冀东中元古代雾迷山组富锂岩系的发现及其对锂富集成矿机制的启示

耿晓磊 , 张晓容 , 王克冰 , 刘何凡 , 赵保强 , 杨建 , 米澄宇 , 李晓峰 , 杨江海

地球科学 ›› 2025, Vol. 50 ›› Issue (07) : 2689 -2706.

PDF (6525KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (07) : 2689 -2706. DOI: 10.3799/dqkx.2025.125

冀东中元古代雾迷山组富锂岩系的发现及其对锂富集成矿机制的启示

作者信息 +

Discovery of Lithium⁃Rich Sedimentary Rocks in Mesoproterozoic Wumishan Formation in Eastern Hebei Province and Implications for Mechanism of Lithium Enrichment and Mineralization

Author information +
文章历史 +
PDF (6680K)

摘要

2021年项目组在冀东地区发现中元古代富锂沉积岩系,是我国首次在前寒武纪地层中发现的富锂沉积记录.勘查区内共发现33层锂矿体,厚度为1.09~5.59 m,平均厚度2.32 m,Li2O品位为0.1%~0.42%,平均品位0.16%.富锂层位在冀东地区分布广泛、厚度大、层位稳定,因此,可预测的锂资源潜力巨大,具有重要的经济和理论研究价值.该富锂岩系发育于中元古代雾迷山组,XRD矿物分析、地球化学数据显示其主要矿物组成为白云石,其次为石英和伊蒙混层、伊利石等黏土矿物;富锂岩系具有高CaO、MgO含量和低Al2O3含量的特征;浸出实验结果表明,常温常压下富锂泥质白云岩与稀盐酸在封闭容器中反应可发生>77%的锂元素浸出.与华南地区晚古生代的富锂沉积岩系相比,该富锂岩系在成矿时代、赋矿层位、岩石类型、矿物组成、地化特征和赋存状态上存在显著差异,同时也不同于后者需要在加热条件下才发生锂的有效浸出.上述差异可能与以下原因有关:(1)研究区富锂岩系的成矿物质可能来源于山海关古陆的风化;(2)富锂岩系形成于干旱的碳酸盐岩潮坪‒泻湖环境.因此,冀东雾迷山组富锂岩系的形成不同于前人提出的碳酸盐黏土型锂矿,指示了一种新的锂富集机制和成矿过程,但对该套岩系的锂富集成矿机制还需要进一步研究.

Abstract

In 2021, the research group discovered the Mesoproterozoic lithium-rich sedimentary series in eastern Hebei Province. This is the first lithium-rich sedimentary record found in the Precambrian strata in China. A total of 33 lithium-rich layers were found in the exploration area, with a thickness of 1.09-5.59 m, an average thickness of 2.32 m, Li2O grade of 0.1%-0.42%, and an average grade of 0.16%. The target layer has wide distribution, huge thickness, stable horizon, and huge lithium resource potential, so it has a huge potential for lithium resources. Lithium-rich sedimentary rocks are developed in the Mesoproterozoic Wumishan Formation. Mineralogical and geochemical analyses show that dolomite is the dominant mineral with subordinate quartz, illite/smectite mixed layer, and illite. The lithium-rich rocks are characterized by high CaO, MgO and low Al2O3 contents. At room temperature and pressure, the reaction of argillaceous dolomite with dilute hydrochloric acid in a closed container can produce >77% lithium leaching. Compared with the Late Paleozoic lithium-rich sedimentary rocks in South China, this type of lithium-rich rocks in North China has significant differences in metallogenic age, ore-bearing succession, lithology, mineral composition, major and trace elements and occurrence state. And it is also different from the former, which requires effective leaching of lithium under heating conditions. These differences are likely related to the likely derivation of the ore-forming materials of lithium-rich rocks in the study area from the weathering of Shanhaiguan ancient land and the deposition in a dry carbonate tidal flat-lagoon environment. Therefore, the formation of the lithium-rich rocks in the Wumishan Formation is different from the previously proposed carbonate clay-type lithium deposits, indicating a new lithium enrichment mechanism. The exact mechanism of lithium enrichment in this rock series still needs to be further studied.

Graphical abstract

关键词

冀东地区 / 中元古代 / 雾迷山组 / 泥质白云岩 / 富锂岩系 / 成矿机制 / 矿床学.

Key words

eastern Hebei Province / Mesoproterozoic / Wumishan Formation / argillaceous dolomite / clay type lithium / ore metallogenic mechanism / ore deposit

引用本文

引用格式 ▾
耿晓磊,张晓容,王克冰,刘何凡,赵保强,杨建,米澄宇,李晓峰,杨江海. 冀东中元古代雾迷山组富锂岩系的发现及其对锂富集成矿机制的启示[J]. 地球科学, 2025, 50(07): 2689-2706 DOI:10.3799/dqkx.2025.125

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

锂作为重要的能源战略金属,广泛应用于新材料、新能源和信息技术等重要领域(李建康等,2014; 蒋少涌等,2019;许志琴等,2019).随着全球对锂资源的需求量的大幅增长,不少国家都加大了对锂矿的勘查力度(刘丽君等,2017; 于沨等,2019; 钟海仁等,2019).作为世界第一大锂消费国(马哲和李建武,2018; 王秋舒和元春华,2019),我国的锂资源安全供应关系到战略性新兴产业可持续发展和国家资源安全,加强锂资源勘查开发和综合利用已经迫在眉睫.

