深部找矿:金属矿地震技术的机遇与挑战

王赟 ,  陈晓非 ,  底青云 ,  霍守东 ,  刘国峰 ,  李颖达 ,  彭淼 ,  胡祥云 ,  钱忠平 ,  李建国

地球科学 ›› 2025, Vol. 50 ›› Issue (11) : 4284 -4299.

PDF (3314KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (11) : 4284 -4299. DOI: 10.3799/dqkx.2025.109

深部找矿:金属矿地震技术的机遇与挑战

作者信息 +

Deep Mineral Exploration: Opportunities and Challenges in Reflection Seismics

Author information +
文章历史 +
PDF (3392K)

摘要

结合地质和钻孔资料,传统的重磁电、放射性物探技术可为寻找隐伏与深部金属矿提供量化的密度、磁性、电阻率与极化率、放射性等物性约束,反射地震能提供高精度、高分辨率层位与构造几何结构约束,重磁电震联合可大幅提高金属矿的勘查精度.但是,限于金属矿探测面临的复杂地表与地下构造等条件,传统反射地震技术采集成本高昂、纵波反射地震技术的多解性,已成为金属矿地震勘查技术面临的两个核心问题.在现代传感与通讯、计算机技术快速发展的带动下,针对如何降低金属矿地震探测成本和满足复杂地表与构造成像适应性的直接找矿需求,借鉴现代地震技术已在工程地质、化石能源等领域取得的最新研究成果,在重点剖析金属矿地震探测难点和挑战的基础上,给出了主被动源地震联合、人工智能地震采集、多分量地震散射成像、多场多波联合的技术方案.在此基础上,针对现有地震理论和方法的不足,讨论了需要重点攻关的研究方向.

Abstract

Integrating geological and drilling data, traditional geophysical techniques such as gravity, magnetic, and electrical surveys provide quantifiable constraints on density, magnetic susceptibility, resistivity and polarization, for locating concealed and deep-seated metallic ores. Since seismic exploration offers higher spatial resolution on strata and structural geometry, its combination with gravity, magnetic, and electrical methods can significantly enhance exploration accuracy of metallic ores. Due to the complex terrain and subsurface geological conditions encountered in metallic ore exploration, however, the traditional reflection seismic method faces two major challenges: high acquisition costs and multiplicity of only P-wave velocity tomography. Therefore, based on modern sensing, communication and computing technologies, in this paper it draws on the latest seismic techniques applied in engineering geology and fossil energy to address how to reduce the cost of seismic survey and improve the imaging accuracy in conditions of complex surface and subsurface geological structures of metallic ores. After thorough analysis of the challenges in metallic ore seismic exploration, it proposes several technical solutions, including the combined use of active and passive source seismic, artificial intelligence-based seismic acquisition technique to decrease the seismic acquisition cost substantially, multi- component seismic scattering imaging, and joint inversion for multiple physical parameters to improve accuracy of predicting ore deposits. Additionally, it discusses key issues that should be addressed in the future regarding the limitations of current seismic theories and techniques.

Graphical abstract

关键词

物探 / 金属矿 / 地震技术 / 主被动源 / 人工智能 / 多分量.

Key words

geophysical prospecting / metallic ore / seismic technology / active and passive sources / artificial intelligence / multi⁃component

引用本文

引用格式 ▾
王赟,陈晓非,底青云,霍守东,刘国峰,李颖达,彭淼,胡祥云,钱忠平,李建国. 深部找矿:金属矿地震技术的机遇与挑战[J]. 地球科学, 2025, 50(11): 4284-4299 DOI:10.3799/dqkx.2025.109

登录浏览全文

4963

注册一个新账户 忘记密码

在找矿、尤其是寻找隐伏矿的实践中,地球物理探测技术(以下简称物探技术)一直是主要的依赖工具.早在十多年前,为了实现找矿尤其是深部找矿突破,中国地质调查局立项的Sinoprobe专项围绕金属矿物探,组织了大量有意义的理论方法和技术装备攻关,取得了诸多重要成果,重磁电震联合勘探已成为本领域的共识和国内外的研究热点(Malehmir et al., 2012;吕庆田等,2019).在当前的国际政治经济形势下,为应对我国众多战略性矿产高对外依存度的问题,加强深部找矿已成为当前及未来找矿勘查和研究的重点.其中,发挥地震技术大探测深度、高分辨率、高精度的优势,是金属矿物探技术发展的焦点之一.
国内外地球物理界早已关注金属矿地震探测技术的研发.Eaton et al.(2003)介绍了地震在硬岩矿床勘探中的应用;Malehmir et al.(2012,2017)通过澳大利亚、欧洲、加拿大等的金属矿地震勘探案例,针对金属矿地震勘探的低成本需要,介绍了陆地拖缆和落锤震源方法.国内的地震专家也曾开展金属矿地震探测的理论方法研究和试验(梁光河等,2001;吕庆田等,2004,2010;勾丽敏等,2007;徐明才等,2009).针对深部找矿难题,汤聪等(2022)通过分析岩性、岩体尺度和地震反射特征对金属矿床的地震反射探测技术进行了理论分析,提出了被动源地震与散射成像应是主攻方向.王柯淇等(2021)则在广泛调研国内外金属矿地震探测技术发展现状的基础上,指出重磁电震联合、主被动源联合的技术发展思路.利用背景噪声进行介质结构的成像是天然地震领域一个成熟应用的方法(Shapiro et al., 2005Schuster and Zhou, 2006Bensen et al., 2007);因其低采集成本优势以及近些年三分量节点地震仪的迅速发展与普及,在金属矿地震勘探中获得应用(Cheraghi et al., 2015;俞贵平等,2020),且成为目前领域的关注热点(罗松等,2019;李成等,2023;Zheng et al., 2024).
在国家深地专项实施期间,要实现新的找矿突破,不论是矿下找矿还是外围找矿,寻求新的、颠覆性找矿物探技术方法是当务之急(毛景文等,2020).为此,本文拟从金属矿地震探测需求和难点分析出发,结合油气地震、工程地震、天然地震和信息技术发展现状,在分析已有理论、方法、技术应用与成效的基础上,尝试给出了一个性价比高的(cost⁃effective)地震技术解决方案.

1 金属矿地震面临的挑战

在传统的地质、地球物理重磁普查,落实区域构造和沉积格局,查明局部的密度和磁性异常的基础上,开展重点异常区的电磁和地震地面查证、重磁电震联合反演,发挥地震空间定位精度和分辨率高的优势是当前物探领域的一般技术流程(Jones et al., 2024).综合调研分析各种金属矿的矿床特征及开展的物探工作(毛景文等,2008;胡瑞忠等,2015;底青云等,2021)不难发现,除了南北方的地形地貌差异,不同类型金属矿床的围岩类型也多种多样:既有砂泥岩、灰岩这些广泛存在的沉积岩,也有变质岩、火成岩为其主要的岩石类型.因此,在进一步讨论金属矿地震技术之前,有必要针对典型金属矿床模型归纳总结其地震地质特征及其探测难点.

1.1 一般金属矿地震地质模型

图1所示的锡多金属矿床模型(胡瑞忠等,2020)为例,该模型具有以下典型特征:在区域性的海相碳酸盐岩沉积背景下,构造运动和火成岩侵入使得整个区域表现为非规则、非水平、横向波阻抗变化的地层产状;区内高速火成岩、陡倾断层、沉积岩中复杂小断层和裂隙网络组成的空间格局,因岩浆侵入及其流体充填交代作用,形成了密集分布且形态各异的各种尺度矿体和蚀变带组合.相比于反射地震技术得以成熟应用的沉积型矿床和资源、能源赋存的盆地探测目标,金属矿床的如下特征将对传统的反射地震技术形成新的挑战.

