硫同位素非质量分馏记录地幔不均一性及其地球动力学意义
Mantle Heterogeneity Recorded by Mass⁃Independent Fractionation of Sulfur Isotopes and Dynamic Implications
,
硫是一种挥发性元素,在浅部岩浆过程(如分离结晶、岩浆脱气)中易产生硫同位素质量分馏效应(Mass-dependent fractionation of sulfur isotopes, MDF⁃S),对使用硫同位素组成来约束地幔主要化学储库的属性产生干扰.硫同位素非质量分馏效应(Mass-independent fractionation of sulfur isotopes, MIF-S)是硫同位素分馏行为偏离质量依赖关系的现象,主要通过含硫分子在高能紫外线照射下发生光化学反应产生,其分馏机制与地球早期大气演化关系密切.值得注意的是,MIF-S信号在太古代沉积岩中普遍存在,而在大氧化事件之后该信号却消失不见.硫同位素非质量分馏(MIF-S)不依赖地幔氧化还原状态和高温过程(如部分熔融、分离结晶、岩浆脱气),能够很好地规避浅部岩浆过程导致的硫同位素质量分馏,对理解板块构造启动、地幔氧化还原状态和深部物质循环至关重要.在简要介绍硫同位质量和非质量分馏理论的基础上,本文梳理了地幔主要地球化学储库的硫同位素组成,重点评述了近20年来硫同位素非质量分馏效应在地幔不均一性和板块构造启动时限等研究上的重要进展.
Sulfur is a volatile element that is prone to mass-dependent fractionation of sulfur isotopes (MDF-S) during shallow magmatic processes (e.g., fractional crystallization and magma degassing), which limits us to constrain the properties of major mantle chemical reservoirs. The mass-independent fractionation of sulfur isotopes (MIF-S) is a phenomenon in which the fractionation behavior of sulfur isotopes deviates from the mass dependent relationship. MIF-S is mainly produced through photochemical reactions of sulfur-containing molecules under high-energy ultraviolet radiation, and its fractionation mechanism is closely related to the atmospheric evolution on early Earth. It is worth noting that MIF-S signals are commonly preserved in Archean sedimentary rocks, but they disappeared after the Great Oxidation Event (GOE). MIF-S does not rely on mantle redox states and high-temperature processes (such as partial melting, fractional crystallization, magma degassing), and can effectively avoid MDF-S driven by shallow magma processes. And so, MIF-S is crucial for understanding the onset of plate tectonics, mantle redox states, and deep material cycling. On the basis of a brief introduction to the theories of MDF-S and MIF-S, this review summarizes the sulfur isotope composition of major mantle chemical reservoirs, and focuses on the important progress in mantle heterogeneity and onset of plate tectonics recorded by MIF-S in the past two decades.
硫同位素 / 地幔不均一 / 同位素非质量分馏 / 同位素质量分馏 / 地球化学.
sulfur isotope / mantle heterogeneity / plate tectonics / mass⁃dependent fractionation / mass⁃independent fractionation / geochemistry
| [1] |
Algeo, T. J., Luo, G. M., Song, H. Y., et al., 2015. Reconstruction of Secular Variation in Seawater Sulfate Concentrations. Biogeosciences, 12(7): 2131-2151.https://doi.org/10.5194/bg⁃12⁃2131⁃2015 |
| [2] |
Antonelli, M. A., Kim, S. T., Peters, M., et al., 2014. Early Inner Solar System Origin for Anomalous Sulfur Isotopes in Differentiated Protoplanets. Proceedings of the National Academy of Sciences of the United States of America,111(50): 17749-17754.https://doi.org/10.1073/pnas.1418907111 |
| [3] |
Aulbach, S., Stagno, V., 2016. Evidence for a Reducing Archean Ambient Mantle and Its Effects on the Carbon Cycle. Geology, 44(9): 751-754.https://doi.org/10.1130/g38070.1 |
| [4] |
Bénard, A., Klimm, K., Woodland, A. B., et al., 2018. Oxidising Agents in Sub⁃Arc Mantle Melts Link Slab Devolatilisation and Arc Magmas. Nature Communications, 9(1): 3500.https://doi.org/10.1038/s41467⁃018⁃05804⁃2 |
| [5] |
Beaudry, P., Longpré, M. A., Economos, R., et al., 2018. Degassing⁃Induced Fractionation of Multiple Sulphur Isotopes Unveils Post⁃Archaean Recycled Oceanic Crust Signal in Hotspot Lava. Nature Communications, 9(1): 5093.https://doi.org/10.1038/s41467⁃018⁃07527⁃w |
