华北克拉通中部造山带北端罗卜起沟~2.33 Ga辉绿辉长岩成因及构造意义

郑海平 , 姜雨奇 , 于文明 , 景国庆 , 徐洪波 , 吕晓慧

地球科学 ›› 2025, Vol. 50 ›› Issue (07) : 2735 -2758.

PDF (8479KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (07) : 2735 -2758. DOI: 10.3799/dqkx.2025.127

华北克拉通中部造山带北端罗卜起沟~2.33 Ga辉绿辉长岩成因及构造意义

作者信息 +

Petrogenesis and Tectonic Implications of ~2.33 Ga Luobuqigou Diabase⁃Gabbro in Northern End of Trans⁃North China Orogen of North China Craton

Author information +
文章历史 +
PDF (8681K)

摘要

古元古代早期岩浆活动对理解华北克拉通中部造山带构造演化史和地球动力学过程具有重要意义.首次在中部造山带北端赤峰南部罗卜起沟发现早古元古代辉绿辉长岩,并对其开展了详细的岩相学、全岩地球化学、锆石U-Pb-Hf同位素地球化学研究.锆石U-Pb同位素定年结果表明辉绿辉长岩侵入年龄为2 332 Ma.地球化学特征表明,辉绿辉长岩属于拉斑玄武岩系列,具Rb、Ba、U、Pb正异常,Sr、Nb、Th、Y负异常,具有相对较缓的右倾REE配分模式,LREE相对于HREE弱富集,Eu异常不明显.锆石εHft)值为-4.4~-0.8,单阶段模式年龄tDM1为2 722~2 837 Ma.岩石成因研究表明辉绿辉长岩岩浆起源于有软流圈地幔参与的大陆岩石圈富集地幔,富集地幔源为10%~20%部分熔融的含尖晶石和石榴石二辉橄榄岩地幔.其岩浆演化以单斜辉石分离结晶为主,橄榄石和斜长石次之,地壳混染影响有限.综合研究表明,早古元古代构造‒岩浆寂静期中部造山带北端赤峰南部罗卜起沟~2.33 Ga辉绿辉长岩可能处于弧后伸展裂谷环境.研究区可能经历了板块后撤引发的软流圈上涌、岩石圈减薄的地球动力学过程.研究结果为古元古代早期华北克拉通中部造山带北端构造演化提供约束和借鉴.

Abstract

The magmatic activities in the Early Paleoproterozoic are of great significance for understanding the tectonic evolution history and geodynamic processes of the Trans-North China Orogen (TNCO) in the North China Craton (NCC). In this study, the Early Paleoproterozoic diabase-gabbro was discovered for the first time in the Luobuqigou area of southern Chifeng at the northern end of the TNCO,and detailed petrography, whole rock geochemistry and zircon U-Pb-Hf isotope geochemistry studies were carried out. Zircon U-Pb isotopic dating reveals that the intrusion age of diabase-gabbro is 2 332 Ma. The geochemical characteristics indicate that the diabase-gabbro belongs to the tholeiitic basalt series. It shows positive anomalies of Rb, Ba, U and Pb, and negative anomalies of Sr, Nb, Th and Y. It has a relatively gentle right-dipping REE distribution pattern, with a weak enrichment of LREE relative to HREE, and the Eu anomaly is not obvious. Zircon εHf(t) value ranging from -4.4 to -0.8, and the single-stage Hf model age tDM1 range from 2 722 Ma to 2 873 Ma. Petrogenetic studies have shown that the diabase-gabbro magma originated from the enriched subcontinent lithosphere mantle with the participation of the asthenospheric mantle. The enriched mantle source is a 10% to 20% partially melted spinel- and garnet-bearing lherzolite mantle. Its magma evolution is dominated by the fractional crystallization of clinopyroxene, followed by olivine and plagioclase, and the influence of crustal contamination was limited. The comprehensive study shows that the ~2.33 Ga diabase-gabbro in the Luobuqigou area of southern Chifeng at the northern end of the TNCO during the Early Proterozoic tectono-magmatic lull (TML) period, might beformed in a back-arc extensional rift environment. The study area might have experienced the geodynamic process of asthenosphere upwelling and lithosphere thinning caused by plate rollback. Our research results provide constraints and references for the tectonic evolution of the northern end of the TNCO in the NCC during the Early Paleoproterozoic.

Graphical abstract

关键词

罗卜起沟辉绿辉长岩 / 古元古代早期 / 锆石U⁃Pb⁃Hf同位素 / 弧后伸展裂谷环境 / 中部造山带北端 / 地球化学.

Key words

Luobuqigou diabase⁃gabbro / Early Paleoproterozoic / zircon U⁃Pb⁃Hf isotopes / back⁃arc extensional rift environment / northern end of Trans⁃North China Orogen / geochemistry

引用本文

引用格式 ▾
郑海平,姜雨奇,于文明,景国庆,徐洪波,吕晓慧. 华北克拉通中部造山带北端罗卜起沟~2.33 Ga辉绿辉长岩成因及构造意义[J]. 地球科学, 2025, 50(07): 2735-2758 DOI:10.3799/dqkx.2025.127

登录浏览全文

4963

注册一个新账户 忘记密码

近十余年来,学者们研究发现古元古代早期的地球发生了如板块运动、构造‒岩浆和古气候变化方面的很多根本性转变,这使得古元古代早期的地球演化历史显得特别且意义重大(Condie et al., 2009Spencer et al., 2018).Condie et al. (2009)通过汇编全球范围内锆石年代学数据,提出了古元古代早期2.45~2.20 Ga是全球范围内的构造‒岩浆寂静期(Tectono⁃Magmatic Lull).全球构造‒岩浆寂静期(TML)主要特征是:(1)岩浆和碎屑锆石U⁃Pb年龄记录显著下降(86%~87%)(Condie et al., 2022);(2)绿岩带、TTG岩套、大火成岩省LIPs、条带状铁建造BIFs显著减少(Spencer et al., 2018Condie et al., 2022);(3)地幔潜在温度显著下降(Campbell and Griffiths, 2014);(4)大气氧化和全球广泛的冰川作用(Spencer et al., 2018Zhou and Zhai, 2022).这些关键的地球动力学过程转变,可能对现代风格的板块构造体系和地球第一个哥伦比亚(努纳)超大陆的形成发挥重要作用(O’Neill et al., 2007Spencer et al., 2018Zheng and Zhao, 2020).随着世界各地古元古代早期火成岩及相关沉积记录不断被发现,Spencer et al.(2018)Condie et al.(2022)相继将构造‒岩浆寂静期(TML)的时间范围限定在2.26~2.21 Ga和2.37~2.24 Ga,使构造‒岩浆寂静期的时间更加精确.
目前,至少24个克拉通或地块内发现2.45~2.20 Ga时期的构造岩浆活动,如加拿大北部Arrowsmith造山带、旧金山克拉通Minerio带、拉普拉塔河Tanilla带、印度Dharwar、Bastar克拉通、西澳大利亚Yilgarn、西非LATEA克拉通Egéré地体等地发现了越来越多的与俯冲和伸展事件有关的火成岩(Belica et al., 2014Pisarevsky et al. 2015Spencer et al., 2018Ouzegane et al., 2023Panda et al., 2023).研究人员在我国华北克拉通西部、东部地块及中部造山带中识别出较多2.45~2.2 Ga的TTG片麻岩、角闪岩、变辉长岩、中基性火山岩及花岗岩类等,岩石的地球化学特征具陆内裂谷或弧后伸展背景(Zhao et al., 2005Du et al., 2013Zhao and Zhai, 2013Wang et al., 2014Yuan et al., 2017Duan et al., 2021Dong et al., 2022Wu et al., 2022Zhang et al., 2023),中条地区发现的2.37~2.32 Ga的科马提岩,表明岩石圈伸展和岩石圈地幔交代熔融造成地幔柱上涌(Yuan et al., 2017Zhou and Zhai, 2022).可见,全球新发现的古元古代早期火成岩及沉积岩记录部分填补了全球构造‒岩浆寂静期(TML)的岩浆活动“空白”,使构造‒岩浆寂静期缩短至50~100 Ma.因此,古元古代早期岩浆记录的发现,不仅有助于深入地了解古元古代的构造‒岩浆寂静期(TML),亦有助于限定古元古代的地球动力学演化过程.
华北克拉通中部造山带(TNCO)北端地理上处于内蒙古东部、河北北部、辽宁西部的结合部位,该区域新太古代和古元古代中晚期岩浆活动频繁.在河北北部平泉杂岩、单塔子杂岩、红旗营子杂岩和辽宁西部的建平杂岩、朝阳杂岩中发现新太古代2.50~2.60 Ga的岩浆活动(TTG片麻岩、变质火山岩、花岗岩等) (Liu et al., 2011,2019Wang et al., 2013a,2015Sun et al., 2022),和晚古元古代1.87~1.6 Ga的岩浆活动(角闪岩、斜长岩、辉长岩、花岗岩等)(Sun et al. 2017Liu et al., 2019).可见,目前中部造山带北端发现的岩浆活动记录主要集中在新太古代和古元古代中晚期,而处于早古元古代构造‒岩浆寂静期(TML)内的岩石记录少有发现,因此对中部造山带北端早古元古代构造‒岩浆寂静期(TML)的地球动力学过程及构造环境知之甚少.其中基性岩更是鲜见报道,基性岩脉被认为记录着地幔上涌和裂谷事件,揭示了地幔‒地壳相互作用机制,是伸展事件的重要指标(Srivastava, 2010Peng et al., 2016).
为了探讨上述问题,在内蒙古喀喇沁西部罗卜起沟岩体中,通过开展详细的野外地质调查、显微岩相学观察、全岩地球化学、锆石U⁃Pb同位素年代学和Hf同位素地球化学研究,识别出构造‒岩浆寂静期~2.33 Ga的辉绿辉长岩.并进一步研究了罗卜起沟辉绿辉长岩的岩石成因,初步探讨了早古元古代构造‒岩浆寂静期中部造山带北端的构造演化过程及地球动力学背景,为理解本区早古元古代区域构造演化提供新依据.

1 地质背景

华北克拉通(NCC)是世界上最古老的克拉通之一,发育太古代至古元古代结晶基底,保存了前寒武纪地壳生长和微大陆拼合的重要岩石记录.长期以来,研究人员对华北克拉通最终拼合时间认识一致,但对东部、西部地块碰撞形成中部造山带的时间、构造演化过程,甚至合并方式存在分歧(李江海等, 2000; Wilde et al., 2002Zhao et al., 2002,2012Kusky and Li, 2003Zhai and Liu, 2003Polat and Hofmann, 2003Zhai and Santosh, 2011Zhai and Peng, 2020).

