改进的两柱Cd色谱分离流程和高精度的Cd同位素分析
钟桥辉 , 彭冰钰 , 何炽凤 , 郭家凯 , 初高彬 , 尹露 , 李杰
地球科学 ›› 2025, Vol. 50 ›› Issue (07) : 2511 -2524.
改进的两柱Cd色谱分离流程和高精度的Cd同位素分析
Improved Two⁃Column Cd Chromatographic Separation Procedure and High⁃Precision Cd Isotope Analysis
,
地质和环境样品中Cd同位素组成的准确、高精度分析对于研究海洋初级生产力、古环境变化、重金属Cd污染的溯源、硫化物矿床的成因和海洋Cd循环等领域具有重要意义.然而,环境和地质样品的低Cd含量和复杂基体给高精度Cd同位素分析带来挑战.针对地质和环境样品,开发了一种高效可靠的两柱Cd色谱分离流程和高精度的Cd同位素测定方法.在第一柱AG-MP-1M阴离子交换树脂中,主要基体元素(包括≥99%的Sn)被优先去除,随后Cd及少量残余的Sn用4 mL 1 M HNO3溶液快速洗脱.与传统第二柱分离Cd常用的TRU.Spec、UTEVA和BPHA萃取树脂不同,除了Mo、Sn、Zr等元素,TOPO树脂还能有效去除其他潜在残余基体元素(如Mg、Fe、Pb、Ti、V、Ag、Cu、Zn等),且避免了树脂来源有机质引入的问题.Cd同位素比值在Neptune Plus MC-CP-MS上测定,仪器的质量分馏采用Cd的双稀释剂法(111Cd-113Cd)校正.两个标准溶液(NIST SRM 3108和Spex Cd)长期测量值的外部精度优于0.05‰.采用优化的两柱Cd色谱分离流程处理地质和环境标准样品,其测定的Cd同位素值在误差范围内与文献报道值一致,证实了该方法准确可靠且高效实用.此外,首次报道了国内的地质标样GSR-2、GSR-3及土壤标样GSS-6a的Cd同位素组成,这些参考数据为不同实验室间Cd同位素分析能力的评估和数据质量控制提供了依据.综上,本研究为地质和环境样品的高精度Cd同位素分析建立了一种高效实用的可靠分析方法.
Accurate and high-precision analysis of Cd isotope composition in geological and environmental samples is of great significance for the study of marine primary productivity, paleoenvironmental changes, traceability of heavy metal Cd pollution, genesis of sulfide deposits, and marine Cd cycles. However, the low Cd content and complex matrix of environmental and geological samples pose challenges to high-precision Cd isotope analysis. For geological and environmental samples, this study developed an efficient and reliable two-column Cd chromatographic separation procedure and a high-precision Cd isotope determination method. In the first column of AG-MP-1M anion exchange resin, a large amount of the matrix, including ≥99% ratio of Sn, was removed first, then Cd and a small amount of Sn were rapidly eluted using 4 mL of 1M HNO3 solution. Unlike the traditional second-column separation of Cd using TRU, Spec, UTVEA and BPHA extraction resins, in addition to Mo, Sn and Zr elements, TOPO resin can further separate other potential residual matrix elements such as Mg, Fe, Pb, Ti, V, Ag, Cu and Zn, etc., without causing problems with resin-derived organic matter. Cadmium isotope ratio was conducted on Neptune Plus MC-CP-MS, using double spike method (111Cd-113Cd) for instrumental mass discrimination correction. The long-term external reproducibility for two standard solutions (NIST SRM 3108 and Spex Cd) was better than ±0.05‰ (2SD).Geological and environmental standard samples processed by the presented two-column Cd chromatographic separation procedure and then determined the δ114/110CdNIST 3108 values are consistent with the values reported in the literature within uncertainty, confirming the accuracy, reliability and efficiency of this method. Furthermore, the Cd isotope compositions of the domestic geological standard samples GSR-2 and GSR-3, and soil standard sample GSS-6a are reported for the first time, which are beneficially for evaluating the analytical capabilities between different laboratories and data quality control. Overall, this study will provide efficient and convenient new technique for the accurate and high-precision Cd isotope analysis of geological and environmental samples.
Cd同位素 / TOPO树脂 / 色谱分离 / 双稀释剂法 / 地球化学.