(1)地表地震采集条件差:金属矿一般位于地形高差起伏大、横向变化剧烈、且存在一定植被覆盖的山地丘陵区,地震数据采集难度大且严重依赖覆盖次数的现代反射地震技术成本高昂.

(2)地层陡倾:金属矿床赋存区域一般具有复杂的岩性组合,沉积岩、火成岩、变质岩可能同时存在,纵向和横向可能彼此交错,且一般为非水平、甚至是高陡的产状,地层的地震散射现象严重,难以获得足够照明(孙伟家等,2007)的反射信号来刻画地层形态.

(3)多尺度陡倾构造发育:金属矿赋存区域的断裂构造复杂,除表现为高陡构造,不同产状、不同尺度的断层与裂缝隙组合使得介质的横向连续性极差,散射、绕射波发育,地震反射成像质量差,难以满足找矿需要.

(4)地震阻抗差异多变:一般的金属矿床据成矿地质特征可划分为围岩、蚀变带、矿体三部分.除金属元素含量等微观地球化学组分特征的变化,三部分地质体往往并不具有明显的宏观物性和岩性差异,无法产生足够强的地震反射或散射信号;且矿体一般表现为非水平产状、甚至为陡倾的、小尺度、非规则的三维体,三维成像与高分辨率是个极大的挑战.

(5)矿区地震干扰复杂:金属矿的采掘大多使用地下爆破,且采矿产生的诱发矿震发育;地下纵横交错矿坑以及地表的各种工业活动干扰,使得传统反射地震技术深部找矿勘探时面临三维空间多种干扰源、多震相叠加的复杂反透射地震采集环境.

基于上述挑战和实践尝试,学术与产业界已形成一种困惑认识——传统反射地震技术难以适用于金属矿勘查.针对金属矿地震勘查地质模型的上述特点,通过分析现代反射地震技术理论和已有地震试验与应用形成的粗线条认识,不难发现突破金属矿地震勘查瓶颈的核心在于——需要从地震技术效果和成本控制角度,发展高效且成本低廉的地震找矿方法.以下我们在介绍反射地震技术最新进展的基础上,结合现代信息装备和人工智能技术的发展态势,探讨应对金属矿地震技术挑战的可能性与可行性.

1.2 复杂地表条件

在石油勘探从盆地走向盆山结合部、山前过渡带的发展历程中,也曾面临同样或更加复杂的地表地震环境.图2所示为中石油在柴达木盆地西北缘英雄岭的地震勘探中面临的巨大起伏高差和极其恶劣的地表环境:除戈壁滩,山地占地表面积的77%以上(图2a),在5 km长的测线范围内,地表高程起伏超500 m(图2b);且地形起伏剧烈,存在大量近乎直立的地层切割(图2c).尽管无地表植被的影响,但此地形环境给地震检波器的埋置、传统爆炸震源钻孔和可控震源的使用造成了极大的困难.通过人拉、肩扛、车载、直升机吊装炮孔钻机,在高投入情况下,地震采集依然获得了高信噪比、高覆盖次数的高质量数据,为后续的成像打下了良好的基础.显然,物探投入不足是金属矿地震勘探最主要的障碍.因此,发展高性价比的金属矿地震探测方法已势在必行.

1.3 复杂构造

依然以中石油的英雄岭探区为例,除了地表近乎直立的岩层(图3b),地下也以发育高陡、破碎的地层和断裂(图3a)为主要特征,二维地震成像质量很差;但在向盆地延伸的部分,则存在高信噪比的水平层状地层反射,与之形成鲜明的反差.与常规二维地震成像剖面(图4a)相比,尽管历经多年多个轮次二维地震成像技术反复攻关获得的二维成像剖面,在山前结合部位断裂带以及山前陡倾地层成像精度得到了明显提升(图4b),但与三维地震的简单叠后时间偏移成像(图4c)相比,断层的断点位置与断裂带的形态刻画以及地层产状的恢复,从浅部到地下7 km深,三维地震的分辨率与精度均具有明显的优势.据此可以说明,在目前的地震技术水平下,复杂地表和复杂构造条件下的地震勘探是可行的,不应是反射地震技术应用于类似条件下金属矿探测的主要障碍,尤其是三维地震具有不可替代的优势.

1.4 物性差异

基于地震技术的分辨率和空间定位精度优势,前人曾设想利用地震技术直接识别矿体.围绕直接圈定金属矿体,物探和地质专家曾进行过地震采集、成像和解释反演的研究尝试.例如,刘建勋等(2017)通过矿体的地震数值模拟和实际地震勘探试验,尝试把杂乱无反射背景下矿体与围岩界面产生的强反射作为矿体识别的标准,但由于忽略了火成岩体、蚀变带和矿体的相互关系,并未达到地震直接找矿的目标.在油气地震勘探中,有大量的实例证明很容易识别沉积盆地中侵入的火成岩体,甚至勾画出岩浆运移通道.图5为塔里木盆地某油田地震勘探中发现的、侵入到中生代地层中的玄武岩;它不仅仅表现为横向非连续分布的高速层(图5a箭头所示的黄色曲线勾画的形态),厚度从几米到200多米变化,对深层反射产生屏蔽影响;而且其沿断裂运移的通道也可以从三维成像数据体的另一方向上清晰地勾画出来(图5b箭头所示的黄色曲线勾画的形态),显示出其深源性质、运移通道和沉积岩层中就位的三个清晰特征.这一清晰成像效果的获得,除了高投入、高达千次的地震覆盖次数和三维成像,钻孔揭露的玄武岩层与围岩间存在的高阻抗差,有利于形成强反射、散射或绕射波也是重要因素之一.因此,沉积背景下火成岩体的刻画是现实可行的,火成岩体深度变化与非规则形态不是反射地震技术的禁区;但欲在金属矿地震勘探中进一步划分其中的蚀变带,甚至可能存在的局部小尺度、非规则的矿体,刨除分辨率因素,多种地质体之间是否存在可被探测到的波阻抗差异是根本性控制因素之一.

1.5 传统地震采集的高成本特征

毋庸置疑,前述英雄岭和塔里木油气地震的高分辨、高精度成像不仅得益于地震探测理论和方法技术优势,还要归因于地震采集的高投入.按油气地震勘探规范和市场因素核算,每平方千米12.5×25 m的CDP(common depth point, 共深度点)成像网格,尽管普通地区的地震勘探投入已降低至30万元,但在塔里木,高达千次覆盖的“两宽一高”地震采集成本已上升为40~50万元,前例中石油英雄岭更是高达百万元.其中主要的成本支出为震源钻孔、炸药、设备投入数量和环保支出、人力投入,占整个地震技术费用的80%以上,即野外施工时效是控制地震成本的关键因素之一.因此,在金属矿物探低投入强度条件下,如何给出成本可行、精度满足需要的地震技术是主要的挑战.近些年地震领域如下的多项技术发展为此提供了可能.