目前,华北克拉通新太古代至古元古代的构造演化模式有三种最受关注的认识:(1) ~1.85 Ga时西部和东部地块碰撞缝合形成中部造山带 (TNCO),且是华北克拉通完成最终拼合的碰撞造山带,随后统一的华北克拉通并入哥伦比亚超大陆(图1a;Zhao et al., 2004,20052012),此模式目前影响最为广泛.(2) 2.45~2.43 Ga时,东部地块向西俯冲与西部地块碰撞,形成1 600 km长的中部造山带(Central Orogenic belt (COB)).在2.30~1.85 Ga,合并的东、西部地块向西北‒北增生发展,最终华北克拉通安第斯型北缘与西伯利亚克拉通碰撞形成东西走向的内蒙古河北北部造山带,并入哥伦比亚超大陆(Kusky, 2011Kusky et al., 2016).这两种模式下的中部造山带(TNCO/COB)位置稍有差别(二者位置差别见图1a),碰撞造山时间也不同,表明研究人员对中部造山带(TNCO/COB)的碰撞时间和构造演化机制存在分歧(Wilde et al., 2002; Zhao et al., 2002, 2005, 2012; Kusky and Li, 2003Faure et al., 2007Trap et al., 2012Kusky et al., 2016Wu et al., 2018,2022Wang et al., 2019).(3)华北克拉通主要部分是在新太古代末期(~2.50 Ga)由7个微地块合并形成.~2.50 Ga后,由幕式的构造‒热事件形成了胶辽吉、晋豫和丰镇3个活动带,其形成与裂谷伸展(2.35~2.00 Ga)和俯冲‒增生‒碰撞(2.00~1.80 Ga)的构造过程相关,最终形成统一克拉通(Zhai, 2011Zhai and Santosh, 2011).

罗卜起沟杂岩体位于华北克拉通中部造山带北端的内蒙古喀喇沁旗西部(图1a),出露于喀喇沁断隆西部中新生代北东向小牛群断陷盆地中北东向小牛群‒三家隆起带上(核工业二〇八大队, 2015)(图1b).小牛群断陷盆地周缘主要出露中太古界乌拉山岩群(Ar2w)片麻岩组、古元古界明安山(Pt1ma)(岩)群、二叠系中统额里图组(P2e);盆地内出露古生界寒武系上统锦山组(∈3j)、侏罗系‒白垩系火山岩及火山碎屑岩.小牛群断陷盆地周缘及其中的隆起带上岩浆岩主要为古元古代二长花岗岩和花岗闪长岩((1 825±12) Ma; 内蒙古赤峰地质矿产勘查开发院, 2016)等、二叠纪(似斑状)二长花岗岩((271.1±2.5) Ma; 核工业二〇八大队, 2015)和钾长花岗岩、细中粒黑云母二长花岗岩((275.5±1.9) Ma; 核工业二〇八大队, 2015)等、三叠纪石英闪长岩((218.5±0.4) Ma; 内蒙古赤峰地质矿产勘查开发院, 2016)和辉绿辉长岩、辉绿岩等,侏罗纪黑云母二长花岗岩及中酸性脉岩等.

因所处构造背景的特殊性,区内受侵吞作用而形成的古老残留体零星发育(核工业二〇八大队, 2015; 内蒙古赤峰地质矿产勘查开发院, 2016).研究区及所在区域的构造线及岩浆岩带呈北东向展布,形成近北东向展布的小牛群断陷盆地及小牛群‒三家隆起带(核工业二〇八大队, 2015).受晚古元古代似斑状黑云母二长花岗岩((1 859± 16) Ma,笔者未发表数据)、细中粒黑云母二长花岗岩和二叠纪黑云母二长花岗岩(核工业二〇八大队, 2015)等大规模的岩浆侵入及侵吞作用影响,小牛群‒三家隆起带上的古元古代早期辉绿辉长岩以残留体形式产出于罗卜起沟古元古代‒中生代杂岩体之中(核工业二〇八大队, 2015),后被早泥盆世辉绿岩和二叠纪二长花岗岩侵入穿插.罗卜起沟杂岩体主体由晚古元古代似斑状黑云母二长花岗岩、钾长花岗岩、细中粒黑云母二长花岗岩等花岗岩类,古元古代早期辉绿辉长岩,二叠纪黑云母二长花岗岩和早泥盆世辉绿岩组成.

2 野外、岩相学观察及样品采集

罗卜起沟杂岩体中的早古元古代辉绿辉长岩、晚古元古代似斑状黑云母二长花岗岩和早泥盆世辉绿岩均为笔者近年在小牛群矿区通过1∶2 000地质修测测量及钻探工作新识别出的岩体/岩墙.辉绿辉长岩主要分布在罗卜起沟老矿部后山东坡地表及勘查线Q07~Q04钻孔剖面中,残留体走向NNE,倾向NWW,倾角为40°~50°,地表长宽约200 m×40 m,不连续出露(图1b和图2a、2b).辉绿辉长岩残留体被晚古元古代似斑状黑云母二长花岗岩((1 859±16) Ga,笔者未发表数据)和二叠纪黑云母二长花岗岩侵位.地表局部可见侵入接触界线,晚古元古代似斑状黑云母二长花岗岩中捕虏了大量早古元古代辉绿辉长岩角砾,角砾大小为10~30 cm,呈次棱角状‒次圆状(图2d).钻孔中多见早泥盆世辉绿岩脉,侵入早古元古代辉绿辉长岩,可见接触冷凝边.

岩相学观察表明,辉绿辉长岩呈墨绿‒灰绿色,具辉绿辉长结构、反应边结构,块状构造.矿物成分主要为斜长石(60%)、单斜辉石(30%)、角闪石(5%)、石英(少量),副矿物为磁铁矿、磷灰石等.岩石普遍经历了岩浆期后热液蚀变,斜长石存在不同程度的绢云母化;单斜辉石边部具角闪石反应边,或沿辉石节理角闪石化,后又不同程度地绿泥石化、绿帘石化,大部分单斜辉石被角闪石、绿泥石强烈交代,并呈单斜辉石假晶;热液成因角闪石发育在斜长石和单斜辉石堆晶间隙,后被绿泥石强烈交代,并呈角闪石假晶(图3a、3b).

在地表及钻孔中采集了9件新鲜、未见明显风化的辉绿辉长岩样品.岩石地球化学全分析样品LBQG⁃H2采自钻孔ZKQ5001中576 m处;LBQG⁃H3、H4、H5、H6采自钻孔ZKQ0301中195 m、910 m、854 m、845 m处;LBQG⁃H7、H8、H9、H11采自地表ZK06机台和PD4坑口西侧.对LBQG⁃H7样品进行了LA⁃ICP⁃MS锆石U⁃Pb定年.采样位置见图1b.

3 分析方法

锆石样品的分离挑选、制靶工作在河北省地质测绘院岩矿实验测试中心完成,样品经过破碎、淘洗、重选、磁选等流程,在双目镜下挑选出晶形、透明度、色泽较好的锆石颗粒,将挑选出的锆石用环氧树脂制靶、打磨及抛光.在南京宏创地质勘查技术服务有限公司利用TESCAN MIRA⁃3扫描电子显微镜对锆石靶进行阴极发光(CL)、背散射、透反射照相,拍摄锆石内部结构及晶体形貌,以选取测试最佳点.

锆石U⁃Pb同位素定年测试工作在中国地质科学院矿产资源研究所自然资源部成矿作用与资源评价重点实验室完成,所用仪器为德国Finnigan Neptune型MC⁃ICP⁃MS及与之配套的Newwave UP213激光剥蚀系统.本次测试激光剥蚀斑束直径为25 μm,以He为载气.采用标准锆石GJ⁃1、Plesovice作为未知样品的数据质量监控标样来进行分析,采用NIST 610作为元素含量外标.分析结果误差为2σ,仪器运行条件及详细分析流程详见侯可军等(2007).使用ICPMSDataCal程序进行离线原始数据选择、背景和分析信号的整合,以及U⁃Pb定年的时间漂移校正和定量校准(Liu et al., 2008).谐和图和年龄均值图使用Isoplot3.0程序(Ludwig, 2003)进行绘制.

锆石原位微区Lu⁃Hf同位素分析在锆石U⁃Pb年龄测试点上进行,测试工作在中国地质科学院矿产资源研究所自然资源部成矿作用与资源评价重点实验室完成,所用仪器为德国Finnigan Neptune型MC⁃ICP⁃MS及与之配套的Newwave UP213激光剥蚀系统.本次测试激光剥蚀斑束直径为44 μm,以He为载气.采用标准锆石GJ⁃1作为外标,分析结果误差为2σ,仪器运行条件及详细分析流程详见侯可军等(2007).在计算过程中,176Lu的衰变常数采用1.867×10-11 a-1(吴福元等, 2007).球粒陨石的176Lu/177Hf和176Hf/177Hf比值采用0.033 2和0.282 772(Blichert⁃Toft and Albaréde, 1997),亏损地幔的176Lu/177Hf和176Hf/ 177Hf比值采用0.038 42和0.283 25,(176Lu/177Hf)平均地壳为0.015(Griffin et al., 2000).

全岩主量、微量元素分析样品的碎样、磨制在河北省地质测绘院岩矿实验测试中心完成.主量、微量元素分析在中国地质科学院矿产资源研究所自然资源部成矿作用与资源评价重点实验室,利用荷兰帕纳科(PANalytical)Axios PW4400/40型号X射线荧光光谱仪(XRF)和美国赛默飞(Thermo Scientific)iCAP RQ型号电感耦合等离子体质谱仪(ICP⁃MS)完成.主量元素分析精度优于1%,微量元素分析精度优于5%.

4 分析结果

4.1 锆石U⁃Pb同位素年代学

本次研究选取罗卜起沟代表性的辉绿辉长岩样品LBQG⁃H7,进行LA⁃ICP⁃MS锆石原位U⁃Pb同位素地质年代测定工作.本次锆石原位U⁃Pb同位素测试45点.锆石U⁃Pb分析点位和典型阴极发光CL图像见图4a,45点数据中剔除12个因包体富集、裂隙而损坏的数据,剩余33点(测试点号A1~A33)测试结果见表1.

阴极发光图像(图4a)显示,罗卜起沟辉绿辉长岩LBQG⁃1样品中分选出的锆石颗粒大部分晶形完整,呈自形短柱状、长柱状,少部分呈碎片状.锆石颗粒长轴大小为30~180 μm,长短轴比为1∶1~ 3∶1,发育稀疏震荡环带、板状、扇形环带,具典型的岩浆成因特征,并且环带稀疏且分带宽度较大,表明锆

石为基性岩锆石(Hoskin and Schaltegger, 2003).分析结果显示,33个测点的Th含量范围为26.4×10-6~251×10-6,U含量范围为44.8×10-6~807×10-6,Th/U比值为0.20~0.95(平均值为0.48),表明这些锆石颗粒具有典型的岩浆锆石特征(Hoskin and Schaltegger, 2003).

