华北克拉通中部造山带北端罗卜起沟~2.33 Ga辉绿辉长岩成因及构造意义
郑海平 , 姜雨奇 , 于文明 , 景国庆 , 徐洪波 , 吕晓慧
地球科学 ›› 2025, Vol. 50 ›› Issue (07) : 2735 -2758.
华北克拉通中部造山带北端罗卜起沟~2.33 Ga辉绿辉长岩成因及构造意义
Petrogenesis and Tectonic Implications of ~2.33 Ga Luobuqigou Diabase⁃Gabbro in Northern End of Trans⁃North China Orogen of North China Craton
,
古元古代早期岩浆活动对理解华北克拉通中部造山带构造演化史和地球动力学过程具有重要意义.首次在中部造山带北端赤峰南部罗卜起沟发现早古元古代辉绿辉长岩,并对其开展了详细的岩相学、全岩地球化学、锆石U-Pb-Hf同位素地球化学研究.锆石U-Pb同位素定年结果表明辉绿辉长岩侵入年龄为2 332 Ma.地球化学特征表明,辉绿辉长岩属于拉斑玄武岩系列,具Rb、Ba、U、Pb正异常,Sr、Nb、Th、Y负异常,具有相对较缓的右倾REE配分模式,LREE相对于HREE弱富集,Eu异常不明显.锆石εHf(t)值为-4.4~-0.8,单阶段模式年龄tDM1为2 722~2 837 Ma.岩石成因研究表明辉绿辉长岩岩浆起源于有软流圈地幔参与的大陆岩石圈富集地幔,富集地幔源为10%~20%部分熔融的含尖晶石和石榴石二辉橄榄岩地幔.其岩浆演化以单斜辉石分离结晶为主,橄榄石和斜长石次之,地壳混染影响有限.综合研究表明,早古元古代构造‒岩浆寂静期中部造山带北端赤峰南部罗卜起沟~2.33 Ga辉绿辉长岩可能处于弧后伸展裂谷环境.研究区可能经历了板块后撤引发的软流圈上涌、岩石圈减薄的地球动力学过程.研究结果为古元古代早期华北克拉通中部造山带北端构造演化提供约束和借鉴.
The magmatic activities in the Early Paleoproterozoic are of great significance for understanding the tectonic evolution history and geodynamic processes of the Trans-North China Orogen (TNCO) in the North China Craton (NCC). In this study, the Early Paleoproterozoic diabase-gabbro was discovered for the first time in the Luobuqigou area of southern Chifeng at the northern end of the TNCO,and detailed petrography, whole rock geochemistry and zircon U-Pb-Hf isotope geochemistry studies were carried out. Zircon U-Pb isotopic dating reveals that the intrusion age of diabase-gabbro is 2 332 Ma. The geochemical characteristics indicate that the diabase-gabbro belongs to the tholeiitic basalt series. It shows positive anomalies of Rb, Ba, U and Pb, and negative anomalies of Sr, Nb, Th and Y. It has a relatively gentle right-dipping REE distribution pattern, with a weak enrichment of LREE relative to HREE, and the Eu anomaly is not obvious. Zircon εHf(t) value ranging from -4.4 to -0.8, and the single-stage Hf model age tDM1 range from 2 722 Ma to 2 873 Ma. Petrogenetic studies have shown that the diabase-gabbro magma originated from the enriched subcontinent lithosphere mantle with the participation of the asthenospheric mantle. The enriched mantle source is a 10% to 20% partially melted spinel- and garnet-bearing lherzolite mantle. Its magma evolution is dominated by the fractional crystallization of clinopyroxene, followed by olivine and plagioclase, and the influence of crustal contamination was limited. The comprehensive study shows that the ~2.33 Ga diabase-gabbro in the Luobuqigou area of southern Chifeng at the northern end of the TNCO during the Early Proterozoic tectono-magmatic lull (TML) period, might beformed in a back-arc extensional rift environment. The study area might have experienced the geodynamic process of asthenosphere upwelling and lithosphere thinning caused by plate rollback. Our research results provide constraints and references for the tectonic evolution of the northern end of the TNCO in the NCC during the Early Paleoproterozoic.
罗卜起沟辉绿辉长岩 / 古元古代早期 / 锆石U⁃Pb⁃Hf同位素 / 弧后伸展裂谷环境 / 中部造山带北端 / 地球化学.