全球锂矿床通常分为卤水型、硬岩型和沉积型三大类(Kesler et al.,2012),目前具有经济开发价值的锂矿主要为卤水型和硬岩型,沉积型锂矿由于提取技术问题,尚不具备工业开发价值(王秋舒和元春华,2019; 张英利等,2022).我国当前开采的主要对象是硬岩型锂矿中的花岗岩型锂矿,宜春414花岗岩锂矿床提供了国内超过60%的锂产量(王登红等,2022),不过其仍存在品位低、选矿难度大的不足.因此,随着锂资源需求不断增长,我国绝大多数工业级碳酸锂仍依赖进口.近两年,不少地质学者将目光转向沉积型锂矿的找矿勘查和开发利用研究,陆续在贵州、云南、广西、河南等地晚古生代铝土质泥岩、高岭土、煤等沉积岩系中发现锂资源的超常富集现象(王登红等,2013; 崔燚等,2018; Ling et al., 2018),并提出了一种与碳酸盐岩风化‒沉积有关的“碳酸盐黏土型锂矿床”成矿新类型(温汉捷等,2020),其主要依据黏土型锂矿中的成矿物质来源于基底不纯碳酸盐岩的风化(崔燚等,2018; Ling et al., 2018; 凌坤跃等, 2019; 温汉捷等,2020).但也有人认为早期形成的富锂岩浆岩是沉积型锂矿的初始物源区(Hofstra et al., 2013Zhu et al.,2014; 赵元艺等,2015; Castor and Henry,2020),通过富锂火山岩喷发或富锂岩浆热液运移的方式进入湖泊(王微等,2024).也有学者认为沉积型锂矿两种物源兼而有之(姚双秋等,2021;徐兴旺等,2023; 张七道等,2024).然而无论哪种来源,最终在还原、低能、滞留、局限的古地理环境中,与黏土矿物结合从而富集成矿.2021年,河北省地质调查院在冀东地区中元古代雾迷山组碳酸盐岩地层中也发现有锂的富集层位(孙艳等,2023).野外勘查结果显示,富锂岩系的Li2O品位介于0.1%~0.42%,平均品位0.16%(按照滇中锂矿评价标准:边界品位0.2%>Li2O≥0.1%,最低工业品位Li2O≥0.2%).目前,仅在迁西高拔岭研究区0.4 km2 工作范围内就获得工业品位Li2O金属量(333)约0.99万吨,已达中型锂矿规模.这是我国首次在前寒武纪地层中发现的富锂岩系.冀东地区雾迷山组地层分布广泛、厚度大、层位稳定,可预测的锂资源前景巨大,有望成为我国北方锂资源勘查的重要基地.然而,尽管该套富锂沉积岩系与碳酸盐地层密切相关,但与典型的碳酸盐黏土型锂矿存在明显不同,其赋矿岩石主要为泥质白云岩、白云质泥岩,而非黏土岩或铝土质泥岩.因此,为探究雾迷山组富锂岩系的形成机制,本文对冀东地区雾迷山组开展了矿物组成、地球化学和锂浸出实验分析,同时与前人报道的碳酸盐黏土型富锂岩系进行对比,结合沉积环境、物质来源和赋存状态探讨二者之间的成矿差异,为今后在碳酸盐地区寻找新类型锂资源提供新的思路.

1 区域地质背景

研究区位于冀东遵化‒迁西‒丰润等地,大地构造位置处于华北克拉通东部燕辽裂陷槽东南边缘(图1a),中元古代期间受燕辽裂陷槽的构造活动控制,主要经历了裂陷槽的发生发展、裂陷槽向克拉通盆地转化、克拉通盆地演化三个沉积阶段(Meng et al.,2011; 郭荣涛,2014),形成了一套厚达9 200 m左右的碳酸盐岩夹碎屑岩的混合沉积序列(乔秀夫,2002).这套地层呈角度不整合覆盖在太古宙‒古元古代基岩之上,自下而上包括长城系、蓟县系(高于庄组、杨庄组、雾迷山组、洪水庄组及铁岭组)、待建系和青白口系.在雾迷山组沉积时期,本区处于裂陷槽向克拉通盆地转化的过渡阶段,总体上延续了杨庄末期的海退环境,以潮坪沉积为主(罗顺社等,2011; 贾雨东等,2020),地层中发育典型的潮坪型碳酸盐岩米级沉积旋回(Goldhammer et al.,1990),旋回间常有短时沉积间断.该米级旋回层序通常自下而上包括潮下高能叠层石生物层及凝块石生物丘、潮间坪硅化藻席白云岩、潮间坪含陆源砂泥晶白云岩、潮上坪含喀斯特角砾泥质白云岩、泻湖相白云质泥页岩和代表暴露标志的古土壤层、淡水方解石介壳及硅化壳等(梅冥相等,1999;周洪瑞等,2006).雾迷山组沉积之后,研究区整体表现出十分稳定的盖层沉积,缺失晚奥陶世‒早石炭世的地层,至中生代的燕山运动形成近东西向横贯本区的马兰峪复背斜.受其影响,雾迷山组多呈倾斜地层出现,使得部分赋矿层位出露地表(图2a).

研究区包括遵化市东旧寨、刘备寨,玉田县唐自头、丰润县姜家营4个矿区(图1b),均分布在马兰峪复背斜南翼的左家坞向斜内.该向斜呈北东‒南西向展布,向南西向倾伏,向斜翼部出露高于庄组、杨庄组,核部为雾迷山组.其中刘备寨、东旧寨、唐自头矿区位于左家坞向斜北翼,地层南倾,倾角 20°~50°,姜家营一带位于左家坞向斜南翼,地层北倾,倾角20°~40°.矿区内多发育一般断裂,受构造及岩浆活动影响较小.目前在唐自头矿区发现矿体数量13层,厚度为1.50~2.62 m,Li2O品位0.1%~0.15%;刘备寨矿区矿体数量为13层,厚度为1.09~4.19 m,Li2O品位0.1%~0.24%;姜家营矿区矿体数量为18层,厚度为1.08~4.78 m,Li2O品位0.1%~0.32%;东旧寨矿区矿体数量为21层,厚度为1.04~5.59 m,Li2O品位0.1%~0.42%.富锂层位集中分布于雾迷山组中,以一、二段居多,三段相对较少,四段未发现.矿石为泥质白云岩或白云质泥岩,新鲜面多呈浅灰‒深灰色、浅绿色,泥‒晶粒结构,块状、叶片状构造,岩石质地细腻,硬度较小(图2b).

2 样品采集与分析方法

2.1 样品采集

本次采集样品共计55件.其中在东旧寨矿区雾迷山组一段采集样品7件(编号GBL12和GBL15),刘备寨矿区雾迷山组二段采集2件(编号LBZ),姜家营矿区雾迷山组三段地表采集8件(编号JJY和ZJG),姜家营ZK4001钻孔中采集样品38件(编号ZK4001).采样位置见图1.其中55件样品中含矿样品14件,岩性为白云质泥岩、泥质白云岩,其余为非富锂的粉晶白云岩、细晶白云岩、燧石白云岩等.