| [6] |
Bindeman, I. N., Zakharov, D. O., Palandri, J., et al., 2018. Rapid Emergence of Subaerial Landmasses and Onset of a Modern Hydrologic Cycle 2.5 Billion Years Ago. Nature, 557(7706): 545-548.https://doi.org/10.1038/s41586⁃018⁃0131⁃1 |
| [7] |
Brenan, J. M., Mungall, J. E., Bennett, N. R., 2019. Abundance of Highly Siderophile Elements in Lunar Basalts Controlled by Iron Sulfide Melt. Nature Geoscience, 12(9): 701-706.https://doi.org/10.1038/s41561⁃019⁃0426⁃3 |
| [8] |
Cabral, R. A., Jackson, M. G., Rose⁃Koga, E. F., et al., 2013. Anomalous Sulphur Isotopes in Plume Lavas Reveal Deep Mantle Storage of Archaean Crust. Nature, 496(7446): 490-493.https://doi.org/10.1038/nature12020 |
| [9] |
Caro, G., Grocolas, T., Bourgeois, P., et al., 2025. Early Archaean Onset of Volatile Cycling at Subduction Zones. Nature Geoscience, 18(5): 436-442.https://doi.org/10.1038/s41561⁃025⁃01677⁃5 |
| [10] |
Cartigny, P., Farquhar, J., Thomassot, E., et al., 2009. A Mantle Origin for Paleoarchean Peridotitic Diamonds from the Panda Kimberlite, Slave Craton: Evidence from 13C⁃, 15N⁃ and 33, 34S⁃Stable Isotope Systematics. Lithos, 112: 852-864.https://doi.org/10.1016/j.lithos.2009.06.007 |
| [11] |
Cartigny, L.J., Devey, C.W., Jackson, M.G., et al., 2015. On the Archean vs. Proterozoic Age of the HIMU Mantle Component: New 33S/32S, 34S/32S, 36S/32S⁃Data from Saint⁃Helena Glasses. Goldschmidt Conference. MSA and EAG, Prague. |
| [12] |
Chen, C. F., Förster, M. W., Shcheka, S. S., et al., 2025. Sulfide⁃Rich Continental Roots at Cratonic Margins Formed by Carbonated Melts. Nature, 637(8046): 615-621.https://doi.org/10.1038/s41586⁃024⁃08316⁃w |
| [13] |
Chen, K., Tang, M., Lee, C. A., et al., 2020. Sulfide⁃bearing Cumulates in Deep Continental Arcs: The Missing Copper Reservoir. Earth and Planetary Science Letters, 531: 115971.https://doi.org/10.1016/j.epsl.2019.115971 |
| [14] |
Chen, L. H., Zeng, G., Jiang, S. Y., et al., 2009. Sources of Anfengshan Basalts: Subducted Lower Crust in the Sulu UHP Belt, China. Earth and Planetary Science Letters, 286(3-4): 426-435.https://doi.org/10.1016/j.epsl.2009.07.006 |
| [15] |
Chen, L. H., Zeng, G., Liu, J. Q., et al., 2022. The Nature of the Deep Mantle Chemical Reservoirs: Perspective from Continental Intraplate Volcanic Rocks. Acta Petrologica Sinica, 38(12): 3703-3711 (in Chinese with English abstract). |
| [16] |
Claire, M. W., Kasting, J. F., Domagal⁃Goldman, S. D., et al., 2014. Modeling the Signature of Sulfur Mass⁃ Independent Fractionation Produced in the Archean Atmosphere. Geochimica et Cosmochimica Acta, 141: 365-380.https://doi.org/10.1016/j.gca.2014.06.032 |
| [17] |
Cui, H., Zhong, R. C., Xie, Y. L., et al., 2020. Forming Sulfate⁃ and REE⁃Rich Fluids in the Presence of Quartz. Geology, 48(2): 145-148.https://doi.org/10.1130/g46893.1 |
| [18] |
Delavault, H., Chauvel, C., Thomassot, E., et al., 2016. Sulfur and Lead Isotopic Evidence of Relic Archean Sediments in the Pitcairn Mantle Plume. Proceedings of the National Academy of Sciences,113(46): 12952-12956.https://doi.org/10.1073/pnas.1523805113 |
| [19] |
De Witt, H. L., Hasenkopf, C. A., Trainer, M. G., et al., 2010. The Formation of Sulfate and Elemental Sulfur Aerosols under Varying Laboratory Conditions: Implications for Early Earth. Astrobiology, 10(8): 773-781.https://doi.org/10.1089/ast.2009.9455 |
| [20] |
