深部找矿:金属矿地震技术的机遇与挑战
王赟 , 陈晓非 , 底青云 , 霍守东 , 刘国峰 , 李颖达 , 彭淼 , 胡祥云 , 钱忠平 , 李建国
地球科学 ›› 2025, Vol. 50 ›› Issue (11) : 4284 -4299.
深部找矿:金属矿地震技术的机遇与挑战
Deep Mineral Exploration: Opportunities and Challenges in Reflection Seismics
,
,
,
结合地质和钻孔资料,传统的重磁电、放射性物探技术可为寻找隐伏与深部金属矿提供量化的密度、磁性、电阻率与极化率、放射性等物性约束,反射地震能提供高精度、高分辨率层位与构造几何结构约束,重磁电震联合可大幅提高金属矿的勘查精度.但是,限于金属矿探测面临的复杂地表与地下构造等条件,传统反射地震技术采集成本高昂、纵波反射地震技术的多解性,已成为金属矿地震勘查技术面临的两个核心问题.在现代传感与通讯、计算机技术快速发展的带动下,针对如何降低金属矿地震探测成本和满足复杂地表与构造成像适应性的直接找矿需求,借鉴现代地震技术已在工程地质、化石能源等领域取得的最新研究成果,在重点剖析金属矿地震探测难点和挑战的基础上,给出了主被动源地震联合、人工智能地震采集、多分量地震散射成像、多场多波联合的技术方案.在此基础上,针对现有地震理论和方法的不足,讨论了需要重点攻关的研究方向.
Integrating geological and drilling data, traditional geophysical techniques such as gravity, magnetic, and electrical surveys provide quantifiable constraints on density, magnetic susceptibility, resistivity and polarization, for locating concealed and deep-seated metallic ores. Since seismic exploration offers higher spatial resolution on strata and structural geometry, its combination with gravity, magnetic, and electrical methods can significantly enhance exploration accuracy of metallic ores. Due to the complex terrain and subsurface geological conditions encountered in metallic ore exploration, however, the traditional reflection seismic method faces two major challenges: high acquisition costs and multiplicity of only P-wave velocity tomography. Therefore, based on modern sensing, communication and computing technologies, in this paper it draws on the latest seismic techniques applied in engineering geology and fossil energy to address how to reduce the cost of seismic survey and improve the imaging accuracy in conditions of complex surface and subsurface geological structures of metallic ores. After thorough analysis of the challenges in metallic ore seismic exploration, it proposes several technical solutions, including the combined use of active and passive source seismic, artificial intelligence-based seismic acquisition technique to decrease the seismic acquisition cost substantially, multi- component seismic scattering imaging, and joint inversion for multiple physical parameters to improve accuracy of predicting ore deposits. Additionally, it discusses key issues that should be addressed in the future regarding the limitations of current seismic theories and techniques.
物探 / 金属矿 / 地震技术 / 主被动源 / 人工智能 / 多分量.
geophysical prospecting / metallic ore / seismic technology / active and passive sources / artificial intelligence / multi⁃component
| [1] |
Alali, A., Van Der Neut, J., Draganov, D., 2016. Merging Active and Passive Seismic Reflection Data with Interferometry by Multidimensional Deconvolution. SEG Technical Program Expanded Abstracts 2016. Society of Exploration Geophysicists, Dallas, 5182-5186. https://doi.org/10.1190/segam2016⁃13875124.1 |
| [2] |
Bellefleur, G., Müller, C., Snyder, D., et al., 2004. Downhole Seismic Imaging of a Massive Sulfide Orebody with Mode⁃Converted Waves, Halfmile Lake, New Brunswick, Canada. Geophysics, 69(2): 318-329. https://doi.org/10.1190/1.1707051 |
| [3] |
Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., et al., 2007. Processing Seismic Ambient Noise Data to Obtain Reliable Broad⁃Band Surface Wave Dispersion Measurements. Geophysical Journal International, 169(3): 1239-1260. https://doi.org/10.1111/j.1365⁃246X.2007.03374.x |
| [4] |