选取谐和度为99%~100%的16个测试点计算谐和年龄,16分析点获得上交点年龄为2 328±51 Ma(n=16, MSWD=0.35)(图4a),207Pb/206Pb年龄范围为2 252~2 373 Ma,获得207Pb/206Pb加权平均年龄为2 332±15 Ma(n=16, MSWD=1.8)(图4b),Th/U比值为0.20~0.89,均值0.52,结合此组锆石颗粒发育明显的环带及分析点具高Th/U比值(0.20~0.89),采用207Pb/206Pb加权平均年龄2 332±15 Ma代表辉绿辉长岩样品的岩浆结晶年龄.2 561 Ma锆石为~2.33 Ga辉绿辉长岩岩浆捕获~2.56 Ga的新太古代板片锆石.

4.2 锆石Lu⁃Hf同位素地球化学

本研究中选取锆石U⁃Pb分析结果较好的20个点,进行锆石原位微区Lu⁃Hf同位素测试(图4a),分析结果见表2εHft=2 332 Ma)⁃t(Ga)图未展示.数据显示176Lu/177Hf比值为0.000 302~0.001 326,均小于0.002,表明锆石形成后未发生放射成因的Hf富集,则176Hf/177Hf比值可以作为推断岩浆锆石起源的可靠参考(吴福元等, 2007).罗卜起沟(~2 332 Ma)锆石的176Hf/177Hf比值为0.281 217~0.281 281,计算得到εHft=2 332 Ma)值为-4.4~-0.8,平均值为-2.7;fLu/Hf值为-0.99~-0.96,单阶段模式年龄tDM1为2 722~ 2 837 Ma,表明岩浆源中存在新太古代地壳成分.

4.3 全岩主微量元素地球化学

罗卜起沟9件辉绿辉长岩样品全岩主微量地球化学分析结果见表3.

罗卜起沟古元古代早期辉绿辉长岩样品分析数据的主量元素在无挥发分基础上重新归一化至100%.研究样品具中等含量的SiO2(47.3%~50.3%),高含量的TiO2(1.78%~3.15%)、Fe2O3T(14.2%~18.7%),中等含量的Al2O3(12.6%~14.6%)、MgO(4.86%~7.14%)及Mg#值(38.3~53.9).中等含量的Cr(63.4×10-6~129×10-6)和Ni(48.5×10-6~87.5×10-6),高含量的Co(48.1×10-6~62.7×10-6)、V(399×10-6~599×10-6)、Nb(9.82×10-6~17.3×10-6).在Nb/Y⁃Zr/TiO2*0.000 1岩石分类图解中(图5a),9件样品全部落在亚碱性玄武岩区域;在SiO2⁃FeOT/MgO图上(图5b),样品全部落在拉斑玄武岩区域,两个图解显示出辉长岩岩石属于亚碱性拉斑玄武岩系列.哈克图解(图6)显示,Al2O3、CaO、Ni、Cr值随Mg#值降低而降低,呈正相关;Sc值随Mg#值降低而低幅度降低,呈弱正相关;TiO2、Fe2O3T、P2O5、V值随Mg#值降低而升高,呈负相关.

辉绿辉长岩样品在球粒陨石标准化稀土元素配分图中显示出相似的模式(图7a),呈明显的轻稀土富集的右倾型,并具较高的稀土总量(ΣREE=90.1×10-6~133×10-6; 平均106×10-6),轻稀土元素(LREE)相对于重稀土弱富集(LaN/YbN=2.99~3.74; 平均3.36);重稀土元素(HREE)的弱亏损,表明部分熔融过程中有石榴石堆积在残余相;弱Ce正异常(δCe=1.15~1.20;平均1.18);Eu主要呈弱负异常和无异常(δEu=0.82~1.03),表明斜长石存在分馏,另外两个样品Eu则呈弱正异常(δEu=1.13、1.45),表明斜长石亦存在少量堆积.在原始地幔标准化微量元素蛛网图上(图7b),辉绿辉长岩显示大离子亲石元素Rb、Ba、U(LBQG⁃H5、H6、H11除外,其Ba亏损)富集,Sr亏损(LBQG⁃H8、H9除外,其Sr富集),高场强元素Nb、Th、Y呈亏损特征.

5 讨论

5.1 蚀变作用对元素和同位素影响性评估

在野外地质观察和岩相学研究中均可见辉绿辉长岩样品不同程度的蚀变,主量元素分析结果也显示样品具较高LOI(烧失量)含量(2.70%~10.1%, 均值5.99%),因此,有必要评估蚀变作用对全岩化学、同位素分析结果的影响程度.前人研究认为,大多数高场强元素(Zr、Hf、Nb、Ta、Th、Y、Ti)和REE,即使在角闪岩‒麻粒岩相变质作用下仍难迁移或保持不动(Pearce, 1975Grauch, 1989Manikyamba et al., 2009Wang et al., 2013bSantosh et al., 2017).Rb、Sr等大离子亲石元素(LILE)在地壳和地幔之间具有极端的分馏作用,易被蚀变、变质作用或地壳混染所改变(Verma, 1981Hart and Staudigel, 1982Polat and Hofmann, 2003Zhai et al., 2013).锆石中176Lu⁃176Hf放射性同位素系统对抵抗变质、构造‒热事件的扰动表现更为稳健,能保持其原始的Hf同位素特征(Valley et al., 2015).因此,在岩石成因讨论过程中选择对热液蚀变作用不敏感的难迁移元素(如HFSE、REE)和锆石εHft)值、单阶段模式年龄tDM1进行讨论,尽量避免使用上述易迁移元素.

5.2 分离结晶和地壳混染

分离结晶和地壳混染是幔源衍生岩浆的一个常见特征,发生在各级岩浆储库及岩浆上侵过程中,可以导致岩浆的原始地球化学和同位素组成发生显著的变化,在岩石成因中起着重要作用(DePaolo, 1981).

5.2.1 分离结晶

罗卜起沟辉绿辉长岩具中高含量的MgO(4.86%~7.14%)、中等Mg#值(38.3~53.91),较低含量的Cr(63.4×10-6~128.6×10-6)和Ni(48.5×10-6~87.5×10-6),低于与地幔橄榄岩平衡的原始熔体(MgO=8.0%和/或Mg#=72;Ni>400×10-6~500×10-6,Cr>1 000×10-6Cox, 1980Winter, 2014),表明罗卜起沟辉长岩母岩浆来源于地幔衍生岩浆,其在岩浆房内和/或上升到地表的过程中发生了一定程度的分离结晶.另外,样品的La/Sm比值不随La变化,Ce/Yb比值不随Ce变化,表明岩浆成分变化以分离结晶为主导,而非地幔部分熔融.在岩浆熔体中,Ni含量主要由橄榄石的结晶控制,Cr含量由铬尖晶石和单斜辉石的结晶控制.研究样品的Ni、Cr与Mg#呈显著正相关,Ni与Cr的正相关及Sc、Fe2O3T与Mg#的负相关,表现出典型的分离结晶趋势,表明橄榄石和单斜辉石的分离结晶(图6c、6d、6g、6h、6i),Cr与Mg#的正相关关系反映了铬尖晶石和橄榄石±单斜辉石的分离结晶(图6d).CaO及CaO/Al2O3与Mg#的正相关性表明单斜辉石的分离结晶(图6b、6e),进一步表明橄榄石和单斜辉石主导分离结晶作用.Fe2O3T、TiO2、P2O5、V与Mg#之间的负相关性(图6i、6j、6k、6l)表明在岩浆结晶后期,Fe⁃Ti氧化物和磷灰石分离结晶,也可能表明在岩浆演化过程中氧逸度(fO2)较低,这抑制了Fe⁃Ti氧化物和磷灰石的结晶(Rutherford et al., 2006).Al2O3与Mg#之间的正相关性(图6a)表明斜长石的分离结晶;然而,不明显的Eu异常(δEu=0.82~1.45;平均1.03)表明斜长石分离结晶的次要作用.负Y异常(图7b)可能与单斜辉石的分离结晶有关.

Pearce元素比值(Pearce element ratios)广泛应用于了解镁铁质岩浆的分异演化和分离结晶程度,如主要造岩硅酸盐矿物(橄榄石、辉石和斜长石)的部分结晶,因为Pearce元素比值使用了元素含量不随岩浆演化而变化的保守元素(如Si、Ca、K、Na、Al、Fe、Mg),而Pearce元素比值图有助于确定全岩成分变化的矿物相(Pearce, 1968Russell and Nicholls 1988).在[0.25Al+0.5(Fe+Mg)+1.5Ca+2.75Na]/K⁃Si/K图(图8a)上显示出线性趋势,斜率值约为1,同样支持了研究样品的橄榄石、单斜辉石和斜长石的分离结晶.在(Fe+Mg)/Ti⁃Si/Ti图(图8b)上,显示样品主要由单斜辉石分离结晶控制.

因此,辉绿辉长岩分离结晶过程主要由橄榄石、单斜辉石和斜长石矿物相控制,但单斜辉石扮演了重要角色.

