苏北盆地溱潼凹陷全油气系统油源对比

薛冈 ,  陈红汉 ,  马晓东 ,  臧素华 ,  昝灵 ,  白鸾羲 ,  邰浩 ,  苏鹏 ,  程吉 ,  苏丹梅 ,  黄天娇 ,  江嘉怡

地球科学 ›› 2025, Vol. 50 ›› Issue (12) : 4652 -4670.

PDF (12099KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (12) : 4652 -4670. DOI: 10.3799/dqkx.2025.130

苏北盆地溱潼凹陷全油气系统油源对比

作者信息 +

Oil Correlation for Whole Petroleum System in Qintong Sag, Subei Basin

Author information +
文章历史 +
PDF (12389K)

摘要

随着湖相页岩油勘探开发不断深入,苏北盆地溱潼凹陷已进入全油气系统评价阶段.前人开展的油源对比研究侧重烃源岩发育时期湖水盐度变化对生物标志化合物的影响,难以满足“同时异相”烃源岩的全油气系统油源对比要求.本文在古气候驱动旋回地层及其对烃源岩发育控制作用分析的基础上,分析了溱潼凹陷11件页岩油和常规原油样品中反映硫化生境的芳基类异戊二烯烃生标,并进行全油气系统油源对比;同时,运用2,3,6⁃芳基类异戊二烯烃(2,3,6⁃AIPs)和2,3,4⁃芳基类异戊二烯烃(2,3,4⁃AIPs)构造的C3=Σ(2,3,6⁃AIPs)/Σ(2,3,4⁃AIPs)和C4=Σ(2,3,6⁃AIPs)/Σ(2,3,4⁃AIPs)+ Σ(2,3,6⁃AIPs).指标,分别计算了页岩油和常规原油烃源岩的相对硫化强度和相对古水深.结果表明:(1)溱潼凹陷阜宁组二段发育早期湖扩→晚期湖扩→高位体系域低频旋回,且由9个四级准层序组和32.5个五级准层高频旋回构成;总体上呈现着寒冷干旱→温暖潮湿、(半)咸化→淡水介质演变趋势.(2)阜宁组二段残留总有机碳丰度(TOC)相对高值对应于体系域旋回的温暖潮湿和淡化介质最大湖泛面,相对低值对应于寒冷干燥和咸化介质初始湖泛面.温暖潮湿的半深湖-深湖相淡水介质环境更有利于有机质的富集.(3)阜二段发育水体较浅+硫化较弱咸化环境、水体较深+硫化中等咸化环境、水体最深+硫化最强咸化环境和非硫化+淡水环境等4种类型的烃源岩.该研究不仅为“同时异相”烃源岩评价提供了一种新的工具,而且为全油气系统分布序列建立提供依据.

Abstract

With the continual progressing of shale oil exploration and development in lacustrine facies, the investigation in Qintong sag of Subei basin steps into the stage of whole petroleum system evaluation. The previous oil correlation researches focused on the influence of salinity of lake water during source rock development onto biomarkers, which is hard to satisfy the requirement of oil correlation with the source rocks of “contemporaneous heterotopic facies” for whole petroleum system. This study is on the basis of analysis of controlling of high-resolution sequence stratigraphy driven by paleoclimate on source rock development and distribution, totally 11 shale oil and conventional crude oil samples in Qintong sag have been employed to measure the aryl isoprenoid biomarkers which can reflect sulfuration habitat and be used to correlate the whole petroleum system with source rocks. Meanwhile, the 2,3,6- aryl isoprenoids (2,3,6-AIPs) and 2,3,4- aryl isoprenoids (2,3,4-AIPs) have been applied to build two parameters: C3=Σ(2,3,6-AIPs)/Σ(2,3,4-AIPs) and C4=Σ(2,3,6-AIPs)/ Σ(2,3,4-AIPs)+ Σ(2,3,6-AIPs), which are utilized to calculate the relative sulfuration intensity and relative paleo-depth of lake water for the source rocks of shale oils and conventional crude oils, respectively. And then, several research results have been obtained as following. (1) The second member of Funing Formation in Qintong sag underwent the low frequency cycle of earlier lake expansion system tract (EEST)→later lake expansion system tract (LEST) →high level system tract (HST), which can be divided into high frequency cycle of 9-fourth level quasi-sequence group (P1-P9), and 32.5-fifth level subsequences, which indicates the total tendency from the (semi-) haline water during the earlier cold and dry paleoclimate evolving into the fresh water during the later warm and humid paleoclimate. (2) The relative higher values of residual total organic carbon (TOC) in the second member of Funing Formation are always corresponding to the maximum lake flooding surface of system tract cycles with warm and humid paleo-climate and fresh water; and the relative lower values of residual TOC being always corresponding to the initial lake flooding surface with cold and dry paleo-climate and (semi-) haline water. This leads to a conclusion that bathyal-deep lake environments with warm, humid paleoclimate and fresh water are more beneficial to organic enrichment. (3) Four types of source rocks in the second member of Funing Formation can be recognized: the first is relatively shallower water column and weaker sulfuration facies; the second being relatively deeper water column and moderate sulfuration facies; the third being deeper water column and intensive sulfuration facies; and the fourth being deeper and fresh water column facies. This research is not only providing a new tool for “contemporaneous heterotopic facies” source rock evolution, but also giving the evidence to establish the distribution sequence of whole petroleum system.

Graphical abstract

关键词

油源对比 / 全油气系统 / 芳基类异戊二烯烃 / 生物标志化合物 / 高分辨层序地层 / 溱潼凹陷 / 石油地质.

