气体地球化学勘查研究进展与展望

李高鑫 ,  陈鑫 ,  郑有业 ,  高顺宝 ,  林成贵 ,  薛兆龙 ,  姜晓佳

地球科学 ›› 2025, Vol. 50 ›› Issue (11) : 4473 -4498.

PDF (5262KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (11) : 4473 -4498. DOI: 10.3799/dqkx.2025.131

气体地球化学勘查研究进展与展望

作者信息 +

Research Progress and Prospects of Gas Geochemical Exploration

Author information +
文章历史 +
PDF (5387K)

摘要

随着我国矿产勘查程度持续提高,覆盖区隐伏矿床勘查已成为未来重要方向.系统回顾了以气体为勘查介质在覆盖区找矿的研究进展,分析了与矿化相关气体用于勘查的原理、特征、来源及运移机制,总结了环境因素对其运移与富集的影响.针对不同类型的气体(CO₂、烃类气体、含硫气体、惰性气体Rn、He及Hg),归纳了其在矿产勘查中的应用特征及面临的挑战,提出了多种气体联合测量在金属硫化物矿床勘查方面的优势.尽管气体地球化学方法在找矿实践中成效显著,但各类气体的成因机制、运移规律及其影响因素仍需深入研究,相关理论体系有待完善.同时,亟需构建涵盖气体地球化学异常检测、识别、追踪与评价的综合体系,以提升该方法的普适性和有效性.

Abstract

As mineral exploration in China continues to advance, the search for concealed deposits in covered areas has become a crucial future direction. In this paper it systematically reviews the research progress in using gases as prospecting media for mineral exploration in covered terrains. It analyzes the principles, characteristics, sources, and migration mechanisms of mineralization-related gases used in exploration, summarizes the influence of environmental factors on their migration and enrichment. For different types of gases (such as CO₂, hydrocarbon gases, sulfur-bearing gases, inert gases Rn and He, and mercury vapor (Hg)), it summarizes their application characteristics and challenges in mineral exploration, highlighting the advantages of multi-gas joint surveys specifically for metallic sulfide deposits. Although gas geochemical methods have demonstrated significant effectiveness in exploration practice, the genetic mechanisms, migration patterns, and influencing factors of various gases require further in-depth research, and the related theoretical framework needs refinement. Concurrently, there is an urgent need to establish a comprehensive system encompassing the detection, identification, tracing, and evaluation of gas geochemical anomalies to enhance the applicability and effectiveness of this method.

Graphical abstract

关键词

覆盖区 / 隐伏矿床勘查 / 气体运移机制 / 含硫气体找矿 / 问题与展望 / 地球化学.

Key words

covered area / exploration of concealed ore deposits / mechanism of gas migration / sulfurous gas prospecting / problems and prospects / geochemistry

引用本文

引用格式 ▾
李高鑫,陈鑫,郑有业,高顺宝,林成贵,薛兆龙,姜晓佳. 气体地球化学勘查研究进展与展望[J]. 地球科学, 2025, 50(11): 4473-4498 DOI:10.3799/dqkx.2025.131

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

随着勘查技术的不断创新和探测精度的持续提升,地表易于识别的矿床逐渐减少,矿产资源的勘查工作面临前所未有的挑战.当前,勘查的主战场正在向深部及矿山外围战略性转移.为了确保矿产资源的可持续供应,在覆盖区寻找隐伏矿床已成为未来矿产勘查的重要目标和发展方向.中国的覆盖区约占国土面积的40%,然而在这些区域中已发现的矿床数量仅为非覆盖区的5%左右(徐启东等,2012;Lin et al.,2021).因此,覆盖区蕴藏着巨大的找矿潜力,尤其是在重点成矿区带的覆盖区内开展矿产资源勘查,具有广阔的潜力和应用前景(Cameron et al.,2004Cohen et al.,2010).近年来,国内外矿业公司愈加重视覆盖区,特别是重点成矿区带、矿山深部及外围区域的勘查靶区和找矿工作(Schodde,2017).在覆盖区及深部开展找矿,已成为解决资源短缺和保障人类生存空间的必由之路.

在覆盖区的找矿过程中,面临一系列复杂的挑战,如勘查选区的难度、厚覆盖层中的地质信息探测问题、不同方法之间的交叉融合难题等.此外,矿体的品位、厚度、类型及埋藏深度等因素也会影响矿化信息在地表的表现.Schodde(2017)对1900-2016年间金属矿床勘查数据的总结表明,矿体埋藏深度越大,可用的勘查手段越少,尤其是在深度超过200 m时,传统的地球化学方法往往难以奏效(图1).传统的地球化学勘查方法依赖于土壤、岩石等固体介质的物质运移,需要外力如水流的作用,而水流又受到重力的影响,因此在干旱地区,由于水的匮乏,矿化元素的分散受限,近地表的异常信号难以显现(Lovell,1979).此外,在覆盖区,许多覆盖层是异地搬运的沉积物,基于地表覆盖物来寻找地下矿体存在诸多不确定性.相比之下,地球物理勘查被认为是覆盖区找矿中较为有效的方法(Liu et al.,2006Dentith and Mudge,2014Wang et al.,2022).地球物理方法通过利用岩石和矿物的物理性质差异(如电性、磁性等参数)来圈定靶区(Song et al.,2012Gan et al.,2022).然而,金属硫化物矿床通常缺乏明显的磁性,因此磁法在硫化物矿体的勘查中效果有限(Hinze and von Frese,1990;管志宁,2005);另外,电性勘查方法通过电阻率对金属化矿体有一定的识别效果,但由于许多金属硫化物矿床为碳质围岩,其强烈的电性干扰往往会影响勘查的准确性,导致找矿效果不理想(Dou et al.,2024).由于不同岩石单元的物性参数差异,地球物理方法存在较大的多解性问题,进一步加剧了找矿过程中的复杂性(Mwenifumbo et al.,2004;Martínez et al.,2019).因此,亟需进一步推动覆盖区找矿技术的创新与发展,探索多方法联合探测的新途径,通过提高靶区圈定的可靠性,突破现有技术瓶颈,最终为覆盖区找矿提供有力的理论支持和实践指导.