Cheraghi, S., Craven, J. A., Bellefleur, G., 2015. Feasibility of Virtual Source Reflection Seismology Using Interferometry for Mineral Exploration: A Test Study in the Lalor Lake Volcanogenic Massive Sulphide Mining Area, Manitoba, Canada. Geophysical Prospecting, 63(4): 833-848. https://doi.org/10.1111/1365⁃2478.12244 |
| [5] |
Claerbout, J. F., 1968. Synthesis of a Layered Medium from Its Acoustic Transmission Response. Geophysics, 33(2): 264-269. https://doi.org/10.1190/1.1439927 |
| [6] |
Deng, B., Li, J. L., Liu, J. S., et al., 2022a. The Extended Range Phase Shift Method for Broadband Surface Wave Dispersion Measurement from Ambient Noise and Its Application in Ore Deposit Characterization. Geophysics, 87(3): JM29-JM40. https://doi.org/10.1190/geo2021⁃0320.1 |
| [7] |
Deng, Z. W., Zhang, R., Gou, L., et al., 2022b. Direct Shear⁃Wave Seismic Survey in Sanhu Area, Qaidam Basin, West China. The Leading Edge, 41(1): 47-53. https://doi.org/10.1190/tle41010047.1 |
| [8] |
Di, Q. Y., Tian, F., Suo, Y. H., et al., 2021a. Linkage of Deep Lithospheric Structures to Intraplate Earthquakes: A Perspective from Multi⁃Source and Multi⁃Scale Geophysical Data in the South China Block. Earth⁃Science Reviews, 214: 103504. https://doi.org/10.1016/j.earscirev.2021.103504 |
| [9] |
Di, Q. Y., Xue, G. Q., Lei, D., et al., 2021b. Summary of Technology for a Comprehensive Geophysical Exploration of Gold Mine in North China Craton. Science China Earth Sciences, 64(9): 1524-1536. https://doi.org/10.1007/s11430⁃020⁃9818⁃2 |
| [10] |
Di, Q. Y., Xue, G.Q., Lei, D., et al., 2021. Research Progress on Comprehensive Geophysical Exploration of Gold Deposits in the North China Craton: A Case Study of the Liaodong Region. Science China: Earth Sciences, 51(9): 1524-1535 (in Chinese with English abstract). |
| [11] |
Draganov, D., Campman, X., Thorbecke, J., et al., 2013. Seismic Exploration⁃Scale Velocities and Structure from Ambient Seismic Noise (>1 Hz). Journal of Geophysical Research: Solid Earth, 118(8): 4345-4360. https://doi.org/10.1002/jgrb.50339 |
| [12] |
Draganov, D., Wapenaar, K., Thorbecke, J., 2006. Seismic Interferometry: Reconstructing the Earth’s Reflection Response. Geophysics, 71(4): SI61-SI70. https://doi.org/10.1190/1.2209947 |
| [13] |
Du, L. Z., Qiu, J. H., Zhang, Q., et al., 2019. Development and Application of a High⁃Fidelity and High⁃ Resolution Telemetry Seismic Data Acquisition System. Chinese Journal of Geophysics, 62(10): 3964-3973 (in Chinese with English abstract). |
| [14] |
Du, P. X., Wu, J., Li, Y., et al., 2020. Imaging Karatungk Cu⁃Ni Mine in Xinjiang, Western China with a Passive Seismic Array. Minerals, 10(7): 601. https://doi.org/10.3390/min10070601 |
| [15] |
Eaton, D. W., Milkereit, B., Salisbury, M., 2003. Seismic Methods for Deep Mineral Exploration: Mature Technologies Adapted to New Targets. The Leading Edge, 22(6): 580-585. https://doi.org/10.1190/1.1587683 |
| [16] |
Fanavoll, S., Gabrielsen, P. T., Ellingsrud, S., 2014. CSEM as a Tool for Better Exploration Decisions: Case Studies from the Barents Sea, Norwegian Continental Shelf. Interpretation, 2(3): SH55-SH66. https://doi.org/10.1190/int⁃2013⁃0171.1 |
| [17] |
Fu, L., Guo, J. X., Li, J. L., et al., 2022. Imaging the Ice Sheet and Uppermost Crustal Structures with a Dense Linear Seismic Array in the Larsemann Hills, Prydz Bay, East Antarctica. Seismological Research Letters, 93(1): 288-295. https://doi.org/10.1785/0220210135 |
| [18] |