Key words

correlation of oil with source rock / whole petroleum system / aryl isoprenoid / biomarker / high-resolution sequence stratigraphy / Qintong sag / petroleum geology

引用本文

引用格式 ▾
薛冈,陈红汉,马晓东,臧素华,昝灵,白鸾羲,邰浩,苏鹏,程吉,苏丹梅,黄天娇,江嘉怡. 苏北盆地溱潼凹陷全油气系统油源对比[J]. 地球科学, 2025, 50(12): 4652-4670 DOI:10.3799/dqkx.2025.130

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

溱潼凹陷构造上属于苏北新生代盆地东台坳陷的一个三级构造单元,东北毗连海安凹陷,西北与吴堡低凸起相接,东南与泰州低凸起以泰州大断裂为界,面积近1 200 km2图1).溱潼凹陷为一个南断北超的箕状断陷,新生界沉积厚度达6 000 m,古近系发育泰州组(E1t)、阜宁组(E1f)、戴南组(E2d)和三垛组(E2s)等多套地层(图2),自下而上发育泰州组二段(E1t2)、阜宁组阜一段(E1f1)、阜二段(E1f2)和阜四段(E1f4)等4套半深湖-深湖相烃源岩层系.其中,E1f2为主力烃源岩,既是常规油藏的主要油源,也是页岩油勘探的重点层段(陈红汉,2023;云露等,2023).

溱潼凹陷早期勘探主要以寻找常规油气藏为主,先后发现了草舍、红庄、边城、茅山等14个构造油气藏.随着勘探的不断深入,先后发现西部斜坡带帅垛-陈家舍地区戴一段(E2d1)超覆尖灭型岩性油藏,俞垛-华庄、帅垛地区阜三段(E1f3)两个千万吨级构造-岩性油藏以及与火山岩相关的岩性油藏(吴群等,2016).然而,溱潼凹陷常规油资源量仅为1.32×108 t,探明率较高,常规油藏发现难度越来越大;而页岩油资源量为2.95×108 t,目前处于初步阶段(昝灵等,2021a)(图1b).

苏北盆地页岩油勘探起步较晚.20世纪70年代,苏北盆地有多口钻井在古近系E1f2的页岩中钻遇油气显示,但由于当时普遍认为阜二段为生油层而非产层,并未引起广泛关注.2012年,中国石油化工股份有限公司华东油气分公司加大了页岩油选区评价的力度,部署实施了BG1井,测试的最高产油量为22 t/d,但由于递减快、累积产量低,未获商业突破;2020年,优选苏北盆地溱潼凹陷的深凹带部署实施了SD1井在阜二段页岩中获得高产工业油流,测试最高产油量为50.9 t/d,目前已自喷生产20多个月,累积原油产量超过1.5×104 t;QY1井测试获得最高产油量66 t/d,实现了苏北盆地陆相页岩油勘探的重大突破(姚红生等,2021,2023;云露等,2023).目前已经在凹陷及其周边完成了各类钻井75口钻遇阜二段泥页岩,其中34口井有油气显示,在储家楼次凹、时堰次凹和港口次凹三大生烃洼陷之间的地层的油源十分优越,已经发现了多个页岩油田,资源储量占溱潼凹陷页岩油资源储量的66% (刘世丽等2014;昝灵等,2016,2021a;姚红生等,2021),不仅展现出了良好的页岩油勘探前景,而且形成了一个常规油气与页岩油并存的全油气系统勘探局面.随着勘探程度不断深入,发现不同组和同组不同亚段的烃源岩形成环境和地球化学特征存在一定差异性(李志鹏等,2023).这种差异性影响到了不同亚段页岩油地球化学组成的差别,而且还影响全油气系统的常规-非常规油气分布序列(宋岩等,2024)的建立(图3).

前人对溱潼凹陷油源对比做了大量研究.最早依据甾烷、萜烷、伽马蜡烷和β胡萝卜烷生标以及小于0.5%的含硫量,判断分布于溱潼凹陷外斜坡泰一段(E1t1)、阜三段(E1f3)、戴一段(E2d1)和三垛组一段(E2s1)的常规低熟油来自微咸-半咸水的沉积环境(胡瑛等,2005).后来,开展了泰州组、阜宁组阜一段、阜二段、阜三段和阜四段烃源岩和各油田原油三芳甾烷和甲基三芳甾烷生标油源对比研究,认为溱潼凹陷常规原油主要来源于阜四段、阜二段、阜一段沉积于微咸-半咸水沉积环境的烃源岩;红庄凝析油主要为溱潼凹陷深部上古生界海相烃源岩中的偏腐殖型干酪根生成的油气,并可能混入了部分古近系阜三段烃源岩生成的油气(杨永才等,2006;张枝焕等,2006).依据烃源岩有机质族组成、甾烷和三萜烷系列化合物分布特征,明确了溱潼凹陷A、B和C3类烃源岩,其中A类烃源岩形成于相对咸化的还原环境,生源以低等水生藻类为主,为研究区的优质烃源岩,主要分布在泰州组二段、阜宁组二段中-下部和阜四段上部(方朝合等,2008).根据常规生标对溱潼凹陷外斜坡带北汉庄油田进行油源对比,并结合含氮化合物浓度分布特征,认为其阜三段和阜一段原油来自于深凹带阜一段烃源岩(朱雷等,2009).根据原油饱和烃、芳烃生物标志物和吡咯类含氮化合物分布特征综合判断:(1)断阶带南侧的成熟原油来源于其西北侧的俞垛次凹始新统阜二段烃源岩;(2)断阶带北侧的原油来源于北侧的储家楼次凹阜二段烃源岩;(3)内斜坡带原油主要来自于储家楼深凹阜二段烃源岩;(4)坡垒带与外斜坡带阜三段原油成熟度偏低,原油自东北向西南方向以短距离运移为主,主要来自于深凹的低熟烃源岩(陆黄生等,2009).