Luobuqigou diabase⁃gabbro / Early Paleoproterozoic / zircon U⁃Pb⁃Hf isotopes / back⁃arc extensional rift environment / northern end of Trans⁃North China Orogen / geochemistry
| [1] |
Aldanmaz, E., Pearce, J. A., Thirlwall, M. F., et al., 2000. Petrogenetic Evolution of Late Cenozoic, Post⁃Collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1-2): 67-95. https://doi.org/10.1016/S0377⁃0273(00)00182⁃7 |
| [2] |
Aldanmaz, E., Schmidt, M. W., Gourgaud, A., et al., 2009. Mid⁃Ocean Ridge and Supra⁃Subduction Geochemical Signatures in Spinel⁃Peridotites from the Neotethyan Ophiolites in SW Turkey: Implications for Upper Mantle Melting Processes. Lithos, 113(3-4): 691-708. https://doi.org/10.1016/j.lithos.2009.03.010 |
| [3] |
Belica, M. E., Piispa, E. J., Meert, J. G., et al., 2014. Paleoproterozoic Mafic Dyke Swarms from the Dharwar Craton: Paleomagnetic Poles for India from 2.37 to 1.88 Ga and Rethinking the Columbia Supercontinent.Precambrian Research, 244: 100-122. https://doi.org/10.1016/j.precamres.2013.12.005 |
| [4] |
Blichert⁃Toft, J., Albaréde, F., 1997. The Lu⁃Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle⁃Crust System. Earth and Planetary Science Letters, 148(1-2): 243-258. https://doi.org/10.1016/S0012⁃821X(97)00040⁃X |
| [5] |
Campbell, I.H., Griffiths, R.W., 2014. Did the Formation of D″ Cause the Archaean⁃Proterozoic Transition? Earth and Planetary Science Letters, 388: 1-8. https://doi.org/10.1016/j.epsl.2013.11.048 |
| [6] |
Chen, B., Liu, S.W., Wang, R., et al., 2006.The Nd⁃Sr Isotopic Characteristics and Petrogenesis of Neoarchean⁃Proterozoic Granites in Lvliang⁃Wutai Block, North China Craton. Acta Geologica Sinica, 80(12): 1841 (in Chinese with English abstract). |
| [7] |
Chifeng Geology and Mineral Exploration and Development Institute, Inner Mongolia, 2016. Report of the 1∶50 000 Regional Mineral Geological Survey of Xiaoniuqun Sheet and the Other Two Sheets in Chifeng City, Inner Mongolia Autonomous Region. National Geological Data Museum, 19-122 (in Chinese). |
| [8] |
Condie, K. C., 2001. Mantle Plumes and Their Record in Earth History. Cambridge University Press, Cambridge. |
| [9] |
Condie, K. C., O’Neill, C., Aster, R. C., 2009. Evidence and Implications for a Widespread Magmatic Shutdown for 250 My on Earth. Earth and Planetary Science Letters, 282(1-4): 294-298. https://doi.org/10.1016/j.epsl.2009.03.033 |
| [10] |
Condie, K. C., Pisarevsky, S. A., Puetz, S. J., et al., 2022. A Reappraisal of the Global Tectono⁃Magmatic Lull at ∼2.3 Ga. Precambrian Research, 376: 106690. https://doi.org/10.1016/j.precamres.2022.106690 |
| [11] |
Cox, K. G., 1980. A Model for Flood Basalt Volcanism. Journal of Petrology, 21(4): 629-650. https://doi.org/10.1093/petrology/21.4.629 |
| [12] |
Davidson, J., Turner, S., Plank, T., 2013. Dy/Dy*: Variations Arising from Mantle Sources and Petrogenetic Processes. Journal of Petrology, 54(3): 525-537. https://doi.org/10.1093/petrology/egs076 |
| [13] |
DePaolo, D. J., 1981. Trace Element and Isotopic Effects of Combined Wallrock Assimilation and Fractional Crystallization. Earth and Planetary Science Letters, 53(2): 189-202. https://doi.org/10.1016/0012⁃821X(81)90153⁃9 |
| [14] |
Dong, C. Y., Ma, M. Z., Wilde, S. A., et al., 2022. The First Identification of Early Paleoproterozoic (2.46-2.38 Ga) Supracrustal Rocks in the Daqingshan Area, Northwestern North China Craton: Geology, Geochemistry and SHRIMP U⁃Pb Dating.Precambrian Research, 377: 106727. https://doi.org/10.1016/j.precamres.2022.106727 |
| [15] |
Du, L. L., Yang, C. H., Song, H. X., et al., 2020. Neoarchean⁃Paleoproterozoic Multi⁃Stage Geological Events and Their Tectonic Implications in the Fuping Complex, North China Craton. Earth Science, 45(9): 3179-3195 (in Chinese with English abstract). |
| [16] |
Du, L. L., Yang, C. H., Wang, W., et al., 2013. Paleoproterozoic Rifting of the North China Craton: Geochemical and Zircon Hf Isotopic Evidence from the 2 137 Ma Huangjinshan A⁃Type Granite Porphyry in the Wutai Area. Journal of Asian Earth Sciences, 72: 190-202. https://doi.org/10.1016/j.jseaes.2012.11.040 |
| [17] |