5.2.2 地壳混染

地幔源熔体在上侵穿过大陆地壳时,地壳混染是不可避免的;因此,在利用地球化学数据追踪地幔源的性质和推定构造环境之前,必须评估地壳混染的影响,一般可以通过分馏指标和化学元素/同位素数据之间的相关性来识别地壳混染程度(Hawkesworth et al., 1995Wang et al., 2014).通常情况下,如果存在地壳混染,会导致岩石LREE和LILE富集,样品微量元素原始地幔标准化蛛网图显示负Nb、Ta、Ti异常,正Zr、Hf异常,因为地壳物质贫Nb、Ta、Ti,富Zr、Hf(Rudnick and Gao, 2003Zhao et al., 2007Zhao and Zhou, 2009).但是地壳混染和板片熔融都会导致Nb⁃Ta的贫化(Sun and McDonough, 1989),而从富集地幔源的纯熔体提取会产生相对于Nb和La⁃Ce的略正Ta异常(Hoffmann and Wilson, 2017).样品微量元素蛛网图(图7b)中具弱正‒中等正Rb、Ba、Pb异常及弱负Nb、Th、Y、Sr异常,Ta显示出相对于La⁃Ce的略正异常或无异常,Ti、Zr、Hf无明显异常等特征,表明地壳混染不明显,或混染程度低,但可能存在板片熔融成分.一般地,大陆地壳具有相对较高的Th/Ce比值(~0.15)和明显负Eu异常(Taylor and McLennan, 1995),而地幔衍生的岩浆具有较低的Th/Ce比值(0.02~0.05;Sun and McDonough, 1989),而辉绿辉长岩样品的Th/Ce值为0.04~0.07,弱负‒无Eu异常,表明地壳混染不明显.大陆地壳具有较低的Ce/Pb(3.5~5.0)和较高的La/Nb(1.6~2.6)、Th/Nb(0.24~0.88)、Lu/Yb值(0.16~0.18,地幔衍生岩浆具低Lu/Yb值0.14~0.15)(Sun and McDonough, 1989Rudnick and Gao, 2003),然而样品的Ce/Pb(1.98~14.64, 均值6.03)大于或接近地壳比值,La/Nb(0.97~1.37)、Th/Nb(0.12~0.21)、Lu/Yb值(0.13~0.14)小于大陆地壳值,表明地壳混染不明显,或有限.而辉绿辉长岩的Sr⁃Mg#图(图6f)中呈负相关,TiO2和Mg#之间的负相关性也支持这一点(图6j).地壳物质的加入可以增加基性岩浆Th含量,而样品在Nb/Yb⁃Th/Yb图(图9b)中基本处于MORB⁃OIB阵列中,未延深到下地壳区域,也表明地壳混染不明显.因此,罗卜起沟~2.33 Ga辉绿辉长岩母岩浆未遭受到明显的地壳混染.

5.3 地幔源性质

罗卜起沟~2.33 Ga辉绿辉长岩岩浆属拉斑玄武岩系列,具有负的锆石εHft)值(-4.4~-0.8),表明辉绿辉长岩来源于富集地幔源 (Hofmann, 1997Peng et al., 2012).虽然辉绿辉长岩经历了分离结晶,但样品的不相容元素比值,尤其是具有相似分配系数的不相容元素比值,可反映其母岩浆中相应元素含量,因此可用其追踪岩浆源性质(Turner, 1996Zhao et al., 2009).

HFSE/LREE比值可作为地幔源区性质分类的指标(Smith et al., 1999).研究样品的Nb/La比值为0.73~1.03(软流圈地幔衍生岩浆显示高Nb/La, 0.93~1.32;Sun and McDonough, 1989),与软流圈地幔有部分重叠,高于大陆地壳(大陆地壳Nb/La=0.4;Rudnick and Gao, 2003),而且大陆岩石圈地幔衍生岩浆具有低Nb/La值,表明地幔源可能存在软流圈地幔的贡献.在La/Yb⁃Nb/La图中(图9a),辉绿辉长岩样品在岩石圈‒软流圈相互作用的范围内 (Smith et al., 1999),也支持了软流圈地幔的参与.

Th/Nb可以指示地壳/板片成分输入,Ti/Yb可以指示熔融深度(Pearce, 2008).辉绿辉长岩样品在Nb/Yb⁃Th/Yb图中,位于MORB⁃OIB阵列中E⁃MORB和OIB之间(图9b),表明岩浆源区具有E⁃MORB⁃OIB类型地幔源特征.但显示出地幔源岩浆中存在少量地壳输入和/或大陆岩石圈地幔中存在俯冲板片成分(Pearce, 2008,2014),由于研究样品显示地壳混染程度较小,表明地幔源与携带了俯冲成分的大陆岩石圈地幔关系密切.样品在Nb/Yb⁃TiO2/Yb图中,位于E⁃MORB上方MORB和OIB阵列过渡位置(图9c),此特征与样品微量元素蛛网图一致.并且沿地幔柱‒洋脊相互作用(plume⁃ridge interaction)轨迹由E⁃MORB进入OIB区,表明地幔岩浆源可能与软流圈地幔上涌相关(Pearce, 2014).样品还显示地幔源由深熔融(石榴石橄榄岩岩浆)向浅熔融(尖晶石橄榄岩岩浆)演化趋势,熔融程度逐渐增大,可能与软流圈上涌/岩石圈减薄有关,也显示了板内或板块边缘环境(Pearce, 2008,2014).

另外,由于HREE在石榴石中具有高度相容性,一般含石榴石橄榄岩平衡熔体的TbN/YbN>1.8,而含尖晶石橄榄岩平衡熔体的TbN/YbN<1.8.因此,镁铁质岩石的TbN/YbN比值可以用来约束熔融深度(Mckenzie and O'Nions, 1991; Wang et al., 2002).辉绿辉长岩样品的TbN/YbN值为1.44~1.70,在TbN/YbN⁃LaN/SmN图中位于尖晶石橄榄岩稳定场中(图9d),但接近于石榴石橄榄岩稳定场之间的过渡带.

为了进一步了解地幔源熔融条件,利用Dy/Yb、Dy/Dy*比值辨别部分熔融过程中源区残留石榴石情况,区别地幔源熔融条件,限制岩浆来源并理解岩石成因过程(Condie, 2001Davidson et al., 2013).在石榴石稳定场中产生地幔源熔体,Dy/Yb比值可能会被强烈地分馏,而在尖晶石稳定场中则不会被强烈地分馏(Davidson et al., 2013).含尖晶石二辉橄榄岩地幔熔体的Dy/Yb值通常<1.5,而含石榴石二辉橄榄石地幔熔体的Dy/Yb值通常>2.5.~2.33 Ga辉绿辉长岩样品Dy/Yb比值为1.88~2.22,表明富集地幔源可能来自含尖晶石‒含石榴石二辉橄榄岩地幔过渡带;Dy/Dy*比值为0.88~1.03,总体低于原始(Dy/Dy*=1)和亏损(Dy/Dy*=1.75)地幔值(Davidson et al., 2013).在Dy/Dy*⁃Dy/Yb图(图10a)中,~2.33 Ga辉绿辉长岩地幔源:(1)显示富集MORB地幔源,具LREE富集特征;(2)未落在沉积物岩浆熔体趋势线上,表明岩浆的地壳混染很低;(3)样品沿石榴石分离结晶趋势线向OIB场延深,表明源区存在从尖晶石向石榴石二辉橄榄岩地幔过渡趋势;(4)REE曲率模式从下凹(Dy/Dy*<1)向上凹(Dy/Dy*>1)的演变,表明单斜辉石(/角闪石)分离结晶控制着岩浆演化(Davidson et al., 2013).因此,罗卜起沟辉绿辉长岩地幔源在含尖晶石‒含石榴石橄榄岩地幔过渡带中部分熔融形成,Nb/Yb⁃TiO2/Yb(图9c)和La/Sm⁃Sm/Yb(图10b)也佐证了这一点.

由于稀土元素比值(如La/Sm、Tb/Yb和Sm/Yb)在很大程度上不受部分熔融和/或分离结晶作用影响(Aldanmaz et al., 2000),因此,基性岩演化过程中的矿物结晶分异和地幔熔融程度可以通过稀土元素含量和比率确定(Aldanmaz et al., 2000).而且样品La/Sm、Tb/Yb和Sm/Yb比值与MgO无明显的相关性(未显示相关图解),进一步表明稀土元素比值几乎与分离结晶过程无关,可以用其来控制地幔源性质.

作为地幔矿物的石榴石,可以将HREE从LREE和MREE中强烈分馏(McKenzie and O'Nions, 1991),从而使尖晶石二辉橄榄岩地幔源的熔体具有相近的MREE/HREE值(如Sm/Yb),与石榴石二辉橄榄岩地幔源熔体分散的MREE/HREE值形成对比,随着部分熔融程度的增加,LREE/MREE(如La/Sm)值降低(Aldanmaz et al., 2009Zeng et al., 2018),进而可以确定地幔熔融程度和来源(Aldanmaz et al., 2000).在La/Sm⁃Sm/Yb图中(图10b),部分熔融曲线采用Shaw(1970)的非模态批次熔融模型,并假设原始地幔(Sun and McDonough, 1989)和亏损MORB地幔(McKenzie and O'Nions, 1991)为两端元的源区成分,罗卜起沟辉绿辉长岩样品投点位于E⁃MORB富集地幔源和尖晶石二辉橄榄岩地幔熔融趋势上方的尖晶石+石榴石二辉橄榄岩地幔熔融趋势上(模拟条件及参数参见Aldanmaz et al., 2000Zeng et al., 2018),表明罗卜起沟辉绿辉长岩母岩浆来源于10%~20%部分熔融的含尖晶石和石榴石二辉橄榄岩地幔源,部分熔融对应深度为~80 km(Frey et al., 1991; McKenzie and O'Nions, 1991).这也意味着减压的软流圈上升到相对较浅位置(<80 km).

上述结果表明,~2.33 Ga罗卜起沟辉绿辉长岩地幔源起源于大陆岩石圈地幔内~80 km深10%~20%部分熔融的含尖晶石和石榴石二辉橄榄岩富集地幔源,并且有软流圈地幔参与.

5.4 构造背景

以上研究表明,~2.33 Ga罗卜起沟辉绿辉长岩为亚碱性拉斑玄武岩系列,不具弧‒俯冲环境的地球化学特征.辉绿辉长岩样品均落在Zr⁃Zr/Y、2Nb⁃Zr/4⁃Y、Ta/Hf⁃Th/Hf构造环境判别图的板内裂谷环境中(图11).另外,辉绿辉长岩样品的TiO2含量(1.78%~3.15%)、Zr/Sm比值(31.1~35.8)与板内玄武岩含量相当(Pearce, 1982Wilson, 1989; 板内环境Zr/Sm值>25, Rudnick and Gao, 2003); Th/Ta(1.63~2.91)、Ti/V(26.8~36.6)比值指示板内伸展环境(板内伸展环境Th/Ta>1.6和Ti/V>20; 汪云亮等, 2001; 李献华等, 2012),Ta/Hf(0.17~0.21)>0.1指示大陆内裂谷相关特征(汪云亮等, 2001).因此,地球化学特征表明罗卜起沟~2.33 Ga辉绿辉长岩为板内拉斑玄武岩,形成于板内伸展裂谷环境.

5.5 地球动力学意义

在中部造山带北端的内蒙古东部、河北北部、辽宁西部结合区域,新太古代和古元古代中晚期岩浆活动频繁,未见~2.3 Ga时期岩浆记录.但本次研究首次在赤峰南部地区发现 ~2.33 Ga板内裂谷环境产生的辉绿辉长岩脉.

近些年的研究表明,2.50~2.42 Ga的岩浆作用可能记录了华北克拉通各地块从俯冲碰撞到碰撞后持续的克拉通化过程,其中大量的A型花岗岩记录标志着克拉通化的结束,并预示着华北克拉通大陆地壳的成熟和稳定,2.42~2.20 Ga发展为板内裂谷阶段(Zhai et al.,2021Zhou and Zhai, 2022).