Gallardo, L. A., Fontes, S. L., Meju, M. A., et al., 2012. Robust Geophysical Integration through Structure⁃ Coupled Joint Inversion and Multispectral Fusion of Seismic Reflection, Magnetotelluric, Magnetic, and Gravity Images: Example from Santos Basin, Offshore Brazil. Geophysics, 77(5): B237-B251. https://doi.org/10.1190/geo2011⁃0394.1 |
| [19] |
Gou, L. M., Liu, X. W., Lei, P., et al., 2007. Review of Seismic Survey in Mining Exploration: Part 1 Theory and Reflection Seismic Methods. Progress in Exploration Geophysics, 30(1): 16-24, 46, 11 (in Chinese with English abstract). |
| [20] |
Heincke, B., Jegen, M., Moorkamp, M., et al., 2017. An Adaptive Coupling Strategy for Joint Inversions That Use Petrophysical Information as Constraints. Journal of Applied Geophysics, 136: 279-297. https://doi.org/10.1016/j.jappgeo.2016.10.028 |
| [21] |
Hu, R. Z., Mao, J. W., Hua, R. M., et al., 2015. Intracontinental Mineralization of South China Landmass. Science Press, Beijing (in Chinese). |
| [22] |
Hu, R. Z., Wen, H. J., Ye, L., et al., 2020. Metallogeny of Critical Metals in the Southwestern Yangtze Block. Chinese Science Bulletin, 65(33): 3700-3714 (in Chinese). |
| [23] |
Hu, S. Q., Luo, S., Yao, H. J., 2020. The Frequency⁃ Bessel Spectrograms of Multicomponent Cross⁃Correlation Functions from Seismic Ambient Noise. Journal of Geophysical Research: Solid Earth, 125(8): e2020JB019630. https://doi.org/10.1029/2020JB019630 |
| [24] |
Huang, H., Wang, T. F., Cheng, J. B., et al., 2023. P/S Separation of Multi⁃Component Seismograms Using a Deep Learning Method. Chinese Journal of Geophysics, 66(3): 1205-1219 (in Chinese with English abstract). |
| [25] |
Jones, T., Oliver, G., Murphy, B., et al., 2024. Real⁃Time Ambient Seismic Noise Tomography of the Hillside IOCG Deposit. Minerals, 14(3): 254. |
| [26] |
Li, C., Yao, H. J., Deng, B., et al., 2023. Shallow Crust Structure and Its Tectonic Implications of Granitic Rare Earth Ore Based on Ambient Noise Techniques: A Case Study of Anxi Mining Area, Ganzhou, Jiangxi Province. Chinese Journal of Geophysics, 66(10): 4132-4148 (in Chinese with English abstract). |
| [27] |
Li, X. F., 2002a. Theory of Full Elastic Scattering of Seismic Waves for Heterogeneous Media of Large Extent I—Theory of Elastic Waves of Single Scattering. Acta Mechanica Sinica, 34(4): 559-568 (in Chinese with English abstract). |
| [28] |
Li, X. F., 2002b. Theory of Full Elastic Scattering of Seismic Waves for Heterogeneous Media of Large Extent Ⅱ—Theory of Elastic Waves of Multiple Scattering. Acta Mechanica Sinica, 34(5): 743-755 (in Chinese with English abstract). |
| [29] |
Li, Z. J., Wang, Y., Yang, Z. C., et al., 2019. Identification of Fractured Carbonate Vuggy Reservoirs in the S48 Well Area Using 3D 3C Seismic Technique: A Case History from the Tarim Basin. Geophysics, 84(1): B59-B74. https://doi.org/10.1190/geo2017⁃0776.1 |
| [30] |
Liang, G. H., Cai, X. P., Zhang, B. L., et al., 2001. The Application of Seismic Exploration Method in Deep Prediction of Gold Deposits. Geology and Prospecting, 37(6): 29-33 (in Chinese with English abstract). |
| [31] |
Liu, G. F., Liu, Y., Meng, X. H., et al., 2021. Surface Wave and Body Wave Imaging of Passive Seismic Exploration in Shallow Coverage Area Application of Inner Mongolia. Chinese Journal of Geophysics, 64(3): 937-948 (in Chinese with English abstract). |
| [32] |
Liu, G. F., Meng, X. H., 2024. Near Surface Imaging with Passive Seismic Reflection: A Case Study in Tibet, China. 6th Asia Pacific Meeting on Near Surface Geoscience & Engineering, Tsukuba. https://doi.org/10.3997/2214⁃4609.202472009 |
