奥陶纪-志留纪转折期火山活动与异常高有机质沉积:以中国华南地区为例

孔维亮 ,  邱振 ,  张家强 ,  张琴 ,  刘雯 ,  曲天泉 ,  高万里 ,  蔡光银 ,  江冲

地球科学 ›› 2025, Vol. 50 ›› Issue (12) : 4583 -4603.

PDF (13515KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (12) : 4583 -4603. DOI: 10.3799/dqkx.2025.125

奥陶纪-志留纪转折期火山活动与异常高有机质沉积:以中国华南地区为例

作者信息 +

Volcanic Activity and Extraordinarily High Organic Matter Deposition across Ordovician-Silurian Transition: A Case Study from South China

Author information +
文章历史 +
PDF (13839K)

摘要

大规模火山活动被认为是全球环境气候变化及生物多样性波动的重要驱动机制之一.它不仅能够促进海洋水体表层生产力提高,也可增强其底部水体硫化缺氧程度,从而有利于有机质沉积富集.奥陶纪-志留纪转折期全球火山活动频繁,伴随着广泛的黑色页岩沉积,并集中发育着异常高有机质层段(TOC≥3.0%).基于来自中国华南地区五峰组-龙马溪组20余个典型钻井和露头剖面的800余件样品的数据(包括TOC、主微量元素与汞含量及汞同位素等),总结了奥陶纪-志留纪转折期显性火山灰的赋存状态和识别特征,归纳了主微量元素与汞含量及汞同位素对隐性火山灰的示踪作用,系统探讨了该时期火山活动对海洋环境演化和异常高有机质沉积的潜在影响.结果表明:(1)显性与隐性火山灰的分布特征为重建该时期火山活动的历史轨迹提供了重要依据;(2)火山活动通过向海洋中输入大量磷,促进海洋表层初级生产力提高,并驱动了海洋底部缺氧水体扩张;(3)缺氧水体加剧了磷的重循环作用,进一步提高了初级生产力;(4)火山活动增强的风化作用加大了陆地硫酸盐输入,能够进一步促进海洋底部水体硫化缺氧程度.奥陶纪末期华南地区持续的火山活动及其相关效应,促进了奥陶纪-志留纪转折期海洋表层初级生产力提高和底部水体硫化缺氧扩张,最终促使该区五峰组-龙马溪组的异常高有机质规模沉积.

Abstract

Large-scale volcanic activity is recognized as one of the critical drivers of global climate and environmental changes, as well as biodiversity fluctuations. It can enhance marine surface primary productivity and promote the development of euxinic bottom water conditions, thus facilitating organic-rich sedimentation. Across the Ordovician-Silurian transition, intense global volcanic activities coincided with the widespread deposition of black shales and the development of organic-rich intervals characterized by extraordinarily high total organic matter (TOC≥3.0%). Based on more than 800 samples, including TOC, major and trace elements, mercury (Hg) concentrations and Hg isotopes, collected from over 20 typical wells and sections of the Wufeng-Lungmachi formations in South China, this study discusses the occurrence and identification features of visible volcanic ash layers and highlights the application of major and trace elements, Hg concentrations and isotopes to identify cryptotephra. Furthermore, the impact of volcanic activity on marine environmental changes and the formation of extraordinarily high organic matter deposits were investigated. The results suggest follows. (1) The distribution of visible volcanic ash and cryptotephra provides a robust basis for reconstructing volcanic history of this period. (2) Elevated phosphorus inputs from volcanic activity enhanced marine surface primary productivity and expanded the extent of anoxic bottom water. (3) The anoxic conditions promoted phosphorus recycling, thereby sustaining high primary productivity. (4) Enhanced volcanic weathering increased sulfate input, which could further promote euxinic conditions. Sustained volcanic activities and their associated climate and environmental effects contributed to the high primary productivity and euxinic conditions, ultimately leading to the extraordinarily high organic matter accumulation in the Wufeng-Lungmachi shale.

Graphical abstract

关键词

异常高有机质沉积 / 汞和汞同位素 / 火山活动 / 磷重循环 / 奥陶纪-志留纪转折期 / 非常规油气沉积学.

Key words

extraordinarily high organic matter deposition / mercury and mercury isotope / volcanic activity / recycling of phosphorus / Ordovician-Silurian transition / unconventional petroleum sedimentology

引用本文

引用格式 ▾
孔维亮,邱振,张家强,张琴,刘雯,曲天泉,高万里,蔡光银,江冲. 奥陶纪-志留纪转折期火山活动与异常高有机质沉积:以中国华南地区为例[J]. 地球科学, 2025, 50(12): 4583-4603 DOI:10.3799/dqkx.2025.125

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

奥陶纪-志留纪转折期是地质历史上的关键阶段,发生了一系列全球重大地质事件,如火山喷发、气候变冷、海平面升降、海洋缺氧等(邱振和邹才能,2020)(图1).这些事件引发了全球气候、环境及生物多样性的显著变化,并对海洋沉积体系产生了深远影响.这一重大时期,全球范围内广泛沉积了一套黑色富有机质页岩(Melchin et al.,2013).特别是中国华南地区大面积分布的五峰组-龙马溪组黑色页岩,其总有机碳(TOC)含量普遍偏高,其中TOC含量大于3%的异常高有机质富集层段是当前页岩气勘探开发的“甜点段”(图1)(Qiu and Zou,2020;邱振等,2021).这些富集层段,尤其集中分布于五峰组上段和龙马溪组底部,是对奥陶纪-志留纪转折期全球性地质事件的沉积响应.已有研究表明,五峰组-龙马溪组异常高有机质沉积富集主要受控于海洋水体表层高的初级生产力及其与水体循环共同控制着的缺氧底水条件(邱振等,2021;包汉勇等,2023).大规模火山活动被认为是促进海洋表层初级生产力提高和增强底部水体硫化缺氧(euxinic)程度的重要机制之一(Duggen et al.,2007Ayris and Delmelle,2012Schobben et al.,2020Zhao et al.,2021Gernon et al.,2024Liang et al.,2025Qiu et al.,2025).火山喷发释放的火山灰携带大量营养元素(如磷、铁等)可直接促进海洋水体表层初级生产力的提高(Jones and Gislason,2008Hamme et al.,2010Olgun et al.,2013),其进一步加剧的风化作用也是磷(P)等营养元素的重要来源(Longman et al.,2021).初级生产力的提高可导致有机质沉积增多,同时加剧水体中氧的消耗,能够促进海洋底部水体缺氧与硫化,为有机质的保存创造有利条件(Meyer and Kump,2008Olson et al.,2019Schobben et al.,2020).然而,尽管越来越多的研究表明奥陶纪-志留纪转折期火山活动对全球气候和环境变化起到了重要作用(Jones et al.,2017Hu et al.,2020),但目前仍未在该时期发现明确的大火成岩省记录(Gong et al.,2017Derakhshi et al.,2022).此外,奥陶纪-志留纪转折期已发现的火山活动与有机质埋藏峰期总体上对应性较差(图1),含火山灰页岩层段TOC含量也明显低于正常沉积页岩层段(邱振和邹才能,2020),导致该时期火山活动与异常高有机质沉积之间的关系仍存在着不确定性.

奥陶纪-志留纪转折期全球火山活动频发(图2a),在中国华南地区五峰组-龙马溪组地层中广泛发育火山灰沉积,为探讨火山活动与异常高有机质沉积的关系提供了理想的地质窗口.笔者研究团队前期对中国华南地区万和、双河、漆辽、田坝等典型剖面(图2)进行了详细的沉积学、地球化学(主微量元素、汞元素及其同位素)等研究(Zou et al.,2018aQiu et al.,2022a,2022b2025Kong et al.,2025).本文基于来自中国华南地区五峰组-龙马溪组20余个典型钻井和露头剖面800余件样品的数据(包括TOC、主微量元素、Hg含量及Hg同位素等),探讨了奥陶纪-志留纪转折期的火山活动特征及其对异常高有机质沉积的影响.通过揭示火山活动对海洋环境、初级生产力及硫化缺氧条件的多重作用,深化对异常高有机质富集成因的理解,以期为全球类似地质和环境条件下的研究提供新视角.

1 奥陶纪-志留纪转折期火山活动的识别

地质历史时期的大规模火山喷发被认为是导致全球气候和环境变化的主要驱动因素之一(Wignall,2001,2005Courtillot,2002Ernst and Youbi,2017).火山灰是火山喷发的重要产物,是火山活动最直接的证据,在火山喷发时沉积到周围数百乃至数千公里范围内(Huff,2016).由于其在地质历史尺度上的瞬时性特征,火山灰层通常被视为精确的地质年代标志,为重建地层序列和地质事件提供了关键依据.火山灰在不同沉积环境中经沉积成岩作用及后期蚀变,可形成富钾的黏土岩,这类岩石被称为斑脱岩(苏文博等,2002; 周明忠等,2007; Huff,2008,2016; 胡艳华等,2009a).然而,只有在火山喷发较强时,火山物质才会以显著的火山灰形式沉积并被记录下来.强烈火山喷发产生的大量火山灰能够迅速传播并覆盖广泛区域,形成清晰可辨的火山灰层,成为重要的地质标志.相对而言,较为温和的火山喷发产生的火山物质通常以细粒形式散布在沉积物中,这些火山灰由于粒径较小、分散性强,肉眼往往难以辨认,因此称为隐性火山灰(Plunkett and Pilcher,2018;杜学斌等,2022;Yang et al.,2022).隐性火山灰在岩石学和矿物学的常规研究方法中,例如野外剖面分析、手标本鉴定或显微镜观察,难以被直接识别,但其代表火山活动的重要过程,对于全面了解古代火山活动的时空分布和喷发强度等具有重要意义.因此,通过将常规手段与高精度的地球化学分析和同位素测试等技术手段(Yang et al.,2022Qiu et al.,2025)相结合,揭示显性火山灰和隐性火山灰的分布,能够准确完整地还原该时期火山活动的历史轨迹.