(1)宽频带三分量可控震源、节点地震仪发展成熟,基于多分量地震观测的背景噪声成像技术走进勘探领域.可实现大深度勘探、大能量激发、XYZ三方向集中力源输出的人工可控震源、无人机震源技术成熟和规模应用(Deng et al., 2022a;吴志勇等,2022)为主动源金属矿地震勘探提供了勿须钻孔和炸药的绿色环保选项,且大大降低了主动源地震采集成本.可实现无线遥测,具有自定位、授时、存储或实时数传功能的单分量、三分量节点地震仪成熟应用,且价格大幅度下降,使得低成本的地震密集阵列观测成为现实;其10 s~100 Hz的宽频带特征可同时满足大尺度深部结构及其动力过程研究、中小尺度地震勘探和小尺度工程地震需求,在不同领域产生了较好的应用(徐佩芬等,2013a,2013b;Du et al., 2020; 俞贵平等,2020;Deng et al., 2022b;李成等,2023; 姚华建等,2023).进一步应用天然地震领域成熟的背景噪声成像技术,尤其是多模态(Xia et al., 2003Pan et al., 2019Hu et al., 2020)、多分量面波(Zhang et al., 2023)高分辨率频散反演(Luo et al., 2008)与体波的联合成像技术,包括背景噪声中提取的体波和人工源体波,以及人工源激发获得面波和体波联合成像技术(Schuster and Zhou, 2006Cheraghi et al., 2015),可实现不同深度的纵波和横波速度结构层析.例如,在南极大陆这种极端环境下传统地震勘探成本极高,只能采用被动源的地震方法.如图6所示,在南极冰盖的探测试验中,被动源体波成像和面波频散曲线反演获得的横波速度剖面联合实现了冰盖及其下伏高速火成岩体和岩浆通道的划分(Fu et al., 2022).

(2)人工智能技术深入地震技术的多个环节.信息技术的发展不仅使得野外观测的仪器布设、数据的实时在线监控、大规模组网数传成为现实,压缩感知、机器学习等人工智能技术在地震波场模拟、采集设计、波场重建、信噪分离、逆时偏移等处理环节以及地震地质信息的综合解释(Tian et al., 2020; 郑浩和张兵, 2020; Yu and Ma, 2021; 黄河等, 2023),例如波场模拟与全波形反演和智能决策领域获得了不错的应用效果(杨顶辉等, 2025),尤其在地质找矿过程中,地质、地化、地物、地理等多元信息融合更需要人工智能技术的介入(Yang et al., 2024,2025).基于非规则、稀疏随机网格地震波场重建技术的压缩感知地震采集大幅度提高了地震采集的时效,降低了野外采集成本.如图7所示,以某一油气勘探工区的三维“两宽一高” 地震采集为例,相对于常规的地震采集:覆盖次数300,道间距30 m;两宽一高地震采集:覆盖次数 1 200,道间距5 m;压缩感知采集技术可以在覆盖次数只有300次,道间距15 m的情况下达到高密度采集的技术效果(Shu et al., 2020);且综合放炮数量、检波器数量、施工周期和投入人员等几大主控因素的对比,人工智能技术不仅可大大压缩高密度采集的成本,相比传统采集,成本也大幅度降低,如图8所示.无疑,这一地震新技术在金属矿领域的应用将会大大降低地震采集成本.

1.6 金属矿地震探测的目标

从国内外金属矿物探理论方法研究和应用实践我们不难发现,由于重磁电探测对于金属矿磁性、电性和密度异常的敏感性,以及地震技术所具有的地层和构造高精度空间定位优势,综合物探是领域的通用技术流程.图9所示是某一海域人工地震与电磁探测获得的电阻率反演剖面与地震成像剖面的叠合(Fanavoll et al., 2014).从中不难发现,地震技术揭示的反射层位和断裂结构为电法勘探的高低阻异常地质解释提供了良好的几何结构约束.国内外的大量油气与金属矿物探实例证实了电磁与地震技术结合的优势(Gallardo et al., 2012Heincke et al., 2017Di et al., 2021a,2021b).

但当我们对比地震成像与重磁电异常图时经常会发现:地震提供的纵横向高分辨率地层与断层等构造并不能与重磁电的异常完全匹配,在于二者存在明显的分层能力与分辨率差异.而地震速度谱,由于其空间上的粗粒度特征,更容易与重磁电异常匹配,更有利于解释.如图10所示为江西于都地区二维地震试验获得的速度层析结果,它不仅显示了很好的与地表出露岩石和钻孔、测井的层位吻合度,还展示了与重磁电异常以及矿床模型较好的一致性.根据重磁电和地质推断的地层与构造分界线(图中红色线条),以及推断的地质体(黑色线条)不难发现,地震速度谱显示了良好的纵横向不同地质体的分辨能力,远超地质解释的粗框架模型,且具有相对精确的深度指示.因此,对于金属矿地震技术应用,我们在获得低成本、可靠的地震数据基础上,在保障空间成像精度的基础上,做好速度的层析与建模工作,落实地质层位与不同尺度的断裂构造,结合重磁电异常划分成矿靶区应是金属矿地震技术应用的最基本出发点.在此基础上,进一步落实速度谱上的纵横向非连续异常,结合其他物探、地质和钻孔信息实现直接找矿是下一步可能的目标.

2 值得探索的地震新技术

针对前述的金属矿地震探测面临的复杂地形、地表、交通环境和地震地质条件分析和现代地震技术的可借鉴技术成果,有理由相信:理想的、成本低廉的金属矿地震技术首先应是主被动源联合、井中、井下坑道与地面观测联合、随机非规则网格稀疏节点观测、长时间背景场记录、采用3分量或6分量节点地震仪的一次系统、综合性的观测;且在这个过程中,联合电磁场的主被动源观测,包括震电和电震的观测都将是十分有意义、且成本会大幅度降低的现实可行技术方案.因此,以下我们重点讨论这些新技术将给金属矿地震带来哪些有意义的启示.

2.1 被动源噪声成像

相比于人工源的勘探地震,被动源地震的优势主要体现在:(1)受地表环境影响较小,采集成本低,可在城市、自然保护区等不适合主动源激发的区域应用;(2)具有丰富的低频宽带信息,有利于反映总体的背景场结构;(3)含有深部介质的地震信息,有利于深部结构的反演和照明度的提高;(4)抗干扰能力强,可与主动源地震形成优势互补;(5)地震数据室内处理技术应势发展,已使得野外稀疏、非规则采集的地震波场重构与成像成为现实(Wapenaar and Fokkema, 2006Vesnaver et al., 2010;张盼等,2019;Alali et al., 2016Draganov et al., 2006;毛博和韩立国,2019).因此被动源地震技术在天然地震、深部动力学研究、油气地震、金属矿地震以及工程地震中得以应用.杜立志等(2019)针对金属地震采集成本控制和高分辨率要求,研发了分布式的遥测地震数据采集系统,与传统的石油地震仪器对比显示了优越性.张盼等(2019)则利用经典的Marmossi模型对主被动源的FWI联合反演策略进行了讨论,获得了二者优势互补的反演效果.如图11所示,在西藏某水电站工程选址中,被动源体波动校叠加的成像结果与AMT反演的电阻率剖面极其高度的地质结构一致性说明,在低成本条件下,利用被动源地震噪声成像配合电磁反演可以获得满足工程需要的地下介质模型(Liu and Meng,2024).