显然,这些研究局限于对水体盐度敏感性的地化生标进行常规油源对比,但对于溱潼凹陷阜二段具有强烈火山活动导致H2S和幔源无机CO2贯入形成“同时异相”烃源岩,以及断裂和裂缝十分发育产生微运移和聚集特征的页岩油和致密油系统来说,其油源关系不仅十分复杂,而且需要同时考虑咸化和硫化因素,方能解释QY1井阜二段中低有机碳(平均TOC<1.2%)(高玉巧等,2024;钟志国等,2025)和中低成熟度(Ro介于0.9%~1.1%)泥页岩中形成含有饱和度指数(OSI)大于100 mg/g的甜点以及咸化段泥页岩中存在淡水段特征的页岩油现象(李志明等,2023).

为此,本文采集了溱潼凹陷常规油和页岩油样品,在前人运用常规生标判识油源的基础上,开展能够反映透光、咸化、硫化和强还原生境形成的芳基类异戊二烯烃生标检测,进而进行更精细的油源对比,旨在为溱潼凹陷全油气系统油气分布序列的建立提供依据.

1 古气候驱动下的湖相烃源岩旋回性变化特征

根据孢粉、动物和植物化石组合以及煤层与蒸发岩的分布等研究,古新世-始新世,苏北盆地处于中国副热带高压控制的中部干旱带与潮湿带交替的古气候(Quan and Liu, 2012).古新世,溱潼凹陷进入强烈拉张沉降期,沉积了泰州组至阜宁组,为一套广湖、三角洲及河流相沉积,自下而上由早期湖扩(EEST)、晚期湖扩(LEST)和高位体系域(HST)构成,总体上经历了从干旱湖盆到潮湿湖盆,从滨浅湖盆、浅湖-半深湖盆、深水湖盆,到浅湖-半深湖盆,最后为冲积平原、浅湖的充填演化过程,且烃源岩发育于拉张期湖扩体系域的半深湖-深湖相(图2).

泰一段(E1t1)由三个次级正旋回组成的水进式沉积组成,底部常见厚度不等的暗棕色砾岩或块状砂岩.泰二段(E1t2)下部以深灰、灰黑色泥岩为主,中下部夹数层泥灰岩或灰质泥岩;泰二段上部以灰黑色泥岩为主,间夹暗棕红色泥岩,夹几层灰白色粉砂岩,为溱潼凹陷第一套烃源岩.

阜宁组具下红上黑、下粗上细的沉积特征,最大厚度可达2 000 m以上,一般在1 200~1 600 m.自下而上分为4段:阜一段(E1f1)以暗棕色砂、泥岩不等厚互层为特征,中下部夹较多的灰黑色泥岩,厚度400~650 m,为溱潼凹陷第二套烃源岩;阜二段(E1f2)为一套灰黑色泥岩夹薄层泥灰岩、油页岩夹鲕状灰岩,厚度100~400 m,为溱潼凹陷第三套烃源岩,也是主力烃源岩;阜三段(E1f3)纵向上可分上、下两个砂岩组,中间夹一组较稳定的泥岩段,厚度250~340 m;阜四段(E1f4)下部为灰、灰黑色泥页岩与泥岩互层,夹薄层砂岩,最厚可达220 m,一般在100~150 m;上部灰、灰黑色泥岩、页岩夹少量薄层泥灰岩、白云岩,分布稳定,凹陷中地层保存齐全,厚度一般为0~250 m,为溱潼凹陷第四套烃源岩.

烃源岩发育受控于区域性古气候变化、降水强度、水介质条件和陆源物质供给以及沉积环境等多种因素的控制(昝灵等,2016).咸化沉积环境发育高含硫的纹层状灰云质泥页岩烃源岩和碳酸盐/蒸发岩等(Quan and Liu, 2012;李志明等,2023).

QY1井369 m连续取心资料为进一步揭示烃源岩发育的控制因素和分布特征提供了十分有利条件(图3).高分辨旋回层序划分表明,QY1井阜二段分为5个亚段:E1f2⁃I为早期湖扩(EEST)体系域,可划分为P1~P3等3个四级准层序组和10个半五级准层序;E1f2⁃II为晚期湖扩(LEST)体系域,可划分为P4~P5等2个四级准层序组和7个半五级准层序;E1f2⁃III+IV+V构成高位体系域(HST),可划分为P6~P9等4个四级准层序组和11个半五级准层序.

化学风化指数(CWI)显示阜二段从EEST→LEST→HST总体上对应于寒冷干燥→温暖潮湿旋回性气候演变;由此导致古气候替代指标Sr/Ba比值指示的湖水盐度相应地(半)咸水→淡水演变,E1f2⁃II底部达到咸化顶峰.同时,还可以看到盐度次级旋回性演变对应于9个四级准层序组,即每个次级旋回的初始湖扩对应于(半)咸化湖水,到湖扩顶峰(凝聚段)对应于淡化湖水(昝灵等,2021a).

随着古气候由寒冷干燥和咸化湖水→温暖潮湿和淡化湖水演变,有机碳(TOC)总体上也是由低到高变化,即温暖潮湿的半深湖-深湖相淡水介质环境更有利于有机质的富集.表1给出QY1井阜二段各小层烃源岩热解地化参数及其统计结果表明,尽管除了古气候之外,TOC还受到陆源物质补给和沉积环境的影响,但其旋回性变化与体系域层序旋回具有很好的响应关系,即TOC相对高值对应于体系域旋回的温暖潮湿和淡化介质最大湖泛面,相对低值对应于寒冷干燥和咸化介质初始湖泛面.

阜二段E1f25、E1f24烃源岩岩性以泥岩为主,沉积于弱氧化-弱还原的淡水环境,TOC最高,平均值介于1.52%~2.35%,主要以低等水生生物为主的Ⅱ1型干酪根母质为主;E1f23、E1f22烃源岩岩性以钙质泥页岩为主,TOC较高,平均值介于0.69%~2.25%,沉积于强还原的咸水与弱还原淡水交替的环境,以Ⅱ2型为主、含少量Ⅱ1型与Ⅲ型干酪根母质;E1f21烃源岩岩性主要为钙质页岩与钙质泥岩,TOC低-中等,平均值介于0.42%~1.34%,沉积于半咸水-咸水的还原环境,主要为Ⅱ2型、部分为Ⅲ型干酪根母质(表1).总体来看,QY1井阜二段TOC与CWI指示的古气候演变和湖水盐度之间具有很好的旋回性响应关系(图4).