1.1 显性火山灰识别

奥陶纪-志留纪(O⁃S)转折期,全球范围内区域性火山活动频繁,例如欧洲、北美、中国华南等地区的火山作用强烈(图2a),大量火山灰层被发现于黑色页岩或碳酸盐岩地层中(图3;苏文博等,2002; 周明忠等,2007; Huff,2008,2016; 胡艳华等,2009a,2009b; Su et al.,2009Gong et al.,2017Jones et al.,2017; Smolarek⁃Lach et al.,2019Yang et al.,2019,2022Bond and Grasby,2020Tao et al.,2020Hu et al.,2021Qiu et al.,2022a; 葛祥英等,2023;蔡全升等,2024 ).北美地区的火山灰层主要分布于中晚奥陶世的碳酸盐地层中.这些火山灰层通常较薄,厚度仅为几厘米,但由于火山活动的持续性,层数可达100多层.其中著名的火山灰层Millbrig和Deicke的厚度从1~2 m(图3a,3b)(Huff,2008,2016).中国华南地区五峰组-龙马溪组的地层中也发现了广泛分布的火山灰层.近年来,在典型剖面和钻井中识别出密集的火山灰层分布,其中华南上扬子地区的火山灰层约为20层,且通常不超过50层;而下扬子地区的火山灰层较多,如江苏仑山地区的火山灰层超过100层(Yang et al.,2019).华南地区的火山灰沉积主要有两期,分别发生于上奥陶统五峰组和下志留统鲁丹阶至埃隆阶的转折期.这些火山灰的厚度通常较薄,一般不超过5 cm,但五峰组时期火山灰层较为集中,局部地区厚度可以达到10 cm以上(Su et al.,2009Du et al.,2020; 邱振和邹才能,2020; 杜学斌等,2022; Qiu et al.,2022a).

火山灰形成的斑脱岩在野外剖面通常呈现为细粒、富含黏土矿物的带状层,触感光滑且柔润,由于受到周围碳酸盐岩或页岩等的挤压通常会有一定的塑性变形(图3e)(胡艳华等,2009a).在潮湿条件下,斑脱岩层通常呈现灰色、蓝色、绿色或黄色,与上下岩层的颜色差异较为明显(图3).随着风化作用的发生,斑脱岩层的颜色通常转变为黄色(图3h).岩心中的斑脱岩层通常较为新鲜,呈浅灰色、深灰色或褐色,常伴随有黄铁矿条带(杜学斌等,2022).斑脱岩的主要矿物组成具有显著的火山成因特征,其主要成分为黏土矿物和火山成因的晶屑颗粒.其中,黏土矿物以蒙脱石和蒙脱石/伊利石混层矿物为主(周明忠等,2007);晶屑矿物则主要由火山成因的黑云母、石英、角闪石、斜长石、锆石及磷灰石等组成(周明忠等,2007; 胡艳华等,2009b).晶屑矿物中锆石、黑云母、磷灰石等在年代学研究中发挥重要作用,能够精确厘定火山喷发的时序和持续时间,还能为地层对比研究提供可靠的年龄信息.此外,锆石微区微量元素特征和同位素特征还能为揭示火山事件的成因分析和地球动力学背景研究提供关键线索(Yang et al.,2019Jia et al.,2022).

1.2 隐性火山灰识别

1.2.1 主微量元素识别隐性火山灰

新鲜火山灰中大量的火山玻璃在沉积和成岩过程中会发生显著的化学变化,如水解作用下转变为粘土矿物和长石等(Fisher and Schmincke,1984Huff,2016Hong et al.,2019Yang et al.,2022).这一过程导致火山灰的原始组分发生明显的变化,因此其初始地球化学特征难以有效保存.前人对沉积成岩过程中相对较为稳定的矿物进行了分析,来揭示火山灰的源区和火山活动的特征,例如斑脱岩中保存相对较好的磷灰石(Ray et al.,2011Sell and Samson,2011)、黑云母(Bergström et al.,1997Batchelor,2008)、长石(Kiipli et al.,2011,2012)等矿物,为火山灰的识别提供了重要依据.但部分地区强烈的后期成岩作用会破坏火山灰矿物的保存状态.因此,Batchelor (2008)提出通过一系列的地球化学指标来识别火山作用.目前,通常采用活动性较弱的元素或元素组合作为火山灰层的示踪指标.例如,Ti、Zr、Nb、Th等微量元素在火山玻璃转化为粘土矿物和长石的过程中表现为不活动性元素(Kiipli et al.,2008a,2008b).此外,Y、V、Cr和稀土元素(REEs)因活动性较弱被广泛使用,主量元素Al2O3在大多数情况下也被认为是稳定的(Huff et al.,1996Yang et al.,2022).然而,火山灰沉降过程中SiO2和Na2O等容易流失,会导致Al2O3及微量元素的相对含量显著上升.因此,相对于元素含量,元素比值被认为是更可靠的火山活动示踪方法.

由于泥页岩和火山灰物质来源和形成过程的显著差异,其矿物组成和地球化学特征表现出明显的区别.例如,火山灰中的K2O、Al2O3等主量元素,及Zr、Hf、Th、REEs等高场强元素的含量通常显著高于泥页岩,而V、Cr等与海洋生产力相关的元素则明显偏低(Yang et al.,2022).这些地球化学差异为识别泥页岩中隐性火山灰提供了重要依据.通过分析Zr、Hf等元素含量及Zr/Cr、Zr/Al2O3、Cr/Al2O3、V/Al2O3、Ni/Al2O3、SiO2/Al2O3与K/Rb等元素比值特征,能够有效识别泥页岩中的隐性火山灰(Yang et al.,2022).华南地区奥陶纪-志留纪转折期的斑脱岩与该时期全球不同地区的斑脱岩具有相似的地球化学特征,这些斑脱岩几乎全部落入了全球O⁃S时期斑脱岩的特征范围内(图4),表明华南地区的火山活动与同期全球火山活动在成分上具有较强的一致性.此外,奥陶纪-志留纪转折期华南地区火山活动频繁,大量火山物质不仅形成显性火山灰,还有一部分以隐性形式混入泥页岩.这一现象导致部分泥页岩的地球化学特征落入火山灰的范围内(图4),指示元素含量及其比值能够有效示踪隐性火山灰,为还原该时期的火山活动提供了重要依据.

1.2.2 汞含量和汞同位素示踪火山活动

(1)汞作为火山活动的有效示踪剂.火山活动是大气中汞的主要来源(Pyle and Mather,2003),火山喷发会在短时间内导致大气中汞含量和沉降通量显著提升,进而导致沉积物出现汞富集现象(通常用Hg/TOC表示).显生宙以来的五次生物大灭绝事件对应的地层中均发现了显著的汞异常现象(Grasby et al.,2019),被认为是大火成岩省(LIP)导致生物大灭绝的有利证据.然而,汞富集现象也可能与森林大火、宿主矿物、海洋氧化还原状态等因素相关(Grasby et al.,2017,2019Liu et al.,2023),应用汞示踪火山活动需要准确判断沉积物中汞的来源和成因.汞同位素可以有效约束汞的来源(Blum et al.,2014; Štrok et al.,2015; Kwon et al.,2020Jiskra et al.,2021Yin et al.,2022).火山作用喷发的汞进入到大气后经历不同程度的质量分馏(Hg⁃MDF,通常用δ202Hg表示)和非质量分馏作用(Hg⁃MIF,通常用199Hg表示)(Blum et al.,2014).质量分馏可以发生在物理、化学、生物等多个过程中(Perrot et al.,2015),而非质量分馏一般只发生在光化学反应中且几乎不受其他反应的影响(Bergquist and Blum,2009).研究表明现代火山喷发排放到大气中的汞通常具有偏负的δ202Hg值和接近0的199Hg值(Sherman et al.,2009Zambardi et al.,2009).汞进入大气后通过光化学作用发生非质量分馏,导致氧化态的Hg(II)具有正的199Hg值和负的δ202Hg值,而气态零价汞Hg(0)有负的199Hg值和正的δ202Hg值(Blum et al.,2014; 郑旺等,2023).陆地土壤和植物中的汞多来自大气中的Hg(0)沉积(Bergquist and Blum,2009),并且会经历质量分馏(Demers et al.,2013),导致陆源物质通常具有负的δ202Hg和199Hg值.而海洋中的汞主要来自大气中的Hg(II),具有正的199Hg和负的δ202Hg值(Štrok et al.,2015; Jiskra et al.,2021).因此,火山、陆地和海洋普遍具有负的δ202Hg特征而199Hg值则明显不同,可以通过199Hg值的不同判断沉积物中汞的来源.