尽管早在20世纪,Claerbout (1968)就给出了源检互换利用地震干涉进行成像的设想,Wapenaar et al.(2010)进一步给出实现的理论公式,近些年的高效海量地震数据存储与高速计算的实现,才为该理论的应用创造了现实可行的条件(许卓,2012;Draganov et al., 2013;刘国峰等,2021;Shao et al., 2022).但目前领域只实现被动源噪声提取面波和体波单分量地震记录、人工源地震井中与地面分别成像、地震约束的重磁、电磁联合反演,针对金属矿地震探测需求,依然有如下的理论方法亟待攻关研究:(1)人工源与随机源联合的混源叠加与地震成像技术,(2)地面与井中以及井地联合的人工源时频电磁与地震的联合成像,(3)基于三分量背景噪声记录的面波和体波记录提取技术,(4)主被动源联合面波与体波成像技术,(5)井地联合反射波成像技术,(6)电震、震电联合反演技术等.这些核心技术的缺乏同时也提示我们,当前信息技术的快速发展在使得宽频带、多分量海量地震装备与观测技术成为现实的形势下,地震理论方法已显得明显的滞后,急需升级.

而且,对于领域十分关注的热点‒背景噪声面波成像,还有诸多值得讨论的理论和方法技术难题,包括:(1)金属矿区通常具有复杂的地形起伏,导致近台间距的双台方法或者密集台站方法都会有较大的频散分析误差,从而也限制了这类方法在解决复杂近地表成像问题中的作用,如果台站间距比较大,浅部的影响会比较小,但解译出的深部介质结构只适合于成矿深部机制的研究,对于浅层的分辨率又不足;(2)背景噪声成像假设噪声非线性相干,且噪声具有一定的随机分布特征和强度,而在很多矿区,尤其正在开发的矿区,复杂的地振动干扰环境会制约这种技术的使用;(3)基于背景噪声的体波成像技术刚刚起步,还鲜见好的应用实例,尤其尚停留于PP波的成像,如何解决互相关体波记录提取、非物理假象识别,以及与面波联合中的多尺度融合和分辨率匹配等问题急需攻关解决.

2.2 人工智能地震采集

伴随着我国油气地震勘探从初始相对简单的构造、背斜圈闭油气探测,到岩性、裂缝隙型隐蔽圈闭油气探测,三维地震技术在油气领域也经历了常规三维、高密度以至当前“两宽一高”的多个轮次的技术升级.如何在当前低油价条件下降本增效也是当前油气地震技术发展的瓶颈.为此,国内外油气地震科技人员相继给出了基于压缩感知、遗传算法、自编码器、卷积神经网络等人工智能地震采集技术方案,获得了优异的降低地震成本效果(唐刚,2010;周松等,2017;吕公河等,2018;舒国旭等,2018;Wang et al., 2020Zhao et al., 2023).可以推测,这一技术在金属矿地震领域的应用,有望大幅度降低地震采集成本.但剖析低成本优势背后的非规则观测系统设计与宽频带的地震波场重构技术可以发现,目前地震领域只实现了单分量纵波地震人工智能采集技术,需要针对多分量地震观测进行如下的理论方法的探索和技术攻关,重点是:(1)被动源三分量波场的模拟与匹配的面波、体波提取技术;(2)基于压缩感知的、以低频为主的背景噪声与相对高频的人工源地震融合宽频带重建技术;(3)基于随机、稀疏网格的人工源三分量波场矢量重建技术;(4)自动的混源三分量波场矢量分离与干涉技术;(5)三分量波场中相干噪声自动压制与成像技术;(6)人工智能的波场模拟与模式匹配技术等.显然,这些理论方法、技术攻关不仅不会增加额外的采集成本,还将进一步优化人工智能的地震采集.

2.3 基于散射成像的多分量地震技术

在前述的复杂构造、非水平矿体及其可能弱反射的背景下,金属矿领域曾对反射地震技术的适用性提出过质疑,并因此催生了散射地震成像理论与技术(李小凡, 2002a,2002b).国内诸多高校和科研院所团队也曾陆续开展了金属矿单分量纵波地震散射成像技术(王赟等,2011;刘瑞,2014)攻关,证明共散射点抽道集的高覆盖次数可以解决反射地震难以同相叠加、成像质量差的问题.如图12所示为某金属矿区采集的二维地震数据的反射成像结果与散射叠加结果的对比,显然,散射叠加可实现非规则速度异常体和断层构造的成像.

由于多分量地震能够同时获得纵波与转换横波信息,可以提供地下弹性波全波场信息,克服单一纵波成像岩性和油气水流体预测精度较差的缺点,国内油气地震领域曾开展了多分量散射波的地震成像研究,对低信噪比数据获得了较好的成像效果.如图13所示为塔里木盆地某油田三分量地震勘探获得的散射PP与PS波成像剖面:近 10 km深(对应图a中4.5 s走时的同相轴)的寒武系顶获得了良好的成像,且除箭头所示下奥陶灰岩某层位(分别对应图a中4.2 s和图b中6.5 s走时的同相轴)和寒武顶反射二者具有类似的构造特征,PS波反映出更多不同的二层间的岩性信息;尤其,多分量地震成像所提供的快慢横波的成像对比,为预测各向异性层提供了难得的信息(Li et al., 2019).对于因矿物和晶体以及裂缝隙定向排列而表现出速度各向异性特征的金属矿地震,多分量地震具有难得的理论技术优势(王赟等,2021).

国内也曾进行过多分量地震在金属矿探测方面的理论探索和试验(Wang et al., 2009;刘建勋和王小江,2012).例如,徐明才等(2015)曾在青海木里的陆域水合物勘探、内蒙和新疆的金属矿探测中进行了二维三分量人工源地震试验.国外金属矿地震也有零星尝试.例如,Bellefleur et al.(2004)在加拿大Half Mile湖利用VSP技术对硫化物矿床成像时,发现PP、SS波和PS、SP转换波能够对深矿体的不同部分成像;Snyder et al.(2009)使用二维三分量地震数据对加拿大南部Abitibi绿岩带进行了成像;Malinowskiand White(2011)利用高分辨率三分量地震数据在加拿大Flin Flon矿区证明了PS转换波可作为PP波地震成像的有效补充;Malehmir et al.(2015)在瑞典Laisvall的多分量地震勘探中发现,水平分量能够提供重要的浅层构造信息,提高了对控矿构造的认识.但限于地震采集成本高,散射成像、多波多分量、三维地震技术应用于金属矿探测国内外鲜见成功和规模应用实例,只有澳大利亚、南非等一些矿业大国开展了规模化工业应用(Milkereit et al.,1996,2000Malehmir and Bellefleur,2009Malehmir et al., 2012Okan, 2013).

2.4 多场与多波联合成像

从前述的分析可以预见,在金属矿探测方面否定或抛弃反射地震技术将使常规重磁电物探技术的精度和可靠性失去最重要的约束,而变得定量化程度和精度难以满足高效寻找隐伏、尤其是深部金属矿的需求.借鉴现代反射地震技术的各项成果,利用反射地震成像的结构约束,多场联合,密度、磁性、电阻率、极化率等多种物性参量联合实现火成岩体、岩浆通道、围岩与矿致异常的识别,减小重磁电异常解释和反演的多解性,是物探技术发展应该坚持的基本原则.但金属矿地震也绝不是简单的油气地震技术的拿来主义、照搬照抄.近些年一些传统的重磁电物探单位大规模购置地震装备技术,尝试、试验地震技术在金属矿领域的应用的行为是值得肯定的.但如何在领域已有认识和理论技术成果的基础上,不走老路、不走或少走弯路,打造具有中国特色的、真正适用于金属矿、尤其是隐伏和深部金属矿资源探测的地震技术,大幅度提升综合物探方法的勘查精度和可靠性,提高金属矿床物探的定量化水平,降低金属矿地震成本,尚有诸多值得进一步攻关研究的方向和热点问题.