Dottin III, J. W., Labidi, J., Jackson, M. G., et al., 2020a. Isotopic Evidence for Multiple Recycled Sulfur Reservoirs in the Mangaia Mantle Plume. Geochemistry, Geophysics, Geosystems, 21(10): e2020GC009081.https://doi.org/10.1029/2020GC009081 |
| [21] |
Dottin III, J. W., Labidi, J., Lekic, V., et al., 2020b. Sulfur Isotope Characterization of Primordial and Recycled Sources Feeding the Samoan Mantle Plume. Earth and Planetary Science Letters, 534: 116073.https://doi.org/10.1016/j.epsl.2020.116073 |
| [22] |
Farquhar, J., Bao, H.M., Thiemens, M., 2000. Atmospheric Influence of Earth’s Earliest Sulfur Cycle. Science, 289(5480): 756-758.https://doi.org/10.1126/science.289.5480.756 |
| [23] |
Farquhar, J., Wing, B. A., McKeegan, K. D., et al., 2002. Mass⁃Independent Sulfur of Inclusions in Diamond and Sulfur Recycling on Early Earth. Science, 298(5602): 2369-2372.https://doi.org/10.1126/science.1078617 |
| [24] |
Farsang, S., Zajacz, Z., 2025. Sulfur Species and Gold Transport in Arc Magmatic Fluids. Nature Geoscience, 18(1): 98-104.https://doi.org/10.1038/s41561⁃024⁃01601⁃3 |
| [25] |
Fitzpayne, A., Giuliani, A., Magalhães, N., et al., 2021. Sulfur Isotope Constraints on the Petrogenesis of the Kimberley Kimberlites. Geochemistry, Geophysics, Geosystems, 22(11): e2021GC009845.https://doi.org/10.1029/2021GC009845 |
| [26] |
Frei, R., Gaucher, C., Poulton, S. W., et al., 2009. Fluctuations in Precambrian Atmospheric Oxygenation Recorded by Chromium Isotopes. Nature, 461(7261): 250-253.https://doi.org/10.1038/nature08266 |
| [27] |
Genot, I., Angiboust, S., Cartigny, P., 2024. Multiple Sulfur Isotopes Evidence Deep Intra⁃Slab Transport of Sulfate⁃Rich Fluids. Geochimica et Cosmochimica Acta, 377: 84-100.https://doi.org/10.1016/j.gca.2024.05.025 |
| [28] |
Giuliani, A., Drysdale, R. N., Woodhead, J. D., et al., 2022. Perturbation of the Deep⁃Earth Carbon Cycle in Response to the Cambrian Explosion. Science Advances, 8(9): eabj1325.https://doi.org/10.1126/sciadv.abj1325 |
| [29] |
Hart, S. R., 1984. A Large⁃Scale Isotope Anomaly in the Southern Hemisphere Mantle. Nature, 309(5971): 753-757.https://doi.org/10.1038/309753a0 |
| [30] |
Hattori, S., Schmidt, J. A., Johnson, M. S., et al., 2013. SO2 Photoexcitation Mechanism Links Mass⁃Independent Sulfur Isotopic Fractionation in Cryospheric Sulfate to Climate Impacting Volcanism. Proceedings of the National Academy of Sciences,110(44): 17656-17661.https://doi.org/10.1073/pnas.1213153110 |
| [31] |
Heiny, E. A., Stolper, E. M., Eiler, J. M., 2025. Differentiated Planetesimals Record Differing Sources of Sulfur in Inner and Outer Solar System Materials. Proceedings of the National Academy of Sciences, 122(18): e2418198122.https://doi.org/10.1073/pnas.2418198122 |
| [32] |
Hofmann, A. W., 1997. Mantle Geochemistry: The Message from Oceanic Volcanism. Nature, 385(6613): 219-229.https://doi.org/10.1038/385219a0 |
| [33] |
Holland, H. D., 2006. The Oxygenation of the Atmosphere and Oceans. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1470): 903-915. https://doi.org/10.1098/rstb.2006.1838 |
| [34] |
Hutchison, W., Babiel, R. J., Finch, A. A., et al., 2019. Sulphur Isotopes of Alkaline Magmas Unlock Long⁃Term Records of Crustal Recycling on Earth. Nature Communications, 10(1): 4208.https://doi.org/10.1038/s41467⁃019⁃12218⁃1 |
| [35] |
Jackson, M. G., Hart, S. R., Koppers, A. A. P., et al., 2007. The Return of Subducted Continental Crust in Samoan Lavas. Nature, 448(7154): 684-687.https://doi.org/10.1038/nature06048 |