2.2 分析方法

本次XRD分析、全岩主、微量元素分析在南京宏创地质勘查技术服务有限公司千级超净实验室完成.XRD采用德国Bruker公司制造的D8 Advance型X射线衍射仪完成.X射线源为Cu Kα靶(λ= 0.154 nm),Ni滤波片.测试所用管电流为40 mA,管电压为40 kV,扫描速度1°/min,扫描范围为3°~60°(2θ).根据流体力学中的斯托克斯沉降定理,采用离心分离方法分别提取粒径小于10 μm和小于2 μm的黏土矿物样品.粒径小于10 μm的黏土矿物样品用于测定黏土矿物在原岩中的总相对含量;粒径小于2 μm的黏土矿物样品用于测定各种黏土矿物的相对含量.主量元素使用电感耦合等离子体光谱仪(ICP⁃OES),检测结果的相对误差小于3%,测试以GB/T14506.31-2019《硅酸盐岩石化学分析方法第31部分:二氧化硅等12个成分量测定偏硼酸锂熔融‒电感耦合等离子体原子发射光谱法等》为依据;包括稀土在内的微量元素使用Agilent 7900 ICP⁃MS完成,并对碳酸盐岩样品的消解采取部分消解碳酸盐成分.具体步骤如下:称取 50 mg碳酸盐岩粉末至15 mL的离心管中,加入 1 mol/L HAc水浴超声3次,每次20 min,后经 5 000 rpm转速离心提取上清液,并将其蒸干;重复加入两次浓HNO3,分别蒸干,转化样品为硝酸盐,加入300 µL HNO3消解样品,用H2O稀释至10 mL.

锂元素的浸出及吸附分析在中国地质大学(武汉)地球科学学院沉积物质循环模拟实验室完成.实验所涉及溶液的离子浓度由Thermo scientific DIONEX AQUION RFIC离子色谱仪测试.离子色谱仪标样的相对标准偏差在1%以内,离子浓度结果分析误差在5%以内.锂元素的浸出实验分为两组,首先取岩石样品粉末2 g以内,分别加入30 mL的去离子水(实验A⁃1)和30 mL质量分数为10%的HCl(实验A⁃2)震荡168 h后,所得溶液经0.22 μm的醋酸纤维素滤膜过滤,并保存在样品瓶中使用离子色谱仪分析样品Li+浓度.锂元素的吸附实验分为两组.第一组吸附实验(实验B⁃1)分为三步:①在岩石样品粉末中加30 mL去离子水震荡168 h后抽取溶液;②将残余固体物质经离心机离心并干燥后加30 mL质量分数为10%的HCl震荡168 h后抽取溶液;③将步骤2剩余固体物质经离心机离心并干燥后加103.99 mg/L富Li溶液震荡168 h后抽取溶液,经0.22 μm的醋酸纤维素滤膜过滤,使用离子色谱仪分析样品Li+浓度.第二组吸附实验(实验B⁃2)则是直接在岩石样品粉末中加入 30 mL的103.99 mg/L的富Li溶液混合震荡168 h后,经0.22 μm的醋酸纤维素滤膜过滤,使用离子色谱仪分析样品Li+浓度.

3 分析结果

3.1 矿物组成特征

镜下鉴定(图2c)及矿物X射线衍射分析(XRD)结果显示,7件富锂泥质白云岩(表1,Li>450 ppm,ppm=10-6)矿物成分主要为白云石,其次为石英,二者含量为80.8%~92.4%.其余为黏土矿物和少量钾长石,以及含量很少且不均匀分布的方解石、黄铁矿.黏土矿物含量在5.2%~17.1%之间,除ZK4001⁃33以海泡石为主外,其余6件样品中的黏土矿物主要由伊蒙混层、伊利石组成,占到黏土矿物含量的75.2%~98.4%,其他黏土矿物如高岭石、绿泥石含量较少.值得一提的是,地表样品(GBL1012⁃2、GBL1015⁃2、LBZ后⁃1)中普遍存在高岭石、绿泥石,而钻孔样品(ZK4001⁃4、ZK4001⁃11、ZK4001⁃33)中未出现,这可能是在现代表生风化过程中,高岭石由伊利石、蒙脱石等黏土矿物转化而成的.SEM⁃EDS结果显示,伊利石和伊蒙混层呈絮状充填于白云石矿物的缝隙中(图2d).

3.2 地球化学特征

14件富锂泥质白云岩主量元素相差不大(表2,Li>450 ppm),其中SiO2含量为16.88%~37.28%,Al2O3含量为1.38%~3.99%,MgO含量为15.47%~18.82%,CaO含量为14.52%~23.14%,TiO2含量为0.05%~0.16%,K2O含量为0.83%~2.95%,Na2O含量为0.01%~0.35%.总体来看,富锂泥质白云岩相较于非富锂样品具有相对低的Ca、Mg含量和高的Si、Al、Ti、K、Na含量(表2).

富锂样品的Li含量为491~1 910 ppm,是大陆上地壳(UCC, 20 ppm;Taylor and McLennan,1985)的25~100倍,Sr含量为28~89 ppm,Ba含量变化较大,含量为49~5 337 ppm,Rb含量为27~87 ppm,U为含量0.59~2.50 ppm(表3).微量元素的平均大陆上地壳(UCC)标准化蛛网图(图3a)显示,稀有金属元素Nb、Ta、Rb、Cs、Zr、Hf相对大陆上地壳(UCC)并不富集.相对于非富锂白云岩,富锂样品具有高度富集Rb、K、Ba、Th、U和相对贫Sr、Ti的特征,表现为典型的大陆地壳地球化学属性(Taylor and McLennan,1985).