气体具有强穿透性、迅速扩散、垂直迁移和深度反映的特点,能够将深部矿化信息传递到地表附近.土壤作为地下气体向大气扩散的屏障层,受到大气气流的影响较小,因此通过测定土壤中的气体浓度,能够大致推测深部隐伏矿体的分布情况.早在20世纪中叶,人们意识到气体可以作为寻找矿体的介质,气体因其较强的地球化学流动性,迁移不受重力的限制(Hale,2000),在覆盖区具有显著的优势.1954-1956年,前苏联学者通过对CO2、O2和含硫气体的实验,首次验证了气体作为找矿介质的可行性.1975年前苏联地质工作者进一步发现金属矿床上方的气体(如O2、N2、H2、CH4、Hg和CO2)存在浓集特征.1970-1990年,有学者深入探讨了多种气体指标在勘查中的应用,归纳总结了与矿化相关的气体指标,包括CO2、O2、H2S、SO2、CH4、Hg、Rn、He等(Lovell,1979Oakes and Hale,1987Dyck and Jonasson,1977,2000Hale,2010).在我国,地矿部自1970年代起开展了Hg测量仪器和方法的试验研究,随后又进行了CO2、H2S、SO2、CH4等气体的测量研究(殷萤和徐外生,1991;游云飞和周奇荣,1992;伍宗华等,1995,1996;李生郁和徐丰孚,1997;尹冰川,1997),并成功应用于斑岩型、矽卡岩型等热液矿床的勘查.此外,还对矿床上方气体流中的金属微粒(如Cr、Ni、Pb、Zn、Cu、Co)进行了测量(伍宗华等,1996),并取得了显著进展(Malmqvist and Kristiansson,1984;周四春等,2023).综上所述,气体地球化学勘查能够有效反映深部矿化,尤其是在构造控制下的矿体,其在覆盖区的应用前景广阔.本文基于前人研究资料,系统地阐述了气体找矿的原理、测量技术方法和常用勘查气体指标的研究进展,分析了气体地球化学勘查中的问题和挑战,并对未来研究方向进行了展望,旨在推动我国气体地球化学测量技术在矿产勘查中的进一步应用与发展.

1 气体地球化学勘查原理

1.1 气体地球化学勘查的背景

大气是地球上分布最广的气体混合物,能够渗透至地壳,占据岩石和覆盖层中的孔隙、断层等空隙.大气至少由17种气体组成,其中96.96%由氮气(N2)、氧气(O2)和氩气(Ar)三种气体构成(Hale,2000).作为一个动态的物理化学系统,大气的组成虽不断变化,但这些变化通常是有限的或非常缓慢,对矿产勘查活动的影响较小.然而,近地表气体通量的局部变化可以显著改变大气背景.例如,受到火山活动、深大断裂或地震等地质过程影响时,深部气体(如氢气(H2)、氦气(He)、二氧化碳(CO2)、一氧化碳(CO)、二氧化硫(SO2)、硫化氢(H2S)、二硫化碳(CS2)、羧基硫化物(COS)、氟化氢(HF)、氯化氢(HCl)等)可能会向地表喷发,从而引发通量的剧烈变化,指示着地球深部流体活动的存在(Whire and Waring,1963;汪成民,1991;项仁杰等,1991;杜乐天,2006).

在大气与岩石圈的交界处,土壤孔隙中既包含水分,也包含大气气体.由于植物和微生物的生命活动,土壤气体的组成与大气气体有所不同.特别是,土壤中氧气(O2)的含量通常低于大气,而二氧化碳(CO2)和还原性气体(如甲烷(CH4)、硫化氢(H2S)、氢气(H2))的浓度则较高.此外,来自地下深处的气体源(如矿床和油气藏)也参与了土壤气体的组成.这些来自深部的气体使得土壤气体的组成具有一定的变动性,但也正是这些气体携带了来自地下深处的矿化信号,成为重要的矿产勘查的线索.因此,土壤气体地球化学勘查方法通过测量这些来源于地下深部的气体元素,可以有效地进行矿产勘查.此外,许多学者还发现,通过测量气体中携带的纳米尺度金属微粒(Geogas)可以进一步帮助寻找潜在的矿床(Kristiansson and Malmqvist,1982,1987Xie et al.,1999Wang et al.,2008;刘汉粮等,2021).这些金属微粒往往伴随气体一起从深部向地表迁移,因此分析土壤气体中的金属微粒也成为矿床勘查的重要手段之一.

1.2 矿化相关气体来源

矿化相关气体的来源可以根据时间进行划分为两大类:与成矿活动同时就位的气体和成矿后产生的气体(刘庆余,1988;Hale,2000).与成矿活动同时就位的气体是由内生成矿作用所产生的原生气体,主要由与成矿活动相关的岩浆流体所携带.这类气体通常会在热液矿床成矿过程中被捕获在流体包裹体中,或者封存于矿体和围岩的构造裂隙中.当这些封闭结构在后期遭遇剥蚀或破坏时,原生气体便会向近地表运移,形成气体异常现象,成为勘查的标志性信号.成矿后产生的气体则是通过表生作用形成的次生气体.地下深处的金属矿床往往处于还原态,在物理化学作用下会释放出大量的气体.例如,Taylor et al.(1982)的实验表明,黄铁矿在水中发生一系列氧化还原反应时,生成了多种含硫气体.这些气体通常与矿床的氧化作用和化学变化相关.总体来看,土壤气体的来源相当复杂,除了矿化相关气体外,生物作用也会产生各种气体.植物和微生物的生命活动可能导致气体成分的变化,因此土壤中很难找到完全由矿化过程产生的特定气体(Plet et al., 2021).这也意味着,在矿产勘查过程中,土壤气体的分析不仅需要考虑矿化气体的贡献,还需要排除生物气体和其他非矿化源的干扰,以提高矿产勘查的准确性.

