(12): 4104-4120 (in Chinese with English abstract).

[31]

Nakai, S., Halliday, A. N., Kesler, S. E., et al., 1993. Rb⁃Sr Dating of Sphalerites from Mississippi Valley⁃Type (MVT) Ore Deposits. Geochimica et Cosmochimica Acta, 57(2): 417-427. https://doi.org/10.1016/0016⁃7037(93)90440⁃8

[32]

Qu, H. Y., Chen, M. H., Yang, F. C., et al., 2014. Metallogenic Chronology of the Stratiform Cu Orebody in the Dabaoshan Cu Polymetallic Deposit, Northern Guangdong Province and Its Geological Significance. Acta Petrologica Sinica, 30(1): 152-162 (in Chinese with English abstract).

[33]

Qu, H. Y., Mao, J. W., Zhou, S. M., et al., 2020. Metallogenesis of Stratiform Cu Mineralization in the Dabaoshan Polymetallic Deposit, Northern Guangdong Province, South China. Journal of Geochemical Exploration, 210: 106448. https://doi.org/10.1016/j.gexplo.2019.106448

[34]

Shirey, S. B., Walker, R. J., 1995. Carius Tube Digestion for Low⁃Blank Rhenium⁃Osmium Analysis. Analytical Chemistry, 67: 2136-2141. https://doi.org/10.1021/ac00109a036

[35]

Sillitoe, R. H., 2010. Porphyry Copper Systems. Economic Geology, 105(1): 3-41. https://doi.org/10.2113/gsecongeo.105.1.3

[36]

Smoliar, H.J., Walker, R.J., Morgan, J.W., 1996. Re⁃Os Ages of Group IIA, IIIA, IVA, and IVB Iron Meteorites. Science, 271: 1099-1102. https://doi.org/10.1126/science.271.5252.109

[37]

Song, S. M., Hu, K., Jiang, S. Y., et al., 2007. The He⁃Ar⁃Pb⁃S Isotope Tracing on Ore⁃Forming Fluid in Dabao Hill Polymetallic Deposit, North Guangdong. Contributions to Geology and Mineral Resources Research,22(2): 87-92 (in Chinese with English abstract).

[38]

Su, S. Q., Qin, K. Z., Li, G. M., et al., 2019. Geochronology and Geochemistry of Early Silurian Felsic Volcanic Rocks in the Dabaoshan Ore District, South China: Implications for the Petrogenesis and Geodynamic Setting. Geological Journal, 54(6): 3286-3303.https://doi.org/10.1002/gj.3328

[39]

Wang, L., Hu, M.G., Yang, Z., et al., 2011. U⁃Pb and Re⁃Os Geochronology and Geodynamic Setting of the Dabaoshan Polymetallic Deposit, Northern Guangdong Province, South China. Ore Geology Reviews, 43(1): 40-49.https://doi.org/10.1016/j.oregeorev.2011.06.008

[40]

Wang, L., Jin, X. B., Xu, D. M., et al., 2019. Geochronological, Geochemical, and Nd⁃Hf Isotopic Constraints on the Origin of Magmatism in the Dabaoshan Ore District of South China. Geological Journal, 54(3): 1518-1534.https://doi.org/10.1002/gj.3248

[41]

Wu, J., Wang, G. Q., Liang, H. Y., et al., 2014. Indentification of Caledonian Volcanic Rock in the Dabaoshan Ore⁃Field in Northern Guangdong Province and Its Geological Implication. Acta Petrologica Sinica, 30(4): 1145-1154 (in Chinese with English abstract).

[42]

Xiang, J. H., Liang, X. Q., Shan, Y. H., et al., 2018. Two Phases of Mineralization in the Dabaoshan Polymetallic Deposit, Guangdong Province: Constraints from Re⁃Os Geochronology of Black Carbonaceous Mudstone and Molybdenite. Geotectonica et Metallogenia,42(4): 732-745 (in Chinese with English abstract).

[43]

Xu, K. Q., Wang, H. N., Zhou, J. P., et al., 1996. A Discussion on the Exhalative Sedimentary Massive Sulfide Deposits of South China. Geological Journal of China Universities, 2(3): 241-256 (in Chinese).

[44]

Yang, Z. K., Yang, Y., Zhang, Z. K., et al., 2022. Geochemistry of Pyrrhotite in the Jiama Deposit, Tibet and Its Relationship with Gold Enrichment and Precipitation. Geology in China, 49(4): 1198-1213 (in Chinese with English abstract).

[45]

Ye, L., Cook, N. J., Ciobanu, C. L., et al., 2011. Trace and Minor Elements in Sphalerite from Base Metal Deposits in South China: A LA⁃ICPMS Study. Ore Geology Reviews, 39(4): 188-217. https://doi.org/10.1016/j.oregeorev.2011.03.001

[46]

Ying, L. J., Wang, D. H., Li, C., et al., 2017. Re⁃Os Dating of Sulfides in the North Stratiform Ore Body in Dabaoshan, Guangdong Province and Its Indication. Earth Science Frontiers, 24(5): 31-38 (in Chinese with English abstract).

[47]

Yuan, J.H., Zhan, X.C., Hu, M.Y., et al., 2015. Characterization of Matrix Effects in Microanalysis of Sulfide Minerals by Laser Ablation⁃Inductively Coupled Plasma⁃Mass Spectrometry Based on an Element Pair Method. Spectroscopy and Spectral Analysis, 35(2): 512-518 (in Chinese with English abstract).

[48]

Zhang, D.X., Liu, J.B., Wang, Z.L., et al., 2024. In Situ LA⁃ICP⁃MS Trace Elements in Sphalerite from the Fankou Pb⁃Zn Deposit, South China: Implications for Ore Genesis. Ore Geology Reviews, 164: 105812. https://doi.org/10.1016/j.oregeorev.2023.105812

[49]

Zhao, G.C., Cawood, P.A., 2012. Precambrian Geology of China. Precambrian Research, 222-223: 13-54. https://doi.org/10.1016/j.precamres.2012.09.017

[50]

Zhou, T. F., Zhang, L. J., Yuan, F., et al., 2010. LA⁃ICP⁃MS In Situ Trace Element Analysis of Pyrite from the Xinqiao Cu⁃Au⁃S Deposit in Tongling, Anhui, and Its Constraints on the Ore Genesis. Earth Science Frontiers, 17(2): 306-319 (in Chinese with English abstract).

[51]

Zu, B., Xue, C.J., Zhao, Y., et al., 2015. Late Cretaceous Metallogeny in the Zhongdian Area: Constraints from Re⁃Os Dating of Molybdenite and Pyrrhotite from the Hongshan Cu Deposit, Yunnan, China. Ore Geology Reviews, 64:1-12.https://doi.org/10.1016/j.oregeorev.2014.06.009

[52]

Zuo, L. Y., Pei, R. F., Wang, H. F., 2019. Re⁃Os Age Report of Pyrrhotite in the Dhi Samir Amprophyre⁃Type Copper⁃Nickel Sulfide Deposit in Yemen. China Geology, 2(2): 239-240. https://doi.org/10.31035/cg2018107

基金资助

国家自然科学基金项目(41302068)

国家自然科学基金项目(U2244212)

AI Summary AI Mindmap
PDF (11406KB)

135

访问

0

被引

详细

导航
相关文章

AI思维导图

/