2 油源对比

2.1 实验方法

本研究收集了中石化华东油气公司烃源岩和原油GC⁃MS分析资料(表2)用于岩-岩生标对.同时采集了溱潼凹陷18件原油样品在长江大学教育部重点实验室完成GC⁃MS芳基类异戊二烯烃(AIPs)检测(表3).具体步骤:(1)取~25 mg原油,向原油中添加10 mL正己烷并超声5 min,静置12 h后进行沥青质沉淀;(2)采用硅胶/氧化铝(3∶2)柱色层分离法对其滤液进行族组分分离;(3)分别依次用正己烷、二氯甲烷/正己烷(1∶2)及二氯甲烷/甲醇(93∶7)冲洗,分别得到饱和烃、芳烃和非烃组分;(4)采用色谱-质谱(GC⁃MS)联用仪对芳烃组分进行分析.

芳烃分析仪器条件:色谱柱为HP⁃5MS (60 m×0.25 mm×0.25 μm),程序升温,初温为50 ℃,恒温1 min,然后以20 ℃/min升温至120 ℃,再以3 ℃/min升温至310 ℃,恒温25 min.质谱部分:EI离子源,电离电压为70 ev.

上述分析的采集方式为选择离子扫描(m/z=133/134),所用载气均为99.999%高纯He(流速1 mL/min).

2.2 各亚段烃源岩岩-岩生标对比

溱页1井在垂向上连续取心为溱潼凹陷阜二段各亚段泥页岩的岩-岩对比研究提供了有利条件(表2).

前文述及,阜二段各亚段的生物标志物存在明显差异,各亚段泥页岩分子指纹图谱对比显示各亚段的姥植比、伽马蜡烷含量、∑三环萜烷/∑五环三萜、C19TT/C23TT、C24TeT/C26TT、C27/C29规则甾烷等指标存在明显变化.这些指标反映了岩石沉积期间古环境的差异,其本质上是气候驱动下湖泊演化在古生物群落上的响应,不同沉积环境下造成的指标差异为各亚段的岩-岩对比和油-岩对比提供了可用的参数.值得注意的是,溱页1井阜二段泥页岩的成熟度范围Ro主要在0.9%~1.1% (表1),各亚段的成熟度较为接近,成熟度仅在小范围内波动,因此,在对比参数的选择上不必考虑成熟度对某些生标参数的影响.

溱页1井阜二段泥页岩饱和烃总离子流图(图5)表明,E1f2⁃Ⅴ的整体峰型比较完整,高碳数和低碳数正规烷烃基本呈正态分布,有比较明显的奇偶优势.E1f2⁃Ⅳ的整体峰型不够完整,高碳数和低碳数正构烷烃分布波动较大,有较为明显的奇偶优势.E1f2⁃Ⅲ的整体峰型相对完整,低碳数正构烷烃含量相对前者略有降低,有轻微奇偶优势.E1f2⁃Ⅱ的整体峰型明显不完整,低碳数正构烷烃含量明显偏低,奇偶优势不明显.E1f2⁃Ⅰ的整体峰型比较完整,大多数样品显示碳数和低碳数正规烷烃基本呈正态分布,奇偶优势不明显.

姥植比(Pr/Ph)显示,E1f2⁃Ⅴ亚段的姥植比大于1,E1f2⁃Ⅳ接近1,E1f2⁃Ⅲ、E1f2⁃Ⅱ和E1f2⁃Ⅰ的姥植比明显小于1,其中E1f2⁃Ⅱ(包括邻近E1f2⁃Ⅱ的E1f2⁃Ⅰ和E1f2⁃Ⅲ)样品的姥植比明显更低,反映了E1f2⁃Ⅱ古水体还原性更强的特征(图5).

溱页1井阜二段泥页岩GI值、三环萜烷/五环三萜烷以及Ts/Tm在垂向上呈现了规律性的变化(图6).例如,伽马蜡烷在E1f2⁃Ⅴ和E1f2⁃Ⅳ含量极低,而在E1f2⁃Ⅲ、E1f2⁃Ⅱ和E1f2⁃Ⅰ明显变高,且在E1f2⁃Ⅱ及其附近达到很高的值,三环萜烷/五环三萜烷也存在类似特征,在E1f2⁃Ⅴ~E1f2⁃Ⅳ比值明显小于E1f2⁃Ⅲ~E1f2⁃Ⅰ,Ts/Tm在E1f2⁃Ⅳ、E1f2⁃Ⅲ、E1f2⁃Ⅱ比较接近1.0,在E1f2⁃Ⅴ和E1f2⁃Ⅰ明显远大于1.0.这意味着阜二段沉积时古环境曾发生了明显的转变,这个转化界面很可能在E1f2⁃Ⅳ、E1f2⁃Ⅲ之间和E1f2⁃Ⅱ、E1f2⁃Ⅰ之间.

溱页1井阜二段从下到上泥页岩的C27/C29规则甾烷比值经历了从较大(E1f2⁃Ⅱ、E1f2⁃Ⅰ,反“L”型)→大(E1f2⁃Ⅳ、E1f2⁃Ⅲ,明显反“L”型)→偏小的过程(E1f2⁃Ⅴ,“V”型)的过程(图7).甾烷异构化参数显示深度越大,成熟度越高.由此表明,溱潼凹陷阜二段泥页岩沉积环境变化趋势为:陆源输入先略微增强后减弱,陆源水体先咸化后淡化,先还原后氧化的演化过程(图8).