富锂样品稀土总量为17~65 ppm,平均41 ppm(表3),低于UCC的对应值(ΣREE+Y=146.37 ppm),高于海相碳酸盐岩的对应值(<10 ppm; 汤好书等,2009).分析样品的轻重稀土元素含量比值(LREE/HREE)为7.96~10.04,平均9.24,LaN/YbN平均值10.07.在平均大陆上地壳(Taylor and McLennan,1985)标准化的REE配分模式图上,分析样品多表现较平坦的分布特征(图3b).富锂样品具有较大的Eu/Eu*变化范围(0.8~4.35),表现出弱负Eu异常(4件样品)到明显正Eu异常(10件样品)的特征;非富锂样品也同样具有较大的Eu/Eu*变化范围(0.44~3.71),但多数不具有显著的Eu正异常特征.富锂样品的Ce负异常不明显(Ce/Ce*范围为0.91~0.96,均值为0.94),而多数非富锂样品具有轻微的负Ce异常(Ce/Ce*范围为0.63~1.12,平均0.85),Eu异常为从明显的负Eu异常(Eu/Eu*=0.44)到明显的正Eu异常(Eu/Eu*=3.71).

3.3 锂元素的浸出和吸附特征

对东旧寨矿区采集的6件泥质白云岩样品开展锂的浸出实验(表4).实验A⁃1与实验A⁃2结果显示,所有样品的HCl浸出百分比大于77%,去离子水浸出百分比均低于4%(表4),表明盐酸的浸出效果十分显著(图4).在去离子水浸出实验中,反应溶液中Mg2+的浓度为14~25 mg/L,Ca2+的浓度为12~47 mg/L(表5);在盐酸浸出实验中,反应溶液中Mg2+的浓度为12 344~15 589 mg/L,Ca2+的浓度为16 971~24 484 mg/L(表5).在锂吸附实验结果中(表6),两组实验溶液与富锂溶液相比,溶液中的Li+浓度都减少,减少百分比分别为4.6%、3.4%、3.1%、6.7%,显示样品粉末无论是否经过去离子水和10%HCl溶液浸取,都吸附了溶液中的Li+图5).

4 讨论

4.1 雾迷山组富锂岩系的锂富集机制分析

雾迷山组富锂岩系形成于潮上坪‒泻湖环境,这和晚古生代富锂岩系的沉积环境基本一致(表7),如华北本溪组富锂黏土岩沉积环境为滨岸、泻湖(王银川等,2011;李战明等,2012),华南地区滇中倒石头组富锂黏土岩沉积环境主要为潮坪‒局限台地(温汉捷等,2020),黔北大竹园组富锂铝土矿沉积环境为湖泊和潮坪(刘辰生等,2015),桂西合山组富锂黏土岩沉积环境为潮坪‒泻湖(李惠等,2016).这表明还原、低能、滞留、局限的滨岸沉积环境有利于沉积型锂矿的形成(温汉捷等,2020; 张英利等,2022).但略有不同的是,雾迷山组主要是一套海相沉积地层,富锂岩系主要形成于碳酸盐岩台地相,沉积物以富泥质的白云岩为主;而晚古生代黏土型富锂岩系多处于陆源碎屑滨岸相,沉积物主要为硅酸盐矿物化学风化后形成的泥页岩.地球化学特征显示,雾迷山组富锂泥质白云岩的Sr/Cu比值在4.38~50.47之间,绝大多数大于5,指示了较为干旱的气候特征(黄成刚等,2016; 宋运红等,2022).古地磁数据显示,华北在蓟县纪时期处于副热带纬度附近(陈晋镳等,1980),雾迷山组沉积期整体为干旱的气候环境,风化作用相对较弱,陆源碎屑物质输入相对较少.与之不同,晚古生代的富锂岩系沉积期普遍为低纬度湿热性的气候特征,雨量充足,植被发育,风化作用较强,可以提供大量的黏土等细粒碎屑物质.因此,雾迷山组富锂岩系与晚古生代富锂岩系在沉积环境方面具有相似性,但在古水文气候上存在较大差别.

研究区样品的含矿性统计结果表明,目前发现的锂富集层位仅分布于雾迷山组中,而下伏沉积环境、构造背景、岩石组合较为相似的高于庄组和杨庄组,以及上覆洪水庄组泥页岩中均未见锂元素的异常富集现象,表明其成矿物质来源受到雾迷山时期风化作用影响.微量元素蛛网图和稀土元素配分图显示,富锂泥质白云岩与下部非富锂白云岩具有较大差别,表明其并非下伏碳酸盐岩风化产物.相对较高的SiO2含量,没有较明显的Ce负异常,高度富集Rb、K、Ba、Th、U等元素而相对贫Nb、Ti等元素,说明富锂岩系在沉积时有较多的陆源碎屑物质加入.此外,野外调查结果显示,雾迷山组富锂层位集中分布于靠近山海关古陆的有限区域内,并且越靠近山海关古陆,富锂层位明显变厚、增多,锂含量也有升高的趋势(图1b).富锂岩系分布规律及上述地球化学特征均指示,锂的来源应与山海关古陆岩石风化有关.前人研究揭示,新老造山带及古老克拉通是硬岩锂矿赋存的最佳环境,大部分伟晶岩型锂产在太古宙‒中元古代的克拉通中 (许志琴等,2021;隰弯弯等,2023).研究区位于燕辽裂陷槽东南部边缘,紧邻山海关古陆,山海关古陆广泛分布有大面积的太古代变质岩、2.5 Ga的花岗岩、1.8 Ga的辉绿岩和1.7~1.6 Ga的非造山型岩浆岩(Zhai and Santosh,2011;刘树文等,2018).雾迷山时期本区长期处于潮坪环境,距离海岸较近.因此,很可能是山海关古陆上的某一期富锂岩体风化为雾迷山组富锂岩系的形成提供了必要的成矿物质.需要注意的是,富锂样品在大陆上地壳稀土配分模式多显示有显著的正Eu异常,推测研究区可能受到热液活动的影响.然而,分析样品的Li含量与Eu/Eu*之间没有相关性(R2=0.06),且Li>1 000 ppm的样品不具有显著的正Eu异常(Eu/Eu*=0.78~1.19).这一观察表明,热液作用对泥质碳酸盐岩中锂的含量影响很小,Li的来源应主要受陆源输入控制.