(2)奥陶纪-志留纪转折期华南地区汞含量和汞同位素示踪火山活动.奥陶纪-志留纪转折期,全球范围内地层中的Hg含量及Hg/TOC比值均表现出显著的富集特征(图5),并且与该时期广泛而频繁的火山活动在时间上具有高度的相关性.同时,全球不同区域如中国华南地区、劳伦古陆等不同剖面的汞同位素均表现出火山来源的特征(Hu et al.,2021Qiu et al.,2025).因此该时期的汞富集现象被认为是火山作用的产物(Gong et al.,2017; Jones et al.,2017; Smolarek⁃Lach et al.,2019; Bond and Grasby,2020Hu et al.,2021).然而,也有学者提出了不同的解释机制,认为汞的富集可能与陆源物质输入密切相关,特别是在大陆风化作用增强期间,大量汞可能通过河流输入至海洋环境.此外,海洋水体氧化还原条件的变化,尤其是硫化缺氧事件,也被认为可能是汞沉积的重要驱动因素(Liu et al.,2023).因此,有必要评估使用汞作为O⁃S转折期火山活动示踪剂的可靠性.笔者研究团队对O⁃S时期中国华南地区漆辽(图6)和田坝(图7)剖面火山灰层附近的页岩进行了精细的汞含量和汞同位素测试(Kong et al.,2025).结果显示,火山灰层之上的页岩几乎都表现出汞含量富集以及Hg/TOC和Hg/TS比值增加的现象,表明该时期的汞富集与火山活动相关.此外,漆辽和田坝剖面的Δ199Hg值为零至略正的范围,进一步表明该时期的汞主要来源于火山活动.

基于华南地区由浅水陆棚到深水陆棚变化的4个典型剖面(图2;万和、双河、漆辽和田坝),Qiu et al. (2025)Kong et al. (2025)通过高分辨率的汞同位素分析,对奥陶纪-志留纪转折期的火山活动特征及汞沉积的来源进行了详细研究(图8图9).依据赫南特阶最大冰期(PHG)和笔石生物地层,将O⁃S时期划分为4个阶段,以揭示不同阶段汞异常的成因和来源,并精细刻画华南地区O⁃S时期的火山活动特征,为示踪火山活动的历史轨迹提供可靠依据.

(1)阶段I(Dicellograptus complantusMetabolograptus extraordinarius笔石带的底部):阶段I的地层中普遍观察到丰富的火山灰层,同时全球Hg/TOC比值呈现升高的趋势(图5),表明这一时期有大量火山来源汞的输入,导致沉积地层中汞的显著富集.Δ199Hg值接近零或略微偏正,且落入典型的火山范围内(图9),这一特征与同时期华南地区王家湾剖面(Gong et al.,2017)、大田坝剖面(Liu et al.,2023)以及XY5岩心(Hu et al.,2021)中的特征高度一致,表明该阶段火山活动导致了大量汞输入.然而,部分样品偏正的Δ199Hg值偏离火山范围,可能反映了火山汞(尤其是Hg(II))在经过大气长距离搬运后,受到光化学反应所导致的同位素分馏现象,从而具有偏正的Δ199Hg值.另外,由于弧火山释放的汞表现为正的Δ199Hg值(最高达到0.3‰;Yin et al.,2022),该阶段偏正的Δ199Hg值也可能来源于弧火山释放的汞.

(2)阶段II(Metabolograptus extraordinarius笔石带的顶部):阶段II处于赫南特冰期快速发展直至顶峰的时期,没有发现明显火山活动的证据.尽管部分样品显示出Hg的富集,但Hg/TOC比值呈现降低的趋势(图5),表明没有显著的火山汞输入.此外,样品中显著偏正的Δ199Hg值(图9)也与现代海水的特征一致,表明该阶段沉积物中的汞主要来源于海水,没有受到陆源或者火山物质的影响.

(3)阶段III(Metabolograptus persculptus笔石带的底部):Δ199Hg值从阶段II到阶段III表现为显著的下降趋势(图9),表明汞的来源发生了明显转变.尽管阶段III的Δ199Hg接近火山范围(图8),但Hg/TOC比值偏低的特征(图5)指示火山活动对汞输入的影响有限.陆源物质通常表现为负的Δ199Hg值(-0.25‰~0.0‰)(Biswas et al.,2008),这与该阶段Δ199Hg值下降趋势一致.Zou et al. (2018)的研究显示阶段III时期大陆风化作用显著增强,导致陆源物质输入量增加,进而可能引起沉积物中Δ199Hg值的降低.此外,透光带硫化作用(photic⁃zone euxinia,PZE)也可以导致Δ199Hg值的降低,尤其是在远端剖面中(漆辽和田坝;图8)(Zheng et al.,2023).然而PZE同时会导致δ202Hg的正漂移,这与漆辽和田坝剖面的特征不符.因此,虽然透光带硫化作用可能导致了Δ199Hg值的降低,但其贡献有限.

(4)阶段IV(Metabolograptus persculptus 笔石带的顶部和Parakiograptus acuminatus笔石带):该阶段的地层中再次观察到大量火山灰层,同时全球Hg/TOC比值呈现出升高的趋势(图5),表明火山活动在该时期重新活跃.该阶段样品的Δ199Hg值与阶段I类似,都表现为接近0的火山范围(图9),也指示火山活动成为这一时期汞沉积的主要来源.

综上所述,高分辨率的汞同位素证据表明奥陶纪-志留纪转折期的汞异常特征是火山来源汞、陆源输入汞和海水汞共同作用的结果.然而,虽然该时期不同阶段的汞来源和沉积机制表现出显著差异,但其根本来源均可追溯至火山喷发释放的汞.阶段I和阶段IV中的汞直接归因于火山活动,阶段II中正的Δ199Hg值反映了火山来源的汞进入大气后经历光化学反应被搬运至海洋,再沉积到地层中.这一阶段尽管未发现显著的火山灰层,但汞同位素特征表明火山活动的间接贡献仍然存在.阶段III中负的Δ199Hg值揭示了陆源物质对汞沉积的主导作用.火山喷发释放的Hg(0)被植被吸收后沉积到土壤中(Demers et al.,2013Yin et al.,2022),并随着大陆风化作用进入沉积体系,导致该阶段地层中汞的陆源特征增强.虽然阶段III中汞的来源偏向陆源,但其初始汞仍然来源于火山喷发.因此,不同阶段汞来源的多样性反映了火山活动释放的汞在大气、海洋和陆地之间的复杂迁移路径与沉积过程,最终导致奥陶纪-志留纪转折期华南地区显著的汞异常现象.

2 火山活动与异常高有机质沉积关系探讨

2.1 火山活动与海洋磷输入

地质历史时期,大规模火山活动通常伴随海洋初级生产力的提高、大洋缺氧事件的发生以及有机碳的大量埋藏(Schobben et al.,2020Gernon et al.,2024),这些现象被认为与火山活动导致的海洋中磷、铁、氮等输入增加紧密相关(Longman et al.,2021).其中,磷作为生命不可或缺的基础物质,广泛参与蛋白质、RNA、DNA的合成过程,在浮游植物光合作用中发挥重要作用(Westheimer,1987).然而,在地质时间尺度上,海洋表层有机质初级生产力水平长期受到磷供应不足的限制.虽然氮同样是限制有机质初级生产力的重要营养元素,但与可通过大气固定的氮不同,磷主要来源于大陆风化输入(Tyrrell,1999Duhamel et al.,2021),难以通过大气过程补给.由于磷在高温高压条件下具有明显的亲铁性,这使得地球上绝大多数(超过90%)的磷在核幔分异过程中与铁元素一同进入到地核中,导致地表岩石普遍“贫磷”(Walton et al.,2023).据估算,平均上地壳中的磷含量仅有700×10-6McLennan,2001),远低于基性火山岩中超过3 000×10-6 的磷含量(Cox et al.,2018).岩浆作用和火山喷发可以将大量的深部磷输送至地球表层,并通过火山灰直接沉降和火山岩的长期风化过程向海洋生态系统提供大量生物可利用的磷.Jones and Gislason(2008)进行了一项火山灰元素释放实验,他们将冰岛Hekla火山2000年喷发的火山灰置入去离子水和正常海水8 h后,测得火山灰释放的磷分别可达2.18 µmol/g和0.36 µmol/g.此外,卫星观测也表明现代西太平洋马里亚纳群岛(Lin et al.,2011)和北太平洋阿留申群岛火山(Hamme et al.,2010)喷发后的几小时至数周内,火山灰降落区域海洋表面的叶绿素a浓度相比火山喷发前发生了显著增加.这表明火山灰降落到海洋表面后,向周围海水释放了磷等营养元素,导致区域水体富营养化、浮游植物勃发,即火山灰“施肥”效应.