本研究发现,阜二段泥页岩的咸化-半咸化层段(E1f2⁃Ⅰ~E1f2⁃Ⅲ)中β⁃胡萝卜烷、伽马蜡烷的丰度与2,3,6⁃芳基类异戊二烯能否检出有很好的相关性,即溱页1井阜二段泥页岩中的E1f2⁃Ⅳ、E1f2⁃Ⅴ和E1f2⁃Ⅰ底部样品中的β⁃胡萝卜烷和伽马蜡烷丰度低且检测不到芳基类异戊二烯;而在E1f2⁃Ⅱ、E1f2⁃Ⅲ以及E1f2⁃Ⅰ中上部具有较高的β⁃胡萝卜烷和伽马蜡烷丰度,且能够检测到2,3,6⁃芳基类异戊二烯系列生物标志化合物(图9).

2.3 芳基类异戊二烯生标油源对比

溱潼凹陷页岩油的勘探开发,极大地推动了油源对比研究.溱潼凹陷的原油可划分为超重油、重质油、中质油3类.平面上,相同层系的原油从深凹带向外斜坡带物性逐渐变差、成熟度降低,含硫量增加.纵向上,从深层向浅层原油物性逐渐变差(昝灵等,2021a).阜二段页岩油三环萜烷、β⁃胡萝卜烷、伽马蜡烷含量高,ααα⁃C29甾烷(20R)含量高于ααα⁃C27甾烷(20R),形成于咸水还原环境,与阜二段Ⅰ亚段(E1f2⁃I)泥页岩生物标志化合物特征一致(昝灵等,2021b,2023).然而,正如前文所述,溱潼凹陷阜二段烃源岩具有与五级准层序相对应的旋回性变化特征,不同组、同一组不同亚段和不同岩性烃源岩地球化学特征及形成环境具有明显的差异性.根据Pr/Ph、Ga/C30H、C24TeT/C26TT以及ααα20RC27甾烷/ααα20RC29甾烷等参数的分布特征可以把阜二段E1f24+E1f25、E1f22+E1f23和E1f21三类不同岩性的烃源岩区分开来(李志鹏等,2023),其本质上是反映水介质咸化和淡化对生标的影响,但没有体现透光带+静水+硫化+咸化+强还原环境的生标特征.

芳基类异戊二烯系列化合物不仅在许多原油和/或烃源岩中检测到(孙永革等,2004;霍秋立等,2010;吕超等,2015;张冬琳等,2020),而且作为生物标志化合物具有指示高含碳酸盐-硫酸盐的强还原沉积环境(于心科等,1990;李振西等,1998;张春明和杨禄,2013).

静水、厌氧、硫化和强还原环境的透光带依次是紫硫细菌→绿硫细菌→棕硫细菌发生光合作用和生长繁殖区域.其中,紫硫细菌主要生活水深在2~16 m,一般在6 m之上;绿硫细菌主要生活在1.5~24.0 m,一般在12 m之上,两者生活水深是存在一定的重叠空间的,只不过绿硫细菌对水体要求更严苛(水体偏浅);棕硫菌生活水深可达80 m,且能产生异海绵烷(张春明和杨禄,2013).生活在水体偏浅的硫化透光带水柱中的紫硫细菌主要产生2,3,4⁃芳基类异戊二烯系列生物标志化合物;而生活在硫化透光带水柱偏深的绿硫细菌和棕硫细菌主要产生2,3,6⁃芳基类异戊二烯系列生物标志化合物(Brocks and Schaeffer, 2008; 马健等,2020).这些具有生源意义的芳基类异戊二烯化合物生标不仅具有较高的抗生物降解能力、较强的抗热蚀变和抗TSR改造的能力(He et al., 2022; 李梦勤等,2025),而且其构型的差异性为比较“同时异相”油源精细对比提供了可能.

基于来自于紫硫细菌的2,3,4⁃芳基类异戊二烯(2,3,4⁃AIPs)和源自紫硫细菌以及棕硫细菌的2,3,6⁃芳基类异戊二烯化合物(2,3,6⁃AIPs)作为指示透光带+静水+硫化+咸化+强还原环境烃源独特生标,以是否检测到2,3,4⁃AIPs和2,3,6⁃AIPs与否为判识标准,并构造出两个参数:

F1=C13~C17AIPs/C18~C22AIPs
       F2=2,3,6AIPs/2,3,6AIPs+2,3,4AIPs    

来指示其烃源岩生境演化的差异性.当F1<3.0时,代表持久静止水体硫化厌氧+透光带环境,且F1越小,指示着更强的硫化厌氧+透光带环境;而F1>3.0时,表明水体具有间歇性硫化厌氧+透光带环境出现(Schwark and Frimmel, 2004).F2越大,表明烃源岩形成时期透光、厌氧、强还原和硫化的生境水柱更深,据此可进行这类“同时异相”烃源比较(Júnior et al., 2013).

本研究采集了溱潼凹陷18件页岩油和常规原油样品,在长江大学教育部重点实验室完成原油芳基类异戊二烯烃分析(表3图10图11).

通过对检测到芳基类异戊二烯烃油样m/z=133和m/z=134的GC⁃MS图谱中C13~C23芳基类异戊二烯化合物的2,3,6⁃AIPs和2,3,4⁃AIPs分别进行面积积分,从而获得这两种构型的相关参数相对含量(未进行定量标定)(表2):C1=∑2,3,4⁃AIPs,为2,3,4⁃AIPs之和;C2=∑2,3,6⁃AIPs之和;F1为AIPs比值,如公式(1)所定义;F2表示2,3,6⁃AIPs在2,3,6⁃AIPs和2,3,4⁃AIPs两种构型芳基类异戊二烯烃化合物中的相对百分比.F2越大,表明烃源岩形成时期透光、厌氧、强还原和硫化的生境水柱更深,据此可进行“同时异相”烃源比较(张春明和杨禄,2013).