例如,曾有岩石物理测试显示,相对于围岩,金属矿化蚀变带主要表现为高密度、低速特征,从而形成了强阻抗差、强反射(周新鹏等,2014).徐明才等(2015)的测试结果也支持此结论,但进一步修正为:矿化蚀变带、矿体与围岩未必有明显的波阻抗差异;但火成岩体内部的矿化和矿体与岩体相比表现为低速、高密度的异常,显示为强反射.对于铜钼矿化,当金属含量增加,体密度增大,拉梅常数差异不大,从而矿体表现为低速异常.但这一结论并不能应用于所有的金属矿体和模型,例如图5所示实例中,玄武岩相对于沉积围岩,表现的就是高密度、高纵波速度的强阻抗异常体,单分量P波就可以实现其刻画;而图13所示的实例中呈现的P波和S波阻抗差不同,揭示出白云岩化、速度比与岩性变化和裂缝隙诱导产生的各向异性信息.因此,在多分量地震技术应用的基础上,发挥多波联合的优势提高金属矿勘查不同弹性、岩性和裂缝隙或晶体矿物各向异性的刻画精度应是未来发展方向之一.但多场与多波的联合仍面临如下的技术难点需要解决,包括:(1)PP波与PS波的联合成像技术;(2)背景噪声法面波速度约束下的多波联合成像技术;(3)非对称路径的PS波干涉理论与体波记录提取技术;(4)基于等效偏移距散射叠加的叠前深度偏移技术;(5)拟地震波的电磁成像技术;(6)基于六分量的矢量波场分离技术;(7)基于6分量地震的纵横波速度、速度比、泊松比等弹性模量反演技术等.

3 结论

本文从隐伏与深部金属矿地震探测需求出发,在分析一般金属矿地震地质模型特征及其对反射地震挑战的基础上,重点结合地震与信息领域技术发展水平和趋势,讨论了各种难点的反射地震技术可能解决方案和新的地震技术应用;并从降低地震采集成本、提高地震技术应用成效的两个角度,给出值得尝试的技术组合建议和应进一步攻关解决的问题.总之,从应对金属矿高精度地球物理探测需求出发,可以达成如下的共识和结论.

(1)金属矿地震的采集成本可以大幅度下降.大功率、三分量、人工可控震源以及无人机震源技术有利于大幅度降低金属矿地震的主动源激发成本;三分量节点地震仪及其遥测技术的发展,人工智能观测系统设计、非规则稀疏野外地震主被动源联合观测,配合以室内的压缩感知波场重建,可在不损失地震成像精度和分辨率的情况下组合形成适用于复杂山区等地表环境复杂的低成本金属矿地震采集技术.

(2)主被动源联合成像技术、多波联合散射成像不仅有利于拓宽地震的频带,获得深浅不同、尺度不一的纵横波速度、阻抗与速度比等弹性参数的层析结果;其对低信噪比地震数据的适应性可满足金属矿地震的最基本目标——高精度地质分层、断层与岩浆通道刻画、侵入岩体边界识别等地质任务的实现.

(3)体波与面波联合、P波与S波联合有利于精细的构造和岩性识别.不论主动源面波还是被动源面波成像,横波速度结构层析配以反射地震的体波成像结果,可以为金属矿体与围岩关系、蚀变带的划分等提供远多于传统反射地震的额外信息,使得金属矿体、蚀变带、围岩的空间关系刻画成为现实;进一步发掘金属矿地震中蕴含的矿物和晶体各向异性信息,包括多波联合的岩性与弹性模量估算,再联合重磁电物探方法可使金属矿体的物探直接识别成为可能.

参考文献

[1]

Alali, A., Van Der Neut, J., Draganov, D., 2016. Merging Active and Passive Seismic Reflection Data with Interferometry by Multidimensional Deconvolution. SEG Technical Program Expanded Abstracts 2016. Society of Exploration Geophysicists, Dallas, 5182-5186. https://doi.org/10.1190/segam2016⁃13875124.1

[2]

Bellefleur, G., Müller, C., Snyder, D., et al., 2004. Downhole Seismic Imaging of a Massive Sulfide Orebody with Mode⁃Converted Waves, Halfmile Lake, New Brunswick, Canada. Geophysics, 69(2): 318-329. https://doi.org/10.1190/1.1707051

[3]

Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., et al., 2007. Processing Seismic Ambient Noise Data to Obtain Reliable Broad⁃Band Surface Wave Dispersion Measurements. Geophysical Journal International, 169(3): 1239-1260. https://doi.org/10.1111/j.1365⁃246X.2007.03374.x

[4]

Cheraghi, S., Craven, J. A., Bellefleur, G., 2015. Feasibility of Virtual Source Reflection Seismology Using Interferometry for Mineral Exploration: A Test Study in the Lalor Lake Volcanogenic Massive Sulphide Mining Area, Manitoba, Canada. Geophysical Prospecting, 63(4): 833-848. https://doi.org/10.1111/1365⁃2478.12244

[5]

Claerbout, J. F., 1968. Synthesis of a Layered Medium from Its Acoustic Transmission Response. Geophysics, 33(2): 264-269. https://doi.org/10.1190/1.1439927

[6]

Deng, B., Li, J. L., Liu, J. S., et al., 2022a. The Extended Range Phase Shift Method for Broadband Surface Wave Dispersion Measurement from Ambient Noise and Its Application in Ore Deposit Characterization. Geophysics, 87(3): JM29-JM40. https://doi.org/10.1190/geo2021⁃0320.1

[7]

Deng, Z. W., Zhang, R., Gou, L., et al., 2022b. Direct Shear⁃Wave Seismic Survey in Sanhu Area, Qaidam Basin, West China. The Leading Edge, 41(1): 47-53. https://doi.org/10.1190/tle41010047.1

[8]

Di, Q. Y., Tian, F., Suo, Y. H., et al., 2021a. Linkage of Deep Lithospheric Structures to Intraplate Earthquakes: A Perspective from Multi⁃Source and Multi⁃Scale Geophysical Data in the South China Block. Earth⁃Science Reviews, 214: 103504. https://doi.org/10.1016/j.earscirev.2021.103504

[9]

Di, Q. Y., Xue, G. Q., Lei, D., et al., 2021b. Summary of Technology for a Comprehensive Geophysical Exploration of Gold Mine in North China Craton. Science China Earth Sciences, 64(9): 1524-1536. https://doi.org/10.1007/s11430⁃020⁃9818⁃2

[10]

Di, Q. Y., Xue, G.Q., Lei, D., et al., 2021. Research Progress on Comprehensive Geophysical Exploration of Gold Deposits in the North China Craton: A Case Study of the Liaodong Region. Science China: Earth Sciences, 51(9): 1524-1535 (in Chinese with English abstract).

[11]

Draganov, D., Campman, X., Thorbecke, J., et al., 2013. Seismic Exploration⁃Scale Velocities and Structure from Ambient Seismic Noise (>1 Hz). Journal of Geophysical Research: Solid Earth, 118(8): 4345-4360. https://doi.org/10.1002/jgrb.50339

[12]

Draganov, D., Wapenaar, K., Thorbecke, J., 2006. Seismic Interferometry: Reconstructing the Earth’s Reflection Response. Geophysics, 71(4): SI61-SI70. https://doi.org/10.1190/1.2209947

[13]

Du, L. Z., Qiu, J. H., Zhang, Q., et al., 2019. Development and Application of a High⁃Fidelity and High⁃ Resolution Telemetry Seismic Data Acquisition System. Chinese Journal of Geophysics, 62(10): 3964-3973 (in Chinese with English abstract).

