大别山南缘翁门杂岩中太古代TTG和钾质花岗岩成因:对扬子陆块早期演化的约束
徐大良 , 彭练红 , 邓新 , 童喜润 , 徐扬 , 金鑫镖
地球科学 ›› 2025, Vol. 50 ›› Issue (07) : 2628 -2642.
大别山南缘翁门杂岩中太古代TTG和钾质花岗岩成因:对扬子陆块早期演化的约束
Petrogenesis of Mesoarchean TTG and Potassic Granite Suit in Wengmen Complex, Southern Dabie Orogen: Implications for Early Crustal Evolution of Yangtze Block
,
太古宙晚期(3.0~2.5 Ga)是全球大陆地壳性质发生显著变化、地球动力学过程发生根本性转变的关键时期.大别山造山带太古宙岩石出露稀少,在大别山南缘新发现的翁门杂岩为进一步揭示扬子陆块古老陆壳形成演化过程提供了新的制约信息.对翁门TTG质片麻岩和钾质花岗岩脉进行了锆石U-Pb定年、锆石Hf同位素和全岩主微量元素分析,揭示了其岩石成因,探讨了扬子陆块太古宙陆壳演化过程.锆石U-Pb定年结果显示,TTG片麻岩和钾质花岗岩脉均形成于中太古代(2 927~2 917 Ma).TTG片麻岩可细分为低重稀土型和高重稀土型两类.与典型太古宙TTG相比,低重稀土型TTG具有中等的SiO2和Na2O含量,其Mg#、Ni、Cr含量和Sr/Y比值偏低,显示出低压TTG特征;而高重稀土型TTG则具有更加偏低的Mg#、Ni、Cr含量和非常低的Sr/Y比值,应属于过渡型TTG.钾质花岗岩脉则表现为高SiO2、富K2O和富铁的特征,呈现出左倾“V型”海鸥式稀土配分模式,为高分异花岗岩,其岩浆氧逸度和水含量与现代岛弧岩浆相似.锆石Hf同位素分析表明,TTG片麻岩的εHf(t)值为-3.7~+1.5,两阶段模式年龄为3.56~3.23 Ga;而钾质花岗岩脉的εHf(t)值为-4.3~+0.2,两阶段模式年龄为3.58~3.31 Ga.大别山南缘翁门杂岩中TTG和富钾花岗岩的同时出现,标志着扬子陆块北缘在中太古代时期板块构造的发育、古老大陆地壳的逐步成熟和初始克拉通化.
The late Archean (3.0-2.5 Ga) is a pivotal period when the composition of the continental crust and the tectonics style significantly changed. Abundant Mesoarchean granitoids, including TTG gneisses and potassic granitoids, occur in the Wengmen complex within the southern Dabie Orogen, part of the North Yangtze Block. Here, it presents major and trace elements, zircon U-Pb ages and Lu-Hf isotopes of these granitoids, which were integrated to determine their petrogenesis and constrain the crustal evolution of the Yangtze Block. The TTG gneisses and potassium granite veins have similar emplacement ages from 2 927 Ma to 2 917 Ma. The TTG gneisses can be divided into two types: low-HREE type and high-HREE type. Compared with the typical Archean TTGs, the low-HREE TTGs have moderate SiO2 and Na2O content, lower Mg#, Ni, Cr contents and Sr/Y ratio, showing the characteristics of low pressure TTGs. The high-HREE TTGs have lower Mg#, Ni, Cr contents and a very low Sr/Y ratio, which should belong to the transitional TTGs. The potassic granite veins are characterized by high SiO2, K2O, high K2O/Na2O (0.81-1.09) and iron-rich, exhibiting a left-leaning “V-type” seagull-type rare earth distribution pattern, indicative of highly differentiated granites. Their magmatic oxygen fugacity and water content resemble those of modern arc magmas. Zircons from the TTG gneisses gave εHf(t) values of -3.7-+1.5 and Hf crustal model ages (TDMC) of 3.56-3.23 Ga, whereas those from the potassic granites show εHf(t) values of -4.3-+0.2 and TDMC ages of 3.58-3.31 Ga. The coeval occurrence of TTGs and K-rich granitoids of the Wengmen complex within the southern Dabie Orogen marks the development of plate tectonics, the maturation of the continental crust and initial cratonization of the North Yangtze Block during the Mesoarchean.
扬子陆块 / 大别山造山带 / 太古宙 / TTG / 钾质花岗岩 / 岩浆氧逸度 / 地质年代学.