前人在中部造山带的阜平‒五台‒恒山‒赞皇‒太华等地区的研究表明,~2.35 Ga之后,伸展裂谷作用发育.如在阜平地区发现古元古代早期镁铁质岩脉,Liu et al.(2002)认为城南庄~2.31 Ga镁铁质岩脉是由岩石圈拆沉导致玄武质岩浆底侵形成;Tang et al.(2017)认为大柳树2.327 Ga镁铁质岩脉形成于裂谷环境.在五台地区,Du et al.(2013)和杜利林等(2020)认为黄金山~2.137 Ga的A型花岗岩形成于非造山或伸展环境,提出2.2~2.1 Ga是中部造山带的陆内伸展裂谷阶段;陈斌等(2006)认为辉长岩和二长岩形成于~2.2 Ga伸展环境中;Gao et al. (2021)研究认为位于五台杂岩西北部的古元古代(2.3~2.1 Ga)花岗岩类是五台杂岩弧后裂谷作用的产物,主要来源于新太古代基底的部分熔融.Wang et al.(2010)提出吕梁地区2.3~2.1 Ga的强烈火山活动和沉积环境表明,在2.3~2.1 Ga存在弧后裂谷作用.在赞皇地区,Trap et al. (2012)认为在2.3 Ga裂谷作用背景下,赞皇杂岩中部(太行缝合线)太行洋盆及西部吕梁洋盆打开,裂谷作用一并导致了古华北克拉通的破裂.Wei et al.(2014)通过对恒山‒五台‒阜平地区古元古代2.35~2.0 Ga岩浆活动和沉积的综合研究,认为2.35~2.0 Ga火成岩呈典型的双峰侵入岩,代表弧后伸展环境.在太华地区,2.36~2.24 Ga时期的TTG片麻岩、黑云母二长片麻岩、花岗片麻岩、富钾花岗岩等具A型花岗岩特征,并发育镁铁质岩脉,这些岩石均产于伸展环境(Jia et al. 2020).Li et al.(2024)对小秦岭地区太华杂岩中~2.3 Ga花岗岩的低锆石δ18O、εHft)值和角闪岩熔融条件中TPT/P值的研究表明岩浆源在大陆裂谷环境中形成;Zhou et al.(2021)通过对熊耳山地区太华杂岩中2.35~2.30 Ga低锆石δ18O高钾花岗岩和低压TTG、板内辉长岩和变玄武岩的研究,认为其岩浆更似产于板内伸展环境,而不是弧后伸展环境.Tang and Santosh(2018)提出中部造山带发育裂谷俯冲系统,2.5~2.45 Ga前碰撞关闭的洋盆,在2.45~2.12 Ga时期因伸展裂谷作用,恒山、怀安、阜平、五台、赞皇洋盆被再次打开,从而导致古元古代早期中部造山带处于碰撞‒裂谷‒俯冲‒碰撞的动态变化环境.

由此看来,中部造山带在古元古代早期地球动力学背景较为复杂,从中北部至南部,怀安‒五台‒吕梁‒太华一线,地球动力学背景为板内伸展裂谷背景,但局部五台‒吕梁地区也存在弧后伸展裂谷背景.Sun et al.(2022)研究认为中部造山带北端的河北北部怀安‒宣化‒承德‒辽宁西部建平地区(包含本研究区),在2.52~2.48 Ga时期,地球动力学背景为板块后撤下的弧后伸展环境.Kusky and Li(2003)Kusky et al.(2016)也提出华北克拉通北缘(内蒙河北北部造山带IMNHO)于2.30 Ga转变为安第斯型活动大陆边缘,表明在2.52~2.30 Ga期间,华北克拉通北缘(中部造山带北端)处于受到来自北西方向大洋板片俯冲的弧后环境.罗卜起沟~2.33 Ga辉绿辉长岩地幔源产于板内伸展裂谷环境下,起源于有软流圈参与的大陆岩石圈富集地幔源,地幔源类似于EMORB⁃OIB过渡类型,图9b、9c显示出富集地幔源具OIB亲和力.近些年,对俯冲带‒弧岩浆系统的研究发现,在弧后盆地发展过程中,出现不少板内特征的OIB岩浆以及OIB和EMORB玄武岩共存现象(Pearce and Stern, 2006Rossel et al., 2013Gao et al., 2018Zhou et al., 2021).Rossel et al.(2013)Turner et al.(2017)提出,弧后伸展背景下不同地幔源的共存及OIB、EMORB地幔源形成通常与非均质地幔楔中未耗尽地幔源的减压熔融有关,如地幔楔内普遍存在的来自深部而“肥沃”易熔的OIB源区物质或交代的大陆岩石圈地幔.而弧后拉斑玄武岩、碱性玄武岩的形成,通常与板块后撤有关.板块后撤会吸入地幔物质,以填充板块后撤产生的空间,促进地幔物质从上覆地幔楔和深部软流圈地幔的上下循环,引起减压部分熔融,进而引发岩石圈减薄(Faccenna et al., 2010Kusky et al., 2014).在这种情况下,板块后撤引发的地幔楔物质补充、地幔富集交代、软流圈上涌,则可以解释弧后伸展背景下产生的具板内特征的EMORB⁃OIB类型富集地幔源.这也解释了五台‒吕梁地区杂岩中存在板内伸展和弧后伸展环境两种背景的矛盾.

综上所述,在早古元古代构造‒岩浆寂静期,中部造山带大部分地区为板内伸展裂谷背景,而局部如五台‒吕梁地区、中部带北端河北北部‒辽西‒赤峰罗卜起沟地区可能存在弧后伸展裂谷作用影响.研究区可能经历了板块后撤引发的软流圈上涌、岩石圈减薄的地球动力学过程.

5.6 构造‒岩浆寂静期(TML)中部造山带裂谷事件

构造‒岩浆寂静期(TML)的成因,一些人认为是由于大规模岩石圈停滞和地幔翻转造成的板块构造关闭,导致构造‒岩浆活动减弱(O’Neill et al., 2007Silver and Behn, 2008Condie et al., 2009).在国外其他古老克拉通内构造‒岩浆寂静期的岩浆记录虽有发现,但数量偏少(Spencer et al., 2018; Condie et al., 2022).Partin et al.(2014)Pehrsson et al.(2014)研究认为2.4~2.2 Ga构造‒岩浆寂静期内新生地壳产生、岩浆和板块构造活动都是不间断的,构造背景既有伸展裂谷也有俯冲‒碰撞的动力学环境.如前文所述,国外加拿大北部Arrowsmith造山带、旧金山克拉通Minerio带、拉普拉塔河Tanilla带、印度Dharwar、Bastar克拉通、西澳大利亚Yilgarn、西非LATEA克拉通内发现构造‒岩浆寂静期2.4~2.2 Ga的岩浆记录均为伸展裂谷环境,尽管这期间也存在少数汇聚造山带,但全球构造背景以伸展裂谷为主(Spencer et al., 2018; Condie et al., 2022).而华北克拉通中部造山带在古元古代构造‒岩浆寂静期整体经历了伸展裂谷环境,表明古元古代早期的构造‒岩浆寂静期中部造山带存在伸展裂谷事件,这也与全球的地球动力学背景相契合.

6 结论

(1)喀喇沁西部罗卜起沟发现的辉绿辉长岩侵入年龄为2.33 Ga.

(2)~2.33 Ga罗卜起沟辉绿辉长岩的岩石成因分析表明,辉长岩属亚碱性拉斑玄武岩系列,起源于有软流圈地幔参与的大陆岩石圈富集地幔,在~80 km的含尖晶石和石榴石橄榄岩地幔过渡带部分熔融形成.岩浆演化以单斜辉石分离结晶为主,橄榄石和斜长石次之,地壳混染影响有限.

(3)罗卜起沟辉绿辉长岩岩石地球化学分析表明,辉绿辉长岩为板内拉斑玄武岩,产于~2.33 Ga时期的伸展裂谷环境.研究区可能经历了板块后撤引发的软流圈上涌、岩石圈减薄的地球动力学过程.

参考文献

[1]

Aldanmaz, E., Pearce, J. A., Thirlwall, M. F., et al., 2000. Petrogenetic Evolution of Late Cenozoic, Post⁃Collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1-2): 67-95. https://doi.org/10.1016/S0377⁃0273(00)00182⁃7

[2]

Aldanmaz, E., Schmidt, M. W., Gourgaud, A., et al., 2009. Mid⁃Ocean Ridge and Supra⁃Subduction Geochemical Signatures in Spinel⁃Peridotites from the Neotethyan Ophiolites in SW Turkey: Implications for Upper Mantle Melting Processes. Lithos, 113(3-4): 691-708. https://doi.org/10.1016/j.lithos.2009.03.010

[3]

Belica, M. E., Piispa, E. J., Meert, J. G., et al., 2014. Paleoproterozoic Mafic Dyke Swarms from the Dharwar Craton: Paleomagnetic Poles for India from 2.37 to 1.88 Ga and Rethinking the Columbia Supercontinent.Precambrian Research, 244: 100-122. https://doi.org/10.1016/j.precamres.2013.12.005

[4]

Blichert⁃Toft, J., Albaréde, F., 1997. The Lu⁃Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle⁃Crust System. Earth and Planetary Science Letters, 148(1-2): 243-258. https://doi.org/10.1016/S0012⁃821X(97)00040⁃X

[5]

Campbell, I.H., Griffiths, R.W., 2014. Did the Formation of D″ Cause the Archaean⁃Proterozoic Transition? Earth and Planetary Science Letters, 388: 1-8. https://doi.org/10.1016/j.epsl.2013.11.048

[6]

Chen, B., Liu, S.W., Wang, R., et al., 2006.The Nd⁃Sr Isotopic Characteristics and Petrogenesis of Neoarchean⁃Proterozoic Granites in Lvliang⁃Wutai Block, North China Craton. Acta Geologica Sinica, 80(12): 1841 (in Chinese with English abstract).

[7]

Chifeng Geology and Mineral Exploration and Development Institute, Inner Mongolia, 2016. Report of the 1∶50 000 Regional Mineral Geological Survey of Xiaoniuqun Sheet and the Other Two Sheets in Chifeng City, Inner Mongolia Autonomous Region. National Geological Data Museum, 19-122 (in Chinese).

[8]

Condie, K. C., 2001. Mantle Plumes and Their Record in Earth History. Cambridge University Press, Cambridge.