奥陶纪-志留纪转折期,火山灰在扬子陆架海广泛沉积,并以夹层的形式分布于五峰组-龙马溪组富有机质页岩层内,在下扬子地区记录超过100层,单层厚度可达10 cm(Liang et al.,2025).这些火山物质可能来源于扬子陆架东南部的武夷-云开造山带和北侧的秦岭造山带(Su et al.,2009Xu et al.,2016).本文综合华南地区长宁双河、石柱漆辽、巫溪田坝、武隆黄莺等剖面数据,结合前人(Yang et al.,2022,2017)对斑脱岩和武夷-云开造山带岩浆岩的地球化学研究,并将其与武夷-云开造山带早古生代岩浆岩和现代岛弧火山喷发所形成的沉凝灰岩进行对比,发现五峰组-龙马溪组斑脱岩层的P/Al和P/Zr值整体较低(图10a).由于新鲜火山灰(现代岛弧沉凝灰岩)的元素组成通常与其源区岩浆岩接近,该特征表明五峰组-龙马溪组内斑脱岩层在沉积过程中向海水释放了大量磷元素.此外,在奥陶纪-志留纪转折期,华南以及全球其他火山活动中心均处于风化速率高的低纬度地区(图2a).就位于陆地上的火山灰以及火山岩在大陆风化过程中,进一步持续向海洋输入生物可利用磷.据估算,晚奥陶世末全球火山灰每年向海洋直接释放的磷通量达3×1010 mol,陆上火山喷发物在大陆风化过程中每年向海洋输入的磷为(0.075~0.123)×1010 mol(Longman et al.,2021),二者之和超过了现代河流输入海洋的溶解磷总量(Zhao et al.,2024).相较平均页岩(PAAS)以及斑脱岩层,五峰组-龙马溪组页岩中的磷含量整体更高,间接地反映了当时海洋中的磷富集(图10b).

2.2 海洋缺氧、磷重循环与异常高有机质沉积

奥陶纪-志留纪转折期,华南地区火山活动主要集中于五峰组时期(晚凯迪期)以及龙马溪组中期(鲁丹期与埃隆期界线附近)(图1图5)(Qiu et al.,2022a).然而,五峰组以及龙马溪组内异常高有机质富集层段(TOC≥3%)仅发育在五峰组上段和龙马溪组底部(邱振和邹才能,2020;邱振,2021).这一现象表明,火山喷发峰期与有机质埋藏峰期并不完全对应.虽然火山活动释放的营养物质在一定程度上促进了海洋表层初级生产力的提高,并存在时间上的滞后效应,但仅通过火山磷输入驱动的有机质初级生产力提高,仍难以解释沉积物中异常高有机质富集.对于早古生代海洋而言,沉积物中的有机质基本都来自海洋表层的初级生产者,但绝大多数(90.0%~99.9%)有机质在沉积过程中被氧化分解,难以在沉积物中有效保存因此,保存条件被认为是沉积物中有机质聚集的另一个控制因素(Tyson,2001; Sageman et al.,2003).通常,海洋氧化还原条件可分为氧化(O2>0)、缺氧(O2=0,H2S=0)以及硫化缺氧(O2=0,H2S>0)3种.其中,硫化缺氧环境中有机质分解速率低,最有利于有机质的保存和埋藏.尽管早古生代海洋深部以次氧化或者铁化缺氧为特征,但相对浅水的陆架环境整体上仍是以氧化条件为主的.晚奥陶世临湘组至五峰组沉积时期,扬子陆架海底水氧化还原条件由氧化逐渐演化为铁化缺氧,并在五峰组沉积末期进一步发展为硫化缺氧(Zou et al.,2018)(图11).笔者认为,火山活动可能是导致水体硫化缺氧的一个重要因素.一方面,大陆风化输入和火山灰直接释放的大量磷显著提高了海洋表层有机质初级生产力,大量有机质在向下沉降过程中发生氧化分解,消耗了水体中的氧气,从而驱动了底水由氧化向缺氧转变.另一方面,火山喷发通常伴随着大量硫化物的释放,硫化物与氧气接触后被氧化为硫酸盐(SO42-),并被输入到海洋.在氧化还原界面之下,硫酸盐发生微生物还原反应,生成硫化氢(H2S)(Hu et al.,2020),进一步驱动水体由铁化缺氧向硫化缺氧演变,为有机质的保存提供了更为有利的条件.

铁锰氧化物吸附是海水中溶解磷的主要去除机制之一,但铁锰氧化物在氧化还原界面之下会发生还原性溶解,其吸附的磷被释放回到水体,进而再次参与到有机质的初级生产过程中(Dellwig et al.,2010Zhao et al.,2024).以长宁双河剖面为例,五峰组-龙马溪组页岩中有机碳(Porg)与活性磷(Preac)含量的摩尔比显著高于正常海洋浮游生物体内的碳磷原子摩尔比(106∶1)(Redfield,1934,1958)(图11),指示有机质中的一部分磷发生了丢失.此外,高有机碳含量的页岩表现出更大的碳磷原子摩尔比(图12),进一步反映了磷重循环作用的增强.火山活动导致的大量磷输入以及水体缺氧促进的磷重循环,促使海洋中生物可利用磷的含量逐步增加,驱动水体富营养化.水体富营养化又进一步促使有机质初级生产力提升,加剧水体缺氧程度.这一正反馈机制的持续在时间上造成了火山喷发高峰期与异常高有机质沉积层段之间的滞后关系.此外,尽管赫南特冰期降低的海平面以及增强的海洋通风短暂抑制了海洋缺氧水体的扩张以及有机质的富集,但随着冈瓦纳大陆上冰川的快速消融、全球海平面的上升以及大陆风化速率的加快,水体重新富营养化,有机质初级生产力再次提高,硫化缺氧水体再次在全球陆架、斜坡环境广泛发展,最终形成了异常高有机质含量的“Hot shale”.

综上所述,本文认为五峰组早中期持续的火山活动为海洋输入了大量生物可利用磷(图13),使得有机质初级生产力提高.大量有机质在沉积过程中氧化分解,消耗了水体中的氧气,驱动陆架上水体条件由氧化发展为铁化缺氧.海洋水体缺氧使得磷重循环作用增强,进而促进海洋表层生物可利用磷含量持续升高,水体富营养化程度加深,并推动有机质初级生产力不断提高.此外,火山活动促进的大陆风化作用增强,加大了硫酸盐的输入.在硫酸盐还原菌的作用下,生成硫化氢(H2S).同时,在有机质沉积增加的过程中,微生物分解进一步加剧,导致水体中H2S含量升高(Schobben et al.,2020),最终形成五峰组上段的硫化缺氧水体.高有机质初级生产力伴随硫化缺氧水体扩张,共同促使五峰组上段异常高有机质沉积(图13).龙马溪组底部的异常高有机质富集层段与赫南特冰期结束后大陆风化作用增强以及全球海平面上升导致的水体富营养化和硫化缺氧紧密相关.

3 问题与展望

本文综合笔者研究团队和前人成果,通过主微量元素、汞元素及汞同位素等地球化学指标,结合显性火山灰的分布特征,有效识别了奥陶纪-志留纪转折期华南地区火山活动的历史轨迹,并揭示了火山活动对异常高有机质沉积的关键作用.然而,仍有若干问题值得进一步思考.

(1)隐性火山灰的识别依赖地球化学示踪方法,其在强烈成岩作用或复杂沉积背景下的适用性和准确性尚需深入探讨.尤其在火山活动信号与陆源输入或其他成因信号叠加的情况下,如何提高主微量元素的识别能力仍是一大挑战.此外,尽管单次火山活动对汞元素富集的效应已有所揭示,但汞及其同位素通常反映的是整个剖面的变化趋势,而非单次火山活动的即时效应.因此,单次汞富集现象尚无法直接指示火山活动的发生.

(2)目前的研究主要集中于通过地球化学方法揭示可能存在的大规模火山活动,但大多数研究依赖于定性分析,缺乏对火山喷发强度和规模的定量评估.已有部分研究通过汞通量推算火山排放的CO2量,从而间接估算火山喷发的规模(Fendley et al.,2024),或通过数值模拟计算火山活动对全球气候和环境变化的影响(Longman et al.,2021).尽管这些方法为我们提供了火山活动的初步定量数据,但其估算精度和适用范围仍存在一定的不确定性,尤其是在缺乏大火成岩省背景的情况下,火山排放的精确量化仍然面临巨大挑战.因此,未来的研究应突破现有定性分析的局限,采用更为多元和精细的定量研究手段,通过多学科交叉合作,为奥陶纪-志留纪转折期火山活动的强度和规模提供更准确的定量数据.

(3)在不同时间尺度上,火山活动对地球气候环境的影响截然不同.在年际尺度上,火山喷发的火山灰云以及硫化物在大气中被氧化后形成的硫酸盐气溶胶层,能反射大量太阳光,形成一个“阳伞”,进而导致地球平均气温下降.例如,1815年印度尼西亚坦博拉火山爆发导致了次年全球北半球夏季出现了罕见低温,也被称为是“无夏之年”(Briffa et al.,1998).但在更长时间尺度上(万年~百万年),大规模火山活动释放的温室气体可能导致全球快速增温.距今约56 Ma的古新世与始新世之交的极热事件(PETM),被认为与北大西洋大火成岩活动引发的CO2和CH4巨量释放密切相关(Gutjahr et al.,2017;胡修棉等,2020;Gernon et al.,2022).对于晚奥陶世大规模火山活动是引发全球增温还是降温,依然未有定论(Buggisch et al.,2010Bond and Grasby,2020;梁超等,2023).可以肯定的是,晚奥陶世全球气候存在显著的短期波动,如Boda增温事件(Fortey and Cocks,2005)以及赫南特冰期(Finnegan et al.,2012).