Cd isotope / TOPO resin / chromatographic separation / double spike method / geochemistry
附件见https://doi.org/10.3799/dqkx.2025.122.
| [1] |
Abouchami, W., Galer, S. J. G., de Baar, H. J. W., et al., 2011. Modulation of the Southern Ocean Cadmium Isotope Signature by Ocean Circulation and Primary Productivity. Earth and Planetary Science Letters, 305(1-2): 83-91. https://doi.org/10.1016/j.epsl.2011.02.044 |
| [2] |
Baskaran, M., 2011. Handbook of Environmental Isotope Geochemistry. Springer, New York. |
| [3] |
Chang, H., Zhu, J. M., Wang, X. L., et al., 2023. High⁃Precision Measurement of Cd Isotopes in Ultra⁃Trace Cd Samples Using Double Spike⁃Standard Addition MC⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 38(4): 950-962. https://doi.org/10.1039/D3JA00047H |
| [4] |
Cloquet, C., Rouxel, O., Carignan, J., et al., 2005. Natural Cadmium Isotopic Variations in Eight Geological Reference Materials (NIST SRM 2711, BCR 176, GSS⁃1, GXR⁃1, GXR⁃2, GSD⁃12, Nod⁃P⁃1, Nod⁃ A⁃1) and Anthropogenic Samples, Measured by MC⁃ICP⁃MS. Geostandards and Geoanalytical Research, 29(1): 95-106. https://doi.org/10.1111/j.1751⁃908X.2005.tb00658.x |
| [5] |
Cullen, J. T., Maldonado, M. T., 2012. Biogeochemistry of Cadmium and Its Release to the Environment. In: Sigel, A., Sigel, H., Sigel, R.K.O., eds., Cadmium: From Toxicity to Essentiality. Springer Netherlands, Dordrecht, 31-62. https://doi.org/10.1007/978⁃94⁃007⁃5179⁃8_2 |
| [6] |
Devos, G., Moynier, F., Creech, J., et al., 2024. Cadmium Isotope Composition of the Earth’s Mantle Inferred from Analysis of Oceanic Basalts and Komatiites. Chemical Geology, 650: 121996. https://doi.org/10.1016/j.chemgeo.2024.121996 |
| [7] |
Garçon, M., Sauzéat, L., Carlson, R. W., et al., 2017. Nitrile, Latex, Neoprene and Vinyl Gloves: A Primary Source of Contamination for Trace Element and Zn Isotopic Analyses in Geological and Biological Samples. Geostandards and Geoanalytical Research, 41(3): 367-380. https://doi.org/10.1111/ggr.12161 |
| [8] |
Gault⁃Ringold, M., Stirling, C. H., 2012. Anomalous Isotopic Shifts Associated with Organic Resin Residues during Cadmium Isotopic Analysis by Double Spike MC⁃ICPMS. Journal of Analytical Atomic Spectrometry, 27(3): 449-459. https://doi.org/10.1039/C2JA10360E |
| [9] |
Guinoiseau, D., Galer, S. J. G., Abouchami, W., et al., 2019. Importance of Cadmium Sulfides for Biogeochemical Cycling of Cd and Its Isotopes in Oxygen Deficient Zones—A Case Study of the Angola Basin. Global Biogeochemical Cycles, 33(12): 1746-1763. https://doi.org/10.1029/2019GB006323 |
| [10] |
Guo, C., Li, T., Li, G. J., et al., 2022. Precise/Small Sample Size Determination of Stable Cd Isotope Ratios of Geological Samples with Double Spike MC⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 37(11): 2470-2479. https://doi.org/10.1039/D2JA00250G |
| [11] |
Hohl, S. V., Galer, S. J. G., Gamper, A., et al., 2017. Cadmium Isotope Variations in Neoproterozoic Carbonates-A Tracer of Biologic Production? Geochemical Perspectives Letters: 32-44. https://doi.org/10.7185/geochemlet.1704 |
| [12] |
Horner, T. J., Lee, R. B. Y., Henderson, G. M., et al., 2013. Nonspecific Uptake and Homeostasis Drive the Oceanic Cadmium Cycle. Proceedings of the National Academy of Sciences of the United States of America, 110(7): 2500-2505. https://doi.org/10.1073/pnas.1213857110 |
| [13] |
Horner, T. J., Rickaby, R. E. M., Henderson, G. M., 2011. Isotopic Fractionation of Cadmium into Calcite. Earth and Planetary Science Letters, 312(1-2): 243-253. https://doi.org/10.1016/j.epsl.2011.10.004 |
| [14] |
John, S. G., Conway, T. M., 2014. A Role for Scavenging in the Marine Biogeochemical Cycling of Zinc and Zinc Isotopes. Earth and Planetary Science Letters, 394: 159-167. https://doi.org/10.1016/j.epsl.2014.02.053 |