| [33] |
Liu, J. X., Wang, X. J., 2012. Simulation Study of Converted Wave Seismic Prospecting Techniques for Metal Ore Bodies. Geophysical and Geochemical Exploration, 36(4): 607-611 (in Chinese with English abstract). |
| [34] |
Liu, J. X., Zhou, J. Y., Xu, M. C., et al., 2017. Application of Seismic Exploration Technology in Kalatongke Mining Area. Geophysical and Geochemical Exploration, 41(3): 437-444 (in Chinese with English abstract). |
| [35] |
Liu, R., 2014. Metal Seismic Imaging Based on Inverse Scattering Theory (Dissertation). Jilin University, Changchun (in Chinese with English abstract). |
| [36] |
Luo, S., Yao, H. J., Li, Q. S., et al., 2019. Three⁃ Dimensional Shear Wave Velocity Structure of High Resolution Crust in the Metallogenic Belt of the Middle and Lower Reaches of the Yangtze River and Its Deep Dynamic Background. Scientia Sinica (Terrae), 49(9): 1394-1412 (in Chinese). |
| [37] |
Luo, Y. H., Xia, J. H., Miller, R. D., et al., 2008. Rayleigh⁃Wave Dispersive Energy Imaging Using a High⁃ Resolution Linear Radon Transform. Pure and Applied Geophysics, 165(5): 903-922. https://doi.org/10.1007/s00024⁃008⁃0338⁃4 |
| [38] |
Lü, G. H., Di, Z. X., Huo, S. D., et al., 2018. Practice of Seismic Data Acquisition Based on Compressive Sensing. Geophysical Prospecting for Petroleum, 57(6): 831-841 (in Chinese with English abstract). |
| [39] |
Lü, Q. T., Han, L. G., Yan, J. Y., et al., 2010. Seismic Imaging of Volcanic Hydrothermal Iron⁃Sulfur Deposits and Its Hosting Structure in Luzong Ore District. Acta Petrologica Sinica, 26(9): 2598-2612 (in Chinese with English abstract). |
| [40] |
Lü, Q. T., Hou, Z. Q., Shi, D. N., et al., 2004. Tentative Seismic Reflection Study of Shizishan Orefield in Tongling and Its Significance in Regional Exploration. Mineral Deposits, 23(3): 390-398 (in Chinese with English abstract). |
| [41] |
Lü, Q. T., Zhang, X. P., Tang, J. T., et al., 2019. Review on Advancement in Technology and Equipment of Geophysical Exploration for Metallic Deposits in China. Chinese Journal of Geophysics, 62(10): 3629-3664 (in Chinese with English abstract). |
| [42] |
Malehmir, A., Bellefleur, G., 2009.3D Seismic Reflection Imaging of Volcanic⁃Hosted Massive Sulfide Deposits: Insights from Reprocessing Halfmile Lake Data, New Brunswick, Canada. Geophysics, 74(6): B209-B219. https://doi.org/10.1190/1.3230495 |
| [43] |
Malehmir, A., Durrheim, R., Bellefleur, G., et al., 2012. Seismic Methods in Mineral Exploration and Mine Planning: A General Overview of Past and Present Case Histories and a Look into the Future. Geophysics, 77(5): WC173-WC190. https://doi.org/10.1190/geo2012⁃0028.1 |
| [44] |
Malehmir, A., Maries, G., Bäckström, E., et al., 2017. Developing Cost⁃Effective Seismic Mineral Exploration Methods Using a Landstreamer and a Drophammer. Scientific Reports, 7: 10325. https://doi.org/10.1038/s41598⁃017⁃10451⁃6 |
| [45] |
Malehmir, A., Wang, S. G., Lamminen, J., et al., 2015. Delineating Structures Controlling Sandstone⁃Hosted Base⁃Metal Deposits Using High⁃Resolution Multicomponent Seismic and Radio⁃Magnetotelluric Methods: A Case Study from Northern Sweden. Geophysical Prospecting, 63(4): 774-797. https://doi.org/10.1111/1365⁃2478.12238 |
| [46] |