1.3 自然条件下矿化相关气体的运移机理

气体具有极强的地球化学流动性.在理想条件下,一定质量的气体会不断膨胀以填充其所处的空间,导致单位体积内的气体摩尔浓度和压力逐渐降低.当某种气体持续产生或消耗时,会形成相应的正向或负向浓度梯度,这种浓度梯度将持续存在,直到系统达到平衡状态.理论上,假设一个气体源(如矿体)能够持续释放气体进入多孔介质(如岩石、岩层和土壤),这些气体将逐渐形成一个扩展的半球形气体晕(图2).

气体晕的空间分布可以通过数学公式(1)来描述,如Oakes(1984)所提出的模型:

          p=2m3πρr3,

质量为m的气体释放到孔隙度为ρ的介质中,能够产生半径为r,平均分压为p的气晕.假设m=1 g, ρ=10%,仪器探测限为10 μg/m3,理想状态下能够探测到该气体的最大埋深r=36.3 m.自然条件下气源生成的气体质量远远大于1 g,能够被探测到气晕半径r也是极大的.但现实中多孔介质的物理性质不均匀,其中存储的气体体积取决于其孔隙度.气体渗透率是气体通过介质难易程度的量度,是气体通过多孔介质运动的基本参数,取决于介质结构和裂缝的百分比、连续性和大小,Etiope and Martinelli(2002)认为这些裂缝和孔隙的影响可以类比流体通过毛细管,可以用泊肃叶(Poisseuile’s Law)定律表示:

          Q=πR4P8μL,

Q为气体通量(m3/s),RL为毛细管的半径和长度(m),P为长度上的压差(kg/(m·s2)),μ为气体动态粘度(kg/(m·s)).

理解深部气体在地下的运移是判断气源位置的关键,气体向上运移过程中,由于地质条件的不同,驱动力的性质会发生变化.毫无争议的说,气体运移受控于三种基本机制:扩散(Diffusion)、平流(advection)和浮力(buoyancy)(Brown,2000Klusman et al.,2000Ruan and Fei,2000Anand et al.,2016).

扩散是最基本的气体运移机制,是气体自发的消除浓度梯度的趋势,遵循菲克定律,受到浓度梯度的驱动.菲克定律(Fick’s Law):

          F=-DmC其中=δδx+δδy+δδz,

或者一维形式为:

          F=-DmdCdz,

F为单位时间内气体通过的分子量,C为气体浓度,Dm 为分子扩散系数(m2/s),dC(kg/m3)是气体浓度沿dz(m)的变化量.气体的扩散速率是由发生扩散的介质、温度和气体的扩散系数决定.扩散系数与分子量、分子形状和分子间作用力有关,这意味着每种气体都有独特的扩散系数.介质密度同样影响气体在在介质中的扩散速度,气体在固体中的扩散速度比在另一种气体中的扩散速度慢.Ruan(1985a,1985b)的气体扩散模拟实验表明气体将会沿着阻力最小的路径运移.

平流是指物质在外力作用下的运动,具有质量的气体受到压力梯度驱动,从高压区向低压区移动,遵循达西定律(Darcy Law),浓度为C(kg/m3),速度为v的气体通过横截面的通量为F

          F=Cv,

其速度由压力梯度和流度系数决定,流度系数与介质的几何形状和气体粘度有关.当气体在平流作用下通过干燥多孔的介质时,流度系数取决于介质本身的固有渗透率.达西定律:

          v=-kPμ 其中 =δδx+δδy+δδz,

或者一维形式为:

          v=kPμZ,

v为气体速度(m/s),k为介质固有渗透率(m2),μ为气体动态粘度(kg/(m·s)),P为两点间的压力差(kg/(m·s2)),Z(m)为两点间的距离.两点之间只要存在压力梯度,就会发生平流运动,构造应力、岩石破裂、局部产气、含水层和深部流体储层的补给和排放以及近地表的大气压力泵送等都可以产生压力梯度,长距离的流体迁移通常是平流作用的结果.Nriagu(1979)认为大气降水、蒸发、风、地下水的流动和地壳板块运动这类“全球力”引起的运动都属于平流,文献中对平流作用有多种描述方式:mass flow、mass transport、viscous flow、fluid flow(Hale,2000Klusman et al.,2000;Ruan and Fei,2000;Etiope and Martinelli,2002).

浮力作用是指气体通过地下水时形成气泡流的运动,受到密度梯度驱动.Vàrhegyi et al.(1992)认为气泡在地下水中的运动符合斯托克斯定律(Stokes Law),气泡在多孔介质中的运动公式为:

          v=d2gρw-ρg18μw,

v为气体速度(m/s),d为气泡直径(m),ρwρg 分别为水和气体密度(kg/m3),μw 为水粘度(kg/(m·s)).气泡运移速度与其直径的平方呈正比,且参数d存在上限,即气泡直径受到多孔介质运移路径的最小横截面控制.