(4)大陆磷风化速率与温度具有明显的正相关关系(Guo et al.,2024),但限于区域沉积记录的时间分辨率以及全球可代表性不足,现有研究中对于该时期大陆磷风化的输入速率视为一个固定值或者以正态分布的值(Longman et al.,2021),并未考虑温度和风化速率的潜在变化.未来,综合全球温度变化和火山喷发情况去重建大陆风化磷输入通量变化,将有助于我们更好地理解该时期火山活动与海洋初级生产力、大洋缺氧事件以及异常高有机质沉积的相互关系.

(5)尽管火山活动被广泛认为在异常高有机质沉积过程中发挥了重要作用,但目前对于火山灰中磷元素释放进入海洋的速率,尚缺乏系统的定量研究和约束.特别是在不同类型和强度的火山喷发背景下,磷的输入通量如何变化,以及这种变化如何具体影响海洋表层初级生产力提高和有机质的富集过程,仍缺乏有效的模型支持.因此,亟需在未来的研究中,基于实验模拟、地球化学分析与数值模拟相结合的方法,建立火山活动强度和规模与磷输入之间的定量耦合关系模型.这不仅有助于深入理解火山活动在地质历史时期异常高有机质沉积事件中的作用机制,也为重建火山活动对古海洋生物地球化学循环的影响提供重要的理论基础.

4 结论

(1) 奥陶纪-志留纪转折期,全球范围内火山活动频繁.显性火山灰因其岩石学和矿物学特征与上下岩层存在显著差异,在地层剖面中易于识别.通过岩石学和矿物学分析,可以准确界定显性火山灰层的位置及其与其他地层的关系,为重建当时的火山活动历史轨迹提供关键支撑.

(2) 相较于显性火山灰,隐性火山灰的识别较为复杂,通常依赖地球化学方法(如主微量元素、汞元素及汞同位素分析)进行有效示踪.泥页岩和火山灰主微量元素含量及其比值的系统差异,可用来识别隐性火山灰.此外,火山活动引起的汞异常富集,以及火山来源汞与其他来源汞在同位素组成上的明显差异,使汞元素和汞同位素成为追溯火山活动的重要工具.

(3) 五峰组早-中期的火山活动为海洋系统输入大量可利用磷,促进了海洋表层初级生产力提高,并推动海洋底部水体由氧化转变为缺氧.缺氧环境促进了磷重循环作用,进一步促进初级生产力的提高和缺氧水体的扩张.同时,火山活动增强的风化作用,加大了硫酸盐输入,在硫酸盐还原菌的作用下生成H2S,并与有机质分解释放的H2S共同作用,促进了五峰组上段水体的硫化缺氧程度.高初级生产力和硫化缺氧水体协同作用,是五峰组上段异常高有机质沉积的重要成因.龙马溪组底部的异常高有机质沉积与赫南特冰期后大陆风化作用增强以及海平面上升导致的水体富营养化和硫化缺氧密切相关.

参考文献

[1]

Ayris,P.,Delmelle,P.,2012.Volcanic and Atmospheric Controls on Ash Iron Solubility:A Review.Physics and Chemistry of the Earth,45-46:103-112.https://doi.org/10.1016/j.pce.2011.04.013

[2]

Bao,H.Y.,Meng,Z.Y.,Li,K.,et al.,2023.Plane Heterogeneity Characteristics and Main Controlling Factors of Development of Upper Gas Layer in Gas⁃Bearing Shale of Longmaxi Formation in Fuling Area,Sichuan Basin.Earth Science,48(7):2750-2763 (in Chinese with English abstract).

[3]

Batchelor,R.A.,2008.Geochemical ‘Golden Spike’ for Lower Palaeozoic Metabentonites.Earth and Environmental Science Transactions of the Royal Society of Edinburgh,99(3-4):177-187.https://doi.org/10.1017/s1755691009007087

[4]

Bergquist,B.A.,Blum,J.D.,2009.The Odds and Evens of Mercury Isotopes:Applications of Mass⁃Dependent and Mass⁃Independent Isotope Fractionation.Elements,5(6):353-357.https://doi.org/10.2113/gselements.5.6.353.

[5]

Bergström,S.M.,Huff,W.D.,Kolata,D.R.,et al.,1997.A Unique Middle Ordovician K‐Bentonite Bed Succession at Röstånga,S.Sweden.GFF,119(3):231-244.https://doi.org/10.1080/11035899709546481

[6]

Biswas,A.,Blum,J.D.,Bergquist,B.A.,et al.,2008.Natural Mercury Isotope Variation in Coal Deposits and Organic Soils.Environmental Science & Technology,42(22):8303-8309.https://doi.org/10.1021/es801444b

[7]

Blum,J.D.,Sherman,L.S.,Johnson,M.W.,2014.Mercury Isotopes in Earth and Environmental Sciences.Annual Review of Earth and Planetary Sciences,42(1):249-269.https://doi.org/10.1146/annurev⁃earth⁃050212⁃124107

[8]

Bond,D.P.G.,Grasby,S.E.,2020.Late Ordovician Mass Extinction Caused by Volcanism,Warming,and Anoxia,not Cooling and Glaciation.Geology,48(8):777-781.https://doi.org/10.1130/g47377.1

[9]

Briffa,K.R.,Jones,P.D.,Schweingruber,F.H.,et al.,1998.Influence of Volcanic Eruptions on Northern Hemisphere Summer Temperature over the Past 600 Years.Nature,393:450-455.https://doi.org/10.1038/30943

[10]

Buggisch,W.,Joachimski,M.M.,Lehnert,O.,et al.,2010.Did Intense Volcanism Trigger the First Late Ordovician Icehouse? Geology,38:327-330.https://doi.org/10.1130/g30577.1

[11]

Cai,Q.S.,Hu,M.Y.,Yang,Z,et al.,2024.Sedimentary Environment and Organic Matter Accumulation of Black Rock Series of Wufeng⁃Longmaxi Formations in Foreland Depression,Western Hunan Province:An Example from Well TD2 in Changde Area.Earth Science,49(7):2330-2345 (in Chinese with English abstract).

[12]

Courtillot,V.E.,2002.Evolutionary Catastrophes:The Science of Mass Extinction.Cambridge University Press,Cambridge.

[13]

Cox,G.M.,Lyons,T.W.,Mitchell,R.N.,et al.,2018.Linking the Rise of Atmospheric Oxygen to Growth in the Continental Phosphorus Inventory.Earth and Planetary Science Letters,489:28-36.https://doi.org/10.1016/j.epsl.2018.02.016

[14]

Dellwig,O.,Leipe,T.,März,C.,et al.,2010.A New Particulate Mn⁃Fe⁃P⁃Shuttle at the Redoxcline of Anoxic Basins.Geochimica et Cosmochimica Acta,74(24):7100-7115.https://doi.org/10.1016/j.gca.2010.09.017

[15]

Demers,J.D.,Blum,J.D.,Zak,D.R.,2013.Mercury Isotopes in a Forested Ecosystem:Implications for Air⁃Surface Exchange Dynamics and the Global Mercury Cycle.Global Biogeochemical Cycles,27(1):222-238.https://doi.org/10.1002/gbc.20021

[16]

Derakhshi,M.,Ernst, R. E., Kamo, S.L., 2022. Ordovician⁃Silurian Volcanism in Northern Iran:Implications for a New Large Igneous Province (LIP) and a Robust Candidate for the Late Ordovician Mass Extinction.Gondwana Research,107:256-280.https://doi.org/10.1016/j.gr.2022.03.009

[17]

Du,X.B.,Lu,Y.C.,Duan,D.,et al.,2020.Was Volcanic Activity during the Ordovician⁃Silurian Transition in South China Part of a Global Phenomenon? Constraints from Zircon U-Pb Dating of Volcanic Ash Beds in Black Shales.Marine and Petroleum Geology,114:104209.https://doi.org/10.1016/j.marpetgeo.2019.104209

[18]

Du,X.B.,Jia,J.X.,Zhao,K.,et al.,2022.Development Characteristics of Deep⁃Time Volcanic Ash Layers and Its Influence on Deposition of Organic⁃Rich Shale across Ordovician-Silurian Transition in Yangtze Area,South China.Journal of Central South University (Science and Technology),53(9):3509-3521 (in Chinese with English abstract).

[19]

Duggen,S.,Croot,P.,Schacht,U.,et al.,2007.Subduction Zone Volcanic Ash can Fertilize the Surface Ocean and Stimulate Phytoplankton Growth:Evidence from Biogeochemical Experiments and Satellite Data.Geophysical Research Letters,34(1):2006GL027522.https://doi.org/10.1029/2006gl027522

[20]

Duhamel,S.,Diaz,J.M.,Adams,J.C.,et al.,2021.Phosphorus as an Integral Component of Global Marine Biogeochemistry.Nature Geoscience,14(6):359-368.https://doi.org/10.1038/s41561⁃021⁃00755⁃8

[21]

Ernst,R.E.,Youbi,N.,2017.How Large Igneous Provinces Affect Global Climate,Sometimes Cause Mass Extinctions,and Represent Natural Markers in the Geological Record.Palaeogeography,Palaeoclimatology,Palaeoecology,478:30-52.https://doi.org/10.1016/j.palaeo.2017.03.014

[22]

Fendley,I.M.,Frieling,J.,Mather,T.A.,et al.,2024.Early Jurassic Large Igneous Province Carbon Emissions Constrained by Sedimentary Mercury.Nature Geoscience,17(3):241-248.https://doi.org/10.1038/s41561⁃024⁃01378⁃5

[23]

Finnegan,S.,Heim,N.A.,Peters,S.E.,et al.,2012.Climate Change and the Selective Signature of the Late Ordovician Mass Extinction.Proceedings of the National Academy of Sciences of the United States of America,109(18):6829-6834.https://doi.org/10.1073/pnas.1117039109

[24]

Fisher,R.V.,Schmincke,H.U.,1984.Pyroclastic Rocks.Springer,Berlin,Heidelberg.https://doi.org/10.1007/978⁃3⁃642⁃74864⁃6

[25]

Fortey,R.A.,Cocks,L.R.M.,2005.Late Ordovician Global Warming:The Boda Event.Geology,33(5):405.https://doi.org/10.1130/g21180.1

[26]

Ge,X.Y.,Mou,C.L.,Men,X.,et al.,2023.Discussion on U⁃Pb Dating and Tectonic Setting of K⁃Bentonites from Late Ordovician⁃Early Silurian Period in the Sichuan Basin.Sedimentary Geology and Tethyan Geology (in press)(in Chinese with English abstract).