雾迷山组泥质白云岩的浸出实验结果显示(图4),样品在去离子水作用下浸出百分比很低,可以忽略不计,即去离子水基本不会造成样品中Li+的浸出,同时也没有Ca、Mg离子的大量析出;而在10%HCl溶液的浸取实验中,Li+的浸出率百分比达77%以上,同时伴随有Mg、Ca离子的大量析出.将吸附实验B⁃1与B⁃2进行对比(图5),结合表4中的数据,可以发现无论是直接加103.99 mg/L的Li+溶液还是经过去离子水和盐酸消解后再加 103.99 mg/L的Li+溶液,溶液中Li+浓度都相较于初始Li+溶液浓度减少,表明两组实验中样品都吸附了Li+.而实验B⁃1中经盐酸浸取后依然吸附Li+,表明样品中残余的未被消解的黏土矿物吸附了Li+.目前普遍认为黏土型锂矿中的锂主要赋存于绿泥石、蒙脱石、高岭土和伊利石等黏土矿物中(温汉捷等,2020; 凌坤跃等,2021; 龙珍等,2021; 张英利等,2022),其他含铝矿物和重矿物(如一水硬铝石、三水铝石、勃姆石、锆石、金红石、磷钇矿)也有少量锂的富集(金中国等,2015; 龙珍等,2021).锂是以离子吸附状态还是类质同象替换方式赋存于黏土矿物中一直存在较大的争议(钟海仁等,2019; 姚双秋等,2021; 赵越等,2022).本次实验显示,10%HCl溶液可以将样品中的大部分白云石溶解而同时具有大量的Li+浸出,这似乎表明锂可能与富Mg⁃Ca碳酸盐矿物有关.而在后续的吸附实验中,经过去离子水和盐酸消解后的黏土矿物虽然对Li显示一定的吸附能力,但总体吸附作用较弱,没有导致富锂溶液中Li含量的显著降低.孙艳等(2023)对本区5件不同Li含量的泥质白云岩样品的浸出实验显示,蒸馏水和低浓度(0.01M)HCl溶液均难以将锂浸出,认为锂以类质同象的形式赋存在矿物晶格中.在本研究的10%盐酸浸出实验中,Li随碳酸盐矿物的溶解而快速浸出.因此推测,锂可能主要以碳酸盐晶格填隙的状态存在(Marriott et al.,2004),少量为黏土矿物吸附态存在,但也可能部分存在于黏土矿物晶格中.

4.2 雾迷山组富锂岩系的独特性:与晚古生代富锂岩系的对比分析

目前,国内发现的沉积岩型富锂岩系主要分布于晚古生代黏土岩地层中(王登红等,2013; 钟海仁等,2019; 张英利等,2022;表7).研究区的富锂岩系赋存于中元古代雾迷山组富泥质白云岩地层中,这是我国首次在前寒武纪地层中发现的潜在锂矿资源,是目前已知的最古老的富锂地层.雾迷山组是一套以白云岩为主的沉积地层,沉积厚度巨大,沉积韵律发育,韵律层整体表现为水体由深变浅的过程.富锂岩系为沉积韵律层上部潮上带‒泻湖环境沉积的泥质白云岩和白云质泥岩,其下部发育潮下‒潮间坪环境形成的叠层石白云岩、藻席白云岩、燧石白云岩.尽管并不是每个韵律层中的富泥质白云岩都存在锂的富集,但总体上富锂岩系是以韵律层为单元的形式不断重复出现.相比而言,西南地区和华北的晚古生代富锂岩系均产于碳酸盐岩基底不整合面之上的黏土岩或铝土质泥岩中(王登红等,2013; 温汉捷等,2020;凌坤跃等,2021; 覃顺桥等,2023).例如,在桂中地区上二叠统合山组富锂岩系平行不整合覆盖在中二叠统茅口组灰岩之上(赵浩男等,2022),豫西地区晚石炭世本溪组富锂岩系与下伏中奥陶统马家沟组灰岩呈不整合接触关系(张英利等,2023),与下伏灰岩明显是不同沉积环境的产物(图6).

研究区雾迷山组的富锂岩系主要为泥质白云岩、白云质泥岩,矿物组成以白云石为主,其次为石英和黏土矿物,其中黏土矿物含量不足20%,主要以伊蒙混层、伊利石为主.而晚古生代的富锂岩系主要为陆相‒过渡相的黏土岩、铝土岩或铝土矿(Ling et al.,2018),主要由富铝矿物和黏土矿物组成.例如,新民富锂铝土矿主要由硬水铝石以及高岭石组成,次要矿物有勃姆石、三水铝石、绿泥石和云母等(龙珍等,2021),大竹园组富锂岩石以一水硬铝石为主,其次为高岭石、伊利石和绿泥石(王登红等,2013),滇中九架炉组与倒石头组富锂黏土岩主要矿物有一水硬铝石、勃姆石、蒙脱石、伊利石、高岭石等(温汉捷等,2020).由此可见,雾迷山组的富锂岩系在产出层位、岩性和矿物组成上与晚古生代的富锂岩系存在显著差别.

雾迷山组富锂岩系与晚古生代富锂岩系在地球化学组成上也具有差异.前人研究认为,黔中九架炉组黏土岩的平均锂含量为2 145 ppm,最高达7 384 ppm(崔燚等,2018),滇中倒石头组黏土岩的平均锂含量为3 000 ppm,最高可达11 000 ppm(温汉捷等,2020),豫西铝土质泥岩的平均锂含量为1 487 ppm(张英利等,2023).雾迷山组的富锂泥质白云岩平均锂含量为743 ppm,最高为1 953 ppm,与晚古生代的富锂岩系相比其平均锂含量偏低,同时具有较高的Si/Al、(MgO+CaO)/Al2O3和K2O/Al2O3比值,这与富锂岩系富含白云石而少黏土矿物的岩石组成一致,而较高的K/Al比值可能与岩石中钾长石有关.

通过表8对比不难发现,研究区富锂岩系在成矿时代、赋矿层位、矿石类型、矿物组成、地球化学特征和赋存状态等方面与我国晚古生代富锂岩系具有较大的差别.造成这种差异的原因主要是成矿物质来源和沉积气候环境:研究区雾迷山组成矿物质来源于山海关古陆早期富锂岩体的风化,含锂风化物在相对干旱的碳酸盐岩台地相环境沉积,形成富锂的白云质泥岩、泥质白云岩.而晚古生代黏土型锂矿中锂的来源除了岩浆活动之外,也可能来自于下伏不纯碳酸盐岩,富锂岩石形成于湿热的陆源碎屑滨岸相环境,主要为硅酸盐矿物化学风化后形成的黏土岩、铝土岩.因此,不同于晚古生代黏土型锂矿,本次发现的富锂泥质碳酸盐岩表明锂在碳酸盐岩沉积成岩阶段已经富集成矿,指示了一种新的锂的富集机制和成矿过程,如同铝土岩系地层和煤系地层中的黏土型锂矿,是一种新的黏土型锂矿亚类.