稀有气体,如Rn、He,由于浓度很低,上述机制无法说明其从深部到地表的运移过程,学者们提出载气运移机制来解释低扩散系数的微量气体进行长距离运移的机制(Ciotoli et al.,2007Gal et al.,2011).载气运移机制指微量气体伴随着载气(CO2、N2、CH4)运移至地表的运动.这些气体浓度高,能够形成气泡,许多金属元素可能附着在上升的气泡表面(Cu、Zn、Pb、Hg),随着气体移动到近地表,气泡破裂并释放表明附着的元素(Malmqvist and Kristiansson,1984Cao et al.,2009,2010a2010bKlusman,2009Hu et al.,2015).

针对多孔介质中气体运移的复杂动力学过程,现有数学模型的构建仍面临多重理论挑战.尤其是在非饱和带潮湿的空气中,由于气体和水明显的性质差异:密度差异、粘度差异、扩散系数差异等,二者在同一介质条件下的运移会表现出不同的特点,如气体密度取决于压力,气体粘度与温度呈正相关,而水粘度呈负相关.在多组分气体中,单个气体成分的摩尔量也大概率不同,导致较重的分子向较高的压力区域扩散(Amali and Ralston,1993;Green et al.,2015),如果各组分气体的扩散系数差距过大,菲克定律无效,每一种组分的运移都取决于混合气体中存在的所有其余组分的运移,扩散作用与平流作用不可能独立运行(Thorstenson and Pollock,1989Ahmadi et al.,2021;Ben⁃Noah et al.,2023).此外,在运移过程中,介质渗透率、温度、压力也是不断变化的,这使得许多学者提出了在不同条件下适用的更为复杂的模型,如:Stefan⁃Maxwell方程、尘气模型(Dusty Gas Model)等(Hibi,2008Hibi et al.,2010).额外的,气体还受到介质吸附、化学和生物作用的生成与消耗的影响.在土壤中,提出了两种运移机制,(1)土壤异质性使得气体自发的向优先路径运移,土壤会经历明显的去饱和,气体渗透性迅速增加,(2)气体压力诱导裂缝路径形成并扩展(Alonso et al.,2003Delahaye and Alonso,2002Fen et al.,2021).这些特点导致很难有合适的模型预测矿化气体的运移轨迹,影响了气体的垂直迁移,导致了明显的横向迁移(Christophersen and Katharina,2001),使得气体异常并不在矿体上方的“理想位置”出现.事实上,在地下气体运移过程中,这些机制一齐发挥着不同程度的作用,在毛细血管或小孔隙的岩石中,扩散起主要作用;在较大的孔隙或裂缝介质中,平流起主要作用;在水中,浮力作用产生的气泡流运动被认为是一种快速的气体运移机制(Malmqvist and Kristiansson,1985Vàrhegyi et al.,1992);Etiope and Martinelli(2002)认为气体扩散运移最慢,平流运移较快,而气泡运移最快.

通常认为深部的硫化物矿体气体运移过程如下图所示(图3):在物理化学作用下,矿体会持续的释放CO2、含硫气体等气体,并伴随着O2的消耗.由于这些气体浓度不断加大,扩散作用起主要作用,气体缓慢向上方的岩石地层中运移,并且沿着具有阻力最小结构的路径运移.随后这些矿化产生的气体会与其他气体混合,经过介质中一些较大的孔隙和裂缝时,由于压力的变化,平流作用起主要作用,气体将沿着这些路径快速运移,动态粘度大的气体运移相对较慢,动态粘度小的气体运移相对较快,这一机制导致大量气体沿着断裂快速运移,产生较高的气体通量.当气体运移至地下水层面时,这些气体能够溶解在水中,随着水流运移,或在浮力作用下,形成气泡向上快速运移至近地表后破裂.此外,深部浓度较大的气体(CO2、CH4)能够进行载气运移,当气体经过硫化物矿体时,能够携带其中的金属元素Ni、Cu、Zn、Pb、Ag等,这些元素吸附在气体表面,向上运移到近地表并被释放.在近地表,这些气体能够产生可被探测到的异常,同时在近地表岩石和土壤内,在平流作用下,土壤气体往往受到气压、风、温度、雨水等大气参数的影响,气体在其驱动下进行运移,这可能会导致近地表气体异常的变化.

2 气体地球化学测量方法研究现状

地下深部的气体可以通过迁移过程到达近地表,并在特定条件下形成浓度异常.然而,一旦这些气体进入大气层后,会迅速被稀释,导致浓度异常的信号迅速消失.20世纪70年代初,Barringer实验室曾尝试通过低空飞行收集大气中的气体、碳氢化合物以及金属微粒进行研究,但由于大气中气体的稀释效应,研究效果并不理想(Bradshaw,2015).相比之下,土壤作为天然的气体储存屏障,能够有效地截留地下气体,从而提高气体检测的灵敏度和可靠性.因此,后续的气体采样工作更多地转向土壤中进行,以确保更准确的检测结果.在土壤中,气体的赋存形式主要有三种(图4):首先是土壤空气中的自由气体,其次是吸附在土壤矿物表面,尤其是黏土矿物表面的气体;最后是封闭在土壤矿物颗粒,特别是碳酸盐矿物中的气体(Ruan and Cheng, 1991).针对这些不同形式的气体,常用的采样和测量方法可分为三类:主动采样法、被动采样法以及实验室内的热解释法,下面总结如下:

主动采样是对土壤中的自由气体进行采样,利用“探针”和气泵抽取土壤中的气体,如图5所示,测量时需要将采样器(如:螺旋钻)打入地下80 cm左右,利用硅胶管将螺旋钻与干燥器和过滤器连接,从而过滤气体中的粉尘和水分,最终进入捕集器中进行测试.这是最普遍的土壤气体采样方法,该方法耗时短、测量过程简便,缺点是容易受到自然环境和人为因素的影响.基于如此灵活的采集方法,大多数学者利用便携式的气体分析仪器进行测量(Lovell and Hale,1983Polito,1999),如便携式氧气分析仪,二氧化碳分析仪,也有部分学者在实验室内进行测量(Reid and Rasmussen,1990).多数学者利用此方法对O2、CO2、He、Rn、Hg和烃类气体测量(Arias et al.,1979,1982Lovell,1979McCarthy et al.,1986Alpers et al.,1990Ball et al.,1990Reid and Rasmussen,1990Muntean and Taufen,2011Sormaz, 2014Rukhlov et al.,2021).