[14]

Du, P. X., Wu, J., Li, Y., et al., 2020. Imaging Karatungk Cu⁃Ni Mine in Xinjiang, Western China with a Passive Seismic Array. Minerals, 10(7): 601. https://doi.org/10.3390/min10070601

[15]

Eaton, D. W., Milkereit, B., Salisbury, M., 2003. Seismic Methods for Deep Mineral Exploration: Mature Technologies Adapted to New Targets. The Leading Edge, 22(6): 580-585. https://doi.org/10.1190/1.1587683

[16]

Fanavoll, S., Gabrielsen, P. T., Ellingsrud, S., 2014. CSEM as a Tool for Better Exploration Decisions: Case Studies from the Barents Sea, Norwegian Continental Shelf. Interpretation, 2(3): SH55-SH66. https://doi.org/10.1190/int⁃2013⁃0171.1

[17]

Fu, L., Guo, J. X., Li, J. L., et al., 2022. Imaging the Ice Sheet and Uppermost Crustal Structures with a Dense Linear Seismic Array in the Larsemann Hills, Prydz Bay, East Antarctica. Seismological Research Letters, 93(1): 288-295. https://doi.org/10.1785/0220210135

[18]

Gallardo, L. A., Fontes, S. L., Meju, M. A., et al., 2012. Robust Geophysical Integration through Structure⁃ Coupled Joint Inversion and Multispectral Fusion of Seismic Reflection, Magnetotelluric, Magnetic, and Gravity Images: Example from Santos Basin, Offshore Brazil. Geophysics, 77(5): B237-B251. https://doi.org/10.1190/geo2011⁃0394.1

[19]

Gou, L. M., Liu, X. W., Lei, P., et al., 2007. Review of Seismic Survey in Mining Exploration: Part 1 Theory and Reflection Seismic Methods. Progress in Exploration Geophysics, 30(1): 16-24, 46, 11 (in Chinese with English abstract).

[20]

Heincke, B., Jegen, M., Moorkamp, M., et al., 2017. An Adaptive Coupling Strategy for Joint Inversions That Use Petrophysical Information as Constraints. Journal of Applied Geophysics, 136: 279-297. https://doi.org/10.1016/j.jappgeo.2016.10.028

[21]

Hu, R. Z., Mao, J. W., Hua, R. M., et al., 2015. Intracontinental Mineralization of South China Landmass. Science Press, Beijing (in Chinese).

[22]

Hu, R. Z., Wen, H. J., Ye, L., et al., 2020. Metallogeny of Critical Metals in the Southwestern Yangtze Block. Chinese Science Bulletin, 65(33): 3700-3714 (in Chinese).

[23]

Hu, S. Q., Luo, S., Yao, H. J., 2020. The Frequency⁃ Bessel Spectrograms of Multicomponent Cross⁃Correlation Functions from Seismic Ambient Noise. Journal of Geophysical Research: Solid Earth, 125(8): e2020JB019630. https://doi.org/10.1029/2020JB019630

[24]

Huang, H., Wang, T. F., Cheng, J. B., et al., 2023. P/S Separation of Multi⁃Component Seismograms Using a Deep Learning Method. Chinese Journal of Geophysics, 66(3): 1205-1219 (in Chinese with English abstract).

[25]

Jones, T., Oliver, G., Murphy, B., et al., 2024. Real⁃Time Ambient Seismic Noise Tomography of the Hillside IOCG Deposit. Minerals, 14(3): 254.

[26]

Li, C., Yao, H. J., Deng, B., et al., 2023. Shallow Crust Structure and Its Tectonic Implications of Granitic Rare Earth Ore Based on Ambient Noise Techniques: A Case Study of Anxi Mining Area, Ganzhou, Jiangxi Province. Chinese Journal of Geophysics, 66(10): 4132-4148 (in Chinese with English abstract).

[27]

Li, X. F., 2002a. Theory of Full Elastic Scattering of Seismic Waves for Heterogeneous Media of Large Extent I—Theory of Elastic Waves of Single Scattering. Acta Mechanica Sinica, 34(4): 559-568 (in Chinese with English abstract).

[28]

Li, X. F., 2002b. Theory of Full Elastic Scattering of Seismic Waves for Heterogeneous Media of Large Extent Ⅱ—Theory of Elastic Waves of Multiple Scattering. Acta Mechanica Sinica, 34(5): 743-755 (in Chinese with English abstract).

[29]

Li, Z. J., Wang, Y., Yang, Z. C., et al., 2019. Identification of Fractured Carbonate Vuggy Reservoirs in the S48 Well Area Using 3D 3C Seismic Technique: A Case History from the Tarim Basin. Geophysics, 84(1): B59-B74. https://doi.org/10.1190/geo2017⁃0776.1

[30]

Liang, G. H., Cai, X. P., Zhang, B. L., et al., 2001. The Application of Seismic Exploration Method in Deep Prediction of Gold Deposits. Geology and Prospecting, 37(6): 29-33 (in Chinese with English abstract).

[31]

Liu, G. F., Liu, Y., Meng, X. H., et al., 2021. Surface Wave and Body Wave Imaging of Passive Seismic Exploration in Shallow Coverage Area Application of Inner Mongolia. Chinese Journal of Geophysics, 64(3): 937-948 (in Chinese with English abstract).

[32]

Liu, G. F., Meng, X. H., 2024. Near Surface Imaging with Passive Seismic Reflection: A Case Study in Tibet, China. 6th Asia Pacific Meeting on Near Surface Geoscience & Engineering, Tsukuba. https://doi.org/10.3997/2214⁃4609.202472009

[33]

Liu, J. X., Wang, X. J., 2012. Simulation Study of Converted Wave Seismic Prospecting Techniques for Metal Ore Bodies. Geophysical and Geochemical Exploration, 36(4): 607-611 (in Chinese with English abstract).

[34]

Liu, J. X., Zhou, J. Y., Xu, M. C., et al., 2017. Application of Seismic Exploration Technology in Kalatongke Mining Area. Geophysical and Geochemical Exploration, 41(3): 437-444 (in Chinese with English abstract).

[35]

Liu, R., 2014. Metal Seismic Imaging Based on Inverse Scattering Theory (Dissertation). Jilin University, Changchun (in Chinese with English abstract).

[36]

Luo, S., Yao, H. J., Li, Q. S., et al., 2019. Three⁃ Dimensional Shear Wave Velocity Structure of High Resolution Crust in the Metallogenic Belt of the Middle and Lower Reaches of the Yangtze River and Its Deep Dynamic Background. Scientia Sinica (Terrae), 49(9): 1394-1412 (in Chinese).

[37]

Luo, Y. H., Xia, J. H., Miller, R. D., et al., 2008. Rayleigh⁃Wave Dispersive Energy Imaging Using a High⁃ Resolution Linear Radon Transform. Pure and Applied Geophysics, 165(5): 903-922. https://doi.org/10.1007/s00024⁃008⁃0338⁃4

[38]

Lü, G. H., Di, Z. X., Huo, S. D., et al., 2018. Practice of Seismic Data Acquisition Based on Compressive Sensing. Geophysical Prospecting for Petroleum, 57(6): 831-841 (in Chinese with English abstract).