值得一提的是,研究区雾迷山组富锂岩系一方面表明泥质碳酸盐岩具备充足的锂,从而可以成为黏土型锂矿的物源区,支持了碳酸盐黏土型锂矿理论中成矿物质来源于基底不纯碳酸盐岩风化的观点;另一方面也说明锂在地球表层可能存在从岩浆岩到不纯碳酸盐岩再到黏土岩的迁移富集过程.近些年,大多数学者认为不同类型的锂矿床在成因上具关联性,构成了一个锂的物质循环过程(王登红等,2022; 徐兴旺等,2023).具体表现为:富锂岩体风化剥蚀下来的锂为沉积型锂矿提供了物质来源,沉积岩中富集的锂又为重熔花岗岩型和伟晶岩型锂矿的形成奠定了物质基础.本次强调了地表过程中的风化和沉积作用导致了锂的富集,并认为从富锂岩体到沉积型锂矿,可能存在一个锂在碳酸盐岩中富集的中间过程.

5 结论

(1)研究区雾迷山组黏土型锂资源形成于干旱的碳酸盐岩潮坪‒泻湖亚相;锂可能主要以结构锂的形式赋存于碳酸盐矿物当中,而少部分为吸附态或存在于黏土矿物晶格.成矿物质的来源与山海关古陆上富锂岩体风化有关,而非下伏碳酸盐岩.

(2)本次发现的富锂岩系表明锂在碳酸盐岩成岩阶段已经富集成矿,锂在地球表层循环中可能存在从岩浆岩到不纯碳酸盐岩再到黏土岩的迁移富集过程.

(3)研究区雾迷山组黏土型锂资源在成矿时代、赋矿层位、矿石类型、矿物组成、地球化学特征、沉积环境、赋存状态、物质来源等方面与碳酸盐黏土型锂矿床存在明显的不同,指示了一种新的锂富集机制和成矿过程.

参考文献

[1]

Castor, S. B., Henry, C. D., 2020. Lithium⁃Rich Claystone in the McDermitt Caldera, Nevada, USA: Geologic, Mineralogical, and Geochemical Characteristics and Possible Origin. Minerals, 10(1): 68. https://doi.org/10.3390/min10010068

[2]

Chen, J. B., Zhang, H. M., Zhu, S. X., et al., 1980. A Study of the Sinian Subrealm in Jixian. Tianjin Science and Technology Press, Tianjin (in Chinese).

[3]

Cui, Y., Luo, C. G., Xu, L., et al., 2018.Weathering Origin and Enrichment of Lithium in Clay Rocks of the Jiujialu Formation, Central Guizhou Province, Southwest China.Bulletin of Mineralogy, Petrology and Geochemistry, 37(4): 696-704 (in Chinese with English abstract).

[4]

Goldhammer, R. K., Dunn, P. A., Hardie, L. A., 1990. Depositional Cycles, Composite Sea⁃Level Changes, Cycle Stacking Patterns, and the Hierarchy of Stratigraphic Forcing: Examples from Alpine Triassic Platform Carbonates. Geological Society of America Bulletin, 102(5): 535-562. https://doi.org/10.1130/0016⁃7606(1990)102<0535:DCCSLC>2.3.CO;2

[5]

Guo, R. T., 2014. Sequence Stratigraphic Framework and Paleographic Environment Evolution of the Mesoproterozoic Wumishan Formation, Western Yanshan Mountains.Journal of Jilin University (Earth Science Edition), 44(2): 446-459 (in Chinese with English abstract).

[6]

Hofstra, A. H., Todorov, T. I., Mercer, C. N., et al., 2013. Silicate Melt Inclusion Evidence for Extreme Pre⁃Eruptive Enrichment and Post⁃Eruptive Depletion of Lithium in Silicic Volcanic Rocks of the Western United States: Implications for the Origin of Lithium⁃Rich Brines. Economic Geology, 108(7): 1691-1701. https://doi.org/10.2113/econgeo.108.7.1691

[7]

Huang, C. G., Yuan, J. Y., Tian, G. R., et al., 2016.The Geochemical Characteristics and Formation Mechanism of the Eocene Lacustrine Dolomite Reservoirs in the Western Qaidam.Earth Science Frontiers, 23(3): 230-242 (in Chinese with English abstract).

[8]

Jia, Y. D., Wang, D. H., Wang, X. Y., et al., 2020. Sedimentary Environment and Geochemical Features of Wumishan and Hongshuizhuang Formations in Jizhou, Tianjin.Global Geology, 39(3): 569-577 (in Chinese with English abstract).

[9]

Jiang, S. Y., Wen, H. J., Xu, C., et al., 2019. Earth Sphere Cycling and Enrichment Mechanism of Critical Metals: Major Scientific Issues for Future Research. Bulletin of National Natural Science Foundation of China, 33(2): 112-118 (in Chinese with English abstract).

[10]

Jin, Z. G., Zhou, J. X., Huang, Z. L., et al., 2015.The Distribution of Associated Elements Li, Sc and Ga in the Typical Bauxite Deposits over the Wuchuan⁃Zheng’an⁃Daozhen Bauxite Ore District, Northern Guizhou Province.Geology in China, 42(6): 1910-1918 (in Chinese with English abstract).

[11]

Kesler, S. E., Gruber, P. W., Medina, P. A., et al., 2012. Global Lithium Resources: Relative Importance of Pegmatite, Brine and Other Deposits. Ore Geology Reviews, 48: 55-69. https://doi.org/10.1016/j.oregeorev.2012.05.006

[12]

Li, H., Shao, L. Y., Wang, F. G., et al., 2016. Study on Upper Permian Sedimentary Environment and Coal Accumulation Pattern in Qiubei Area, Southeastern Yunnan. Coal Geology of China, 28(4): 1-8 (in Chinese with English abstract).