被动采样法是将取样装置(捕集器或分子筛)埋入土壤中,随时间积聚土壤间的自由气体.如图6所示,通常将采样装置埋在土里(≥50 cm),装置内有特别设计的捕集器,外部隔绝土壤并使捕集器悬空,防止接触地面和土壤污染.这种方法的优点是随机误差小,采样的重现性较好,缺点是采样时间长,需要1~2个月以上的时间.常用于含硫气体、烃类气体和多金属纳米微粒的采样,如Ag、Au、Pb、Zn、Cu、Ni、Hg(Hinkle and Kantor,1978Kristiansson et al.,1990Lukashev,1990Malmqvist et al.,1999Pauwels et al.,1999Cao et al.,2009,2010a2010bCao,2011Hu et al.,2015Rich,2016).

热解释法首先在野外挖掘土壤样品,后续在实验室内加热土壤样品,测量其中释放的气体.此方法利用高温(>100 ℃)释放土壤中吸附的气体,在加热前研磨样品以确保释放充足的气体,尤其是烃类气体(McCarthy et al.,1986).常用于含硫气体、烃类气体、Hg、O2和CO2等(Arias et al.,1982Hinkle and Dilbert,1984Goodman,1987Oakes and Hale,1987Carter et al.,1988Disnar and Gauthier,1988Disnar,1990Mulshaw,1996Polito,1999).

3 气体地球化学勘查研究进展

3.1 CO2找矿研究进展

土壤中CO2来源复杂,比空气含量高,主要来源于微生物和动植物的呼吸作用,如微生物对土壤有机体的矿化分解,在微生物丰富的地区,含量可达上万ppm.土壤中的碳酸盐地层、油层和煤层在化学作用下能够释放一定量的CO2Gougoulias et al.,2014;王晓璐,2023).此外,岩浆活动也会带来大量来自地球深部的CO2,成矿后的表生作用也能形成CO2.室内试验表明,无论是在潮湿、有菌和无菌条件下,CO2是硫化物矿物风化过程中生成最多的气体(Plet et al.,2021).金属硫化物矿床在氧化作用下会形成酸性溶液,酸性溶液与岩石和地下水发生化学反应生成CO2.前人此反应的化学路径有着不同的解释,但本质是酸和碳酸盐矿物反应生成了CO2气体(Hinkle and Dilbert,1984;刘庆余,1988;Hale,2010).

以最简单的硫化物黄铁矿为例:

2FeS2 +7O2 +2H2O→2FeSO4 +2H2SO4

或:

4FeS2 +15O2 +8H2O→2Fe2O3 +8H2SO4

(10)

随后硫酸能够溶解许多碳酸盐,生成CO2.

H2SO4 + CaCO3 →CaSO4 +H2O+CO2 ,

2CuSO4+2CaCO3+H2O→Cu(OH)2(CO3

+2CaSO4+CO2

前人在矿床上方土壤中的CO2测量结果在0~ 30 000×10-6,绝大多数采用主动抽气法进行采样,随后利用气相色谱法或红外吸收测量法测定浓度,前者测量精确,但需要在室内实验室进行,后者处理结果快,携带方便(Hinkle and Ryder,1987Ball et al.,1990Reid and Rasmussen,1990).少数学者收集土壤,利用热解吸法测量,测量结果相对较低 (Hinkle and Dilbert,1984Reid and Rasmussen,1990).土壤CO2测量多用于Au、Cu、Pb、Zn、U、Ag和Hg矿床,成矿类型有斑岩型、矽卡岩型、角砾岩型、绿岩带型和VMS型(McCarthy and McGuire,1998Menon et al.,2009Lett et al.,2020a,2020b).

多项研究表明,矿体上方常出现显著的CO2气体异常(图7a),如上述的化学反应所示,硫化物在生成CO2的同时还大量消耗的O2,因此ΔCO2⁃ΔO2联合测量成为一种有效的找矿手段,利用空气和土壤中CO2、O2浓度差值的绝对值(Δ值)进行分析.研究发现ΔO2和ΔCO2具有一致的变化规律(图7b),两者相关性好,且与硫化物矿体密切相关.此外,这一方法的典型特征是隐伏矿床上方常出现类似“兔耳”的双峰异常(图7c),即气体异常往往出现在矿体与围岩的交界地区(Govett,1976Govett and Atherden,1987),而不是矿体上方.Hamilton(2000)Hamilton et al.(2004a,2004b)认为是由元素的氧化还原性质引起的,矿体氧化形成的酸性环境容易与周围的碳酸盐岩发生反应,也会在此处生成大量CO2.国内殷萤和徐外生(1991)在蔡家营铅锌银矿区的工作也发现了类似规律(图7d).此外,“兔耳”特征的相对大小可能反映下伏矿体的产状(刘庆余,1988),如图7b,7d所示,硫化物矿体埋深大的一端异常值往往相对较小,这为矿体形态的推测提供了依据.