由此可见,溱页1井(E1f2⁃Ⅰ)页岩油和陈8⁃18井(E1f3)、红101井(E2s2)常规原油均未检测到芳基类异戊二烯烃(表3),表明二者可能同源,且来自于E1f2⁃Ⅰ非硫化的淡水环境沉积的烃源岩.而其余15口井无论是页岩油、还是常规原油均检测到芳基类异戊二烯烃(表3).鉴于溱页2HF(E1f2⁃Ⅱ)、鲁页1⁃1(E1f2⁃Ⅰ)、帅页3⁃7(E1f2⁃Ⅰ)、红201斜(E1f2⁃Ⅰ~Ⅱ)和沙垛201斜(E1f2⁃Ⅰ~Ⅲ)均为页岩油且检测到芳基类异戊二烯烃,说明这些井的烃源岩形成透光带+静水+硫化+咸化+强还原的沉积环境.因为通常认为页岩油即使发生了微运移,也是源内生成(郭旭升等,2023,2025),其生标反映的是其本身烃源岩特征.正如前文所述,E1f2⁃Ⅱ~Ⅲ总体上出现咸化和硫化性旋回性增强,其烃源岩生成的原油中检测到芳基类异戊二烯烃是情理之中的.但部分E1f2⁃Ⅰ中的页岩油也检测到此生标,而溱页1井(E1f2⁃Ⅰ)页岩油检测不到,说明E1f2⁃Ⅰ存在“同时异相”.

从AIPs比值分布特征(图11表3)来看,其值均小于3.0,充分证明了阜二段烃源岩发育于持久静止硫化厌氧透光带环境.相比而言,西斜坡和内斜坡常规油的AIPs比值(F1=0.84~0.89)低于深凹的页岩油(F1=1.14~1.78);同时,西斜坡和内斜坡常规油来源于绿硫细菌和棕硫细菌的2,3,6⁃AIPs占比(F2=91.23%~95.80%)却高于深凹的页岩油(F2=77.94%~89.33%).这充分表明西斜坡和内斜坡常规油来自于沉积环境水体硫化性更强、更深的烃源岩.

但沙垛201斜井E1f2⁃Ⅰ~Ⅲ页岩油例外,F1=0.78,为最小值;F2=95.11%,具有西斜坡和内斜坡常规油相似的特征.这是否意味着其来源于水体更硫化、更深的烃源岩,还是受到侵入岩蚀变或穿层运移的影响有待于下一步更多样品的分析结果加以落实.

位于深凹带的赵1⁃10井戴南组常规油的F1=1.20,F2=95.30%,表现出常规油与页岩油之间的特征,表明其烃源岩沉积于硫化强度有所减弱,但水体相对较深的环境.

溱页1井(E1f2⁃Ⅰ)页岩油和陈8⁃18井(E1f3)常规油未检测任何芳基类异戊二烯烃化合物,表明其烃源岩应该最大湖扩面凝聚段淡水、非硫化的泥质烃源岩.

在火山活动的沉积盆地中,伴随着湖水盐度的增加,硫化强度也是增加的.由此可见,溱潼凹陷阜宁组二段发育4种类型的烃源岩(图12):

I.水体较浅、硫化较弱咸化环境的烃源岩,如,溱页2HF井(E1f2⁃Ⅱ);

II.水体较深、硫化中等咸化环境的烃源岩,如,鲁页1⁃1井(E1f2⁃Ⅰ)、帅页3⁃7井(E1f2⁃Ⅰ)和红201斜井(E1f2⁃Ⅰ~Ⅱ);

III.水体最深、硫化最强咸化环境的烃源岩,譬如,沙垛201斜井(E1f2⁃Ⅰ~Ⅲ);

IV.非硫化+淡水环境的烃源岩(检测不到芳基类异戊二烯化合物)(表3),譬如,溱页1井(E1f2⁃Ⅰ).由此不仅证明了阜二段存在“同时异相”烃源岩,而且还表明西斜坡和内斜坡常规油更倾向来源于水体最深、硫化最强的烃源岩(类似于沙垛201斜井).

从未检测到芳基类异戊二烯的红101井原油的生标来看,其Pr/Ph为0.31,伽马蜡烷含量GI为29.3,C(19+20)TT/C23TT为2.75、C24TeT/C26TT为1.51,β⁃胡萝卜烷/nC17仅为0.3.反映了一定程度的还原、咸化水体,但与高β⁃胡萝卜含量的阜二段中下段硫化透光带环境明显不同.结合芳烃中菲系列化合物参数甲基菲指数MPI1和MPI2计算其等效Ro结果分别为0.66%和0.69%,表明其成熟度较低,推测该原油可能来自E1f2⁃Ⅳ非硫化+淡水环境的烃源岩.

3 结论

(1)在古气候由寒冷干燥→温暖潮湿周期性演变驱动下,溱潼凹陷古新世阜宁组二段发育早期湖扩→晚期湖扩→高位体系域低频旋回,可划分为9个四级准层序组和32.5个五级准层序高频旋回;总体上呈现着寒冷干旱→温暖潮湿、(半)咸化→淡水演变趋势,并控制着有机质的富集和烃源岩的发育与分布.

(2)有机/无机指标对比揭示了阜宁组二段温暖潮湿的半深湖-深湖相淡水介质环境更有利于有机质的富集;尽管除了古气候之外,TOC还受到陆源物质补给和沉积环境的影响,但其旋回性变化与体系域层序旋回具有很好的响应关系,即TOC相对高值对应于体系域旋回的温暖潮湿和淡化介质最大湖泛面,相对低值对应于寒冷干燥和咸化介质初始湖泛面.