[39]

Lü, Q. T., Han, L. G., Yan, J. Y., et al., 2010. Seismic Imaging of Volcanic Hydrothermal Iron⁃Sulfur Deposits and Its Hosting Structure in Luzong Ore District. Acta Petrologica Sinica, 26(9): 2598-2612 (in Chinese with English abstract).

[40]

Lü, Q. T., Hou, Z. Q., Shi, D. N., et al., 2004. Tentative Seismic Reflection Study of Shizishan Orefield in Tongling and Its Significance in Regional Exploration. Mineral Deposits, 23(3): 390-398 (in Chinese with English abstract).

[41]

Lü, Q. T., Zhang, X. P., Tang, J. T., et al., 2019. Review on Advancement in Technology and Equipment of Geophysical Exploration for Metallic Deposits in China. Chinese Journal of Geophysics, 62(10): 3629-3664 (in Chinese with English abstract).

[42]

Malehmir, A., Bellefleur, G., 2009.3D Seismic Reflection Imaging of Volcanic⁃Hosted Massive Sulfide Deposits: Insights from Reprocessing Halfmile Lake Data, New Brunswick, Canada. Geophysics, 74(6): B209-B219. https://doi.org/10.1190/1.3230495

[43]

Malehmir, A., Durrheim, R., Bellefleur, G., et al., 2012. Seismic Methods in Mineral Exploration and Mine Planning: A General Overview of Past and Present Case Histories and a Look into the Future. Geophysics, 77(5): WC173-WC190. https://doi.org/10.1190/geo2012⁃0028.1

[44]

Malehmir, A., Maries, G., Bäckström, E., et al., 2017. Developing Cost⁃Effective Seismic Mineral Exploration Methods Using a Landstreamer and a Drophammer. Scientific Reports, 7: 10325. https://doi.org/10.1038/s41598⁃017⁃10451⁃6

[45]

Malehmir, A., Wang, S. G., Lamminen, J., et al., 2015. Delineating Structures Controlling Sandstone⁃Hosted Base⁃Metal Deposits Using High⁃Resolution Multicomponent Seismic and Radio⁃Magnetotelluric Methods: A Case Study from Northern Sweden. Geophysical Prospecting, 63(4): 774-797. https://doi.org/10.1111/1365⁃2478.12238

[46]

Malinowski, M., White, D., 2011. Converted Wave Seismic Imaging in the Flin Flon Mining Camp, Canada. Journal of Applied Geophysics, 75(4): 719-730. https://doi.org/10.1016/j.jappgeo.2011.09.026

[47]

Mao, B., Han, L. G., 2019. Full Waveform Inversion in the Frequency Domain of Low⁃Frequency Seismic Data Based on Similarity Reconstruction for Exploration of Deep Metallic Ores. Chinese Journal of Geophysics, 62(10): 4010-4019 (in Chinese with English abstract).

[48]

Mao, J. W., Cheng, Y. B., Guo, C. L., et al., 2008. Gejiu Tin Polymetallic Ore⁃Field: Deposit Model and Discussion for Several Points Concerned. Acta Geologica Sinica, 82(11): 1455-1467 (in Chinese with English abstract).

[49]

Mao, J. W., Zhou, T. F., Xie, G. Q., et al., 2020. Metallogeny in Middle⁃Lower Yangtze River Ore Belt: Advances and Problems Remained. Mineral Deposits, 39(4): 547-558 (in Chinese with English abstract).

[50]

Milkereit, B., Berrer, E. K., King, A. R., et al., 2000. Development of 3⁃D Seismic Exploration Technology for Deep Nickel⁃Copper Deposits—A Case History from the Sudbury Basin, Canada. Geophysics, 65(6): 1890-1899. https://doi.org/10.1190/1.1444873

[51]

Milkereit, B., Eaton, D., Wu, J., et al., 1996. Seismic Imaging of Massive Sulfide Deposits; Part II, Reflection Seismic Profiling. Economic Geology, 91(5): 829-834. https://doi.org/10.2113/gsecongeo.91.5.829

[52]

Okan, E., Kepic, A., Williams, P., 2013. Feasibility of Using Seismic Reflection Surveys to Discover Iron Oxide Copper Gold Deposits in the Gawler Craton, South Australia. 13th SAGA Biennial Conference & Exhibition, South Africa.

[53]

Pan, L., Chen, X. F., Wang, J. N., et al., 2019. Sensitivity Analysis of Dispersion Curves of Rayleigh Waves with Fundamental and Higher Modes. Geophysical Journal International, 216(2): 1276-1303. https://doi.org/10.1093/gji/ggy479

[54]

Schuster, G. T., Zhou, M., 2006. A Theoretical Overview of Model⁃Based and Correlation⁃Based Redatuming Methods. Geophysics, 71(4): SI103-SI110. https://doi.org/10.1190/1.2208967

[55]

Shao, J., Wang, Y. B., Zheng, Y. K., et al., 2022. Near⁃Surface Characterization Using Urban Traffic Noise Recorded by Fiber⁃Optic Distributed Acoustic Sensing. Frontiers in Earth Science, 10: 943424. https://doi.org/10.3389/feart.2022.943424

[56]

Shapiro, N. M., Campillo, M., Stehly, L., et al., 2005. High⁃Resolution Surface⁃Wave Tomography from Ambient Seismic Noise. Science, 307(5715): 1615-1618. https://doi.org/10.1126/science.1108339

[57]

Shu, G. X., Lv, G. H., Lv, Y., et al., 2018. Seismic Data Reconstruction Based on Compressive Sensing. Geophysical Prospecting for Petroleum, 57(4): 549-554 (in Chinese with English abstract) .

[58]

Shu, G. X., Shi, T. K., Huang, L., et al., 2020. Compressive Seismic Data Acquisition in a Desert Area of Western China: A Case Study. The Leading Edge, 39(5): 340-344. https://doi.org/10.1190/tle39050340.1

[59]

Snyder, D. B., Cary, P., Salisbury, M., 2009.2D⁃3C High⁃Resolution Seismic Data from the Abitibi Greenstone Belt, Canada. Tectonophysics, 472(1-4): 226-237. https://doi.org/10.1016/j.tecto.2008.05.038

[60]

Sun, W. J., Fu, L. Y., Wan, X. J., 2007. Phase Encoding⁃Based Seismic Illumination Analysis. Oil Geophysical Prospecting, 42(5): 539-543, 610, 484 (in Chinese with English abstract).

[61]

Tang, C., Fu, L. Y., Xiao, F. S., et al., 2022. Review of Progress in Seismic Exploration in Metallic Deposits. Reviews of Geophysics and Planetary Physics, 53(2): 187-203 (in Chinese with English abstract).

[62]

Tang, G., 2010. Seismic Data Reconstruction and Denoising Based on Compressive Sensing and Sparse Representation (Dissertation). Tsinghua University, Beijing (in Chinese with English abstract).

[63]

Tian, C. W., Fei, L. K., Zheng, W. X., et al., 2020. Deep Learning on Image Denoising: An Overview. Neural Networks, 131: 251-275. https://doi.org/10.1016/j.neunet.2020.07.025

[64]

Vesnaver, A., Lovisa, L., Böhm, G., 2010. Joint 3D Processing of Active and Passive Seismic Data. Geophysical Prospecting, 58(5): 831-844. https://doi.org/10.1111/j.1365⁃2478.2010.00868.x

[65]

Wang, B. F., Zhang, N., Lu, W. K., et al., 2020. Intelligent Missing Shots’ Reconstruction Using the Spatial Reciprocity of Green’s Function Based on Deep Learning. IEEE Transactions on Geoscience and Remote Sensing, 58(3): 1587-1597. https://doi.org/10.1109/TGRS.2019.2947085

[66]

Wang, K. Q., Wang, Z. G., Gao, J. H., et al., 2021. Seismic Methods for Exploration of Metal Mineral Resources: Review and Prosect. Progress in Geophysics, 36(4): 1607-1629 (in Chinese with English abstract).