[13]

Li, J. K., Liu, X. F., Wang, D. H., 2014. The Metallogenetic Regularity of Lithium Deposit in China.Acta Geologica Sinica, 88(12): 2269-2283 (in Chinese with English abstract).

[14]

Li, Z. M., Ma, X. H., Guo, R., et al., 2012. Late Carboniferous Lithofacies Palaeogeogrphic Feature of Daye Bauxite Mine Area in Dengfeng County, Henan Province and the Prospecting Direction. Contributions to Geology and Mineral Resources Research, 27(4): 433-439 (in Chinese with English abstract).

[15]

Ling, K. Y., Wen, H. J., Zhang, Q. Z., et al., 2021. Super⁃Enrichment of Lithium and Niobium in the Upper Permian Heshan Formation in Pingguo, Guangxi, China. Scientia Sinica Terrae, 51(6): 853-873 (in Chinese).

[16]

Ling, K. Y., Wen, H. J., Zhang, Z. W., et al., 2019. Geochemical Characteristics of Dolomite Weathering Profiles and Revelations to Enrichment Mechanism of Trace Elements in the Jiujialu Formation, Central Guizhou Province.Acta Petrologica Sinica, 35(11): 3385-3397 (in Chinese with English abstract).

[17]

Ling, K. Y., Zhu, X. Q., Tang, H. S., et al., 2018. Geology and Geochemistry of the Xiaoshanba Bauxite Deposit, Central Guizhou Province, SW China: Implications for the Behavior of Trace and Rare Earth Elements. Journal of Geochemical Exploration, 190: 170-186. https://doi.org/10.1016/j.gexplo.2018.03.007

[18]

Liu, C. S., Jin, Z. G., Guo, J. H., 2015. Facies Analysis of Sedimentary Bauxite Deposition in Freshwater of Wuzhengdao in Northern Guizhou.Journal of Central South University (Science and Technology), 46(3): 962-969 (in Chinese with English abstract).

[19]

Liu, L. J., Wang, D. H., Liu, X. F., et al., 2017. The Main Types, Distribution Features and Present Situation of Exploration and Development for Domestic and Foreign Lithium Mine. Geology in China, 44(2): 263-278 (in Chinese with English abstract).

[20]

Liu, S. W., Wang, W., Bai, X., et al., 2018. Lithological Assemblages of Archean Meta⁃Igneous Rocks in Eastern Hebei⁃Western Liaoning Provinces of North China Craton, and Their Geodynamic Implications.Earth Science, 43(1): 44-56 (in Chinese with English abstract).

[21]

Long, Z., Fu, Y., He, W., et al., 2021.Geochemical Characteristics and Enrichment Mechanism of Li in Xinmin Bauxite Deposit, Guizhou.Mineral Deposits, 40(4): 873-890 (in Chinese with English abstract).

[22]

Luo, S. S., Chen, X. J., Li, R. Y., et al., 2011. Geochemical Behaviors of the Wumishan Formation in the Jibei Depression of Yanshan Region.Oil & Gas Geology, 32(1): 17-28 (in Chinese with English abstract).

[23]

Ma, Z., Li, J. W., 2018. Analysis of China’s Lithium Resources Supply System: Status, Issues and Suggestions. China Mining Magazine, 27(10): 1-7 (in Chinese with English abstract).

[24]

Marriott, C. S., Henderson, G. M., Crompton, R., et al., 2004.Effect of Mineralogy, Salinity, and Temperature on Li/Ca and Li Isotope Composition of Calcium Carbonate.Chemical Geology, 212(1-2): 5-15. https://doi.org/10.1016/j.chemgeo.2004.08.002

[25]

Mei, M. X., Du, B. M., Zhou, H. R., et al., 1999. A Preliminary Study of the Cyclic Sequences of Composite Sea Level Changes in the Mesoproterozoic Wumishan Formation in Jixian, Tianjin. Sedimentary Facies and Palaeogeography, 19(5): 12-22 (in Chinese with English abstract).

[26]

Meng, Q. R., Wei, H. H., Qu, Y. Q., et al., 2011.Stratigraphic and Sedimentary Records of the Rift to Drift Evolution of the Northern North China Craton at the Paleo⁃to Mesoproterozoic Transition.Gondwana Research, 20(1): 205-218. https://doi.org/10.1016/j.gr.2010.12.010

[27]

Qiao, X. F., 2002. Intraplate Seismic Belt and Basin Framework of Sino⁃Korean Plate in Proterozoic.Earth Science Frontiers, 9(3): 141-149 (in Chinese with English abstract).

[28]

Qin, S. Q., Lei, M. R., Ling, K. Y., et al., 2023.Distribution and Enrichment Characteristics of Critical Metals in the Upper Permian Heshan Formation in the Central Guangxi.Bulletin of Mineralogy, Petrology and Geochemistry, 42(1): 157-166 (in Chinese with English abstract).

[29]

Song, Y. H., Liu, K., Dai, H. M., et al., 2022.Palynological Assemblages of Typical Black Soil Profile in the Eastern Songliao Plain and Their Age and Its Implication for Paleoclimatic.Geological Bulletin of China, 41(9): 1528-1538 (in Chinese with English abstract).

[30]

Sun, Y., Geng, X. L., Zhou, W. Z., et al., 2023. Discussion on the Occurrence Status and Genetic Mechanism of Lithium in Dolomite in Jixian Group, Eastern Hebei.Acta Petrologica Sinica, 39(9): 2761-2777 (in Chinese with English abstract).

[31]

Tang, H. S., Chen, Y. J., Wu, G., et al., 2009. Rare Earth Element Geochemistry of Carbonates of Dashiqiao Formation, Liaohe Group, Eastern Liaoning Province: Implications for Lomagundi Event. Acta Petrologica Sinica, 25(11): 3075-3093 (in Chinese with English abstract).

[32]

Taylor, S. R.,McLennan, S. M., 1985. The Continental Crust: Its Compositionand Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rock.Journal of Geology, 94 (4): 632-633.

[33]

Wang, D. H., Dai, H. Z., Liu, S. B., et al., 2022. New Progress and Trend in Ten Aspects of Lithium Exploration Practice and Theoretical Research in China in the Past Decade. Journal of Geomechanics, 28(5): 743-764 (in Chinese with English abstract).