(3)传统地化生标主要反映湖水咸化和还原性生境.而芳基类异戊二烯烃生标指示了透光带硫化和还原性,从而弥补了湖相全油气系统油源对比的不足.本文运用页岩油和常规原油芳基类异戊二烯烃生标油源对比,认为溱潼凹陷阜二段存在4种类型的烃源岩,并具有“同时异相”特征.

参考文献

[1]

Brocks,J.J.,Schaeffer,P.,2008.Okenane,a Biomarker for Purple Sulfur Bacteria (Chromatiaceae),and Other New Carotenoid Derivatives from the 1 640 Ma Barney Creek Formation.Geochimica et Cosmochimica Acta,72(5):1396-1414.https://doi.org/10.1016/j.gca.2007.12.006

[2]

Chen,H.H., 2023. Advances on Relationship between Strike-Slip Structures and Hydrocarbon Accumulations in Large Superimposed Craton Basins, China. Earth Science, 48(6): 2039-2066 (in Chinese with English abstract).

[3]

Fang,C.H.,Zhang,Z.H.,Wang,Y.F.,et al.,2008.Geochemical Characteristics of the Lower Tertiary Source Rock in Qintong Sag,Subei Basin.Journal of Xi’an Shiyou University (Natural Science Edition),23(6):1-5,117(in Chinese with English abstract).

[4]

Gao,Y.Q.,He,X.P.,Cheng,X.,et al.,2024.Discussion on High Hydrocarbon Generation Efficiency of Saline Lacustrine Source Rocks with Low TOC:A Case Study of the Second Member of Funing Formation,Qintong Sag,Subei Basin.Petroleum Reservoir Evaluation and Development,14(5):678-687 (in Chinese with English abstract).

[5]

Guo,X.S.,Li,W.P.,Shen,B.J.,et al.,2025.Selection Evaluation of Oil Shale In⁃Situ Mining in China Petrochemical Exploration Area and Its Adjacent Areas.Petroleum Reservoir Evaluation and Development,15(1):1-10 (in Chinese with English abstract).

[6]

Guo,X.S.,Ma,X.X.,Li,M.W.,et al.,2023.Mechanisms for Lacustrine Shale Oil Enrichment in Chinese Sedimentary Basins.Oil & Gas Geology,44(6):1333-1349 (in Chinese with English abstract).

[7]

He,T.H.,Li,W.H.,Lu,S.F.,et al.,2022.Distribution and Isotopic Signature of 2⁃ Alkyl⁃ 1,3,4⁃ Trimethylbenzenes in the Lower Paleozoic Source Rocks and Oils of Tarim Basin:Implications for the Oil⁃ Source Correlation.Petroleum Science,19(6):2572-2582.https://doi.org/10.1016/j.petsci.2022.07.014

[8]

Hu,Y.,Zhang,Z.H.,Fang,C.H.,2005.Biomarker Features of Low⁃ Mature Oil in Qintong Sag and Maturity Analysis.Oil & Gas Geology,26(4):512-517 (in Chinese with English abstract).

[9]

Huo,Q.L.,Li,Z.G.,Zeng,H.S.,et al.,2010.Aryl Isoprenoids Found in Late Cretaceous Qn1 Source Rocks in Songliao Basin and Its Significance.Acta Sedimentologica Sinica,28(4):815-820 (in Chinese with English abstract).

[10]

Júnior,G.R.S.,Santos,A.L.S.,de Lima S.G.,et al,2013.Evidence for Euphotic Zone Anoxia during the Deposition of Aptian Source Rocks Based on Aryl Isoprenoids in Petroleum,Sergipe-Alagoas Basin,Northeastern Brazil.Organic Geochemistry,63:94-104.https://doi.org/10.1016/j.orggeochem.2013.07.009

[11]

Li,M.Q.,Yao,C.,Chen,F.F.,et al.,2025.Biomarker Classifications of Lower Paleozoic Deep Source Rocks and Crude Oils from the Tarim Basin and Oil Sources.Natural Gas Geoscience,36(1):166-182 (in Chinese with English abstract).

[12]

Li,Z.X.,Fan,P.,Li,J.G.,et al.,1998.An Application of Aryl Isoprenoids in Indicating Sedimentary Environments.Acta Sedimentologica Sinica,16(2):9-13 (in Chinese with English abstract).

[13]

Li,Z.M.,Liu,Y.H.,He,J.Y.,et al.,2023.Limits of Critical Parameters for Sweet⁃ Spot Interval Evaluation of Lacustrine Shale Oil.Oil & Gas Geology,44(6):1453-1467 (in Chinese with English abstract).

[14]

Li,Z.P.,Yu,Q.L.,Zan,L.,et al.,2023.Geochemical Characteristics and Hydrocarbon Generation Potential of Different Lithologic Source Rocks in the Second Member of Funing Formation in Qintong Sag,Subei Basin.Geoscience,37(5):1345-1357 (in Chinese with English abstract).

[15]

Lu,H.S.,Qin,L.M.,Liu,J.,et al.,2009.Petroleum Migration and Accumulation in Qintong Sag,North Jiangsu Basin.Geological Review,55(3):395-405 (in Chinese with English abstract).

[16]

Lyu,C.,Zhang,C.M.,Wu,Y.F.,2015.Qualitative Analysis of Trimethylaryl Isoprenoids Using GC⁃ MS Combined with Retention Indices.Journal of Yangtze University (Natural Science Edition),12(5):15-18,27(in Chinese with English abstract).

[17]

Ma,J.,Wu,C.D.,Wang,Y.Z.,et al.,2020.Discoveryof Carotenoids and Its Paleolake Significance in the Oligocene Anjihaihe Formation,Southern Junggar Basin,China.Acta Geologica Sinica,94(6):1853-1868 (in Chinese with English abstract).

[18]

Quan,C.,Liu,Y.S.,Utescher,T.,2012.Eocene Monsoon Prevalence over China:A Paleobotanical Perspective.Palaeogeography,Palaeoclimatology,Palaeoecology,365:302-311.https://doi.org/10.1016/j.palaeo.2012.09.035.