Duan, Q. S., Du, L. L., Song, H. X., et al., 2021. Petrogenesis of the 2.3 Ga Lengkou Metavolcanic Rocks in the North China Craton: Implications for Tectonic Settings during the Magmatic Quiescence. Precambrian Research, 357: 106151. https://doi.org/10.1016/j.precamres.2021.106151 |
| [18] |
Faccenna, C., Becker, T. W., Lallemand, S., et al., 2010. Subduction⁃Triggered Magmatic Pulses: A New Class of Plumes? Earth and Planetary Science Letters, 299(1-2): 54-68. https://doi.org/10.1016/j.epsl.2010.08.012 |
| [19] |
Faure, M., Trap, P., Lin, W., et al., 2007. Polyorogenic Evolution of the Paleoproterozoic Trans⁃North China Belt-New Insights from the Lüliangshan⁃Hengshan⁃Wutaishan and Fuping Massifs. Episodes, 30(2): 96-107. https://doi.org/10.18814/epiiugs/2007/v30i2/004 |
| [20] |
Frey, F. A., Garcia, M. O., Wise, W. S., et al., 1991. The Evolution of Mauna Kea Volcano, Hawaii: Petrogenesis of Tholeiitic and Alkalic Basalts. Journal of Geophysical Research: Solid Earth, 96(B9): 14347-14375. https://doi.org/10.1029/91JB00940 |
| [21] |
Gao, P., Santosh, M., Kwon, S., et al., 2021. Ocean Plate Stratigraphy of a Long⁃Lived Precambrian Subduction⁃Accretion System: The Wutai Complex, North China Craton. Precambrian Research, 363: 106334. https://doi.org/10.1016/j.precamres.2021.106334 |
| [22] |
Gao, Z., Zhang, H. F., Yang, H., et al., 2018. Back⁃Arc Basin Development: Constraints on Geochronology and Geochemistry of Arc⁃like and OIB⁃like Basalts in the Central Qilian Block (Northwest China). Lithos, 310-311: 255-268. https://doi.org/10.1016/j.lithos.2018.04.002 |
| [23] |
Grauch, R.I., 1989. Rare Earth Elements in Metamorphic Rocks. In: Lipin, B.R., McKay, G.A., eds., Geochemistry and Mineralogy of Rare Earth Elements. Mineralogical Society of America, Washington, D.C., 147-167. |
| [24] |
Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM⁃MC⁃ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/S0016⁃7037(99)00343⁃9 |
| [25] |
Hart, S. R., Staudigel, H., 1982. The Control of Alkalies and Uranium in Seawater by Ocean Crust Alteration. Earth and Planetary Science Letters, 58(2): 202-212. https://doi.org/10.1016/0012⁃821X(82)90194⁃7 |
| [26] |
Hawkesworth, C. J., Lightfoot, P. C., Fedorenko, V. A., et al., 1995. Magma Differentiation and Mineralisation in the Siberian Continental Flood Basalts. Lithos, 34(1-3): 61-88. https://doi.org/10.1016/0024⁃4937(95)90011⁃X |
| [27] |
Hofmann, A. W., 1997. Mantle Geochemistry: The Message from Oceanic Volcanism. Nature, 385(6613): 219-229. https://doi.org/10.1038/385219a0 |
| [28] |
Hoffmann, J. E., Wilson, A. H., 2017. The Origin of Highly Radiogenic Hf Isotope Compositions in 3.33 Ga Commondale Komatiite Lavas (South Africa). Chemical Geology, 455: 6-21. https://doi.org/10.1016/j.chemgeo.2016.10.010 |
| [29] |
Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027 |
| [30] |
Hou, K. J., Li, Y. H., Zou, T. R., et al., 2007. Laser Ablation⁃MC⁃ICP⁃MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract). |
| [31] |
Jia, X. L., Zhai, M. G., Xiao, W. J., et al., 2020. Mesoarchean to Paleoproterozoic Crustal Evolution of the Taihua Complex in the Southern North China Craton. Precambrian Research, 337: 105451. https://doi.org/10.1016/j.precamres.2019.105451 |
| [32] |
Kusky, T. M., Li, J. H., 2003. Paleoproterozoic Tectonic Evolution of the North China Craton.Journal of Asian Earth Sciences, 22(4): 383-397. https://doi.org/10.1016/S1367⁃9120(03)00071⁃3 |
| [33] |
Kusky, T. M., 2011. Geophysical and Geological Tests of Tectonic Models of the North China Craton. Gondwana Research, 20(1): 26-35. https://doi.org/10.1016/j.gr.2011.01.004 |
| [34] |
Kusky, T. M., Windley, B. F., Wang, L., et al., 2014. Flat Slab Subduction, Trench Suction, and Craton Destruction: Comparison of the North China, Wyoming, and Brazilian Cratons. Tectonophysics, 630: 208-221. https://doi.org/10.1016/j.tecto.2014.05.028 |
| [35] |
Kusky, T. M., Polat, A., Windley, B. F., et al., 2016. Insights into the Tectonic Evolution of the North China Craton through Comparative Tectonic Analysis: A Record of Outward Growth of Precambrian Continents. Earth⁃Science Reviews, 162(1): 387-432. https://doi.org/10.1016/j.earscirev.2016.09.002 |