[27]

Gernon,T.M.,Barr,R.,Fitton,J.G.,et al.,2022.Transient Mobilization of Subcrustal Carbon Coincident with Palaeocene-Eocene Thermal Maximum.Nature Geoscience,15(7):573-579.https://doi.org/10.1038/s41561⁃022⁃00967⁃6

[28]

Gernon,T.M.,Mills,B.J.W.,Hincks,T.K.,et al.,2024.Solid Earth Forcing of Mesozoic Oceanic Anoxic Events.Nature Geoscience,17(9):926-935.https://doi.org/10.1038/s41561⁃024⁃01496⁃0

[29]

Gong,Q.,Wang,X.D.,Zhao,L.S.,et al.,2017.Mercury Spikes Suggest Volcanic Driver of the Ordovician⁃Silurian Mass Extinction.Scientific Reports,7:5304.https://doi.org/10.1038/s41598⁃017⁃05524⁃5

[30]

Grasby,S.E.,Shen,W.J.,Yin,R.S.,et al.,2017.Isotopic Signatures of Mercury Contamination in Latest Permian Oceans.Geology,45(1):55-58.https://doi.org/10.1130/g38487.1

[31]

Grasby,S.E.,Them,T.R.,Chen,Z.H.,et al.,2019.Mercury as a Proxy for Volcanic Emissions in the Geologic Record.Earth⁃Science Reviews,196:102880.https://doi.org/10.1016/j.earscirev.2019.102880

[32]

Guo,L.C.,Xiong,S.F.,Mills,B.J.W.,et al.,2024.Acceleration of Phosphorus Weathering under Warm Climates.Science Advances,10(28):eadm7773.https://doi.org/10.1126/sciadv.adm7773

[33]

Gutjahr,M.,Ridgwell,A.,Sexton,P.F.,et al.,2017.Very Large Release of Mostly Volcanic Carbon during the Palaeocene-Eocene Thermal Maximum.Nature,548(7669):573-577.https://doi.org/10.1038/nature23646

[34]

Hamme,R.C.,Webley,P.W.,Crawford,W.R.,et al.,2010.Volcanic Ash Fuels Anomalous Plankton Bloom in Subarctic Northeast Pacific.Geophysical Research Letters,37(19):2010GL044629.https://doi.org/10.1029/2010GL044629

[35]

Hong,H.L.,Algeo,T.J.,Fang,Q.,et al.,2019.Facies Dependence of the Mineralogy and Geochemistry of Altered Volcanic Ash Beds:An Example from Permian⁃Triassic Transition Strata in Southwestern China.Earth⁃Science Reviews,190:58-88.https://doi.org/10.1016/j.earscirev.2018.12.007

[36]

Hu,X.M.,Li,J.,Han,Z.,et al.,2020.Two Types of Hyperthermal Events in the Mesozoic⁃Cenozoic:Environmental Impacts,Biotic Effects,and Driving Mechanisms.Science China Earth Sciences,50(8):1023-1043 (in Chinese).

[37]

Hu,D.P.,Li,M.H.,Chen,J.B.,et al.,2021.Major Volcanic Eruptions Linked to the Late Ordovician Mass Extinction:Evidence from Mercury Enrichment and Hg Isotopes.Global and Planetary Change,196:103374.https://doi.org/10.1016/j.gloplacha.2020.103374

[38]

Hu,Y.H.,Liu,J.,Zhou,M.Z.,et al.,2009a.An Overview of Ordovician and Silurian K⁃Bentonites.Geochimica,38(4):393-404(in Chinese with English abstract)

[39]

Hu,Y.H.,Sun,W.D.,Ding,X.,et al.,2009b.Volcanic Event at the Ordovician⁃Silurian Boundary:The Message from K⁃Bentonite of Yangtze Block.Acta Petrologica Sinica,25(12):3298-3308 (in Chinese with English abstract).

[40]

Huang,X.L.,Yu,Y.,Li,J.,et al.,2013.Geochronology and Petrogenesis of the Early Paleozoic I⁃Type Granite in the Taishan Area,South China:Middle⁃Lower Crustal Melting during Orogenic Collapse.Lithos,177:268-284.https://doi.org/10.1016/j.lithos.2013.07.002

[41]

Huff,W.D.,2008.Ordovician K⁃Bentonites:Issues in Interpreting and Correlating Ancient Tephras.Quaternary International,178(1):276-287.https://doi.org/10.1016/j.quaint.2007.04.007

[42]

Huff,W.D.,2016.K⁃Bentonites:A Review.American Mineralogist,101(1):43-70.https://doi.org/10.2138/am⁃2016⁃5339

[43]

Huff,W.D.,Kolata,D.R.,Bergström,S.M.,et al.,1996.Large-Magnitude Middle Ordovician Volcanic Ash Falls in North America and Europe:Dimensions,Emplacement and Post⁃Emplacement Characteristics.Journal of Volcanology and Geothermal Research,73(3-4):285-301.https://doi.org/10.1016/0377⁃0273(96)00025⁃x

[44]

Jia,J.X.,Du,X.B.,Zhao,K.,et al.,2022.Sources of K⁃Bentonites across the Ordovician⁃Silurian Transition in South China:Implications for Tectonic Activities on the Northern and Southern Margins of the South China Block.Marine and Petroleum Geology,139:105599.https://doi.org/10.1016/j.marpetgeo.2022.105599

[45]

Jia,X.H.,Wang,X.D.,Yang,W.Q.,2017.Petrogenesis and Geodynamic Implications of the Early Paleozoic Potassic and Ultrapotassic Rocks in the South China Block.Journal of Asian Earth Sciences,135:80-94.https://doi.org/10.1016/j.jseaes.2016.12.013

[46]

Jiskra,M.,Heimbürger⁃Boavida,L.E.,Desgranges,M.M.,et al.,2021.Mercury Stable Isotopes Constrain Atmospheric Sources to the Ocean.Nature,597:678-682.https://doi.org/10.1038/s41586⁃021⁃03859⁃8

[47]

Jones,D.S.,Martini,A.M.,Fike,D.A.,et al.,2017.A Volcanic Trigger for the Late Ordovician Mass Extinction? Mercury Data from South China and Laurentia.Geology,45(7):631-634.https://doi.org/10.1130/g38940.1

[48]

Jones,M.T.,Gislason,S.R.,2008.Rapid Releases of Metal Salts and Nutrients Following the Deposition of Volcanic Ash into Aqueous Environments.Geochimica et Cosmochimica Acta,72(15):3661-3680.https://doi.org/10.1016/j.gca.2008.05.030

[49]

Kiipli,T.,Kallaste,T.,Kiipli,E., et al.,2008a.Use of Immobile Trace Elements for the Correlation of Telychian Bentonites on Saaremaa Island,Estonia,and Mapping of Volcanic Ash Clouds.Estonian Journal of Earth Sciences,57(1):39.https://doi.org/10.3176/earth.2008.1.04

[50]

Kiipli,T.,Soesoo,A.,Kallaste,T.,et al.,2008b.Geochemistry of Telichian (Silurian) K⁃Bentonites in Estonia and Latvia.Journal of Volcanology and Geothermal Research,171(1-2):45-58.https://doi.org/10.1016/j.jvolgeores.2007.11.005

[51]

Kiipli,T.,Einasto,R.,Kallaste,T.,et al.,2011.Geochemistry and Correlation of Volcanic Ash Beds from the Rootsiküla Stage (Wenlock-Ludlow) in the Eastern Baltic.Estonian Journal of Earth Sciences,60(4):207.https://doi.org/10.3176/earth.2011.4.02

[52]

Kiipli,T.,Kallaste,T.,Nestor,V.,2012.Correlation of Upper Llandovery-Lower Wenlock Bentonites in the När (Gotland,Sweden) and Ventspils (Latvia) Drill Cores:Role of Volcanic Ash Clouds and Shelf Sea Currents in Determining Areal Distribution of Bentonite.Estonian Journal of Earth Sciences,61(4):295.https://doi.org/10.3176/earth.2012.4.08

[53]

Kong,W.L.,Qiu,Z.,Zhang,J.Q.,et al.,2025.Mercury Deposition in South China across the Ordovician⁃Silurian Transition:Implications for Climate Change.Geochemistry,Geophysics,Geosystems,26(7):e2024GC012122.https://doi.org/10.1029/2024GC012122