Yangtze Block / Dabie Orogen / Archean / TTG / potassic granite / magmatic oxygen fugacity / geochronology
| [1] |
Chen, Y., Zhang, J., Gao, P., et al., 2022. Modern⁃Style Plate Tectonics Manifested by the Late Neoarchean TTG⁃Sanukitoid Suite from the Datong⁃Huai’an Complex, Trans⁃North China Orogen. Lithos, 430-431: 106843. https://doi.org/10.1016/j.lithos.2022.106843 |
| [2] |
Dhuime,B., Hawkesworth, C.J., Cawood, P.A., et al., 2012. A Change in the Geodynamics of Continental Growth 3 Billion Years Ago.Science, 335(6074): 1334-1336. https://doi.org/10.1126/science.1216066 |
| [3] |
Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033 |
| [4] |
Frost, B. R., Frost, C. D., 2008. A Geochemical Classification for Feldspathic Igneous Rocks. Journal of Petrology, 49(11): 1955-1969. https://doi.org/10.1093/petrology/egn054 |
| [5] |
Garçon, M., 2021. Episodic Growth of Felsic Continents in the Past 3.7 Ga. Science Advances, 7(39): eabj1807. https://doi.org/10.1126/sciadv.abj1807 |
| [6] |
Ge, R. F., Wilde, S. A., Zhu, W. B., et al., 2023. Earth’s Early Continental Crust Formed from Wet and Oxidizing Arc Magmas. Nature, 623(7986): 334-339. https://doi.org/10.1038/s41586⁃023⁃06552⁃0 |
| [7] |
Guo, J. L., Wu, Y. B., Gao, S., et al., 2015. Episodic Paleoarchean⁃Paleoproterozoic (3.3-2.0 Ga) Granitoid Magmatism in Yangtze Craton, South China: Implications for Late Archean Tectonics. Precambrian Research, 270: 246-266. https://doi.org/10.1016/j.precamres.2015.09.007 |
| [8] |
Halla, J., van Hunen, J., Heilimo, E., et al., 2009. Geochemical and Numerical Constraints on Neoarchean Plate Tectonics. Precambrian Research, 174(1-2): 155-162. https://doi.org/10.1016/j.precamres.2009.07.008 |
| [9] |
Hou, X. G., Yu, Z. Q., Chen, S. F., et al., 2024. Trace Element Mobility in Subducted Marble and Associated Eclogite: Constraints from UHP Rocks in the Shuanghe Area, Central⁃East China. Journal of Earth Science, 35(1): 1-15. https://doi.org/10.1007/s12583⁃022⁃1692⁃3 |
| [10] |
Irber, W., 1999. The Lanthanide Tetrad Effect and Its Correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of Evolving Peraluminous Granite Suites. Geochimica et Cosmochimica Acta, 63(3-4): 489-508. https://doi.org/10.1016/S0016⁃7037(99)00027⁃7 |
| [11] |
Laurent, O., Martin, H., Moyen, J. F., et al., 2014. The Diversity and Evolution of Late⁃Archean Granitoids: Evidence for the Onset of “Modern⁃Style” Plate Tectonics between 3.0 and 2.5 Ga. Lithos, 205: 208-235. https://doi.org/10.1016/j.lithos.2014.06.012 |
| [12] |
Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA⁃ICP⁃MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 |
| [13] |
Martin, H., Smithies, R. H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite⁃Trondhjemite⁃Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 79(1-2): 1-24. https://doi.org/10.1016/j.lithos.2004.04.048 |
| [14] |
Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth⁃Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012⁃8252(94)90029⁃9 |
| [15] |
Moyen, J.F., 2011. The Composite Archaean Grey Gneisses: Petrological Significance, and Evidence for a Non⁃Unique Tectonic Setting for Archaean Crustal Growth. Lithos, 123(1-4):21-36. https://doi.org/10.1016/j.lithos.2010.09.015 |
| [16] |
Moyen, J.F., Martin, H., 2012. Forty Years of TTG Research. Lithos, 148:312-336. https://doi.org/10.1016/j.lithos.2012.06.010 |
| [17] |
Polat, A., Hofmann, A. W., 2003. Alteration and Geochemical Patterns in the 3.7-3.8 Ga Isua Greenstone Belt, West Greenland. Precambrian Research, 126(3-4): 197-218. https://doi.org/10.1016/S0301⁃9268(03)00095⁃0 |
| [18] |
Qiu, X. F., Ling, W. L., Liu, X. M., et al., 2018. Evolution of the Archean Continental Crust in the Nucleus of the Yangtze Block: Evidence from Geochemistry of 3.0 Ga TTG Gneisses in the Kongling High⁃Grade Metamorphic Terrane, South China. Journal of Asian Earth Sciences, 154: 149-161. https://doi.org/10.1016/j.jseaes.2017.12.026 |
| [19] |