| [36] |
Li, J. H., Qian, X. L., Huang, X. N., et al., 2000. Tectonic Framework of North China Block and Its Cratonization in the Early Precambrian. Acta Petrologica Sinica, 16(1): 1-10 (in Chinese with English abstract). |
| [37] |
Li, X. H., Li, W. X., He, B., 2012. Building of the South China Block and Its Relevance to Assembly and Breakup of Rodinia Supercontinent: Observations, Interpretations and Tests. Bulletin of Mineralogy, Petrology and Geochemistry, 31(6): 543-559 (in Chinese with English abstract). |
| [38] |
Li, Z. X., Zhang, S. B., Zheng, Y. F., et al., 2024. Linking the Paleoproterozoic Tectono⁃Magmatic Lull to the Archean Supercratons: Geochemical Insights from Paleoproterozoic Rocks in the North China Craton. Precambrian Research, 404: 107326. https://doi.org/10.1016/j.precamres.2024.107326 |
| [39] |
Liu, S. W., Fu, J. H., Lu, Y. J., et al., 2019. Precambrian Hongqiyingzi Complex at the Northern Margin of the North China Craton: Its Zircon U⁃Pb⁃Hf Systematics, Geochemistry and Constraints on Crustal Evolution. Precambrian Research, 326: 58-83. https://doi.org/10.1016/j.precamres.2018.05.019 |
| [40] |
Liu, S. W., Pan, Y. M., Li, J. H., et al., 2002. Geological and Isotopic Geochemical Constraints on the Evolution of the Fuping Complex, North China Craton. Precambrian Research, 117(1-2): 41-56. https://doi.org/10.1016/S0301⁃9268(02)00063⁃3 |
| [41] |
Liu, S. W., Santosh, M., Wang, W., et al., 2011. Zircon U⁃Pb Chronology of the Jianping Complex: Implications for the Precambrian Crustal Evolution History of the Northern Margin of North China Craton. Gondwana Research, 20(1): 48-63. https://doi.org/10.1016/j.gr.2011.01.003 |
| [42] |
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA⁃ICP⁃MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 |
| [43] |
Ludwig, K.R., 2003. User's Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, 70. |
| [44] |
Manikyamba, C., Kerrich, R., Khanna, T. C., et al., 2009. Enriched and Depleted Arc Basalts, with Mg⁃Andesites and Adakites: A Potential Paired Arc⁃Back⁃Arc of the 2.6 Ga Hutti Greenstone Terrane, India. Geochimica et Cosmochimica Acta, 73(6): 1711-1736. https://doi.org/10.1016/j.gca.2008.12.020 |
| [45] |
McKenzie, D., O’Nions, R. K., 1991. Partial Melt Distributions from Inversion of Rare Earth Element Concentrations. Journal of Petrology, 32(5): 1021-1091. https://doi.org/10.1093/petrology/32.5.1021 |
| [46] |
Meschede, M., 1986. A Method of Discriminating between Different Types of Mid⁃Ocean Ridge Basalts and Continental Tholeiites with the Nb⁃Zr⁃Y Diagram. Chemical Geology, 56(3-4): 207-218. https://doi.org/10.1016/0009⁃2541(86)90004⁃5 |
| [47] |
Miyashiro, A., 1975. Classification, Characteristics, and Origin of Ophiolites. The Journal of Geology, 83(2): 249-281. https://doi.org/10.1086/628085 |
| [48] |
No.208 Team of Nuclear Industry, 2015. Report of the 1∶ 50 000 Regional Mineral Geological Survey of Chaoyangdi Sheet and the Other Three Sheets in Chifeng City, Inner Mongolia Autonomous Region. National Geological Data Museum, 25-91 (in Chinese). |
| [49] |
O’Neill, C., Lenardic, A., Moresi, L., et al., 2007. Episodic Precambrian Subduction. Earth and Planetary Science Letters, 262(3-4): 552-562. https://doi.org/10.1016/j.epsl.2007.04.056 |
| [50] |
Ouzegane, K., Liégeois, J. P., Doukkari, S., et al., 2023. The Egéré Paleo⁃Mesoproterozoic Rifted Passive Margin of the LATEA Metacraton (Central Hoggar, Tuareg Shield, Algeria) Subducted and Exhumed during the Pan⁃African Orogeny: U⁃Pb Zircon Ages, P⁃T⁃t Paths, Geochemistry and Sr⁃Nd Isotopes. Earth⁃Science Reviews, 236: 104262. https://doi.org/10.1016/j.earscirev.2022.104262 |
| [51] |
Panda, A., Shankar, R., Sarma, D.S., et al., 2023. Precise Pb⁃Pb Baddeleyite Geochronology, Geochemistry, and Sr⁃Nd Isotopic Constraints on the 2.36 & 1.88 Ga Mafic Dykes from the Bastar Craton, India: Implications for Their Petrogenesis in Conjunction with the Dharwar Mafic Dykes. Precambrian Research, 393: 107090. https://doi.org/10.1016/j.precamres.2023.107090 |