土壤中CO2含量极易受到自然条件的影响,Reid and Rasmussen(1990)在亚利桑那州的土壤测量认为其浓度在冬天(11-12月)低,夏天(6-7月)最高,夏天测得的数值是冬天的2~4倍(图8),尽管如此,季节变化下的CO2浓度仍显示出一致的相对异常特征.Hinkle(1994)在Golden和Reston等地区监测了多种环境因素,包括降雨、降雪、土壤有机质含量、空气温度、气压和相对湿度,发现降雨和降雪对CO2浓度影响最大,空气温度和土壤影响次之,相对湿度的影响最小(Hinkle and Dennen,1989Hinkle and Ryder,1990),因此,在进行土壤CO2测量时,监测气象条件及相关土壤参数对于确保数据准确性和解释结果非常重要.

3.2 烃类气体找矿研究进展

烃类气体(碳氢化合物)是由碳和氢组成的有机分子,主要成分为甲烷,少量乙烷、丙烷等烷烃气体,该气体在油气勘探的应用已经非常常见,但在固体矿床中的应用很少,其来源与矿化的联系还不清楚.许多研究表明烃类气体来源于岩石、土壤、海底烟囱等各类地质体中,在许多脉石矿物(主要是方解石)的流体包裹体中(图9c),已经发现存在甲烷、乙烷等烃类气体(Polito et al.,2001).此外,土壤中的甲烷也与微生物活动密切相关.特别是产甲烷菌,它们在缺氧环境中能够旺盛生长,并与植物和动物活动部分相关.这表明微生物在烃类气体的生成中可能扮演重要角色.

烃类气体测量主要使用土壤热解析法,Mulshaw(1996)的研究表明将土壤样品磨碎,尤其是碳酸盐含量高的样品,加热后能够释放高浓度的烃类气体.矿业公司已经发明了SGHTM(土壤气体碳氢化合物)、SDPTM(土壤热解吸)和AGITM(放大地球化学成像)法来进行土壤气体测量(Plet and Noble,2023),但受到商业行为的限制,很难公开推广.

自20世纪70年代就已经开始探究烃类气体在矿化指示方面的潜力,Arias et al.(1979,1982)在斑岩铜矿床和银矿床上方开展了测量工作,结果表明碳氢化合物对矿化的指示并不明显.但还有许多工作表明该类气体(如CH4)异常与硫化物有较好相关性,如McCarthy and Reimer(1986)在Crandon块状硫化物矿床上方利用主动抽气法和质谱仪测量法识别出了矿床上方明显的CH4气体异常(图9a,9b),其含量还与土壤中的有机质有关.欧光习等(2000)认为该气体分布与铀矿化有关,国内学者在金矿床的研究工作认为花岗岩是烃类气体的来源之一(徐庆鸿等,2007;秦来勇等,2012).Lintern et al.(2013)使用了SGHTM和AGITM技术在澳大利亚硫化物矿床上方均检测到了烃类(乙烷、戊烷)气体的高值,异常具有双峰分布的特征,但这些异常与矿体之间的关联并不可靠,Plet et al.(2021)的硫化物矿石实验室下的风化实验并没有检测到烃类气体的大量出现.总的来看,可查到的烃类气体在矿床上方的研究较为有限,测量结果也不够理想,且缺乏较高的可重复性(Polito,1999Polito et al.,2002Luca,2012Pizarro,2016).烃类气体来源复杂,岩浆过程、矿物破裂、微生物过程和有机物的热降解等都会带来一定的烃类气体(Etiope and Sherwood,2013),因此在不同矿床条件下,不同来源的烃类气体在总含量中的占比总是变化的,这模糊了气体异常与矿化的联系.

CH4气体的高浓度异常往往与断层和裂缝有关,CO2也有类似的特征,许多研究表明深大断裂上方会出现大量CO2和CH4气体(图9d)(Han et al.,2014;刘汉彬等,2023;万卫等,2023).微生物对有机物的分解过程能够同时产生CH4和CO2Tan,2009),即该来源能够产生两者的共同异常,但大量矿床研究没有发现这样的异常,意味着此过程对勘查影响较小(McCarthy and McGuire,1998).

3.3 含硫气体找矿研究进展

硫在自然界的无机形式主要为硫化物、硫酸盐、硫盐.火山活动释放的气体中有二氧化硫、硫化氢、和羰基硫化物.最常用于找矿勘查的硫化物气体是H2S和SO2,少数学者使用土壤热解吸法测量了CS2和COS气体(Lovell,1979Oakes and Hale,1987).

前人很早就注意到了硫化物矿床上方独特的气味,前苏联学者甚至使用训练过的狗来探寻矿化(Kahma et al.,1975).基于热力学模型和可控条件下的实验室研究,前人试图理解硫化物生成含硫气体的过程,Taylor et al.(1982)利用热力学平衡计算预测硫化物矿物分解释放的含硫气体从多到少依次为H2S、COS、CS2、CH3SH、(CH32S2、SO2和S2,但实验结果只检测到了CS2和COS,黄铁矿释放最多的含硫气体;Hinkle et al.(1990)对岩心的采样研究认为黄铁矿含量越高,生成的SO2气体越多;Plet(2021)的实验结果表明硫化物风化过程中能够产生大量CO2,检测到最多的含硫气体是CS2,同时微生物的存在能够提高含硫气体的产量,因此硫化物气体成因还需要考虑野外土壤中更加复杂的影响因素.

自然条件下,硫化物在地下水中O2和CO2的作用下被分解,并在一定的酸碱条件下生成H2S,形成机制如下(Hinkle and Lovell,2000;张洁,2016):

MeS+2H+→Me2++H2S,

其中:MeS为金属硫化物;H+为酸性离子.若矿体被氧化成硫酸盐,在细菌或有机气体作用下发生还原反应:

MeSO4+CH4→MeCO3+H2S+H2O,

生成的H2S的S元素为-2价,具有强还原性,容易被氧化为SO2.