| [15] |
Lane, T. W., Saito, M. A., George, G. N., et al., 2005. A Cadmium Enzyme from a Marine Diatom. Nature, 435(7038): 42. https://doi.org/10.1038/435042a |
| [16] |
Li, D. D., Li, M. L., Liu, W. R., et al., 2018. Cadmium Isotope Ratios of Standard Solutions and Geological Reference Materials Measured by MC⁃ICP⁃MS. Geostandards and Geoanalytical Research, 42(4): 593-605. https://doi.org/10.1111/ggr.12236 |
| [17] |
Li, X. Y., Zhou, J. W., Hu, P. J., et al., 2024. Colloids Control the Mobilization of Released Zinc⁃ and Cadmium⁃Species in Calcite⁃Rich Soils. Geochimica et Cosmochimica Acta, 387: 12-27. https://doi.org/10.1016/j.gca.2024.11.003 |
| [18] |
Liao, R., Ratié, G., Shi, Z. M., et al., 2022. Cadmium Isotope Systematics for Source Apportionment in an Urban⁃Rural Region. Applied Geochemistry, 137: 105196.https://doi.org/10.1016/j.apgeochem.2021.105196 |
| [19] |
Liu, M. S., Zhang, Q., Zhang, Y. N., et al., 2020. High⁃Precision Cd Isotope Measurements of Soil and Rock Reference Materials by MC⁃ICP⁃MS with Double Spike Correction. Geostandards and Geoanalytical Research, 44(1): 169-182. https://doi.org/10.1111/ggr.12291 |
| [20] |
Murphy, K., Rehkämper, M., Kreissig, K., et al., 2016. Improvements in Cd Stable Isotope Analysis Achieved through Use of Liquid⁃Liquid Extraction to Remove Organic Residues from Cd Separates Obtained by Extraction Chromatography. Journal of Analytical Atomic Spectrometry, 31(1): 319-327. https://doi.org/10.1039/C5JA00115C |
| [21] |
Pallavicini, N., Engström, E., Baxter, D. C., et al., 2014. Cadmium Isotope Ratio Measurements in Environmental Matrices by MC⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 29(9): 1570-1584. https://doi.org/10.1039/C4JA00125G |
| [22] |
Peng, H., He, D., Guo, R., et al., 2021. High Precision Cadmium Isotope Analysis of Geological Reference Materials by Double Spike MC⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 36(2): 390-398. https://doi.org/10.1039/D0JA00424C |
| [23] |
Pickard, H., Palk, E., Schönbächler, M., et al., 2022. The Cadmium and Zinc Isotope Compositions of the Silicate Earth-Implications for Terrestrial Volatile Accretion. Geochimica et Cosmochimica Acta, 338: 165-180. https://doi.org/10.1016/j.gca.2022.09.041 |
| [24] |
Ratié, G., Chrastný, V., Guinoiseau, D., et al., 2021. Cadmium Isotope Fractionation during Complexation with Humic Acid. Environmental Science & Technology, 55(11): 7430-7444. https://doi.org/10.1021/acs.est.1c00646 |
| [25] |
Ripperger, S., Rehkämper, M., 2007. Precise Determination of Cadmium Isotope Fractionation in Seawater by Double Spike MC⁃ICPMS. Geochimica et Cosmochimica Acta, 71(3): 631-642. https://doi.org/10.1016/j.gca.2006.10.005 |
| [26] |
Schmitt, A. D., Galer, S. J. G., Abouchami, W., 2009. Mass⁃Dependent Cadmium Isotopic Variations in Nature with Emphasis on the Marine Environment. Earth and Planetary Science Letters, 277(1-2): 262-272. https://doi.org/10.1016/j.epsl.2008.10.025 |
| [27] |
Sieber, M., Conway, T. M., De Souza, G. F., et al., 2019. Physical and Biogeochemical Controls on the Distribution of Dissolved Cadmium and Its Isotopes in the Southwest Pacific Ocean. Chemical Geology, 511: 494-509. https://doi.org/10.1016/j.chemgeo.2018.07.021 |
| [28] |
Tan, D. C., Zhu, J. M., Wang, X. L., et al., 2020. High⁃Sensitivity Determination of Cd Isotopes in Low⁃Cd Geological Samples by Double Spike MC⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 35(4): 713-727. https://doi.org/10.1039/C9JA00397E |
| [29] |