| [52] |
Partin, C. A., Bekker, A., Sylvester, P. J., et al., 2014. Filling in the Juvenile Magmatic Gap: Evidence for Uninterrupted Paleoproterozoic Plate Tectonics. Earth and Planetary Science Letters, 388: 123-133. https://doi.org/10.1016/j.epsl.2013.11.041 |
| [53] |
Pehrsson, S. J., Buchan, K. L., Eglington, B. M., et al., 2014. Did Plate Tectonics Shutdown in the Palaeoproterozoic? A View from the Siderian Geologic Record.Gondwana Research, 26(3-4): 803-815. https://doi.org/10.1016/j.gr.2014.06.001 |
| [54] |
Peng, P., Guo, J. H., Zhai, M. G., et al., 2012. Genesis of the Hengling Magmatic Belt in the North China Craton: Implications for Paleoproterozoic Tectonics. Lithos, 148: 27-44. https://doi.org/10.1016/j.lithos.2012.05.021 |
| [55] |
Peng, P., Ernst, R. E., Hou, G. T., et al., 2016. Dyke Swarms: Keys to Paleogeographic Reconstructions. Science Bulletin, 61(21): 1669-1671. https://doi.org/10.1007/s11434⁃016⁃1184⁃x |
| [56] |
Pearce, T. H., 1968. A Contribution to the Theory of Variation Diagrams. Contributions to Mineralogy and Petrology, 19(2): 142-157. https://doi.org/10.1007/BF00635485 |
| [57] |
Pearce, J. A., 1975. Basalt Geochemistry Used to Investigate Past Tectonic Environments on Cyprus. Tectonophysics, 25(1-2): 41-67. https://doi.org/10.1016/0040⁃1951(75)90010⁃4 |
| [58] |
Pearce, J.A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. In: Thorpe, R.S., ed., Andesites: Orogenic Andesites and Related Rocks. Wiley, Chichester, 525-548. |
| [59] |
Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1-4): 14-48. https://doi.org/10.1016/j.lithos.2007.06.016 |
| [60] |
Pearce, J. A., 2014. Immobile Element Fingerprinting of Ophiolites. Elements, 10(2): 101-108. https://doi.org/10.2113/gselements.10.2.101 |
| [61] |
Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47. https://doi.org/10.1007/BF00375192 |
| [62] |
Pearce, J. A., Stern, R. J., 2006. Origin of Back⁃Arc Basin Magmas: Trace Element and Isotope Perspectives. In: Christie, M.D., Fisher, R.C., Lee, S., et al., eds., Back⁃Arc Spreading Systems:Geological, Biological, Chemical, and Physical Interactions. American Geophysical Union, Washington, D. C., 63-86. https://doi.org/10.1029/166gm06 |
| [63] |
Pisarevsky, S. A., De Waele, B., Jones, S., et al., 2015. Paleomagnetism and U⁃Pb Age of the 2.4 Ga Erayinia Mafic Dykes in the South⁃Western Yilgarn, Western Australia: Paleogeographic and Geodynamic Implications.Precambrian Research, 259: 222-231. https://doi.org/10.1016/j.precamres.2014.05.023 |
| [64] |
Polat, A., Hofmann, A. W., 2003. Alteration and Geochemical Patterns in the 3.7-3.8 Ga Isua Greenstone Belt, West Greenland. Precambrian Research, 126(3-4): 197-218. https://doi.org/10.1016/S0301⁃9268(03)00095⁃0 |
| [65] |
Polat, A., Kusky, T., Li, J. H., et al., 2005. Geochemistry of Neoarchean (ca. 2.55-2.50 Ga) Volcanic and Ophiolitic Rocks in the Wutaishan Greenstone Belt, Central Orogenic Belt, North China Craton: Implications for Geodynamic Setting and Continental Growth. Geological Society of America Bulletin, 117(11-12): 1387-1399. https://doi.org/10.1130/b25724.1 |
| [66] |
Rossel, P., Oliveros, V., Ducea, M. N., et al., 2013. The Early Andean Subduction System as an Analog to Island Arcs: Evidence from Across⁃Arc Geochemical Variations in Northern Chile. Lithos, 179: 211-230. https://doi.org/10.1016/j.lithos.2013.08.014 |
| [67] |
Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry, 3: 1-64. https://doi.org/10.1016/B0⁃08⁃043751⁃6/03016⁃4 |
| [68] |
Russell, J. K., Nicholls, J., 1988. Analysis of Petrologic Hypotheses with Pearce Element Ratios. Contributions to Mineralogy and Petrology, 99(1): 25-35. https://doi.org/10.1007/BF00399362 |
| [69] |
Rutherford, L., Barovich, K., Hand, M., et al., 2006. Continental ca 1.7-1.69 Ga Fe⁃Rich Metatholeiites in the Curnamona Province, Australia: A Record of Melting of a Heterogeneous, Subduction⁃Modified Lithospheric Mantle. Australian Journal of Earth Sciences, 53(3): 501-519. https://doi.org/10.1080/08120090600632466 |
| [70] |