[67]

Wang, Y., Cheng, L. Z., Zhang, C., 2011. Problems Existing in Seismic Exploration of Metal Mines and Scattering Imaging Technology. Acta Mineralogica Sinica, 31(S1): 979 (in Chinese).

[68]

Wang, Y., Sun, L. X., Li, D. Q., et al., 2021. Six⁃ Component Observation in Exploration Earthquake. Geophysical Prospecting for Petroleum, 60(1): 13-24, 33 (in Chinese with English abstract).

[69]

Wang, Y., Yin, J. J., Guo, B., 2009. The Numerical Simulation and Imaging of Seismic Scattered Wave Applied to Base Metal Exploration. Exploration Geophysics, 40(4): 320-324. https://doi.org/10.1071/EG09001

[70]

Wapenaar, K., Draganov, D., Snieder, R., et al., 2010. Tutorial on Seismic Interferometry: Part 1—Basic Principles and Applications. Geophysics, 75(5): 75A195-75A209. https://doi.org/10.1190/1.3457445

[71]

Wapenaar, K., Fokkema, J., 2006. Green’s Function Representations for Seismic Interferometry. Geophysics, 71(4): SI33-SI46. https://doi.org/10.1190/1.2213955

[72]

Wu, Z. Y., Qian, R. Y., Ma, Z. N., et al., 2022. Experimental Research on Unmanned Aerial Vehicle Remote Control Source of Seismic Exploration. Science Technology and Engineering, 22(29): 12739-12745 (in Chinese with English abstract).

[73]

Xia, J. H., Miller, R. D., Park, C. B., et al., 2003. Inversion of High Frequency Surface Waves with Fundamental and Higher Modes. Journal of Applied Geophysics, 52(1): 45-57. https://doi.org/10.1016/S0926⁃9851(02)00239⁃2

[74]

Xu, M. C., Chai, M. T., Gao, J. H., 2015. Characteristics of Seismic Waves and Physical Properties of Rocks and Minerals in the Zhunsujihua Mine of Inner Mongolia. Geology and Exploration, 51(6): 1168-1174 (in Chinese with English abstract).

[75]

Xu, M. C., Gao, J. H., Chai, M. T., et al., 2009. Seismic Exploration of Metal Ore. Geological Publishing House, Beijing, 1-263 (in Chinese).

[76]

Xu, P. F., Li, S. H., Du, J. G., et al., 2013a. Microtremor Survey Method: A New Geophysical Method for Dividing Strata and Detecting the Buried Fault Structures. Acta Petrologica Sinica, 29(5): 1841-1845 (in Chinese with English abstract).

[77]

Xu, P. F., Li, S. H., Ling, S. Q., et al., 2013b. Application of SPAC Method to Estimate the Crustal S⁃Wave Velocity Structure. Chinese Journal of Geophysics, 56(11): 3846-3854 (in Chinese with English abstract).

[78]

Xu, Z., 2012. A Study of Imaging Technique and Application Based on Seismic Interferometry Method (Dissertation). Jilin University, Changchun (in Chinese with English abstract).

[79]

Yang, D. H., Dong, X. P., Huang, J. D., et al., 2025. High⁃Resolution Full Waveform Seismic Imaging: Progresses, Challenges, and Prospects. Science China Earth Sciences, 68(2): 315-342. https://doi.org/10.1007/ s11430⁃024⁃1498⁃0

[80]

Yang, D. H., Dong, X.P., Huang, J.D., et al., 2025. High⁃Resolution Full Waveform Seismic Imaging: Progresses, Challenges, and Prospects. Scientia Sinica (Terrae), 55(2): 319-347 (in Chinese).

[81]

Yang, F. F., Zuo, R. G., Kreuzer, O. P., 2024. Artificial Intelligence for Mineral Exploration: A Review and Perspectives on Future Directions from Data Science. Earth⁃Science Reviews, 258: 104941. https://doi.org/10.1016/j.earscirev.2024.104941

[82]

Yao, H. J., Luo, S., Li, C., et al., 2023. Direct Surface Wave Tomography for Three Dimensional Structure Based on Surface Wave Traveltimes: Methodology Review and Applications. Reviews of Geophysics and Planetary Physics, 54(3): 231-251 (in Chinese with English abstract).

[83]

Yu, G. P., Xu, T., Liu, J. T., et al., 2020. Late Mesozoic Extensional Structures and Gold Mineralization in Jiaodong Peninsula, Eastern North China Craton: An Inspiration from Ambient Noise Tomography on Data from a Dense Seismic Array. Chinese Journal of Geophysics, 63(5): 1878-1893 (in Chinese with English abstract).

[84]

Yu, S. W., Ma, J. W., 2021. Deep Learning for Geophysics: Current and Future Trends. Reviews of Geophysics, 59(3): e2021RG000742. https://doi.org/10.1029/2021RG000742

[85]

Zhang, P., Xing, Z. Z., Hu, Y., 2019. Velocity Construction Using Active and Passive Multi⁃Component Seismic Data Based on Elastic Full Waveform Inversion. Chinese Journal of Geophysics, 62(10): 3974-3987 (in Chinese with English abstract).

[86]

Zhang, Y., Wang, Y., Wang, X. C., et al., 2023. Dispersion of Scholte Wave under Horizontally Layered Viscoelastic Seabed. Geophysical Journal International, 235(2): 1712-1724. https://doi.org/10.1093/gji/ggad332

[87]

Zhao, M. X., Pan, X., Xiao, S. P., et al., 2023. Seismic Data Interpolation Based on Spectrally Normalized Generative Adversarial Network. IEEE Transactions on Geoscience and Remote Sensing, 61: 5915611. https://doi.org/10.1109/TGRS.2023.3301270

[88]

Zheng, H., Zhang, B., 2020. Intelligent Seismic Data Interpolation via Convolutional Neural Network. Progress in Geophysics, 35(2): 721-727 (in Chinese with English abstract).

[89]

Zheng, Y. K., Wang, Y. B., Zhang, J. E., et al., 2024. Reflection Seismic Imaging of Subsurface Geologic Structures in the Bayan Obo Mining Area, China. Geophysics, 89(1): WB81-WB87. https://doi.org/10.1190/geo2023⁃0232.1

[90]

Zhou, S., Lü, Y., Lv, G. H., et al., 2017. Irregular Seismic Geometry Design and Data Reconstruction Based on Compressive Sensing. Geophysical Prospecting for Petroleum, 56(5): 617-625 (in Chinese with English abstract).

[91]

Zhou, X. P., Xiang, B., Zou, C. C., et al., 2014. Integrated Geophysical Logging Study on the Borehole NLSD⁃2 of the Polymetallic Ore in the Nanling District. Acta Geologica Sinica, 88(4): 686-694 (in Chinese with English abstract).

基金资助

“地球深部探测与矿产资源勘查”国家科技重大专项“地球物理探测颠覆性技术装备”(2024ZD1002700)

AI Summary AI Mindmap
PDF (3314KB)

25

访问

0

被引

详细

导航
相关文章

AI思维导图

/