Wasylenki, L. E., Swihart, J. W., Romaniello, S. J., 2014. Cadmium Isotope Fractionation during Adsorption to Mn Oxyhydroxide at Low and High Ionic Strength. Geochimica et Cosmochimica Acta, 140: 212-226. https://doi.org/10.1016/j.gca.2014.05.007 |
| [30] |
Wen, H. J., Zhang, Y. X., Cloquet, C., et al., 2015. Tracing Sources of Pollution in Soils from the Jinding Pb⁃Zn Mining District in China Using Cadmium and Lead Isotopes. Applied Geochemistry, 52: 147-154. https://doi.org/10.1016/j.apgeochem.2014.11.025 |
| [31] |
Wen, H.J., Zhou, Z.B., Zhu, C.W., et al., 2019. Critical Scientific Issues of Super⁃Enrichment of Dispersed Metals. Acta Petrologica Sinica, 35(11): 3271-3291 (in Chinese with English abstract). |
| [32] |
Wiggenhauser, M., Bigalke, M., Imseng, M., et al., 2016. Cadmium Isotope Fractionation in Soil⁃Wheat Systems. Environmental Science & Technology, 50(17): 9223-9231. https://doi.org/10.1021/acs.est.6b01568 |
| [33] |
Wombacher, F., Rehkämper, M., Mezger, K., et al., 2003. Stable Isotope Compositions of Cadmium in Geological Materials and Meteorites Determined by Multiple⁃Collector ICPMS. Geochimica et Cosmochimica Acta, 67(23): 4639-4654. https://doi.org/10.1016/S0016⁃7037(03)00389⁃2 |
| [34] |
Younes, A., Alliot, C., Ali, J. S., et al., 2020. Production of Polonium from Bismuth and Purification Using TBP Resin and Sr Resin. Journal of Radioanalytical and Nuclear Chemistry, 324(2): 823-828. https://doi.org/10.1007/s10967⁃020⁃07109⁃5 |
| [35] |
Zhang, L., Li, J., Xu, Y. G., et al., 2018. The Influence of the Double Spike Proportion Effect on Stable Isotope (Zn, Mo, Cd, and Sn) Measurements by Multicollector⁃Inductively Coupled Plasma⁃Mass Spectrometry (MC⁃ICP⁃MS). Journal of Analytical Atomic Spectrometry, 33(4): 555-562. https://doi.org/10.1039/C8JA00016F |
| [36] |
Zhang, Y. X., Wen, H. J., Fan, H. F., et al., 2023. Cadmium Isotopic Evidence for Reduced Deep⁃Water Marine Primary Productivity during the End⁃Permian Mass Extinction. Earth and Planetary Science Letters, 621: 118371.https://doi.org/10.1016/j.epsl.2023.118371 |
| [37] |
Zhang, Y. X., Wen, H. J., Zhu, C. W., et al., 2016. Cd Isotope Fractionation during Simulated and Natural Weathering. Environmental Pollution, 216: 9-17. https://doi.org/10.1016/j.envpol.2016.04.060 |
| [38] |
Zhang, Z. Y., Li, T., Li, B. C., et al., 2024. An Efficient Cd Two⁃Stage Column System for High⁃Precision Determination of Cd Isotopic Compositions by Double Spike MC⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 39(4): 1142-1151. https://doi.org/10.1039/D3JA00468F |
| [39] |
Zhong, Q. H., Li, J., Yin, L., et al., 2023a. A Two⁃Stage Cd Purification Method with Anion Exchange Resin and BPHA Extraction Resin for High Precision Determination of Cd Isotopic Compositions by Double Spike MC⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 38(4): 939-949. https://doi.org/10.1039/D2JA00411A |
| [40] |
Zhong, Q. H., Yin, L., Li, J., et al., 2023b. A Single⁃Stage Anion Exchange Separation Method for Cd Isotopic Analysis in Geological and Environmental Samples by MC⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 38(11): 2291-2301. https://doi.org/10.1039/D3JA00234A |
| [41] |
Zhong, Q. H., Zhou, Y. C., Tsang, D. C. W., et al., 2020. Cadmium Isotopes as Tracers in Environmental Studies: A Review. Science of the Total Environment, 736: 139585.https://doi.org/10.1016/j.scitotenv.2020.139585 |
| [42] |
Zhu, C. W., Wen, H. J., Zhang, Y. X., et al., 2018. Cd Isotope Fractionation during Sulfide Mineral Weathering in the Fule Zn⁃Pb⁃Cd Deposit, Yunnan Province, Southwest China. Science of the Total Environment, 616-617: 64-72. https://doi.org/10.1016/j.scitotenv.2017.10.293 |
国家重点研发计划项目(2023YFF0803704)
广东省自然科学基金项目(2024A1515010037)
/
| 〈 |
|
〉 |