Santosh, M., Hu, C. N., He, X. F., et al., 2017. Neoproterozoic Arc Magmatism in the Southern Madurai Block, India: Subduction, Relamination, Continental Outbuilding, and the Growth of Gondwana. Gondwana Research, 45: 1-42. https://doi.org/10.1016/j.gr.2016.12.009 |
| [71] |
Shaw, D. M., 1970. Trace Element Fractionation during Anatexis. Geochimica et Cosmochimica Acta, 34(2): 237-243. https://doi.org/10.1016/0016⁃7037(70)90009⁃8 |
| [72] |
Silver, P. G., Behn, M. D., 2008. Intermittent Plate Tectonics? Science, 319(5859): 85-88. https://doi.org/10.1126/science.1148397 |
| [73] |
Smith, E. I., Sánchez, A., Walker, J. D., et al., 1999. Geochemistry of Mafic Magmas in the Hurricane Volcanic Field, Utah: Implications for Small⁃ and Large⁃Scale Chemical Variability of the Lithospheric Mantle. The Journal of Geology, 107(4): 433-448. https://doi.org/10.1086/314355 |
| [74] |
Spencer, C. J., Murphy, J. B., Kirkland, C. L., et al., 2018. A Palaeoproterozoic Tectono⁃Magmatic Lull as a Potential Trigger for the Supercontinent Cycle. Nature Geoscience, 11(2): 97-101. https://doi.org/10.1038/s41561⁃017⁃0051⁃y |
| [75] |
Srivastava, R.K., 2010. Dyke Swarms: Keys for Geodynamic Interpretation. Proceedings of the Sixth International Dyke Conference. Springer, Berlin, 636. https://doi.org/10.1007/978⁃3⁃642⁃12496⁃9 |
| [76] |
Sun, G. Z., Liu, S. W., Lü, Y. J., et al., 2022. Chronological Framework of Precambrian Dantazi Complex: Implications for the Formation and Evolution of the Northern North China Craton. Precambrian Research, 379: 106819. https://doi.org/10.1016/j.precamres.2022.106819 |
| [77] |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society,London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19 |
| [78] |
Sun, Z. J., Yu, H. N., Li, C., et al., 2017. Paleoproterozoic (ca. 1.7 Ga) Magmatism in Chifeng, Inner Mongolia: Implications for the Tectonic Evolution of the Trans⁃North China Orogen. Arabian Journal of Geosciences, 10(20): 453. https://doi.org/10.1007/s12517⁃017⁃3206⁃7 |
| [79] |
Tang, L., Santosh, M., Tsunogae, T., et al., 2017. Petrology, Phase Equilibria Modelling and Zircon U⁃Pb Geochronology of Paleoproterozoic Mafic Granulites from the Fuping Complex, North China Craton. Journal of Metamorphic Geology, 35(5): 517-540. https://doi.org/10.1111/jmg.12243 |
| [80] |
Tang, L., Santosh, M., 2018. Neoarchean Granite⁃Greenstone Belts and Related Ore Mineralization in the North China Craton: An Overview. Geoscience Frontiers, 9(3): 751-768. https://doi.org/10.1016/j.gsf.2017.04.002 |
| [81] |
Taylor, S. R., McLennan, S. M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 33(2): 241-265. https://doi.org/10.1029/95RG00262 |
| [82] |
Trap, P., Faure, M., Lin, W., et al., 2012. Paleoproterozoic Tectonic Evolution of the Trans⁃North China Orogen: Toward a Comprehensive Model. Precambrian Research, 222-223: 191-211. https://doi.org/10.1016/j.precamres.2011.09.008 |
| [83] |
Turner, S. P., 1996. Petrogenesis of the Late⁃Delamerian Gabbroic Complex at Black Hill, South Australia: Implications for Convective Thinning of the Lithospheric Mantle. Mineralogy and Petrology, 56(1): 51-89. https://doi.org/10.1007/BF01162657 |
| [84] |
Turner, S. J., Langmuir, C. H., Dungan, M. A., et al., 2017. The Importance of Mantle Wedge Heterogeneity to Subduction Zone Magmatism and the Origin of EM1. Earth and Planetary Science Letters, 472: 216-228. https://doi.org/10.1016/j.epsl.2017.04.051 |
| [85] |
Valley, J. W., Reinhard, D. A., Cavosie, A. J., et al., 2015. Nano⁃ and Micro⁃Geochronology in Hadean and Archean Zircons by Atom⁃Probe Tomography and SIMS: New Tools for Old Mineralsâ. American Mineralogist, 100(7): 1355-1377. https://doi.org/10.2138/am⁃2015⁃5134 |
| [86] |
Verma, S. P., 1981. Seawater Alteration Effects on 87Sr/86Sr, K, Rb, Cs, Ba and Sr in Oceanic Igneous Rocks. Chemical Geology, 34(1-2): 81-89. https://doi.org/10.1016/0009⁃2541(81)90073⁃5 |
| [87] |
Wang, G. D., Wang, H., Chen, H. X., et al., 2014. Metamorphic Evolution and Zircon U⁃Pb Geochronology of the Mts. Huashan Amphibolites: Insights into the Palaeoproterozoic Amalgamation of the North China Craton. Precambrian Research, 245: 100-114. https://doi.org/10.1016/j.precamres.2014.02.004 |