| [36] |
Johnston, D. T., 2011. Multiple Sulfur Isotopes and the Evolution of Earth’s Surface Sulfur Cycle. Earth⁃Science Reviews, 106(1-2): 161-183.https://doi.org/10.1016/j.earscirev.2011.02.003 |
| [37] |
Jugo, P. J., Wilke, M., Botcharnikov, R. E., 2010. Sulfur K⁃Edge XANES Analysis of Natural and Synthetic Basaltic Glasses: Implications for S Speciation and S Content as Function of Oxygen Fugacity. Geochimica et Cosmochimica Acta, 74(20): 5926-5938.https://doi.org/10.1016/j.gca.2010.07.022 |
| [38] |
Kagoshima, T., Sano, Y., Takahata, N., et al., 2015. Sulphur Geodynamic Cycle. Scientific Reports, 5:1-6. https://doi.org/10.1038/srep08330 |
| [39] |
Kleinsasser, J. M., Simon, A. C., Konecke, B. A., et al., 2022. Sulfide and Sulfate Saturation of Dacitic Melts as a Function of Oxygen Fugacity. Geochimica et Cosmochimica Acta, 326: 1-16.https://doi.org/10.1016/j.gca.2022.03.032 |
| [40] |
Kubota, Y., Matsu’ura, F., Shimizu, K., et al., 2022. Sulfur in Archean Komatiite Implies Early Subduction of Oceanic Lithosphere. Earth and Planetary Science Letters, 598: 117826.https://doi.org/10.1016/j.epsl.2022.117826 |
| [41] |
Labidi, J., Cartigny, P., 2016. Negligible Sulfur Isotope Fractionation during Partial Melting: Evidence from Garrett Transform Fault Basalts, Implications for the Late Veneer and the Hadean Matte. Earth and Planetary Science Letters, 451: 196-207.https://doi.org/10.1016/j.epsl.2016.07.012 |
| [42] |
Labidi, J., Cartigny, P., Hamelin, C., et al., 2014. Sulfur Isotope Budget (32S, 33S, 34S and 36S) in Pacific⁃Antarctic Ridge Basalts: A Record of Mantle Source Heterogeneity and Hydrothermal Sulfide Assimilation. Geochimica et Cosmochimica Acta, 133: 47-67.https://doi.org/10.1016/j.gca.2014.02.023 |
| [43] |
Labidi, J., Cartigny, P., Jackson, M. G., 2015. Multiple Sulfur Isotope Composition of Oxidized Samoan Melts and the Implications of a Sulfur Isotope ‘Mantle Array’ in Chemical Geodynamics. Earth and Planetary Science Letters, 417: 28-39.https://doi.org/10.1016/j.epsl.2015.02.004 |
| [44] |
Labidi, J., Cartigny, P., Moreira, M., 2013. Non⁃Chondritic Sulphur Isotope Composition of the Terrestrial Mantle. Nature, 501(7466): 208-211.https://doi.org/10.1038/nature12490 |
| [45] |
Labidi, J., Dottin, J. W., Clog, M., et al., 2022. Near⁃Zero 33S and 36S Anomalies in Pitcairn Basalts Suggest Proterozoic Sediments in the EM⁃1 Mantle Plume. Earth and Planetary Science Letters, 584: 117422.https://doi.org/10.1016/j.epsl.2022.117422 |
| [46] |
Labidi, J., Farquhar, J., Alexander, C. M. O., et al., 2017. Mass Independent Sulfur Isotope Signatures in CMs: Implications for Sulfur Chemistry in the Early Solar System. Geochimica et Cosmochimica Acta, 196: 326-350.https://doi.org/10.1016/j.gca.2016.09.036 |
| [47] |
Labidi, J., Shahar, A., Le Losq, C., et al., 2016. Experimentally Determined Sulfur Isotope Fractionation between Metal and Silicate and Implications for Planetary Differentiation. Geochimica et Cosmochimica Acta, 175: 181-194.https://doi.org/10.1016/j.gca.2015.12.001 |
| [48] |
LaFlamme, C., Fiorentini, M. L., Lindsay, M. D., et al., 2018. Atmospheric Sulfur is Recycled to the Crystalline Continental Crust during Supercontinent Formation. Nature Communications, 9(1): 4380.https://doi.org/10.1038/s41467⁃018⁃06691⁃3 |
| [49] |
Lee, C. A., Erdman, M., Yang, W. B., et al., 2018. Sulfur Isotopic Compositions of Deep Arc Cumulates. Earth and Planetary Science Letters, 500: 76-85.https://doi.org/10.1016/j.epsl.2018.08.017 |