2H2S+3O2→2SO2+H2O,

(15)

此外,Plet(2021)认为环境中的碳源能够与SO2反应生成CS2,并能够被氧化成COS气体.

2SO2+3C→2CO2+CS2

(16)

CS2+H2O+2O2→COS+2H++SO2-4,

目前最常用且最成熟的含硫气体找矿指标是H2S,生成的含硫气体在运移过程中的化学行为还需要深入的理解.

自20世纪80年代起,我国已开始尝试利用SO2和H2S在矿山上方进行测量,但受限于当时测试手段繁琐且灵敏度低,相关研究进展较为有限,仅见少量后续工作(张民堂,1983;张洁等,2016;刘汉彬等,2023;万卫等,2023).值得注意的是,国内曾在土壤钻孔中加入HCl溶液以促进H2S气体的释放(Jin et al.,1989),结果显示矿体上方出现显著异常(图10a).国外学者尝试了COS和CS2的勘查效果,Oakes and Hale(1987)在英国Keel地区铅锌矿床上方使用COS测量,结果显示COS浓度>750 pg/g的峰值与矿化断层有关,而浓度500~750 pg/g反映了未矿化的地层(图10b),Hinkle的许多研究工作均表明高浓度的硫化物气体(SO2、H2S、COS、CS2)异常与矿化和断裂构造相关(Hinkle and Dilbert,1984Hinkle et al.,1990Hinkle and Lovell,2000).这些研究强调了硫化物气体在矿化指示中的潜力,但同时也表明进一步优化测量方法和提高灵敏度仍是必要的.

Oakes and Hale(1987)在新墨西哥州Torpedo受断裂构造控制的Cu矿化带的测量工作表明(图10b),无矿化的灰岩上方的COS<150 pg/g,矿化断裂上方存在不连续的400~800 pg/g异常浓度值,无矿化但含有高达10%的黄铁矿的石英闪长岩上方COS浓度为140~400 pg/g,利用COS进行填图能够辨别没有经济价值的硫化物矿物黄铁矿.Hinkle and Dilbert(1984)报告了在美国亚利桑那州North Silver Bell斑岩铜矿床的工作(图10c),结果指出利用COS的填图能够指示与矿化有关的热液蚀变带(钾化带、绢英岩化带和青磐岩化带),对比各类土壤元素和含硫气体的填图信息,认为相对高浓度的CS2气体对斑岩Cu矿体的指示效果最好(图10d).这些研究表明,含硫气体不仅对矿化体和断裂带有指示作用,还能提供更丰富的地质背景信息,为资源勘查和矿床研究提供了重要手段.然而,土壤中的含硫气体浓度极低,尤其是COS和CS2具有高挥发性、容易受到微生物干扰的特点,需要设计合适的测量方法来尽可能的消除干扰,并结合多种含硫气体指标相互验证.

3.4 氡气和氦气找矿研究进展

氦是宇宙丰度第二的元素,除地球生成时的原始星球氦以外,主要来源于铀、钍的放射衰变同位素,有3He和4He,主要是4He.在地球生成后的漫长时间里,原始星球氦只能存在于地球深部,浅部的原始星球氦已经飘向宇宙,因此地表绝大部分氦的来源与铀、钍等放射性元素密切相关,氦气作为一种高度扩散性的惰性气体,具有极强的铀矿勘查潜力,尤其是那些埋深较大的矿床(蒋永一等,1984;Butt and Gole,1985).近年来人们将氦气当做一种独立的天然气资源进行成因、储存、分布等方面的研究(张雪,2015).大气中的氦气浓度在5.24 pm左右,土壤中含量更低.大气中3He/4He=1.39×10-6,壳源的3He/4He值一般为10-8量级,公认其端元值为2×10-8,幔源的3He/4He值为1.1×10-5Xu et al.,1991Ozima andPodosek,2001),基于此可以判断氦来源.

氡是典型的亲气放射性元素,它不是原始地球中天然存在的元素,只来源于铀、钍等元素的放射性衰变,Rn有三个同位素,222Rn、220Rn、219Rn.氡气也是一种无色无味的惰性气体,作为与氦气一样的U系列衰变产物(238U→ 234U→226Ra→222Rn→214Br→206Pb),同样被认为是铀矿勘探的有效指标(Arias et al.,1979).Ra是Rn的衰变母体,与Rn具有一致的地球化学特征,也可用于勘查(贾国相,2009).

氦气测量的样品为土壤中自由气体,土壤吸附的气体,地表水(海洋、湖泊、泉水)和地下水.其测量方法有高灵敏度的质谱法、气相色谱法和便携式的热导检测法(Butt et al.,2000);氡气测量样品为土壤中的自由气体,测量方法有电力室法、RaA测量法、闪烁室法、固体径迹法、活性炭吸附法和静电收集法(李姝彬,2020).

颜国旭(2021)在铀矿床地表土壤中对气象数据的长时间统计总结了空气温湿度、土壤温湿度、降雨量、光照强度、大气压和风速8个与氡变化相关的因素,利用主成分分析法进行降维优化认为空气温度、空气湿度、土壤温度和土壤湿度是4个主要影响因素(贡献率85.28%).空气温度和土壤温度与土壤中氡气浓度呈正相关(Klusman and Jaacks,1987).这些因素影响了氡和氦在土壤与空气中的交换,使得土壤中浓度发生了明显变化,导致利用两者作为U矿床的勘查指标变得十分具有挑战性,部分地区工作效果不佳(Butt and Gole,1985),因此,西方学者对此失去了兴趣,并提出考虑到这些复杂因素,最合适的采样位置是1 m或更深(Rose et al.,1990).在国内,虽然有一些成果表明土壤中氦气的异常浓度不仅与矿体相关(图11a~11d),还能够指示断裂(图11a),并且土壤中的氦气比水中的氦气具有更好的指示效果(图11c).但后续的研究未深入讨论其运移过程和异常分布模式,氡气和氦气作为勘查指标的有效性仍需进一步验证和深入探讨.

