基于水土耦合SPH方法的滑坡-堵江-成坝灾害链全过程动力演化模拟
李爽 , 彭铭 , 石振明 , 刘毛毛 , 夏成志 , 王悦 , 朱艳
地球科学 ›› 2025, Vol. 50 ›› Issue (10) : 3967 -3981.
基于水土耦合SPH方法的滑坡-堵江-成坝灾害链全过程动力演化模拟
Simulation and Analysis of Cascading Hazard Based on Fluid-Soil Coupled SPH Method
采用一种双向耦合的SPH数值模型,精确模拟滑坡-堵江-成坝灾害链的全过程.模型以Drucker–Prager准则描述滑体大变形行为,结合混合物理论与非线性渗流拖曳力实现水土耦合.通过室内试验验证后,成功重现白格滑坡灾害链演化,模拟结果与实测高度吻合.结果表明,滑坡入水引发的涌浪及成坝过程可依据滑体速度与能量变化清晰划分阶段.量化分析显示,内摩擦角φ增大(5°~20°)导致堰塞坝长度线性减小,高度呈幂函数增长,涌浪峰值高度显著降低.涌浪峰值与滑体入水弗劳德数呈线性正相关.上述发现揭示了滑体参数对灾害链演化路径的系统性影响,为高风险山地河流域灾害预测与风险评估提供理论支撑.
This study adopts a bidirectionally coupled SPH numerical model to accurately simulate the full evolution of a landslide-dammed lake disaster chain. The model captures large deformation of the landslide body using the Drucker-Prager criterion and achieves water–soil coupling through mixture theory and nonlinear seepage drag forces. Validated against laboratory experiments, the model successfully reproduces the Baige landslide disaster chain, with simulation results closely matching field observations. Results show that the processes of landslide motion, impulse wave generation, and dam formation can be clearly delineated by the evolution of landslide velocity and energy. Quantitative analysis reveals that increasing the internal friction angle φ from 5° to 20° leads to a linear decrease in dam length, a power-law increase in dam height, and a significant reduction in wave height. The peak wave height exhibits a linear correlation with the landslide Froude number at impact. These findings highlight the systematic influence of landslide material properties on disaster chain dynamics and offer theoretical support for hazard prediction and risk assessment in mountainous river basins.
堰塞坝 / 滑坡灾害链 / 光滑粒子流体动力学 / 水土耦合 / 工程地质学.
landslide dam / landslide hazard chain / smoothed particle hydrodynamics / fluid-soil coupling / engineering geology
| [1] |
Adami, S., Hu, X. Y., Adams, N. A., 2012. A Generalized Wall Boundary Condition for Smoothed Particle Hydrodynamics. Journal of Computational Physics, 231(21): 7057-7075. https://doi.org/10.1016/j.jcp.2012.05.005 |
| [2] |
Bao, Y. D., Su, L. J., Chen, J. P., et al., 2023. Dynamic Process of a High-Level Landslide Blocking River Event in a Deep Valley Area Based on FDEM-SPH Coupling Approach. Engineering Geology, 319: 107108. https://doi.org/10.1016/j.enggeo.2023.107108 |
| [3] |
Bui, H. H., Fukagawa, R., Sako, K., et al., 2008. Lagrangian Meshfree Particles Method (SPH) for Large Deformation and Failure Flows of Geomaterial Using Elastic-Plastic Soil Constitutive Model. International Journal for Numerical and Analytical Methods in Geomechanics, 32(12): 1537-1570. https://doi.org/10.1002/nag.688 |
| [4] |
Bui, H. H., Nguyen, G. D., 2021. Smoothed Particle Hydrodynamics (SPH) and Its Applications in Geomechanics: From Solid Fracture to Granular Behaviour and Multiphase Flows in Porous Media. Computers and Geotechnics, 138: 104315. https://doi.org/10.1016/j.compgeo.2021.104315 |
| [5] |
Cai, Y. J., Cheng, H. Y., Wu, S. F., et al., 2020. Breaches of the Baige Barrier Lake: Emergency Response and Dam Breach Flood. Science China Technological Sciences, 63(7): 1164-1176. https://doi.org/10.1007/s11431-019-1475-y |
| [6] |
Du, W. J., Sheng, Q., Yang, X. H., et al., 2022. Chain Generation Process of Landslide Blocking River Based on Two-Phase Double-Point Material Point Method. Advanced Engineering Sciences, 54(3): 36-45 (in Chinese with English abstract). |
| [7] |
Fan, X. M., Scaringi, G., Korup, O., et al., 2019. Earthquake-Induced Chains of Geologic Hazards: Patterns, Mechanisms, and Impacts. Reviews of Geophysics, 57(2): 421-503. https://doi.org/10.1029/2018rg000626 |
| [8] |
Fan, X. M., Yang, F., Siva Subramanian, S., et al., 2020. Prediction of a Multi-Hazard Chain by an Integrated Numerical Simulation Approach: The Baige Landslide, Jinsha River, China. Landslides, 17(1): 147-164. https://doi.org/10.1007/s10346-019-01313-5 |