| [50] |
Lee, C. A., Tang, M., 2020. How to Make Porphyry Copper Deposits. Earth and Planetary Science Letters, 529: 115868.https://doi.org/10.1016/j.epsl.2019.115868 |
| [51] |
Lee, C. A., Yeung, L. Y., McKenzie, N. R., et al., 2016. Two⁃Step Rise of Atmospheric Oxygen Linked to the Growth of Continents. Nature Geoscience, 9(6): 417-424.https://doi.org/10.1038/ngeo2707 |
| [52] |
Lewis, J. A., Hoffmann, J. E., Schwarzenbach, E. M., et al., 2023. Sulfur Isotope Evidence from Peridotite Enclaves in Southern West Greenland for Recycling of Surface Material into Eoarchean Depleted Mantle Domains. Chemical Geology, 633: 121568.https://doi.org/10.1016/j.chemgeo.2023.121568 |
| [53] |
Li, H. J., Zhang, L. F., Bao, X. J., et al., 2021. High Sulfur Solubility in Subducted Sediment Melt under Both Reduced and Oxidized Conditions: With Implications for S Recycling in Subduction Zone Settings. Geochimica et Cosmochimica Acta, 304: 305-326.https://doi.org/10.1016/j.gca.2021.04.001 |
| [54] |
Li, J. L., Gao, J., Huang, G. F., et al., 2022. Geochemical Behavior and Recycling of Sulfur in Subduction Zones. Acta Petrologica Sinica, 38(5): 1345-1359 (in Chinese with English abstract). |
| [55] |
Li, J. L., Schwarzenbach, E. M., John, T., et al., 2020. Uncovering and Quantifying the Subduction Zone Sulfur Cycle from the Slab Perspective. Nature Communications, 11(1): 514.https://doi.org/10.1038/s41467⁃019⁃14110⁃4 |
| [56] |
Liu, S. A., Wang, Z. Z., Li, S. G., et al., 2016. Zinc Isotope Evidence for a Large⁃Scale Carbonated Mantle beneath Eastern China. Earth and Planetary Science Letters, 444: 169-178.https://doi.org/10.1016/j.epsl.2016.03.051 |
| [57] |
Liu, X. Y., Hao, J. L., Li, R. Y., et al., 2022. Sulfur Isotopic Fractionation of the Youngest Chang’e⁃5 Basalts: Constraints on the Magma Degassing and Geochemical Features of the Mantle Source. Geophysical Research Letters, 49(15): e2022GL099922.https://doi.org/10.1029/2022GL099922 |
| [58] |
Lodders, K., 2003. Solar System Abundances and Condensation Temperatures of the Elements.The Astrophysical Journal, 591(2): 1220-1247.https://doi.org/10.1086/375492 |
| [59] |
Luo, G. M., Ono, S., Beukes, N. J., et al., 2016. Rapid Oxygenation of Earth’s Atmosphere 2.33 Billion Years Ago. Science Advances, 2(5): e1600134.https://doi.org/10.1126/sciadv.1600134 |
| [60] |
Lyons, T. W., Reinhard, C. T., Planavsky, N. J., 2014. The Rise of Oxygen in Earth’s Early Ocean and Atmosphere. Nature, 506(7488): 307-315.https://doi.org/10.1038/nature13068 |
| [61] |
Mazza, S. E., Gazel, E., Bizimis, M., et al., 2019. Sampling the Volatile⁃Rich Transition Zone beneath Bermuda. Nature, 569(7756): 398-403.https://doi.org/10.1038/s41586⁃019⁃1183⁃6 |
| [62] |
Meng, X. Y., Simon, A. C., Kleinsasser, J. M., et al., 2022. Formation of Oxidized Sulfur⁃Rich Magmas in Neoarchaean Subduction Zones. Nature Geoscience, 15(12): 1064-1070.https://doi.org/10.1038/s41561⁃022⁃01071⁃5 |
| [63] |
Moreira, H., Storey, C., Bruand, E., et al., 2023. Sub⁃Arc Mantle Fugacity Shifted by Sediment Recycling across the Great Oxidation Event. Nature Geoscience, 16(10): 922-927.https://doi.org/10.1038/s41561⁃023⁃01258⁃4 |
| [64] |
Moynier, F., Jackson, M. G., Zhang, K., et al., 2021. The Mercury Isotopic Composition of Earth’s Mantle and the Use of Mass Independently Fractionated Hg to Test for Recycled Crust. Geophysical Research Letters, 48(17): e2021GL094301.https://doi.org/10.1029/2021GL094301 |