Malinowski, M., White, D., 2011. Converted Wave Seismic Imaging in the Flin Flon Mining Camp, Canada. Journal of Applied Geophysics, 75(4): 719-730. https://doi.org/10.1016/j.jappgeo.2011.09.026 |
| [47] |
Mao, B., Han, L. G., 2019. Full Waveform Inversion in the Frequency Domain of Low⁃Frequency Seismic Data Based on Similarity Reconstruction for Exploration of Deep Metallic Ores. Chinese Journal of Geophysics, 62(10): 4010-4019 (in Chinese with English abstract). |
| [48] |
Mao, J. W., Cheng, Y. B., Guo, C. L., et al., 2008. Gejiu Tin Polymetallic Ore⁃Field: Deposit Model and Discussion for Several Points Concerned. Acta Geologica Sinica, 82(11): 1455-1467 (in Chinese with English abstract). |
| [49] |
Mao, J. W., Zhou, T. F., Xie, G. Q., et al., 2020. Metallogeny in Middle⁃Lower Yangtze River Ore Belt: Advances and Problems Remained. Mineral Deposits, 39(4): 547-558 (in Chinese with English abstract). |
| [50] |
Milkereit, B., Berrer, E. K., King, A. R., et al., 2000. Development of 3⁃D Seismic Exploration Technology for Deep Nickel⁃Copper Deposits—A Case History from the Sudbury Basin, Canada. Geophysics, 65(6): 1890-1899. https://doi.org/10.1190/1.1444873 |
| [51] |
Milkereit, B., Eaton, D., Wu, J., et al., 1996. Seismic Imaging of Massive Sulfide Deposits; Part II, Reflection Seismic Profiling. Economic Geology, 91(5): 829-834. https://doi.org/10.2113/gsecongeo.91.5.829 |
| [52] |
Okan, E., Kepic, A., Williams, P., 2013. Feasibility of Using Seismic Reflection Surveys to Discover Iron Oxide Copper Gold Deposits in the Gawler Craton, South Australia. 13th SAGA Biennial Conference & Exhibition, South Africa. |
| [53] |
Pan, L., Chen, X. F., Wang, J. N., et al., 2019. Sensitivity Analysis of Dispersion Curves of Rayleigh Waves with Fundamental and Higher Modes. Geophysical Journal International, 216(2): 1276-1303. https://doi.org/10.1093/gji/ggy479 |
| [54] |
Schuster, G. T., Zhou, M., 2006. A Theoretical Overview of Model⁃Based and Correlation⁃Based Redatuming Methods. Geophysics, 71(4): SI103-SI110. https://doi.org/10.1190/1.2208967 |
| [55] |
Shao, J., Wang, Y. B., Zheng, Y. K., et al., 2022. Near⁃Surface Characterization Using Urban Traffic Noise Recorded by Fiber⁃Optic Distributed Acoustic Sensing. Frontiers in Earth Science, 10: 943424. https://doi.org/10.3389/feart.2022.943424 |
| [56] |
Shapiro, N. M., Campillo, M., Stehly, L., et al., 2005. High⁃Resolution Surface⁃Wave Tomography from Ambient Seismic Noise. Science, 307(5715): 1615-1618. https://doi.org/10.1126/science.1108339 |
| [57] |
Shu, G. X., Lv, G. H., Lv, Y., et al., 2018. Seismic Data Reconstruction Based on Compressive Sensing. Geophysical Prospecting for Petroleum, 57(4): 549-554 (in Chinese with English abstract) . |
| [58] |
Shu, G. X., Shi, T. K., Huang, L., et al., 2020. Compressive Seismic Data Acquisition in a Desert Area of Western China: A Case Study. The Leading Edge, 39(5): 340-344. https://doi.org/10.1190/tle39050340.1 |
| [59] |
Snyder, D. B., Cary, P., Salisbury, M., 2009.2D⁃3C High⁃Resolution Seismic Data from the Abitibi Greenstone Belt, Canada. Tectonophysics, 472(1-4): 226-237. https://doi.org/10.1016/j.tecto.2008.05.038 |
| [60] |
Sun, W. J., Fu, L. Y., Wan, X. J., 2007. Phase Encoding⁃Based Seismic Illumination Analysis. Oil Geophysical Prospecting, 42(5): 539-543, 610, 484 (in Chinese with English abstract). |
| [61] |
Tang, C., Fu, L. Y., Xiao, F. S., et al., 2022. Review of Progress in Seismic Exploration in Metallic Deposits. Reviews of Geophysics and Planetary Physics, 53(2): 187-203 (in Chinese with English abstract). |