[9]

Condie, K. C., O’Neill, C., Aster, R. C., 2009. Evidence and Implications for a Widespread Magmatic Shutdown for 250 My on Earth. Earth and Planetary Science Letters, 282(1-4): 294-298. https://doi.org/10.1016/j.epsl.2009.03.033

[10]

Condie, K. C., Pisarevsky, S. A., Puetz, S. J., et al., 2022. A Reappraisal of the Global Tectono⁃Magmatic Lull at ∼2.3 Ga. Precambrian Research, 376: 106690. https://doi.org/10.1016/j.precamres.2022.106690

[11]

Cox, K. G., 1980. A Model for Flood Basalt Volcanism. Journal of Petrology, 21(4): 629-650. https://doi.org/10.1093/petrology/21.4.629

[12]

Davidson, J., Turner, S., Plank, T., 2013. Dy/Dy*: Variations Arising from Mantle Sources and Petrogenetic Processes. Journal of Petrology, 54(3): 525-537. https://doi.org/10.1093/petrology/egs076

[13]

DePaolo, D. J., 1981. Trace Element and Isotopic Effects of Combined Wallrock Assimilation and Fractional Crystallization. Earth and Planetary Science Letters, 53(2): 189-202. https://doi.org/10.1016/0012⁃821X(81)90153⁃9

[14]

Dong, C. Y., Ma, M. Z., Wilde, S. A., et al., 2022. The First Identification of Early Paleoproterozoic (2.46-2.38 Ga) Supracrustal Rocks in the Daqingshan Area, Northwestern North China Craton: Geology, Geochemistry and SHRIMP U⁃Pb Dating.Precambrian Research, 377: 106727. https://doi.org/10.1016/j.precamres.2022.106727

[15]

Du, L. L., Yang, C. H., Song, H. X., et al., 2020. Neoarchean⁃Paleoproterozoic Multi⁃Stage Geological Events and Their Tectonic Implications in the Fuping Complex, North China Craton. Earth Science, 45(9): 3179-3195 (in Chinese with English abstract).

[16]

Du, L. L., Yang, C. H., Wang, W., et al., 2013. Paleoproterozoic Rifting of the North China Craton: Geochemical and Zircon Hf Isotopic Evidence from the 2 137 Ma Huangjinshan A⁃Type Granite Porphyry in the Wutai Area. Journal of Asian Earth Sciences, 72: 190-202. https://doi.org/10.1016/j.jseaes.2012.11.040

[17]

Duan, Q. S., Du, L. L., Song, H. X., et al., 2021. Petrogenesis of the 2.3 Ga Lengkou Metavolcanic Rocks in the North China Craton: Implications for Tectonic Settings during the Magmatic Quiescence. Precambrian Research, 357: 106151. https://doi.org/10.1016/j.precamres.2021.106151

[18]

Faccenna, C., Becker, T. W., Lallemand, S., et al., 2010. Subduction⁃Triggered Magmatic Pulses: A New Class of Plumes? Earth and Planetary Science Letters, 299(1-2): 54-68. https://doi.org/10.1016/j.epsl.2010.08.012

[19]

Faure, M., Trap, P., Lin, W., et al., 2007. Polyorogenic Evolution of the Paleoproterozoic Trans⁃North China Belt-New Insights from the Lüliangshan⁃Hengshan⁃Wutaishan and Fuping Massifs. Episodes, 30(2): 96-107. https://doi.org/10.18814/epiiugs/2007/v30i2/004

[20]

Frey, F. A., Garcia, M. O., Wise, W. S., et al., 1991. The Evolution of Mauna Kea Volcano, Hawaii: Petrogenesis of Tholeiitic and Alkalic Basalts. Journal of Geophysical Research: Solid Earth, 96(B9): 14347-14375. https://doi.org/10.1029/91JB00940

[21]

Gao, P., Santosh, M., Kwon, S., et al., 2021. Ocean Plate Stratigraphy of a Long⁃Lived Precambrian Subduction⁃Accretion System: The Wutai Complex, North China Craton. Precambrian Research, 363: 106334. https://doi.org/10.1016/j.precamres.2021.106334

[22]

Gao, Z., Zhang, H. F., Yang, H., et al., 2018. Back⁃Arc Basin Development: Constraints on Geochronology and Geochemistry of Arc⁃like and OIB⁃like Basalts in the Central Qilian Block (Northwest China). Lithos, 310-311: 255-268. https://doi.org/10.1016/j.lithos.2018.04.002

[23]

Grauch, R.I., 1989. Rare Earth Elements in Metamorphic Rocks. In: Lipin, B.R., McKay, G.A., eds., Geochemistry and Mineralogy of Rare Earth Elements. Mineralogical Society of America, Washington, D.C., 147-167.

[24]

Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM⁃MC⁃ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/S0016⁃7037(99)00343⁃9

[25]

Hart, S. R., Staudigel, H., 1982. The Control of Alkalies and Uranium in Seawater by Ocean Crust Alteration. Earth and Planetary Science Letters, 58(2): 202-212. https://doi.org/10.1016/0012⁃821X(82)90194⁃7

[26]

Hawkesworth, C. J., Lightfoot, P. C., Fedorenko, V. A., et al., 1995. Magma Differentiation and Mineralisation in the Siberian Continental Flood Basalts. Lithos, 34(1-3): 61-88. https://doi.org/10.1016/0024⁃4937(95)90011⁃X

[27]

Hofmann, A. W., 1997. Mantle Geochemistry: The Message from Oceanic Volcanism. Nature, 385(6613): 219-229. https://doi.org/10.1038/385219a0

[28]

Hoffmann, J. E., Wilson, A. H., 2017. The Origin of Highly Radiogenic Hf Isotope Compositions in 3.33 Ga Commondale Komatiite Lavas (South Africa). Chemical Geology, 455: 6-21. https://doi.org/10.1016/j.chemgeo.2016.10.010

[29]

Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027

[30]

Hou, K. J., Li, Y. H., Zou, T. R., et al., 2007. Laser Ablation⁃MC⁃ICP⁃MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract).

[31]

Jia, X. L., Zhai, M. G., Xiao, W. J., et al., 2020. Mesoarchean to Paleoproterozoic Crustal Evolution of the Taihua Complex in the Southern North China Craton. Precambrian Research, 337: 105451. https://doi.org/10.1016/j.precamres.2019.105451

[32]

Kusky, T. M., Li, J. H., 2003. Paleoproterozoic Tectonic Evolution of the North China Craton.Journal of Asian Earth Sciences, 22(4): 383-397. https://doi.org/10.1016/S1367⁃9120(03)00071⁃3

[33]

Kusky, T. M., 2011. Geophysical and Geological Tests of Tectonic Models of the North China Craton. Gondwana Research, 20(1): 26-35. https://doi.org/10.1016/j.gr.2011.01.004

[34]

Kusky, T. M., Windley, B. F., Wang, L., et al., 2014. Flat Slab Subduction, Trench Suction, and Craton Destruction: Comparison of the North China, Wyoming, and Brazilian Cratons. Tectonophysics, 630: 208-221. https://doi.org/10.1016/j.tecto.2014.05.028

[35]

Kusky, T. M., Polat, A., Windley, B. F., et al., 2016. Insights into the Tectonic Evolution of the North China Craton through Comparative Tectonic Analysis: A Record of Outward Growth of Precambrian Continents. Earth⁃Science Reviews, 162(1): 387-432. https://doi.org/10.1016/j.earscirev.2016.09.002

[36]

Li, J. H., Qian, X. L., Huang, X. N., et al., 2000. Tectonic Framework of North China Block and Its Cratonization in the Early Precambrian. Acta Petrologica Sinica, 16(1): 1-10 (in Chinese with English abstract).

[37]

Li, X. H., Li, W. X., He, B., 2012. Building of the South China Block and Its Relevance to Assembly and Breakup of Rodinia Supercontinent: Observations, Interpretations and Tests. Bulletin of Mineralogy, Petrology and Geochemistry, 31(6): 543-559 (in Chinese with English abstract).

[38]

Li, Z. X., Zhang, S. B., Zheng, Y. F., et al., 2024. Linking the Paleoproterozoic Tectono⁃Magmatic Lull to the Archean Supercratons: Geochemical Insights from Paleoproterozoic Rocks in the North China Craton. Precambrian Research, 404: 107326. https://doi.org/10.1016/j.precamres.2024.107326

[39]

Liu, S. W., Fu, J. H., Lu, Y. J., et al., 2019. Precambrian Hongqiyingzi Complex at the Northern Margin of the North China Craton: Its Zircon U⁃Pb⁃Hf Systematics, Geochemistry and Constraints on Crustal Evolution. Precambrian Research, 326: 58-83. https://doi.org/10.1016/j.precamres.2018.05.019

[40]

Liu, S. W., Pan, Y. M., Li, J. H., et al., 2002. Geological and Isotopic Geochemical Constraints on the Evolution of the Fuping Complex, North China Craton. Precambrian Research, 117(1-2): 41-56. https://doi.org/10.1016/S0301⁃9268(02)00063⁃3

[41]

Liu, S. W., Santosh, M., Wang, W., et al., 2011. Zircon U⁃Pb Chronology of the Jianping Complex: Implications for the Precambrian Crustal Evolution History of the Northern Margin of North China Craton. Gondwana Research, 20(1): 48-63. https://doi.org/10.1016/j.gr.2011.01.003

[42]

Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA⁃ICP⁃MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004

[43]

Ludwig, K.R., 2003. User's Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, 70.

[44]

Manikyamba, C., Kerrich, R., Khanna, T. C., et al., 2009. Enriched and Depleted Arc Basalts, with Mg⁃Andesites and Adakites: A Potential Paired Arc⁃Back⁃Arc of the 2.6 Ga Hutti Greenstone Terrane, India. Geochimica et Cosmochimica Acta, 73(6): 1711-1736. https://doi.org/10.1016/j.gca.2008.12.020

[45]

McKenzie, D., O’Nions, R. K., 1991. Partial Melt Distributions from Inversion of Rare Earth Element Concentrations. Journal of Petrology, 32(5): 1021-1091. https://doi.org/10.1093/petrology/32.5.1021

[46]

Meschede, M., 1986. A Method of Discriminating between Different Types of Mid⁃Ocean Ridge Basalts and Continental Tholeiites with the Nb⁃Zr⁃Y Diagram. Chemical Geology, 56(3-4): 207-218. https://doi.org/10.1016/0009⁃2541(86)90004⁃5

[47]

Miyashiro, A., 1975. Classification, Characteristics, and Origin of Ophiolites. The Journal of Geology, 83(2): 249-281. https://doi.org/10.1086/628085

[48]

No.208 Team of Nuclear Industry, 2015. Report of the 1∶ 50 000 Regional Mineral Geological Survey of Chaoyangdi Sheet and the Other Three Sheets in Chifeng City, Inner Mongolia Autonomous Region. National Geological Data Museum, 25-91 (in Chinese).