| [9] |
Feng, D. L., Neuweiler, I., Huang, Y., 2022. Numerical Modeling of Wave-Porous Structure Interaction Process with an SPH Model. Scientia Sinica Physica, Mechanica & Astronomica, 52(10): 104715. https://doi.org/10.1360/sspma-2022-0216 |
| [10] |
Guo, C. B., Wu, R. A., Zhong, N., et al., 2024. Large Landslides along Active Tectonic Zones of Eastern Tibetan Plateau: Background and Mechanism of Landslide Formation. Earth Science, 49(12): 4635-4658 (in Chinese with English abstract). |
| [11] |
Heller, V., Hager, W. H., 2011. Wave Types of Landslide Generated Impulse Waves. Ocean Engineering, 38(4): 630-640. https://doi.org/10.1016/j.oceaneng.2010.12.010 |
| [12] |
Huang, C., Hu, C., An, Y., et al., 2023. Numerical Simulation of the Large-Scale Huangtian (China) Landslide-Generated Impulse Waves by a GPU-Accelerated Three-Dimensional Soil-Water Coupled SPH Model. Water Resources Research, 59(6): e2022WR034157. https://doi.org/10.1029/2022wr034157 |
| [13] |
Jia, K. C., Zhuang, J. Q., Zhan, J. W., et al., 2023. Reconstruction of the Dynamic Process of the Holocene Gelongbu Landslide Blocking-Flood Geological Disaster Chain Based on Numerical Simulation. Earth Science, 48(9): 3402-3419 (in Chinese with English abstract). |
| [14] |
Li, D. Y., Nian, T. K., Tiong, R. L. K., et al., 2023a. River Blockage and Impulse Wave Evolution of the Baige Landslide in October 2018: Insights from Coupled DEM-CFD Analyses. Engineering Geology, 321: 107169. https://doi.org/10.1016/j.enggeo.2023.107169 |
| [15] |
Li, D. Y., Nian, T. K., Wu, H., et al., 2023. Coupled DEM–CFD Method for Landslide-River Blockage-Impulse Wave Disaster Chain Simulation and Its Application. Advanced Engineering Sciences, 55(1): 141-149 (in Chinese with English abstract). |
| [16] |
Li, S., Peng, M., Gao, L., et al., 2024a. A 3D SPH Framework for Simulating Landslide Dam Breaches by Coupling Erosion and Side Slope Failure. Computers and Geotechnics, 175: 106699. https://doi.org/10.1016/j.compgeo.2024.106699 |
| [17] |
Li, S., Tang, H., Peng, C., et al.,2023b. Sensitivity and Calibration of Three-Dimensional SPH Formulations in Large-Scale Landslide Modeling. Journal of Geophysical Research: Solid Earth, 128(2): e2022JB024583. https://doi.org/10.1029/2022jb024583 |
| [18] |
Li, Y., Liu, H. Q., Yang, L., et al.,2024b. An Optimized DEM-SPH Model for Surge Waves Induced by Riverside Landslides. International Journal for Numerical and Analytical Methods in Geomechanics, 48(1): 270-286. https://doi.org/10.1002/nag.3638 |
| [19] |
Long, X. Y., Hu, Y. X., Gan, B. R., et al., 2024. Numerical Simulation of the Mass Movement Process of the 2018 Sedongpu Glacial Debris Flow by Using the Fluid-Solid Coupling Method. Journal of Earth Science, 35(2): 583-596. https://doi.org/10.1007/s12583-022-1625-1 |
| [20] |
Luo, H. W., Zhou, G. G. D., Lu, X. Q., et al., 2025. Experimental Investigation on the Formation and Failure of Landslide Dams Considering the Landslide Mobility and River Flow. Engineering Geology, 346: 107873. https://doi.org/10.1016/j.enggeo.2024.107873 |
| [21] |
Nian, T. K., Wu, H., Takara, K., et al., 2021. Numerical Investigation on the Evolution of Landslide-Induced River Blocking Using Coupled DEM-CFD. Computers and Geotechnics, 134: 104101. https://doi.org/10.1016/j.compgeo.2021.104101 |
| [22] |
Ouyang, C. J., An, H. C., Zhou, S., et al., 2019. Insights from the Failure and Dynamic Characteristics of Two Sequential Landslides at Baige Village along the Jinsha River, China. Landslides, 16(7): 1397-1414. https://doi.org/10.1007/s10346-019-01177-9 |
| [23] |
Peng, M., Li, S., Gao, L., et al., 2024. A Novel Local-Drag-Force-Based Approach for Simulating Wave Attenuation by Mangrove Forests Using a 3D-SPH Method. Ocean Engineering, 306: 118001. https://doi.org/10.1016/j.oceaneng.2024.118001 |
| [24] |