| [88] |
Wang, J. P., Li, X. W., Ning, W. B., et al., 2019. Geology of a Neoarchean Suture: Evidence from the Zunhua Ophiolitic Mélange of the Eastern Hebei Province, North China Craton. GSA Bulletin, 131(11-12): 1943-1964. https://doi.org/10.1130/B35138.1 |
| [89] |
Wang, K., Plank, T., Walker, J. D., et al., 2002. A Mantle Melting Profile across the Basin and Range, SW USA. Journal of Geophysical Research: Solid Earth, 107(B1): ECV5⁃1⁃ECV5⁃21. https://doi.org/10.1029/2001JB000209 |
| [90] |
Wang, W., Liu, S. W., Santosh, M., et al., 2013a. Zircon U⁃Pb⁃Hf Isotopes and Whole⁃Rock Geochemistry of Granitoid Gneisses in the Jianping Gneissic Terrane, Western Liaoning Province: Constraints on the Neoarchean Crustal Evolution of the North China Craton. Precambrian Research, 224: 184-221. https://doi.org/10.1016/j.precamres.2012.09.019 |
| [91] |
Wang, Y. J., Zhang, A. M., Cawood, P. A., et al., 2013b. Geochronological, Geochemical and Nd⁃Hf⁃Os Isotopic Fingerprinting of an Early Neoproterozoic Arc⁃Back⁃Arc System in South China and Its Accretionary Assembly along the Margin of Rodinia. Precambrian Research, 231: 343-371. https://doi.org/10.1016/j.precamres.2013.03.020 |
| [92] |
Wang, W., Liu, S. W., Santosh, M., et al., 2015. Neoarchean Intra⁃Oceanic Arc System in the Western Liaoning Province: Implications for Early Precambrian Crustal Evolution in the Eastern Block of the North China Craton. Earth⁃Science Reviews, 150: 329-364. https://doi.org/10.1016/j.earscirev.2015.08.002 |
| [93] |
Wang, Y. L., Zhang, C. J., Xiu, S. Z., 2001. Th/Hf⁃Ta/Hf Identification of Tectonic Setting of Basalts. Acta Petrologica Sinica, 17(3): 413-421 (in Chinese with English abstract). |
| [94] |
Wang, Z. H., Wilde, S. A., Wan, J. L., 2010. Tectonic Setting and Significance of 2.3-2.1 Ga Magmatic Events in the Trans⁃North China Orogen: New Constraints from the Yanmenguan Mafic⁃Ultramafic Intrusion in the Hengshan⁃Wutai⁃Fuping Area. Precambrian Research, 178(1-4): 27-42. https://doi.org/10.1016/j.precamres.2010.01.005 |
| [95] |
Wei, C. J., Qian, J. H., Zhou, X. W., 2014. Paleoproterozoic Crustal Evolution of the Hengshan⁃Wutai⁃Fuping Region, North China Craton. Geoscience Frontiers, 5(4): 485-497. https://doi.org/10.1016/j.gsf.2014.02.008 |
| [96] |
Wilde, S. A., Zhao, G. C., Sun, M., 2002. Development of the North China Craton during the Late Archaean and Its Final Amalgamation at 1.8 Ga: Some Speculations on Its Position within a Global Palaeoproterozoic Supercontinent. Gondwana Research, 5(1): 85-94. https://doi.org/10.1016/S1342⁃937X(05)70892⁃3 |
| [97] |
Wilson, M., 1989. Igneous Petrogenesis: A Global Tectonic Approach. Chapman and Hall, London. https://doi.org/10.1007/978⁃1⁃4020⁃6788⁃4 |
| [98] |
Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009⁃2541(77)90057⁃2 |
| [99] |
Winter, J.D., 2014. Principles of Igneous and Metamorphic Petrology (Second ed.). Cambridge University Press, Cambridge, 745. https://doi.org/10.1017/CBO9780511813429 |
| [100] |
Wu, C., Wang, G. S., Zhou, Z. G., et al., 2022. Late Archeanâ Paleoproterozoic Plate Tectonics along the Northern Margin of the North China Craton. GSA Bulletin, 135(3-4): 967-989. https://doi.org/10.1130/B36533.1 |
| [101] |
Wu, C., Zhou, Z. G., Zuza, A. V., et al., 2018. A 1.9 Ga Mélange along the Northern Margin of the North China Craton: Implications for the Assembly of Columbia Supercontinent. Tectonics, 37(10): 3610-3646. https://doi.org/10.1029/2018TC005103 |
| [102] |
Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu⁃Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract). |
| [103] |
Yuan, L. L., Zhang, X. H., Yang, Z. L., et al., 2017. Paleoproterozoic Alaskan⁃Type Ultramafic⁃Mafic Intrusions in the Zhongtiao Mountain Region, North China Craton: Petrogenesis and Tectonic Implications. Precambrian Research, 296: 39-61. https://doi.org/10.1016/j.precamres.2017.04.037 |
| [104] |
Zeng, Y. C., Chen, Q., Xu, J. F., et al., 2018. Petrogenesis and Geodynamic Significance of Neoproterozoic (∼925 Ma) High⁃Fe⁃Ti Gabbros of the RenTso Ophiolite, Lhasa Terrane, Central Tibet. Precambrian Research, 314: 160-169. https://doi.org/10.1016/j.precamres.2018.06.005 |