[54]

Kwon,S.Y.,Blum,J.D.,Yin,R.S.,et al.,2020.Mercury Stable Isotopes for Monitoring the Effectiveness of the Minamata Convention on Mercury.Earth⁃Science Reviews,203:103111.https://doi.org/10.1016/j.earscirev.2020.103111

[55]

Li,X.L.,Yu,J.H.,Jiang,D.S.,et al.,2021.Linking Ocean Subduction with Early Paleozoic Intracontinental Orogeny in South China:Insights from the Xiaying Complex in Eastern Guangxi Province.Lithos,398/399:106258.https://doi.org/10.1016/j.lithos.2021.106258

[56]

Liang, C., Liu, Y.D., Cao, Y.C., et al., 2023. Coupling Relationship of Multiple Events and Enrichment of Organic Matter during Ordovician-Silurian Transition Period in Yangtze Region. Journal of China University of Petroleum (Edition of Natural Science), 47(6): 1-12 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1673-5005.2023.06.001

[57]

Liang,C.,Xie,H.R.,Wu,J.,et al.,2025.Volcanic Activity Driving Rapid Organic Carbon Burial during the Ordovician-Silurian Transition.Geological Society of America Bulletin,137(5-6):1909-1926.https://doi.org/10.1130/b37946.1

[58]

Lin,I.I.,Hu,C.M.,Li,Y.H.,et al.,2011.Fertilization Potential of Volcanic Dust in the Low⁃Nutrient Low⁃Chlorophyll Western North Pacific Subtropical Gyre:Satellite Evidence and Laboratory Study.Global Biogeochemical Cycles,25(1).https://doi.org/10.1029/2009gb003758

[59]

Liu,X.,Wang,Q.,Ma,L.,et al.,2020.Early Paleozoic Intracontinental Granites in the Guangzhou Region of South China:Partial Melting of a Metasediment⁃Dominated Crustal Source.Lithos,376-377:105763.https://doi.org/10.1016/j.lithos.2020.105763

[60]

Liu,Y.,Li,Y.C.,Hou,M.C.,et al.,2023.Terrestrial rather than Volcanic Mercury Inputs to the Yangtze Platform (South China) during the Ordovician⁃Silurian Transition.Global and Planetary Change,220:104023.https://doi.org/10.1016/j.gloplacha.2022.104023

[61]

Longman,J.,Mills,B.J.W.,Manners,H.R.,et al.,2021.Late Ordovician Climate Change and Extinctions Driven by Elevated Volcanic Nutrient Supply.Nature Geoscience,14(12):924-929.https://doi.org/10.1038/s41561⁃021⁃00855⁃5

[62]

McLennan,S.M.,2001.Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust.Geochemistry,Geophysics,Geosystems,2(4):2000GC000109.https://doi.org/10.1029/2000GC000109

[63]

Melchin,M.J.,Mitchell,C.E.,Holmden,C.,et al.,2013.Environmental Changes in the Late Ordovician⁃Early Silurian:Review and New Insights from Black Shales and Nitrogen Isotopes.Geological Society of America Bulletin,125(11-12):1635-1670.https://doi.org/10.1130/b30812.1

[64]

Meyer,K.M.,Kump,L.R.,2008.Oceanic Euxinia in Earth History:Causes and Consequences.Annual Review of Earth and Planetary Sciences,36:251-288.https://doi.org/10.1146/annurev.earth.36.031207.124256

[65]

Olgun,N.,Duggen,S.,Andronico,D.,et al.,2013.Possible Impacts of Volcanic Ash Emissions of Mount Etna on the Primary Productivity in the Oligotrophic Mediterranean Sea:Results from Nutrient⁃Release Experiments in Seawater.Marine Chemistry,152:32-42.https://doi.org/10.1016/j.marchem.2013.04.004

[66]

Olson,S.L.,Ostrander,C.M.,Gregory,D.D.,et al.,2019.Volcanically Modulated Pyrite Burial and Ocean-Atmosphere Oxidation.Earth and Planetary Science Letters,506:417-427.https://doi.org/10.1016/j.epsl.2018.11.015

[67]

Perrot,V.,Bridou,R.,Pedrero,Z.,et al.,2015.Identical Hg Isotope Mass Dependent Fractionation Signature during Methylation by Sulfate⁃Reducing Bacteria in Sulfate and Sulfate⁃Free Environment.Environmental Science & Technology,49(3):1365-1373.https://doi.org/10.1021/es5033376

[68]

Plunkett,G.,Pilcher,J.R.,2018.Defining the Potential Source Region of Volcanic Ash in Northwest Europe during the Mid⁃ to Late Holocene.Earth⁃Science Reviews,179:20-37.https://doi.org/10.1016/j.earscirev.2018.02.006

[69]

Pyle,D.M.,Mather,T.A.,2003.The Importance of Volcanic Emissions for the Global Atmospheric Mercury Cycle.Atmospheric Environment,37(36):5115-5124.https://doi.org/10.1016/j.atmosenv.2003.07.011

[70]

Qiu,Z.,Kong,W.L.,Zhang,J.Q.,et al.,2025.Mercury Evidences Link Intensive Volcanism to the Late Ordovician Mass Extinction and Changes in the Atmosphere⁃Land⁃Ocean System.The Innovation Geoscience,3(2):100124.https://doi.org/10.59717/j.xinn⁃geo.2024.100124

[71]

Qiu,Z.,Zou,C.N.,2020.Unconventional Petroleum Sedimentology:Connotation and Prospect.Acta Sedimentologica Sinica,38(1):1-29 (in Chinese with English abstract).

[72]

Qiu,Z.,Wei,H.Y.,Liu,H.L.,et al.,2021.Accumulation of Sediments with Extraordinary High Organic Matter Content:Insight Gained through Geochemical Characterization of Indicative Elements.Oil & Gas Geology,42(4):931-948 (in Chinese with English abstract).

[73]

Qiu,Z.,Wei,H.Y.,Tian,L.,et al.,2022a.Different Controls on the Hg Spikes Linked the Two Pulses of the Late Ordovician Mass Extinction in South China.Scientific Reports,12:5195.https://doi.org/10.1038/s41598⁃022⁃08941⁃3

[74]

Qiu,Z.,Zou,C.N.,Mills,B.J.W.,et al.,2022b.A Nutrient Control on Expanded Anoxia and Global Cooling during the Late Ordovician Mass Extinction.Communications Earth & Environment,3:82.https://doi.org/10.1038/s43247⁃022⁃00412⁃x

[75]

Qiu,Z.,Zou,C.N.,Wang,H.Y.,et al.,2020.Discussion on Characteristics and Controlling Factors of Differential Enrichment of Wufeng⁃Longmaxi Formations Shale Gas in South China.Natural Gas Geoscience,31(2):163-175 (in Chinese with English abstract).

[76]

Qiu,Z.,Zou,C.N.,Wei,H.Y.,et al.,2024.Unconventional Hydrocarbon Accumulation and Major Geological Events—Innovation Research in Unconventional Petroleum Sedimentology.Science Press,Beijing (in Chinese).

[77]

Ray,D.C.,Collings,A.V.J.,Worton,G.J.,et al.,2011.Upper Wenlock Bentonites from Wren’s Nest Hill,Dudley:Comparisons with Prominent Bentonites along Wenlock Edge,Shropshire,England.Geological Magazine,148(4):670-681.https://doi.org/10.1017/s0016756811000288

[78]

Redfield,A.C.,1934.On the Proportions of Organic Derivatives in Sea Water and Their Relation to the Composition of Plankton.University Press of Liverpool,Liverpool.

[79]

Redfield,A.C.,1958.The Biological Control of Chemical Factors in the Environment.American Scientist,46(3):230A,205-230A,221.

[80]

Schobben,M.,Foster,W.J.,Sleveland,A.R.N.,et al.,2020.A Nutrient Control on Marine Anoxia during the End⁃Permian Mass Extinction.Nature Geoscience,13(9):640-646.https://doi.org/10.1038/s41561⁃020⁃0622⁃1

[81]

Sell,B.K.,Samson,S.D.,2011.Apatite Phenocryst Compositions Demonstrate a Miscorrelation between the Millbrig and Kinnekulle K⁃Bentonites of North America and Scandinavia.Geology,39(4):303-306.https://doi.org/10.1130/g31425.1

[82]

Sherman,L.S.,Blum,J.D.,Nordstrom,D.K.,et al.,2009.Mercury Isotopic Composition of Hydrothermal Systems in the Yellowstone Plateau Volcanic Field and Guaymas Basin Sea⁃Floor Rift.Earth and Planetary Science Letters,279(1-2):86-96.https://doi.org/10.1016/j.epsl.2008.12.032

[83]

Smolarek⁃Lach,J.,Marynowski,L.,Trela,W.,et al.,2019.Mercury Spikes Indicate a Volcanic Trigger for the Late Ordovician Mass Extinction Event:An Example from a Deep Shelf of the Peri⁃Baltic Region.Scientific Reports,9:3139.https://doi.org/10.1038/s41598⁃019⁃39333⁃9

[84]

Štrok,M.,Baya,P.A.,Hintelmann,H.,2015.The Mercury Isotope Composition of Arctic Coastal Seawater.Comptes Rendus Geoscience,347(7-8):368-376.https://doi.org/10.1016/j.crte.2015.04.001

[85]

Su,W.B.,He,L.Q.,Wang,Y.B.,et al.,2002.K⁃Bentonite Beds and High⁃Resolution Integrated Stratigraphy of the Uppermost Ordovician Wufeng and the Lowest Silurian Longmaxi Formations in South China.Science in China (Seri.D),32(3):207-219 (in Chinese).