[34]

Wang, D. H., Li, P. G., Qu, W. J., et al., 2013. Discovery and Comprehensive Evaluation of Tungsten and Lithium in Dazhuyuan Bauxite Mine, Guizhou Province. Scientia Sinica Terrae, 43(1): 44-51 (in Chinese).

[35]

Wang, Q. S., Yuan, C. H., 2019. The Global Supply Situation of Lithium Ore and Suggestions on Resources Security in China.China Mining Magazine, 28(5): 1-6 (in Chinese with English abstract).

[36]

Wang, W., Jiang, S. Y., Ge, W., et al., 2024. Geological Characteristics and Genetic Mechanism of the Lacustrine Sedimentary Clay Type Lithium Deposit. Bulletin of Mineralogy, Petrology and Geochemistry, 43(1): 64-78, 6 (in Chinese with English abstract).

[37]

Wang, Y. C., Li, Z. K., Zhai, Z. F., et al., 2011. Benxi Formation Bauxite Mineralization Condition and Rule in Shanxi Province. Northwestern Geology, 44(4): 82-88 (in Chinese with English abstract).

[38]

Wen, H. J., Luo, N., Du, S. J., et al., 2020.Carbonate⁃Hosted Clay⁃Type Lithium Deposit and Its Prospecting Significance.Chinese Science Bulletin, 65(1): 53-59 (in Chinese).

[39]

Xi, W. W., Zhao, Y. H., Ni, P., et al., 2023.Main Types, Characteristics, Distributions, and Prospecting Potential of Lithium Deposits.Sedimentary Geology and Tethyan Geology, 43(1): 19-35 (in Chinese with English abstract).

[40]

Xu, X. W., Zhai, M. G., Hong, T., et al., 2023. Migration⁃Circulation Processes and Enrichment⁃Mineralization Mechanism of Lithium⁃Beryllium Elements in the Continental Crust. Acta Petrologica Sinica, 39(3): 639-658 (in Chinese with English abstract).

[41]

Xu, Z. Q., Fu, X. F., Zhao, Z. B., et al., 2019. Discussion on Relationships of Gneiss Dome and Metallogenic Regularity of Pegmatite⁃Type Lithium Deposits.Earth Science, 44(5): 1452-1463 (in Chinese with English abstract).

[42]

Xu, Z. Q., Zhu, W. B., Zheng, B. H., et al., 2021. New Energy Strategy for Lithium Resource and the Continental Dynamics Research—Celebrating the Centenary of the School of Earth Sciences and Engineering, Nanjing University.Acta Geologica Sinica, 95(10): 2937-2954 (in Chinese with English abstract).

[43]

Yao, S. Q., Pang, C. J., Wen, S. N., et al., 2021. Li⁃Rich Claystone in the Upper Permian Heshan Formation in Western Guangxi and Its Prospecting Significance.Geotectonica et Metallogenia, 45(5): 951-962 (in Chinese with English abstract).

[44]

Yu, F., Wang, D. H., Yu, Y., et al., 2019.The Distribution and Exploration Status of Domestic and Foreign Sedimentary⁃Type Lithium Deposits.Rock and Mineral Analysis, 38(3): 354-364 (in Chinese with English abstract).

[45]

Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005

[46]

Zhang, Q. D., Li, D. Z., Li, Z. W., et al., 2024.Geochemical Characteristics and Genesis of Lithium Rich Clay Rocks in the Pudi Area of Northwestern Guizhou.Earth Science Frontiers, 31(4): 258-280 (in Chinese with English abstract).

[47]

Zhang, Y. L., Chen, L., Wang, K. M., et al., 2022.Metallogenic Characteristics of Sedimentary Lithium Resources.Mineral Deposits, 41(5): 1073-1092 (in Chinese with English abstract).

[48]

Zhang, Y. L., Chen, L., Wang, K. M., et al., 2023. Geochemistry and Li⁃Rich Characteristics of Mudstones from Upper Carboniferous Benxi Formation in Gongyi Area, the Western Henan, China and Their Controlling Factors. Journal of Earth Sciences and Environment, 45(2): 208-226 (in Chinese with English abstract).

[49]

Zhao, H. N., Xing, L. C., He, H. T., et al., 2022.The Mode of Occurrence of Niobium in Bauxite of the Upper Permian Heshan Formation in the Pingguo Area, Guangxi Autonomous Region, China.Acta Mineralogica Sinica, 42(4): 453-460 (in Chinese with English abstract).

[50]

Zhao, Y. Y., Fu, J. J., Li, Y., 2015. Super Large Lithium and Boron Deposit in Jadar Basin, Serbia.Geological Review, 61(1): 34-44 (in Chinese with English abstract).

[51]

Zhao, Y., Ma, W. P., Yang, Y., et al., 2022. Experimental Study on the Adsorption of Li+ by Clay Minerals- Implications for the Mineralization of Clay⁃Type Lithium Deposit. Acta Mineralogica Sinica, 42(2): 141-153 (in Chinese with English abstract).

[52]

Zhong, H. R., Sun, Y., Yang, Y. Q., et al., 2019. Bauxite(Aluminum)⁃Type Lithium Resources and Analysis of Its Development and Utilization Potential. Mineral Deposits, 38(4): 898-916 (in Chinese with English abstract).

[53]

Zhou, H. R., Mei, M. X., Du, B. M., et al., 2006. Study on the Sedimentary Features of High Frequency Cyclothems of the Wumishan Formation at Jixian, Tianjin. Geoscience, 20(2): 209-215 (in Chinese with English abstract).

[54]

Zhu, X. Q., Zhu, W. B., Ge, R. F., et al., 2014. Late Paleozoic Provenance Shift in the South⁃Central North China Craton: Implicationsfor Tectonic Evolution and Crustal Growth. Gondwana Research, 25(1): 383-400. https://doi.org/10.1016/j.gr.2013.04.009

基金资助

中央引导地方科技发展资金项目基础研究项目(216Z4201G)

国家自然科学基金项目(42122015)

河北省战略性关键矿产研究协同创新中心基金项目(HGUXT⁃2023⁃8)

AI Summary AI Mindmap
PDF (6525KB)

72

访问

0

被引

详细

导航
相关文章

AI思维导图

/