| [62] |
Tang, G., 2010. Seismic Data Reconstruction and Denoising Based on Compressive Sensing and Sparse Representation (Dissertation). Tsinghua University, Beijing (in Chinese with English abstract). |
| [63] |
Tian, C. W., Fei, L. K., Zheng, W. X., et al., 2020. Deep Learning on Image Denoising: An Overview. Neural Networks, 131: 251-275. https://doi.org/10.1016/j.neunet.2020.07.025 |
| [64] |
Vesnaver, A., Lovisa, L., Böhm, G., 2010. Joint 3D Processing of Active and Passive Seismic Data. Geophysical Prospecting, 58(5): 831-844. https://doi.org/10.1111/j.1365⁃2478.2010.00868.x |
| [65] |
Wang, B. F., Zhang, N., Lu, W. K., et al., 2020. Intelligent Missing Shots’ Reconstruction Using the Spatial Reciprocity of Green’s Function Based on Deep Learning. IEEE Transactions on Geoscience and Remote Sensing, 58(3): 1587-1597. https://doi.org/10.1109/TGRS.2019.2947085 |
| [66] |
Wang, K. Q., Wang, Z. G., Gao, J. H., et al., 2021. Seismic Methods for Exploration of Metal Mineral Resources: Review and Prosect. Progress in Geophysics, 36(4): 1607-1629 (in Chinese with English abstract). |
| [67] |
Wang, Y., Cheng, L. Z., Zhang, C., 2011. Problems Existing in Seismic Exploration of Metal Mines and Scattering Imaging Technology. Acta Mineralogica Sinica, 31(S1): 979 (in Chinese). |
| [68] |
Wang, Y., Sun, L. X., Li, D. Q., et al., 2021. Six⁃ Component Observation in Exploration Earthquake. Geophysical Prospecting for Petroleum, 60(1): 13-24, 33 (in Chinese with English abstract). |
| [69] |
Wang, Y., Yin, J. J., Guo, B., 2009. The Numerical Simulation and Imaging of Seismic Scattered Wave Applied to Base Metal Exploration. Exploration Geophysics, 40(4): 320-324. https://doi.org/10.1071/EG09001 |
| [70] |
Wapenaar, K., Draganov, D., Snieder, R., et al., 2010. Tutorial on Seismic Interferometry: Part 1—Basic Principles and Applications. Geophysics, 75(5): 75A195-75A209. https://doi.org/10.1190/1.3457445 |
| [71] |
Wapenaar, K., Fokkema, J., 2006. Green’s Function Representations for Seismic Interferometry. Geophysics, 71(4): SI33-SI46. https://doi.org/10.1190/1.2213955 |
| [72] |
Wu, Z. Y., Qian, R. Y., Ma, Z. N., et al., 2022. Experimental Research on Unmanned Aerial Vehicle Remote Control Source of Seismic Exploration. Science Technology and Engineering, 22(29): 12739-12745 (in Chinese with English abstract). |
| [73] |
Xia, J. H., Miller, R. D., Park, C. B., et al., 2003. Inversion of High Frequency Surface Waves with Fundamental and Higher Modes. Journal of Applied Geophysics, 52(1): 45-57. https://doi.org/10.1016/S0926⁃9851(02)00239⁃2 |
| [74] |
Xu, M. C., Chai, M. T., Gao, J. H., 2015. Characteristics of Seismic Waves and Physical Properties of Rocks and Minerals in the Zhunsujihua Mine of Inner Mongolia. Geology and Exploration, 51(6): 1168-1174 (in Chinese with English abstract). |
| [75] |
Xu, M. C., Gao, J. H., Chai, M. T., et al., 2009. Seismic Exploration of Metal Ore. Geological Publishing House, Beijing, 1-263 (in Chinese). |
| [76] |
Xu, P. F., Li, S. H., Du, J. G., et al., 2013a. Microtremor Survey Method: A New Geophysical Method for Dividing Strata and Detecting the Buried Fault Structures. Acta Petrologica Sinica, 29(5): 1841-1845 (in Chinese with English abstract). |
| [77] |
Xu, P. F., Li, S. H., Ling, S. Q., et al., 2013b. Application of SPAC Method to Estimate the Crustal S⁃Wave Velocity Structure. Chinese Journal of Geophysics, 56(11): 3846-3854 (in Chinese with English abstract). |