| [105] |
Zhai, M. G., 2011. Cratonization and the Ancient North China Continent: A Summary and Review. Science China Earth Sciences, 54(8): 1110-1120. https://doi.org/10.1007/s11430⁃011⁃4250⁃x |
| [106] |
Zhai, M. G., Liu, W. J., 2003. Palaeoproterozoic Tectonic History of the North China Craton: A Review. Precambrian Research, 122(1-4): 183-199. https://doi.org/10.1016/S0301⁃9268(02)00211⁃5 |
| [107] |
Zhai, M. G., Peng, P., 2020. Origin of Early Continents and Beginning of Plate Tectonics. Science Bulletin, 65(12): 970-973. https://doi.org/10.1016/j.scib.2020.03.022 |
| [108] |
Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005 |
| [109] |
Zhai, M.G., Zhang, Y.B., Li, Q.L., et al., 2021. Cratonization, Lower Crust and Continental Lithosphere. Acta Petrologica Sinica, 37(1): 1-23 (in Chinese with English abstract). |
| [110] |
Zhai, Q. G., Jahn, B. M., Su, L., et al., 2013. SHRIMP Zircon U⁃Pb Geochronology, Geochemistry and Sr⁃Nd⁃Hf Isotopic Compositions of a Mafic Dyke Swarm in the Qiangtang Terrane, Northern Tibet and Geodynamic Implications. Lithos, 174: 28-43. https://doi.org/10.1016/j.lithos.2012.10.018 |
| [111] |
Zhang, H., Hou, G. T., Tian, W., 2023. Baddeleyite Dating of a 2.34 Ga Mafic Dyke in the Western Shandong Province, North China Craton, and Its Tectonic Implications. Lithos, 438-439: 107013. https://doi.org/10.1016/j.lithos.2022.107013 |
| [112] |
Zhao, G. C., Cawood, P. A., Li, S. Z., et al., 2012. Amalgamation of the North China Craton: Key Issues and Discussion. Precambrian Research, 222-223: 55-76. https://doi.org/10.1016/j.precamres.2012.09.016 |
| [113] |
Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2002. Review of Global 2.1-1.8 Ga Orogens: Implications for a Pre⁃Rodinia Supercontinent. Earth⁃Science Reviews, 59(1-4): 125-162. https://doi.org/10.1016/S0012⁃8252(02)00073⁃9 |
| [114] |
Zhao, G. C., Sun, M., Wilde, S. A., et al., 2004. A Paleo⁃Mesoproterozoic Supercontinent: Assembly, Growth and Breakup. Earth⁃Science Reviews, 67(1-2): 91-123. https://doi.org/10.1016/j.earscirev.2004.02.003 |
| [115] |
Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177-202. https://doi.org/10.1016/j.precamres.2004.10.002 |
| [116] |
Zhao, G. C., Zhai, M. G., 2013. Lithotectonic Elements of Precambrian Basement in the North China Craton: Review and Tectonic Implications.Gondwana Research, 23(4): 1207-1240. https://doi.org/10.1016/j.gr.2012.08.016 |
| [117] |
Zhao, J. H., Hu, R. Z., Zhou, M. F., et al., 2007. Elemental and Sr⁃Nd⁃Pb Isotopic Geochemistry of Mesozoic Mafic Intrusions in Southern Fujian Province, SE China: Implications for Lithospheric Mantle Evolution. Geological Magazine, 144(6): 937-952. https://doi.org/10.1017/S0016756807003834 |
| [118] |
Zhao, J. H., Zhou, M. F., 2009. Secular Evolution of the Neoproterozoic Lithospheric Mantle underneath the Northern Margin of the Yangtze Block, South China. Lithos, 107(3-4): 152-168. https://doi.org/10.1016/j.lithos.2008.09.017 |
| [119] |
Zhao, T. P., Chen, W., Zhou, M. F., 2009. Geochemical and Nd⁃Hf Isotopic Constraints on the Origin of the ~1.74 Ga Damiao Anorthosite Complex, North China Craton. Lithos, 113(3-4): 673-690. https://doi.org/10.1016/j.lithos.2009.07.002 |
| [120] |
Zheng, Y. F., Zhao, G. C., 2020. Two Styles of Plate Tectonics in Earth’s History. Science Bulletin, 65(4): 329-334. https://doi.org/10.1016/j.scib.2018.12.029 |
| [121] |
Zhou, Y. Y., Sun, Q. Y., Zhao, T. P., et al., 2021. Petrogenesis of the Early Paleoproterozoic Low⁃δ18O Potassic Granites in the Southern NCC and Its Possible Implications for No Confluence of Glaciations and Magmatic Shutdown at ca. 2.3 Ga. Precambrian Research, 361: 106258. https://doi.org/10.1016/j.precamres.2021.106258 |
| [122] |
Zhou, Y. Y., Zhai, M. G., 2022. Mantle Plume⁃Triggered Rifting Closely Following Neoarchean Cratonization Revealed by 2.50-2.20 Ga Magmatism across North China Craton. Earth⁃Science Reviews, 230: 104060. https://doi.org/10.1016/j.earscirev.2022.104060 |
华北地质勘查局综合普查大队科研项目(No.普科[2022]⁃C02)
高层次科技人才培养经费
/
| 〈 |
|
〉 |