[19]

Schwark,L.,Frimmel,A.,2004.Chemostratigraphy of the Posidonia Black Shale,SW⁃Germany II.Assessment of Extent and Persistence of Photic⁃Zone Anoxia Using Aryl Isoprenoid Distributions.Chemical Geology,206(3-4):231-248.https://doi.org/10.1016/j.chemgeo.2003.12.008

[20]

Song,Y.,Jia,C.Z.,Jiang,L.,et al.,2024.Connotation and Research Strategy of the Whole Petroleum System.Petroleum Exploration and Development, 51(6):1-13 (in Chinese with English abstract).

[21]

Sun,Y.G.,Xiao,Z.Y.,Xu,S.P.,et al.,2004.Aryl⁃Isoprenoids in Crude Oil and Its Implication in Geological Exploration.Xinjiang Petroleum Geology,25(2):215-218 (in Chinese with English abstract).

[22]

Wu,Q.,Yu,W.D.,Luo,W.F.,et al.,2016.Achievements and Recognitions of Exploration in Lithologic Reservoirs in Qintong Sag,North Jiangsu Basin.China Petroleum Exploration,21(3):99-107 (in Chinese with English abstract).

[23]

Yang,Y.C.,Zhang,Z.H.,Fang,C.H.,et al.,2006.Feature of Crude Oil Triaromatic Steroid and Oil Correlation in Qintong Sag of Subei Basin.Memoir of the Fourth International Conference of Hydrocarbon Reservoiring Mechanism and Reserve Evaluation,26(3):531-539(in Chinese ).

[24]

Yao,H.S.,Yun,L.,Zan,L.,et al.,2023.Development Mode and Practice of Fault⁃ Block Oriented Shale Oil Well in the Second Member of Funing Formation,Qintong Sag,Subei Basin.Petroleum Reservoir Evaluation and Development,13(2):141-151 (in Chinese with English abstract).

[25]

Yao,H.S.,Zan,L.,Gao,Y.Q.,et al.,2021.Main Controlling Factors for the Enrichment of Shale Oil and Significant Discovery in Second Member of Paleogene Funing Formation,Qintong Sag,Subei Basin.Petroleum Geology & Experiment,43(5):776-783 (in Chinese with English abstract).

[26]

Yu,X.K.,Fan,P.,1990.Discovery of New Biomarker Compounds of South Florid Basin in America.Science in China (Series B ),(5):539-544(in Chinese with English abstract).

[27]

Yun,L.,He,X.P.,Hua,C.X.,et al.,2023.Accumulation Characteristics and Resource Potential of Paleogene Continental Shale Oil in Qintong Sag of Subei Basin.Acta Petrolei Sinica,44(1):176-187 (in Chinese with English abstract).

[28]

Zan,L.,Bai,L.X.,Yin,Y.L.,et al.,2023.Basic Characteristics and Genesis Analysis of Shale Oil in the Second Member of Paleogene Funing Formation in Qintong Sag,Subei Basin.Petroleum Geology & Experiment,45(2):356-365 (in Chinese with English abstract).

[29]

Zan,L.,Chai,F.Y.,Yin,Y.L.,2021a.Physical Properties,Geochemical Characteristics and Origins of Crude Oils in the Qintong Sag Slope.Acta Sedimentologica Sinica,39(5):1068-1077(in Chinese with English abstract).

[30]

Zan,L.,Luo,W.F.,Yin,Y.L.,et al.,2021b.Formation Conditions of Shale Oil and Favorable Targets in the Second Member of Paleogene Funing Formation in Qintong Sag,Subei Basin.Petroleum Geology & Experiment,43(2):233-241(in Chinese with English abstract).

[31]

Zan,L.,Luo,W.F.,Ma,X.D.,2016.Hydrocarbon Generation Potential and Genetic Environments of Second Member of Funing Formation in Qintong Sag,Subei Basin.Unconventional Oil & Gas,3(3):1-8 (in Chinese with English abstract).

[32]

Zhang,C.M.,Yang,L.,2013.Nomenclature of Aryl Isoprenoid Hydrocarbons.Geochimica,42(4):379-384 (in Chinese with English abstract).

[33]

Zhang,D.L.,Zhang,K.Q.,Xu,T.W.,et al.,2020.Research on a Potential Indicator of High⁃ Quality Source Rocks in Saline Lacustrine Basin: A Case Study of the Dongpu Depression.Journal of Yangtze University (Natural Science Edition),17(1):1-8 (in Chinese with English abstract).

[34]

Zhang,Z.H.,Wang,Y.,Wu,Y.Y.,et al.,2006.Geochemical Behaviors of Condensates in Hongzhuang Structure in Qintong Sag.Natural Gas Industry,26(9):8-11 (in Chinese with English abstract).

[35]

Zhong,Z.G.,Yu,W.Q.,Duan,H.L.,et al.,2025.Progress and Research Direction of Shale Oil Exploration in Complex Fault Blocks with Low to Medium TOC in Subei Basin.Petroleum Reservoir Evaluation and Development,15(1):11-18 (in Chinese with English abstract).

[36]

Zhu,L.,Qin,L.M.,Zhang,Z.H.,et al.,2009.Geochemical Characteristics and Accumulation Process of Beihanzhuang Oilfield of Qintong Depression,Northern Jiangsu Basin.Natural Gas Geoscience,20(1):36-43 (in Chinese with English abstract).

基金资助

中国石油化工股份有限公司科技部项目“东部断陷盆地页岩油目标评价与先导试验”(P20049-3)

“苏北盆地页岩油地质工程一体化关键技术”(P21112)

“溱潼凹陷低TOC陆相页岩油勘探开发关键技术”(P23190)

AI Summary AI Mindmap
PDF (12099KB)

53

访问

0

被引

详细

导航
相关文章

AI思维导图

/