| [65] |
Muth, M. J., Wallace, P. J., 2021. Slab⁃Derived Sulfate Generates Oxidized Basaltic Magmas in the Southern Cascade Arc (California, USA). Geology, 49(10): 1177-1181.https://doi.org/10.1130/g48759.1 |
| [66] |
Nebel, O., Arculus, R. J., van Westrenen, W., et al., 2013. Coupled Hf⁃Nd⁃Pb Isotope Co⁃Variations of HIMU Oceanic Island Basalts from Mangaia, Cook⁃Austral Islands, Suggest an Archean Source Component in the Mantle Transition Zone. Geochimica et Cosmochimica Acta, 112: 87-101.https://doi.org/10.1016/j.gca.2013.03.005 |
| [67] |
Och, L. M., Shields⁃Zhou, G. A., 2012. The Neoproterozoic Oxygenation Event: Environmental Perturbations and Biogeochemical Cycling. Earth⁃Science Reviews, 110(1-4): 26-57.https://doi.org/10.1016/j.earscirev.2011.09.004 |
| [68] |
Ono, S., 2017. Photochemistry of Sulfur Dioxide and the Origin of Mass⁃Independent Isotope Fractionation in Earth’s Atmosphere. Annual Review of Earth and Planetary Sciences, 45(1): 301-329.https://doi.org/10.1146/annurev⁃earth⁃060115⁃012324 |
| [69] |
Pavlov, A. A., Kasting, J. F., 2002. Mass⁃Independent Fractionation of Sulfur Isotopes in Archean Sediments: Strong Evidence for an Anoxic Archean Atmosphere. Astrobiology, 2(1): 27-41.https://doi.org/10.1089/153110702753621321 |
| [70] |
Pons, M. L., Debret, B., Bouilhol, P., et al., 2016. Zinc Isotope Evidence for Sulfate⁃Rich Fluid Transfer across Subduction Zones. Nature Communications, 7: 13794.https://doi.org/10.1038/ncomms13794 |
| [71] |
Poulton, S. W., Bekker, A., Cumming, V. M., et al., 2021. A 200⁃Million⁃Year Delay in Permanent Atmospheric Oxygenation. Nature, 592(7853): 232-236.https://doi.org/10.1038/s41586⁃021⁃03393⁃7 |
| [72] |
Ranta, E., Gunnarsson⁃Robin, J., Halldórsson, S. A., et al., 2022. Ancient and Recycled Sulfur Sampled by the Iceland Mantle Plume. Earth and Planetary Science Letters, 584: 117452.https://doi.org/10.1016/j.epsl.2022.117452 |
| [73] |
Reekie, C. D. J., Jenner, F. E., Smythe, D. J., et al., 2019. Sulfide Resorption during Crustal Ascent and Degassing of Oceanic Plateau Basalts. Nature Communications, 10(1): 82.https://doi.org/10.1038/s41467⁃018⁃08001⁃3 |
| [74] |
Saal, A. E., Hauri, E. H., 2021. Large Sulfur Isotope Fractionation in Lunar Volcanic Glasses Reveals the Magmatic Differentiation and Degassing of the Moon. Science Advances, 7(9): eabe4641.https://doi.org/10.1126/sciadv.abe4641 |
| [75] |
Shirey, S. B., Richardson, S. H., 2011. Start of the Wilson Cycle at 3 Ga Shown by Diamonds from Subcontinental Mantle. Science, 333(6041): 434-436.https://doi.org/10.1126/science.1206275 |
| [76] |
Smit, K. V., Shirey, S. B., Hauri, E. H., et al., 2019. Sulfur Isotopes in Diamonds Reveal Differences in Continent Construction. Science, 364(6438): 383-385. https://doi.org/10.1126/science.aaw9548 |
| [77] |
Sobolev, A. V., Asafov, E. V., Gurenko, A. A., et al., 2019. Deep Hydrous Mantle Reservoir Provides Evidence for Crustal Recycling before 3.3 Billion Years Ago. Nature, 571(7766): 555-559.https://doi.org/10.1038/s41586⁃019⁃1399⁃5 |
| [78] |
Sobolev, A.V., Hofmann, A.W., Nikogosian, I.K., 2000. Recycled Oceanic Crust Observed in ‘Ghost Plagioclase’ within the Source of Mauna Loa Lavas. Nature, 404(6781): 986-990.https://doi.org/10.1038/35010098 |
| [79] |
Spencer, C. J., Partin, C. A., Kirkland, C. L., et al., 2019. Paleoproterozoic Increase in Zircon δ18O Driven by Rapid Emergence of Continental Crust. Geochimica et Cosmochimica Acta, 257: 16-25.https://doi.org/10.1016/j.gca.2019.04.016 |