[86]

Su,W.B.,Huff,W.D.,Ettensohn,F.R.,et al.,2009.K⁃Bentonite,Black⁃Shale and Flysch Successions at the Ordovician-Silurian Transition,South China:Possible Sedimentary Responses to the Accretion of Cathaysia to the Yangtze Block and Its Implications for the Evolution of Gondwana.Gondwana Research,15(1):111-130.https://doi.org/10.1016/j.gr.2008.06.004

[87]

Tao,H.F.,Qiu,Z.,Lu,B.,et al.,2020.Volcanic Activities Triggered the First Global Cooling Event in the Phanerozoic.Journal of Asian Earth Sciences,194:104074.https://doi.org/10.1016/j.jseaes.2019.104074

[88]

Tyrrell,T.,1999.The Relative Influences of Nitrogen and Phosphorus on Oceanic Primary Production.Nature,400:525-531.https://doi.org/10.1038/22941

[89]

Walton,C.R.,Ewens,S.,Coates,J.D.,et al.,2023.Phosphorus Availability on the Early Earth and the Impacts of Life.Nature Geoscience,16(5):399-409.https://doi.org/10.1038/s41561⁃023⁃01167⁃6

[90]

Wang,Y.J.,Zhang,A.M.,Fan,W.M.,et al.,2011.Kwangsian Crustal Anatexis within the Eastern South China Block:Geochemical,Zircon U-Pb Geochronological and Hf Isotopic Fingerprints from the Gneissoid Granites of Wugong and Wuyi-Yunkai Domains.Lithos,127(1-2):239-260.https://doi.org/10.1016/j.lithos.2011.07.027

[91]

Westheimer,F.H.,1987.Why Nature Chose Phosphates.Science,235(4793):1173-1178.https://doi.org/10.1126/science.2434996

[92]

Wignall,P.B.,2001.Large Igneous Provinces and Mass Extinctions.Earth⁃Science Reviews,53(1-2):1-33.https://doi.org/10.1016/s0012⁃8252(00)00037⁃4

[93]

Wignall,P.,2005.The Link between Large Igneous Province Eruptions and Mass Extinctions.Elements,1(5):293-297.https://doi.org/10.2113/gselements.1.5.293

[94]

Xiong,G.Q.,Wang,J.,Li,Y.Y.,et al.,2017.Zircon U⁃Pb Dating and Geological Significance of the Bentonites from the Upper Ordovician Wufeng Formation and Lower Silurian Longmaxi Formation in Western Daba Mountains.Sedimentary Geology and Tethyan Geology,37(2):46-58 (in Chinese with English abstract).

[95]

Xu,Y.J.,Cawood,P.A.,Du,Y.S.,2016.Intraplate Orogenesis in Response to Gondwana Assembly:Kwangsian Orogeny,South China.American Journal of Science,316(4):329-362.https://doi.org/10.2475/04.2016.02

[96]

Yang,S.C.,Hu,W.X.,Wang,X.L.,et al.,2019.Duration,Evolution,and Implications of Volcanic Activity across the Ordovician-Silurian Transition in the Lower Yangtze Region,South China.Earth and Planetary Science Letters,518:13-25.https://doi.org/10.1016/j.epsl.2019.04.020.

[97]

Yang,S.C.,Hu,W.X.,Fan,J.X.,et al.,2022.New Geochemical Identification Fingerprints of Volcanism during the Ordovician⁃Silurian Transition and Its Implications for Biological and Environmental Evolution.Earth⁃Science Reviews,228:104016.https://doi.org/10.1016/j.earscirev.2022.104016

[98]

Yin,R.S.,Chen,D.,Pan,X.,et al.,2022.Mantle Hg Isotopic Heterogeneity and Evidence of Oceanic Hg Recycling into the Mantle.Nature Communications,13:948.https://doi.org/10.1038/s41467⁃022⁃28577⁃1

[99]

Yuan,X.C.,Liu,J.L.,Yang,Q.J.,et al.,2024.Ordovician-Early Devonian Granitic Magmatism as the Consequence of Intracontinental Orogenic Activity along the Qinhang Belt in South China.Geological Society of America Bulletin,136(7/8):3137-3155.https://doi.org/10.1130/b36992.1

[100]

Zambardi,T.,Sonke,J.E.,Toutain,J.P.,et al.,2009.Mercury Emissions and Stable Isotopic Compositions at Vulcano Island (Italy).Earth and Planetary Science Letters,277(1-2):236-243.https://doi.org/10.1016/j.epsl.2008.10.023

[101]

Zhang,F.F.,Wang,Y.J.,Zhang,A.M.,et al.,2012.Geochronological and Geochemical Constraints on the Petrogenesis of Middle Paleozoic (Kwangsian) Massive Granites in the Eastern South China Block.Lithos,150:188-208.https://doi.org/10.1016/j.lithos.2012.03.011

[102]

Zhang,X.S.,Xu,X.S.,Xia,Y.,et al.,2017.Early Paleozoic Intracontinental Orogeny and Post⁃Orogenic Extension in the South China Block:Insights from Volcanic Rocks.Journal of Asian Earth Sciences,141:24-42.https://doi.org/10.1016/j.jseaes.2016.07.016.

[103]

Zhang,Y.,Shu,L.S.,Chen,X.Y.,2011a.Geochemistry,Geochronology,and Petro⁃Genesis of the Early Paleozoic Granitic Plutons in the Central⁃Southern Jiangxi Province,China.Science China Earth Sciences,54(10):1492-1510.https://doi.org/10.1007/s11430⁃011⁃4249⁃3

[104]

Zhao,K.,Du,X.B.,Lu,Y.C.,et al.,2021.Is Volcanic Ash Responsible for the Enrichment of Organic Carbon in Shales? Quantitative Characterization of Organic⁃Rich Shale at the Ordovician⁃Silurian Transition.GSA Bulletin,133(3/4):837-848.https://doi.org/10.1130/b35737.1

[105]

Zhao,M.Y.,Mills,B.J.W.,Poulton,S.W.,et al.,2024.Drivers of the Global Phosphorus Cycle over Geological Time.Nature Reviews Earth & Environment,5(12):873-889.https://doi.org/10.1038/s43017⁃024⁃00603⁃4

[106]

Zheng,W.,Zhou,A.W.,Sahoo,S.K.,et al.,2023.Recurrent Photic Zone Euxinia Limited Ocean Oxygenation and Animal Evolution during the Ediacaran.Nature Communications,14:3920.https://doi.org/10.1038/s41467⁃023⁃39427⁃z

[107]

Zheng,W.,Zhou,A.W.,Sun,R.Y.,et al.,2023.Mercury Isotopes in Sedimentary Rocks as a Paleoenvironmental Proxy.Chinese Science Bulletin,68(6):628-643 (in Chinese).

[108]

Zhong,Y.F.,Ma,C.Q.,Liu,L.,et al.,2014.Ordovician Appinites in the Wugongshan Domain of the Cathaysia Block,South China:Geochronological and Geochemical Evidence for Intrusion into a Local Extensional Zone within an Intracontinental Regime.Lithos,198-199:202-216.https://doi.org/10.1016/j.lithos.2014.04.002

[109]

Zhong,Y.F.,Wang,L.X.,Zhao,J.H.,et al.,2016.Partial Melting of an Ancient Sub⁃Continental Lithospheric Mantle in the Early Paleozoic Intracontinental Regime and Its Contribution to Petrogenesis of the Coeval Peraluminous Granites in South China.Lithos,264:224-238.https://doi.org/10.1016/j.lithos.2016.08.026

[110]

Zhou,M.Z.,Luo,T.Y.,Huang,Z.L.,et al.,2007.Advances in Research on K⁃Bentonite.Acta Mineralogica Sinica,27(Suppl.1):351-359 (in Chinese with English abstract).

[111]

Zou,C.N.,Qiu,Z.,Poulton,S.W.,et al.,2018a.Ocean Euxinia and Climate Change “Double Whammy” Drove the Late Ordovician Mass Extinction.Geology,46(6):535-538.https://doi.org/10.1130/g40121.1

[112]

Zou,C.N.,Qiu,Z.,Wei,H.Y.,et al.,2018b.Euxinia Caused the Late Ordovician Extinction:Evidence from Pyrite Morphology and Pyritic Sulfur Isotopic Composition in the Yangtze Area,South China.Palaeogeography,Palaeoclimatology,Palaeoecology,511:1-11.https://doi.org/10.1016/j.palaeo.2017.11.033

[113]

Zou,C.N.,Qiu,Z.,Zhang,J.Q.,et al.,2022.Unconventional Petroleum Sedimentology:A Key to Understanding Unconventional Hydrocarbon Accumulation.Engineering,18:62-78.https://doi.org/10.1016/j.eng.2022.06.016

基金资助

国家自然科学基金项目(42222209)

中国石油天然气集团公司项目(2024DJ8701)

中国石油天然气集团公司项目(2023ZZ0801)

AI Summary AI Mindmap
PDF (13515KB)

258

访问

0

被引

详细

导航
相关文章

AI思维导图

/