Qiu, X. F., Peng, L. H., Kong, L. Y., et al., 2024. Discovery of Eoarchean Gneisses in Northern Dabie Belt. Earth Science, 49(11): 3960-3970 (in Chinese with English abstract). |
| [20] |
Schiano, P., Monzier, M., Eissen, J. P., et al., 2010. Simple Mixing as the Major Control of the Evolution of Volcanic Suites in the Ecuadorian Andes. Contributions to Mineralogy and Petrology, 160(2): 297-312. https://doi.org/10.1007/s00410⁃009⁃0478⁃2 |
| [21] |
Shi, Y. H., Wang, C. S., Kang, T., et al., 2012. Petrological Characteristics and Zircon U⁃Pb Age for Susong Metamorphic Complex Rocks in Anhui Province. Acta Petrologica Sinica, 28(10): 3389-3402 (in Chinese with English abstract). |
| [22] |
Smithies, R.H., Lu, Y.J., Kirkland, C.L, et al., 2021.Oxygen Isotopes Trace the Origins of Earth's Earliest Continental Crust.Nature, 592(7852):70-75. https://doi.org/10.1038/s41586⁃021⁃03337⁃1 |
| [23] |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19 |
| [24] |
Sylvester, P. J., 1989. Post⁃Collisional Alkaline Granites. The Journal of Geology, 97(3): 261-280. https://doi.org/10.1086/629302 |
| [25] |
Wang, K., Zhao, T.Y., Zhang, S.H., 2023. Discovery of the Oldest (~2.87 Ga) Granitic Gneisses in the Qinling⁃Dabie Orogenic Belt: Direct Evidence for Mesoarchean Crust. China Geology, 6(3): 533‒535. https://doi.org/10.31035/cg2022084 |
| [26] |
Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Science China Earth Sciences, 60(7): 1201-1219. https://doi.org/10.1007/s11430⁃016⁃5139⁃1 |
| [27] |
Xu, D. L., Peng, L. H., Deng, X., et al., 2023a. Identification of Mesoarchean to Paleoproterozoic Magmatic Tectono⁃Thermal Events from Wengmen Complex in Southern Dabie Orogen and Its Geological Significance. Earth Science, 48(11): 4072-4087 (in Chinese with English abstract). |
| [28] |
Xu, D. L., Deng, X., Peng, L. H., et al., 2023b. The Components of the Subducted Continental Basement within the Dabieshan Orogenic Belt as Evidenced by Xenocrystic/Inherited Zircons from Cretaceous Dykes. Earth Science Frontiers, 30(4): 299-316 (in Chinese with English abstract). |
| [29] |
Xu, D.L., Peng, L.H., Deng, X., et al., 2023. Zircon U⁃Pb Age Evidence of the Mesoarchean (2.9-3.2 Ga) Crustal Remnant in the Southern Dabie Orogen, South China. China Geology, 6(1): 174‒176. https://doi.org/10.31035/cg2022056 |
| [30] |
Xu, S.T., Liu, Y.C., Jiang, L.L., et al., 2002. Architecture and Kinematics of the Dabieshan Orogen. University of Science and Technology of China Press, Heifei, 53-68 (in Chinese). |
| [31] |
Zhai, M. G., Peng, P., 2020. Origin of Early Continents and Beginning of Plate Tectonics. Science Bulletin, 65(12): 970-973. https://doi.org/10.1016/j.scib.2020.03.022 |
| [32] |
Zhai, M. G., Zhao, G. C., Guo, J. H., 2023. Focus on Form and Evolution of Precambrian Continents. Chinese Science Bulletin, 68(18): 2281-2283 (in Chinese). |
| [33] |
Zhao, G.C., Zhang, J., Yin, C.Q., et al, 2023. Pre⁃plate Tectonics and Origin of Continents. Chinese Science Bulletin, 68(18): 2312-2323 (in Chinese). |
| [34] |
Zhao, T.Y., Li, J., Liu, G.C., et al., 2020. Petrogenesis of Archean TTGs and Potassic Granites in the Southern Yangtze Block: Constraints on the Early Formation of the Yangtze Block. Precambrian Research, 347:105848. https://doi.org/10.1016/j.precamres.2020.105848. |
| [35] |
Zheng, Y. F., 2024. Plate Tectonics in the Archean: Observations versus Interpretations. Scientia Sinica Terrae, 54(1): 1-30 (in Chinese). |
| [36] |
Zheng, Y. F., Zhao, G. C., 2020. Two Styles of Plate Tectonics in Earth’s History. Science Bulletin, 65(4): 329-334. https://doi.org/10.1016/j.scib.2018.12.029 |
| [37] |
Zheng, Y.F., Zhou, J.B., Wu, Y.B., et al., 2005. Low⁃Grade Metamorphic Rocks in the Dabie⁃Sulu Orogenic Belt: A Passive⁃Margin Accretionary Wedge Deformed during Continent Subduction. International Geology Review, 47(8): 851-871.https://doi.org/10.2747/0020⁃6814.47.8.851 |
中国地质调查局地质调查项目(DD20242643)
中国地质调查局地质调查项目(DD20190050)
中国地质调查局花岗岩成岩成矿地质研究中心开放基金课题(PMGR202014)
/
| 〈 |
|
〉 |