| [80] |
Stolper, D. A., Keller, C. B., 2018. A Record of Deep⁃Ocean Dissolved O2 from the Oxidation State of Iron in Submarine Basalts. Nature, 553(7688): 323-327. https://doi.org/10.1038/nature25009 |
| [81] |
Stracke, A., 2012. Earth’s Heterogeneous Mantle: A Product of Convection⁃Driven Interaction between Crust and Mantle. Chemical Geology, 330-331: 274-299. https://doi.org/10.1016/j.chemgeo.2012.08.007 |
| [82] |
Tang, M., Chen, K., Rudnick, R. L., 2016. Archean Upper Crust Transition from Mafic to Felsic Marks the Onset of Plate Tectonics. Science, 351(6271): 372-375. https://doi.org/10.1126/science.aad5513 |
| [83] |
Tang, M., Lee, C. A., Ji, W. Q., et al., 2020. Crustal Thickening and Endogenic Oxidation of Magmatic Sulfur. Science Advances, 6(31): eaba6342.https://doi.org/10.1126/sciadv.aba6342 |
| [84] |
Tappe, S., Steenfelt, A., Nielsen, T., 2012. Asthenospheric Source of Neoproterozoic and Mesozoic Kimberlites from the North Atlantic Craton, West Greenland: New High⁃Precision U⁃Pb and Sr⁃Nd Isotope Data on Perovskite. Chemical Geology, 320-321: 113-127.https://doi.org/10.1016/j.chemgeo.2012.05.026 |
| [85] |
Taracsák, Z., Hartley, M. E., Burgess, R., et al., 2025. The Origin of Sulfur in Canary Island Magmas and Its Implications for Earth’s Deep Sulfur Cycle. Proceedings of the National Academy of Sciences, 122(12): e2416070122.https://doi.org/10.1073/pnas.2416070122 |
| [86] |
Thomassot, E., Cartigny, P., Harris, J. W., et al., 2009. Metasomatic Diamond Growth: A Multi⁃Isotope Study (13C, 15N, 33S, 34S) of Sulphide Inclusions and Their Host Diamonds from Jwaneng (Botswana). Earth and Planetary Science Letters, 282(1-4): 79-90.https://doi.org/10.1016/j.epsl.2009.03.001 |
| [87] |
Timmerman, S., Honda, M., Burnham, A. D., et al., 2019. Primordial and Recycled Helium Isotope Signatures in the Mantle Transition Zone. Science, 365(6454): 692-694.https://doi.org/10.1126/science.aax5293 |
| [88] |
Torsvik, T. H., Burke, K., Steinberger, B., et al., 2010. Diamonds Sampled by Plumes from the Core⁃Mantle Boundary. Nature, 466(7304): 352-355.https://doi.org/10.1038/nature09216 |
| [89] |
Walter, M. J., Kohn, S. C., Araujo, D., et al., 2011. Deep Mantle Cycling of Oceanic Crust: Evidence from Diamonds and Their Mineral Inclusions. Science, 334(6052): 54-57.https://doi.org/10.1126/science.1209300 |
| [90] |
Walters, J. B., Cruz⁃Uribe, A. M., Marschall, H. R., 2019. Isotopic Compositions of Sulfides in Exhumed High⁃Pressure Terranes: Implications for Sulfur Cycling in Subduction Zones. Geochemistry, Geophysics, Geosystems, 20(7): 3347-3374.https://doi.org/10.1029/2019GC008374 |
| [91] |
Wan, Y., Chou, I. M., Wang, X. L., et al., 2023. Hydrothermal Sulfate Surges Promote Rare Earth Element Transport and Mineralization. Geology, 51(5): 449-453.https://doi.org/10.1130/g50848.1 |
| [92] |
Wan, Y., Wang, X. L., Chou, I. M., et al., 2021. Role of Sulfate in the Transport and Enrichment of REE in Hydrothermal Systems. Earth and Planetary Science Letters, 569: 117068.https://doi.org/10.1016/j.epsl.2021.117068 |
| [93] |
Wang, S. J., Rudnick, R. L., Gaschnig, R. M., et al., 2019. Methanogenesis Sustained by Sulfide Weathering during the Great Oxidation Event. Nature Geoscience, 12(4): 296-300.https://doi.org/10.1038/s41561⁃019⁃0320⁃z |
| [94] |