[49]

O’Neill, C., Lenardic, A., Moresi, L., et al., 2007. Episodic Precambrian Subduction. Earth and Planetary Science Letters, 262(3-4): 552-562. https://doi.org/10.1016/j.epsl.2007.04.056

[50]

Ouzegane, K., Liégeois, J. P., Doukkari, S., et al., 2023. The Egéré Paleo⁃Mesoproterozoic Rifted Passive Margin of the LATEA Metacraton (Central Hoggar, Tuareg Shield, Algeria) Subducted and Exhumed during the Pan⁃African Orogeny: U⁃Pb Zircon Ages, P⁃T⁃t Paths, Geochemistry and Sr⁃Nd Isotopes. Earth⁃Science Reviews, 236: 104262. https://doi.org/10.1016/j.earscirev.2022.104262

[51]

Panda, A., Shankar, R., Sarma, D.S., et al., 2023. Precise Pb⁃Pb Baddeleyite Geochronology, Geochemistry, and Sr⁃Nd Isotopic Constraints on the 2.36 & 1.88 Ga Mafic Dykes from the Bastar Craton, India: Implications for Their Petrogenesis in Conjunction with the Dharwar Mafic Dykes. Precambrian Research, 393: 107090. https://doi.org/10.1016/j.precamres.2023.107090

[52]

Partin, C. A., Bekker, A., Sylvester, P. J., et al., 2014. Filling in the Juvenile Magmatic Gap: Evidence for Uninterrupted Paleoproterozoic Plate Tectonics. Earth and Planetary Science Letters, 388: 123-133. https://doi.org/10.1016/j.epsl.2013.11.041

[53]

Pehrsson, S. J., Buchan, K. L., Eglington, B. M., et al., 2014. Did Plate Tectonics Shutdown in the Palaeoproterozoic? A View from the Siderian Geologic Record.Gondwana Research, 26(3-4): 803-815. https://doi.org/10.1016/j.gr.2014.06.001

[54]

Peng, P., Guo, J. H., Zhai, M. G., et al., 2012. Genesis of the Hengling Magmatic Belt in the North China Craton: Implications for Paleoproterozoic Tectonics. Lithos, 148: 27-44. https://doi.org/10.1016/j.lithos.2012.05.021

[55]

Peng, P., Ernst, R. E., Hou, G. T., et al., 2016. Dyke Swarms: Keys to Paleogeographic Reconstructions. Science Bulletin, 61(21): 1669-1671. https://doi.org/10.1007/s11434⁃016⁃1184⁃x

[56]

Pearce, T. H., 1968. A Contribution to the Theory of Variation Diagrams. Contributions to Mineralogy and Petrology, 19(2): 142-157. https://doi.org/10.1007/BF00635485

[57]

Pearce, J. A., 1975. Basalt Geochemistry Used to Investigate Past Tectonic Environments on Cyprus. Tectonophysics, 25(1-2): 41-67. https://doi.org/10.1016/0040⁃1951(75)90010⁃4

[58]

Pearce, J.A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. In: Thorpe, R.S., ed., Andesites: Orogenic Andesites and Related Rocks. Wiley, Chichester, 525-548.

[59]

Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1-4): 14-48. https://doi.org/10.1016/j.lithos.2007.06.016

[60]

Pearce, J. A., 2014. Immobile Element Fingerprinting of Ophiolites. Elements, 10(2): 101-108. https://doi.org/10.2113/gselements.10.2.101

[61]

Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47. https://doi.org/10.1007/BF00375192

[62]

Pearce, J. A., Stern, R. J., 2006. Origin of Back⁃Arc Basin Magmas: Trace Element and Isotope Perspectives. In: Christie, M.D., Fisher, R.C., Lee, S., et al., eds., Back⁃Arc Spreading Systems:Geological, Biological, Chemical, and Physical Interactions. American Geophysical Union, Washington, D. C., 63-86. https://doi.org/10.1029/166gm06

[63]

Pisarevsky, S. A., De Waele, B., Jones, S., et al., 2015. Paleomagnetism and U⁃Pb Age of the 2.4 Ga Erayinia Mafic Dykes in the South⁃Western Yilgarn, Western Australia: Paleogeographic and Geodynamic Implications.Precambrian Research, 259: 222-231. https://doi.org/10.1016/j.precamres.2014.05.023

[64]

Polat, A., Hofmann, A. W., 2003. Alteration and Geochemical Patterns in the 3.7-3.8 Ga Isua Greenstone Belt, West Greenland. Precambrian Research, 126(3-4): 197-218. https://doi.org/10.1016/S0301⁃9268(03)00095⁃0

[65]

Polat, A., Kusky, T., Li, J. H., et al., 2005. Geochemistry of Neoarchean (ca. 2.55-2.50 Ga) Volcanic and Ophiolitic Rocks in the Wutaishan Greenstone Belt, Central Orogenic Belt, North China Craton: Implications for Geodynamic Setting and Continental Growth. Geological Society of America Bulletin, 117(11-12): 1387-1399. https://doi.org/10.1130/b25724.1

[66]

Rossel, P., Oliveros, V., Ducea, M. N., et al., 2013. The Early Andean Subduction System as an Analog to Island Arcs: Evidence from Across⁃Arc Geochemical Variations in Northern Chile. Lithos, 179: 211-230. https://doi.org/10.1016/j.lithos.2013.08.014

[67]

Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry, 3: 1-64. https://doi.org/10.1016/B0⁃08⁃043751⁃6/03016⁃4

[68]

Russell, J. K., Nicholls, J., 1988. Analysis of Petrologic Hypotheses with Pearce Element Ratios. Contributions to Mineralogy and Petrology, 99(1): 25-35. https://doi.org/10.1007/BF00399362

[69]

Rutherford, L., Barovich, K., Hand, M., et al., 2006. Continental ca 1.7-1.69 Ga Fe⁃Rich Metatholeiites in the Curnamona Province, Australia: A Record of Melting of a Heterogeneous, Subduction⁃Modified Lithospheric Mantle. Australian Journal of Earth Sciences, 53(3): 501-519. https://doi.org/10.1080/08120090600632466

[70]

Santosh, M., Hu, C. N., He, X. F., et al., 2017. Neoproterozoic Arc Magmatism in the Southern Madurai Block, India: Subduction, Relamination, Continental Outbuilding, and the Growth of Gondwana. Gondwana Research, 45: 1-42. https://doi.org/10.1016/j.gr.2016.12.009

[71]

Shaw, D. M., 1970. Trace Element Fractionation during Anatexis. Geochimica et Cosmochimica Acta, 34(2): 237-243. https://doi.org/10.1016/0016⁃7037(70)90009⁃8

[72]

Silver, P. G., Behn, M. D., 2008. Intermittent Plate Tectonics? Science, 319(5859): 85-88. https://doi.org/10.1126/science.1148397

[73]

Smith, E. I., Sánchez, A., Walker, J. D., et al., 1999. Geochemistry of Mafic Magmas in the Hurricane Volcanic Field, Utah: Implications for Small⁃ and Large⁃Scale Chemical Variability of the Lithospheric Mantle. The Journal of Geology, 107(4): 433-448. https://doi.org/10.1086/314355

[74]

Spencer, C. J., Murphy, J. B., Kirkland, C. L., et al., 2018. A Palaeoproterozoic Tectono⁃Magmatic Lull as a Potential Trigger for the Supercontinent Cycle. Nature Geoscience, 11(2): 97-101. https://doi.org/10.1038/s41561⁃017⁃0051⁃y

[75]

Srivastava, R.K., 2010. Dyke Swarms: Keys for Geodynamic Interpretation. Proceedings of the Sixth International Dyke Conference. Springer, Berlin, 636. https://doi.org/10.1007/978⁃3⁃642⁃12496⁃9

[76]

Sun, G. Z., Liu, S. W., Lü, Y. J., et al., 2022. Chronological Framework of Precambrian Dantazi Complex: Implications for the Formation and Evolution of the Northern North China Craton. Precambrian Research, 379: 106819. https://doi.org/10.1016/j.precamres.2022.106819

[77]

Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society,London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

[78]

Sun, Z. J., Yu, H. N., Li, C., et al., 2017. Paleoproterozoic (ca. 1.7 Ga) Magmatism in Chifeng, Inner Mongolia: Implications for the Tectonic Evolution of the Trans⁃North China Orogen. Arabian Journal of Geosciences, 10(20): 453. https://doi.org/10.1007/s12517⁃017⁃3206⁃7

[79]

Tang, L., Santosh, M., Tsunogae, T., et al., 2017. Petrology, Phase Equilibria Modelling and Zircon U⁃Pb Geochronology of Paleoproterozoic Mafic Granulites from the Fuping Complex, North China Craton. Journal of Metamorphic Geology, 35(5): 517-540. https://doi.org/10.1111/jmg.12243

[80]

Tang, L., Santosh, M., 2018. Neoarchean Granite⁃Greenstone Belts and Related Ore Mineralization in the North China Craton: An Overview. Geoscience Frontiers, 9(3): 751-768. https://doi.org/10.1016/j.gsf.2017.04.002

[81]

Taylor, S. R., McLennan, S. M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 33(2): 241-265. https://doi.org/10.1029/95RG00262

[82]

Trap, P., Faure, M., Lin, W., et al., 2012. Paleoproterozoic Tectonic Evolution of the Trans⁃North China Orogen: Toward a Comprehensive Model. Precambrian Research, 222-223: 191-211. https://doi.org/10.1016/j.precamres.2011.09.008

[83]

Turner, S. P., 1996. Petrogenesis of the Late⁃Delamerian Gabbroic Complex at Black Hill, South Australia: Implications for Convective Thinning of the Lithospheric Mantle. Mineralogy and Petrology, 56(1): 51-89. https://doi.org/10.1007/BF01162657

[84]

Turner, S. J., Langmuir, C. H., Dungan, M. A., et al., 2017. The Importance of Mantle Wedge Heterogeneity to Subduction Zone Magmatism and the Origin of EM1. Earth and Planetary Science Letters, 472: 216-228. https://doi.org/10.1016/j.epsl.2017.04.051

[85]

Valley, J. W., Reinhard, D. A., Cavosie, A. J., et al., 2015. Nano⁃ and Micro⁃Geochronology in Hadean and Archean Zircons by Atom⁃Probe Tomography and SIMS: New Tools for Old Mineralsâ. American Mineralogist, 100(7): 1355-1377. https://doi.org/10.2138/am⁃2015⁃5134

[86]

Verma, S. P., 1981. Seawater Alteration Effects on 87Sr/86Sr, K, Rb, Cs, Ba and Sr in Oceanic Igneous Rocks. Chemical Geology, 34(1-2): 81-89. https://doi.org/10.1016/0009⁃2541(81)90073⁃5