Peng, X. Y., Yu, P. C., Chen, G. Q., et al., 2020. Development of a Coupled DDA–SPH Method and Its Application to Dynamic Simulation of Landslides Involving Solid–Fluid Interaction. Rock Mechanics and Rock Engineering, 53(1): 113-131. https://doi.org/10.1007/s00603-019-01900-x |
| [25] |
Ren, B., Wen, H. J., Dong, P., et al., 2016. Improved SPH Simulation of Wave Motions and Turbulent Flows through Porous Media. Coastal Engineering, 107: 14-27. https://doi.org/10.1016/j.coastaleng.2015.10.004 |
| [26] |
Shi, Z. M., Zhang, G. D., Peng, M., et al., 2023. Experimental Investigation on the Breaching Mechanisms of Landslide Dams with Heterogeneous Structures. Advanced Engineering Sciences, 55(1): 129-140 (in Chinese with English abstract). |
| [27] |
Viroulet, S., Sauret, A., Kimmoun, O., 2014. Tsunami Generated by a Granular Collapse down a Rough Inclined Plane. EPL (Europhysics Letters), 105(3): 34004. https://doi.org/10.1209/0295-5075/105/34004 |
| [28] |
Viroulet, S., Sauret, A., Kimmoun, O., et al., 2013. Granular Collapse into Water: Toward Tsunami Landslides. Journal of Visualization, 16(3): 189-191. https://doi.org/10.1007/s12650-013-0171-4 |
| [29] |
Wendland, H., 1995. Piecewise Polynomial, Positive Definite and Compactly Supported Radial Functions of Minimal Degree. Advances in Computational Mathematics, 4(1): 389-396. https://doi.org/10.1007/BF02123482 |
| [30] |
Wu, H., Nian, T. K., Shan, Z. G., 2023. Research Progress on the Formation Mechanism and Risk Assessment Method of River Blocking Induced by Landslide. Chinese Journal of Rock Mechanics and Engineering, 42(S1): 3192-3205 (in Chinese with English abstract). |
| [31] |
Xu, Q., Zheng, G., Li, W. L., et al., 2018. Study on Successive Landslide Damming Events of Jinsha River in Baige Village on Octorber 11 and November 3, 2018. Journal of Engineering Geology, 26(6): 1534-1551 (in Chinese with English abstract). |
| [32] |
Zhang, C., Hu, X. Y., Adams, N. A., 2017. A Weakly Compressible SPH Method Based on a Low-Dissipation Riemann Solver. Journal of Computational Physics, 335: 605-620. https://doi.org/10.1016/j.jcp.2017.01.027 |
| [33] |
Zhang, C., Rezavand, M., Zhu, Y. J., et al., 2021. SPHinXsys: An Open-Source Multi-Physics and Multi-Resolution Library Based on Smoothed Particle Hydrodynamics. Computer Physics Communications, 267: 108066. https://doi.org/10.1016/j.cpc.2021.108066 |
| [34] |
Zhang, G. B., Tang, D. L., Wen, H. J., et al.,2024a. An Improved Two Phases-Two Points SPH Model for Submerged Landslide. Computers and Geotechnics, 176: 106802. https://doi.org/10.1016/j.compgeo.2024.106802 |
| [35] |
Zhang, S. H., Zhang, C., Hu, X. Y.,et al.,2024b. A Riemann-Based SPH Method for Modelling Large Deformation of Granular Materials. Computers and Geotechnics, 167: 106052. https://doi.org/10.1016/j.compgeo.2023.106052 |
| [36] |
Zhang, L. M., Xiao, T., He, J., et al., 2019. Erosion-Based Analysis of Breaching of Baige Landslide Dams on the Jinsha River, China, in 2018. Landslides, 16(10): 1965-1979. https://doi.org/10.1007/s10346-019-01247-y |
| [37] |
Zhou, G. G. D., Roque, P. J. C., Xie, Y. X., et al., 2020. Numerical Study on the Evolution Process of a Geohazards Chain Resulting from the Yigong Landslide. Landslides, 17(11): 2563-2576. https://doi.org/10.1007/s10346-020-01448-w |
| [38] |
Zhou, L., Fan, X. M., Xu, Q., et al., 2019. Numerical Simulation and Hazard Prediction on Movement Process Characteristics of Baige Landslide in Jinsha River. Journal of Engineering Geology, 27(6): 1395-1404 (in Chinese with English abstract). |
| [39] |
Zhu, C. W., Peng, C., Wu, W., et al., 2022. A Multi-Layer SPH Method for Generic Water-Soil Dynamic Coupling Problems. Part I: Revisit, Theory, and Validation. Computer Methods in Applied Mechanics and Engineering, 396: 115106. https://doi.org/10.1016/j.cma.2022.115106 |
国家自然科学基金-联合基金重点项目(U23A2044)
广西重点研发计划项目(No.桂科AB25069121)
国家自然科学基金-青年基金(42207238)
/
| 〈 |
|
〉 |