Wang, W. Z., Li, C.H., Brodholt, J. P., et al., 2021. Sulfur Isotopic Signature of Earth Established by Planetesimal Volatile Evaporation. Nature Geoscience, 14(11): 806-811.https://doi.org/10.1038/s41561⁃021⁃00838⁃6 |
| [95] |
Wang, X. J., Chen, L. H., Hofmann, A. W., et al., 2018. Recycled Ancient Ghost Carbonate in the Pitcairn Mantle Plume. Proceedings of the National Academy of Sciences,115(35): 8682-8687.https://doi.org/10.1073/pnas.1719570115 |
| [96] |
Wang, Z. C., Becker, H., 2013. Ratios of S, Se and Te in the Silicate Earth Require a Volatile⁃Rich Late Veneer. Nature, 499(7458): 328-331.https://doi.org/10.1038/nature12285 |
| [97] |
Weiss, Y., Class, C., Goldstein, S. L., et al., 2016. Key New Pieces of the HIMU Puzzle from Olivines and Diamond Inclusions. Nature, 537(7622): 666-670.https://doi.org/10.1038/nature19113 |
| [98] |
Wood, B. J., Halliday, A. N., 2010. The Lead Isotopic Age of the Earth can be Explained by Core Formation Alone. Nature, 465(7299): 767-770.https://doi.org/10.1038/nature09072 |
| [99] |
Woodhead, J., Hergt, J., Giuliani, A., et al., 2019. Kimberlites Reveal 2.5⁃Billion⁃Year Evolution of a Deep, Isolated Mantle Reservoir. Nature, 573(7775): 578-581.https://doi.org/10.1038/s41586⁃019⁃1574⁃8 |
| [100] |
Xu, R., Cai, Y., Lambart, S., et al., 2025. Heavy Boron Isotopes in Intraplate Basalts Reveal Recycled Carbonate in the Mantle. Science Advances, 11(17): eads5104.https://doi.org/10.1126/sciadv.ads5104 |
| [101] |
Xu, R., Liu, Y. S., Lambart, S., et al., 2022. Decoupled Zn⁃Sr⁃Nd Isotopic Composition of Continental Intraplate Basalts Caused by Two⁃Stage Melting Process. Geochimica et Cosmochimica Acta, 326: 234-252.https://doi.org/10.1016/j.gca.2022.03.014 |
| [102] |
Xu, Z., Li, Y., 2021. The Sulfur Concentration at Anhydrite Saturation in Silicate Melts: Implications for Sulfur Cycle and Oxidation State in Subduction Zones. Geochimica et Cosmochimica Acta, 306: 98-123.https://doi.org/10.1016/j.gca.2021.05.027 |
| [103] |
Yang, J. F., Faccenda, M., 2020. Intraplate Volcanism Originating from Upwelling Hydrous Mantle Transition Zone. Nature, 579(7797): 88-91.https://doi.org/10.1038/s41586⁃020⁃2045⁃y |
| [104] |
Zhang, J.B., Liu, Y.S., Ducea, M. N., et al., 2020. Archean, Highly Unradiogenic Lead in Shallow Cratonic Mantle. Geology, 48(6): 584-588.https://doi.org/10.1130/g47064.1 |
| [105] |
Zhang, J.B., Liu, Y.S., Foley, S. F., et al., 2024. Widespread Two⁃Layered Melt Structure in the Asthenosphere. Nature Geoscience, 17(5): 472-477.https://doi.org/10.1038/s41561⁃024⁃01433⁃1 |
| [106] |
Zhang, J. B., Liu, Y. S., Ling, W. L., et al., 2017. Pressure⁃Dependent Compatibility of Iron in Garnet: Insights into the Origin of Ferropicritic Melt. Geochimica et Cosmochimica Acta, 197: 356-377.https://doi.org/10.1016/j.gca.2016.10.047 |
| [107] |
Zhang, X. Y., Chen, L. H., Wang, X. J., et al., 2022. Zinc Isotopic Evidence for Recycled Carbonate in the Deep Mantle. Nature Communications, 13(1): 6085.https://doi.org/10.1038/s41467⁃022⁃33789⁃6 |
| [108] |
Zhou, Z. B., Chen, L. H., Huang, Z. C., et al., 2025. The Return of Stagnant Slab Recorded by Intraplate Volcanism. Proceedings of the National Academy of Sciences, 122(1): e2414632122.https://doi.org/10.1073/pnas.2414632122 |
| [109] |
Zindler, A., Hart, S.R., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14: 493-571.https://doi.org/10.1146/annurev.ea.14.050186.002425 |
国家自然科学基金委员会面上项目(42173051)
国家自然科学基金委员会面上项目(42473062)
湖北省自然科学基金计划项目(2025AFA005)
/
| 〈 |
|
〉 |