[87]

Wang, G. D., Wang, H., Chen, H. X., et al., 2014. Metamorphic Evolution and Zircon U⁃Pb Geochronology of the Mts. Huashan Amphibolites: Insights into the Palaeoproterozoic Amalgamation of the North China Craton. Precambrian Research, 245: 100-114. https://doi.org/10.1016/j.precamres.2014.02.004

[88]

Wang, J. P., Li, X. W., Ning, W. B., et al., 2019. Geology of a Neoarchean Suture: Evidence from the Zunhua Ophiolitic Mélange of the Eastern Hebei Province, North China Craton. GSA Bulletin, 131(11-12): 1943-1964. https://doi.org/10.1130/B35138.1

[89]

Wang, K., Plank, T., Walker, J. D., et al., 2002. A Mantle Melting Profile across the Basin and Range, SW USA. Journal of Geophysical Research: Solid Earth, 107(B1): ECV5⁃1⁃ECV5⁃21. https://doi.org/10.1029/2001JB000209

[90]

Wang, W., Liu, S. W., Santosh, M., et al., 2013a. Zircon U⁃Pb⁃Hf Isotopes and Whole⁃Rock Geochemistry of Granitoid Gneisses in the Jianping Gneissic Terrane, Western Liaoning Province: Constraints on the Neoarchean Crustal Evolution of the North China Craton. Precambrian Research, 224: 184-221. https://doi.org/10.1016/j.precamres.2012.09.019

[91]

Wang, Y. J., Zhang, A. M., Cawood, P. A., et al., 2013b. Geochronological, Geochemical and Nd⁃Hf⁃Os Isotopic Fingerprinting of an Early Neoproterozoic Arc⁃Back⁃Arc System in South China and Its Accretionary Assembly along the Margin of Rodinia. Precambrian Research, 231: 343-371. https://doi.org/10.1016/j.precamres.2013.03.020

[92]

Wang, W., Liu, S. W., Santosh, M., et al., 2015. Neoarchean Intra⁃Oceanic Arc System in the Western Liaoning Province: Implications for Early Precambrian Crustal Evolution in the Eastern Block of the North China Craton. Earth⁃Science Reviews, 150: 329-364. https://doi.org/10.1016/j.earscirev.2015.08.002

[93]

Wang, Y. L., Zhang, C. J., Xiu, S. Z., 2001. Th/Hf⁃Ta/Hf Identification of Tectonic Setting of Basalts. Acta Petrologica Sinica, 17(3): 413-421 (in Chinese with English abstract).

[94]

Wang, Z. H., Wilde, S. A., Wan, J. L., 2010. Tectonic Setting and Significance of 2.3-2.1 Ga Magmatic Events in the Trans⁃North China Orogen: New Constraints from the Yanmenguan Mafic⁃Ultramafic Intrusion in the Hengshan⁃Wutai⁃Fuping Area. Precambrian Research, 178(1-4): 27-42. https://doi.org/10.1016/j.precamres.2010.01.005

[95]

Wei, C. J., Qian, J. H., Zhou, X. W., 2014. Paleoproterozoic Crustal Evolution of the Hengshan⁃Wutai⁃Fuping Region, North China Craton. Geoscience Frontiers, 5(4): 485-497. https://doi.org/10.1016/j.gsf.2014.02.008

[96]

Wilde, S. A., Zhao, G. C., Sun, M., 2002. Development of the North China Craton during the Late Archaean and Its Final Amalgamation at 1.8 Ga: Some Speculations on Its Position within a Global Palaeoproterozoic Supercontinent. Gondwana Research, 5(1): 85-94. https://doi.org/10.1016/S1342⁃937X(05)70892⁃3

[97]

Wilson, M., 1989. Igneous Petrogenesis: A Global Tectonic Approach. Chapman and Hall, London. https://doi.org/10.1007/978⁃1⁃4020⁃6788⁃4

[98]

Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009⁃2541(77)90057⁃2

[99]

Winter, J.D., 2014. Principles of Igneous and Metamorphic Petrology (Second ed.). Cambridge University Press, Cambridge, 745. https://doi.org/10.1017/CBO9780511813429

[100]

Wu, C., Wang, G. S., Zhou, Z. G., et al., 2022. Late Archeanâ Paleoproterozoic Plate Tectonics along the Northern Margin of the North China Craton. GSA Bulletin, 135(3-4): 967-989. https://doi.org/10.1130/B36533.1

[101]

Wu, C., Zhou, Z. G., Zuza, A. V., et al., 2018. A 1.9 Ga Mélange along the Northern Margin of the North China Craton: Implications for the Assembly of Columbia Supercontinent. Tectonics, 37(10): 3610-3646. https://doi.org/10.1029/2018TC005103

[102]

Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu⁃Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract).

[103]

Yuan, L. L., Zhang, X. H., Yang, Z. L., et al., 2017. Paleoproterozoic Alaskan⁃Type Ultramafic⁃Mafic Intrusions in the Zhongtiao Mountain Region, North China Craton: Petrogenesis and Tectonic Implications. Precambrian Research, 296: 39-61. https://doi.org/10.1016/j.precamres.2017.04.037

[104]

Zeng, Y. C., Chen, Q., Xu, J. F., et al., 2018. Petrogenesis and Geodynamic Significance of Neoproterozoic (∼925 Ma) High⁃Fe⁃Ti Gabbros of the RenTso Ophiolite, Lhasa Terrane, Central Tibet. Precambrian Research, 314: 160-169. https://doi.org/10.1016/j.precamres.2018.06.005

[105]

Zhai, M. G., 2011. Cratonization and the Ancient North China Continent: A Summary and Review. Science China Earth Sciences, 54(8): 1110-1120. https://doi.org/10.1007/s11430⁃011⁃4250⁃x

[106]

Zhai, M. G., Liu, W. J., 2003. Palaeoproterozoic Tectonic History of the North China Craton: A Review. Precambrian Research, 122(1-4): 183-199. https://doi.org/10.1016/S0301⁃9268(02)00211⁃5

[107]

Zhai, M. G., Peng, P., 2020. Origin of Early Continents and Beginning of Plate Tectonics. Science Bulletin, 65(12): 970-973. https://doi.org/10.1016/j.scib.2020.03.022

[108]

Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005

[109]

Zhai, M.G., Zhang, Y.B., Li, Q.L., et al., 2021. Cratonization, Lower Crust and Continental Lithosphere. Acta Petrologica Sinica, 37(1): 1-23 (in Chinese with English abstract).

[110]

Zhai, Q. G., Jahn, B. M., Su, L., et al., 2013. SHRIMP Zircon U⁃Pb Geochronology, Geochemistry and Sr⁃Nd⁃Hf Isotopic Compositions of a Mafic Dyke Swarm in the Qiangtang Terrane, Northern Tibet and Geodynamic Implications. Lithos, 174: 28-43. https://doi.org/10.1016/j.lithos.2012.10.018

[111]

Zhang, H., Hou, G. T., Tian, W., 2023. Baddeleyite Dating of a 2.34 Ga Mafic Dyke in the Western Shandong Province, North China Craton, and Its Tectonic Implications. Lithos, 438-439: 107013. https://doi.org/10.1016/j.lithos.2022.107013

[112]

Zhao, G. C., Cawood, P. A., Li, S. Z., et al., 2012. Amalgamation of the North China Craton: Key Issues and Discussion. Precambrian Research, 222-223: 55-76. https://doi.org/10.1016/j.precamres.2012.09.016

[113]

Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2002. Review of Global 2.1-1.8 Ga Orogens: Implications for a Pre⁃Rodinia Supercontinent. Earth⁃Science Reviews, 59(1-4): 125-162. https://doi.org/10.1016/S0012⁃8252(02)00073⁃9

[114]

Zhao, G. C., Sun, M., Wilde, S. A., et al., 2004. A Paleo⁃Mesoproterozoic Supercontinent: Assembly, Growth and Breakup. Earth⁃Science Reviews, 67(1-2): 91-123. https://doi.org/10.1016/j.earscirev.2004.02.003

[115]

Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177-202. https://doi.org/10.1016/j.precamres.2004.10.002

[116]

Zhao, G. C., Zhai, M. G., 2013. Lithotectonic Elements of Precambrian Basement in the North China Craton: Review and Tectonic Implications.Gondwana Research, 23(4): 1207-1240. https://doi.org/10.1016/j.gr.2012.08.016

[117]

Zhao, J. H., Hu, R. Z., Zhou, M. F., et al., 2007. Elemental and Sr⁃Nd⁃Pb Isotopic Geochemistry of Mesozoic Mafic Intrusions in Southern Fujian Province, SE China: Implications for Lithospheric Mantle Evolution. Geological Magazine, 144(6): 937-952. https://doi.org/10.1017/S0016756807003834

[118]

Zhao, J. H., Zhou, M. F., 2009. Secular Evolution of the Neoproterozoic Lithospheric Mantle underneath the Northern Margin of the Yangtze Block, South China. Lithos, 107(3-4): 152-168. https://doi.org/10.1016/j.lithos.2008.09.017

[119]

Zhao, T. P., Chen, W., Zhou, M. F., 2009. Geochemical and Nd⁃Hf Isotopic Constraints on the Origin of the ~1.74 Ga Damiao Anorthosite Complex, North China Craton. Lithos, 113(3-4): 673-690. https://doi.org/10.1016/j.lithos.2009.07.002

[120]

Zheng, Y. F., Zhao, G. C., 2020. Two Styles of Plate Tectonics in Earth’s History. Science Bulletin, 65(4): 329-334. https://doi.org/10.1016/j.scib.2018.12.029

[121]

Zhou, Y. Y., Sun, Q. Y., Zhao, T. P., et al., 2021. Petrogenesis of the Early Paleoproterozoic Low⁃δ18O Potassic Granites in the Southern NCC and Its Possible Implications for No Confluence of Glaciations and Magmatic Shutdown at ca. 2.3 Ga. Precambrian Research, 361: 106258. https://doi.org/10.1016/j.precamres.2021.106258

[122]

Zhou, Y. Y., Zhai, M. G., 2022. Mantle Plume⁃Triggered Rifting Closely Following Neoarchean Cratonization Revealed by 2.50-2.20 Ga Magmatism across North China Craton. Earth⁃Science Reviews, 230: 104060. https://doi.org/10.1016/j.earscirev.2022.104060

基金资助

华北地质勘查局综合普查大队科研项目(No.普科[2022]⁃C02)

高层次科技人才培养经费

AI Summary AI Mindmap
PDF (8479KB)

108

访问

0

被引

详细

导航
相关文章

AI思维导图

/