| [78] |
Xu, Z., 2012. A Study of Imaging Technique and Application Based on Seismic Interferometry Method (Dissertation). Jilin University, Changchun (in Chinese with English abstract). |
| [79] |
Yang, D. H., Dong, X. P., Huang, J. D., et al., 2025. High⁃Resolution Full Waveform Seismic Imaging: Progresses, Challenges, and Prospects. Science China Earth Sciences, 68(2): 315-342. https://doi.org/10.1007/ s11430⁃024⁃1498⁃0 |
| [80] |
Yang, D. H., Dong, X.P., Huang, J.D., et al., 2025. High⁃Resolution Full Waveform Seismic Imaging: Progresses, Challenges, and Prospects. Scientia Sinica (Terrae), 55(2): 319-347 (in Chinese). |
| [81] |
Yang, F. F., Zuo, R. G., Kreuzer, O. P., 2024. Artificial Intelligence for Mineral Exploration: A Review and Perspectives on Future Directions from Data Science. Earth⁃Science Reviews, 258: 104941. https://doi.org/10.1016/j.earscirev.2024.104941 |
| [82] |
Yao, H. J., Luo, S., Li, C., et al., 2023. Direct Surface Wave Tomography for Three Dimensional Structure Based on Surface Wave Traveltimes: Methodology Review and Applications. Reviews of Geophysics and Planetary Physics, 54(3): 231-251 (in Chinese with English abstract). |
| [83] |
Yu, G. P., Xu, T., Liu, J. T., et al., 2020. Late Mesozoic Extensional Structures and Gold Mineralization in Jiaodong Peninsula, Eastern North China Craton: An Inspiration from Ambient Noise Tomography on Data from a Dense Seismic Array. Chinese Journal of Geophysics, 63(5): 1878-1893 (in Chinese with English abstract). |
| [84] |
Yu, S. W., Ma, J. W., 2021. Deep Learning for Geophysics: Current and Future Trends. Reviews of Geophysics, 59(3): e2021RG000742. https://doi.org/10.1029/2021RG000742 |
| [85] |
Zhang, P., Xing, Z. Z., Hu, Y., 2019. Velocity Construction Using Active and Passive Multi⁃Component Seismic Data Based on Elastic Full Waveform Inversion. Chinese Journal of Geophysics, 62(10): 3974-3987 (in Chinese with English abstract). |
| [86] |
Zhang, Y., Wang, Y., Wang, X. C., et al., 2023. Dispersion of Scholte Wave under Horizontally Layered Viscoelastic Seabed. Geophysical Journal International, 235(2): 1712-1724. https://doi.org/10.1093/gji/ggad332 |
| [87] |
Zhao, M. X., Pan, X., Xiao, S. P., et al., 2023. Seismic Data Interpolation Based on Spectrally Normalized Generative Adversarial Network. IEEE Transactions on Geoscience and Remote Sensing, 61: 5915611. https://doi.org/10.1109/TGRS.2023.3301270 |
| [88] |
Zheng, H., Zhang, B., 2020. Intelligent Seismic Data Interpolation via Convolutional Neural Network. Progress in Geophysics, 35(2): 721-727 (in Chinese with English abstract). |
| [89] |
Zheng, Y. K., Wang, Y. B., Zhang, J. E., et al., 2024. Reflection Seismic Imaging of Subsurface Geologic Structures in the Bayan Obo Mining Area, China. Geophysics, 89(1): WB81-WB87. https://doi.org/10.1190/geo2023⁃0232.1 |
| [90] |
Zhou, S., Lü, Y., Lv, G. H., et al., 2017. Irregular Seismic Geometry Design and Data Reconstruction Based on Compressive Sensing. Geophysical Prospecting for Petroleum, 56(5): 617-625 (in Chinese with English abstract). |
| [91] |
Zhou, X. P., Xiang, B., Zou, C. C., et al., 2014. Integrated Geophysical Logging Study on the Borehole NLSD⁃2 of the Polymetallic Ore in the Nanling District. Acta Geologica Sinica, 88(4): 686-694 (in Chinese with English abstract). |
“地球深部探测与矿产资源勘查”国家科技重大专项“地球物理探测颠覆性技术装备”(2024ZD1002700)
/
| 〈 |
|
〉 |