3.5 汞气找矿研究进展

自然界中汞存在三种化学态:Hg2+、Hg+和Hg0,为亲硫元素,由于具有较高的蒸气压(20 ℃和25 ℃为13 ng/mL和25 ng/m L),常温环境下也能以蒸气形式存在,常以自然汞和汞化合物的形式存在于Cu、Pb、Zn、Au等硫化物中.在许多矿物中含有微量汞,通常沉积岩中的汞含量高于火成岩(Carr and Wilmshurst,2000;李伟等,2017).汞起源于地幔,迁移能力较强,具有三种迁移形式:气态形式、水溶液形式和配合物形式,在迁移过程中,由于环境不断改变,汞在三种形式中不断转化,气态形式在迁移过程中占主导地位(胡国廉等,1980;何伟,2012).在次生环境中,汞的自然来源主要是硫化物的氧化(Ryall,1979),另外一部分来自矿床氧化带下方的沉积物.汞蒸气的形成和迁移过程仍未完全了解,但由于汞具有的高离子电位,它能够在各种地质环境中释放出来,不仅原生的硫化物矿体、不稳定的断裂带和矿床的氧化带,在应力作用或变质过程中,都可能释放出汞.汞以原子形式向上迁移并形成汞蒸气晕(主要是Hg0).实验表明,矿体是释放汞气的主要源头,能够形成明显的汞气异常(张中民,1981).

前人尝试了三种汞蒸气的采样来源:地表空气、土壤空气和土壤.地表空气采样的报道极少,前苏联工人在汞矿床上方发现了高浓度的气态汞,R.Gedde在澳大利亚Cu、Ni、Zn硫化物矿床上检测到了空气中的汞异常,但后续的调查未见与矿化相关的汞异常(McCarthy,1972),有效性差.土壤空气是最常用的采样介质,既可以主动采样,也可以使用汞收集器(金丝捕汞管)被动采样.加热土壤,随着温度的升高能够释放出土壤中被吸附的不同形式的汞(汞离子、吸附汞、HgO、HgCl2等),常用测试温度为100~200 ℃,当温度达到800 ℃时,能够释放出任何形式的汞(Kromer et al.,1981;Hu,2000;Carr and Wilmshurst,2000).对汞蒸气的测量方法主要包括原子吸收法、原子荧光法、中子活化法,原子吸收法是最常用的测试方法.

前苏联学者对矿床土壤中汞气的研究是最早也是最丰富的,Fursov在对70多个矿点的土壤空气中汞气的研究取得了许多令人欣喜的成果,尤其是在Pb、Zn、Au、Cu、Sb等矿床上方发现了土壤空气中Hg的异常,与土壤汞元素异常相比,汞气异常范围小,能更有效地确定矿体位置,同时具有土壤元素异常不具备的深部找矿能力,在Urals地区340 m埋深的黄铜矿床上方探测到了明显的异常(图12a),最深在640 m埋深的隐伏铅锌矿体上方发现了高异常的汞蒸气晕(Fursov,1990).我国学者在莲花山钨矿床发现土壤热释汞测量能够反映断裂,并利用异常寻找控矿断裂构造(图12b).Hu(2000)对国内多处多金属矿床土壤热释汞气测量总结,发现矿体上方通常会出现几个异常峰,对于倾斜较缓的矿体(<70°),会出现两个明显的峰,而对于倾斜较陡的矿体上,则通常只有单峰.胡国廉等(1980)还注意到,利用土壤垂直梯度和热释谱有可能区分汞气异常的来源,他们的研究表明,不同温度下(100 ℃、180 ℃、250 ℃)的热释峰存在差别,这与汞的来源有关,不同来源的汞会导致其在土壤中的吸附形式不同,如地表污染所带来的汞多为Hg2+形式,在不同的温度下,不同形式的汞被释放出来,形成了不同的热释谱,而在100 ℃时,富汞岩石中的假异常消失了,进一步证实了汞的来源和热释峰之间的关系.尽管20世纪以来,利用汞气找矿似乎已逐步被西方学者放弃了,在中国,相关的研究仍然断续进行,并取得了一些成果(李伟等,2017;钱建利等,2015;智超等,2022),但这些只是一些成功应用的例子,并未对其成因、运移等进行深入的探讨,对后续发展影响不大.

4 多种气体联合测量

近年来,基于中国地质调查局发展研究中心监制的多组分气体快速分析仪(PMGRA)在勘查应用中取得了巨大成功,具体仪器信息参考Lin et al.(2021).该方法具有快速、高效、绿色、经济和高精度的特点,能够同时测量四种气体(H2S、SO2、CH4、CO2),具有多种气体联合测量的独特优势.迄今为止,该方法已成功应用于各种类型的矿床,包括Cu、Pb、Zn、Au和Ag矿化,并在造山型、矽卡岩型、斑岩型和其他热液型矿床中显示出有效性(Lin et al.,2021Dou et al., 2024).能够在覆盖区域有效识别隐藏断层和矿化带,探测深度超过800 m(Lin et al.,2021).

基于此方法,作者团队在驱龙斑岩型铜矿床、普朗斑岩型铜矿床和蒙亚啊矽卡岩型铅锌矿床等开展了试验(图13图14),均发现了硫化物矿体上方的相对气体异常,这些异常位置与已知矿体对应良好,佐证了气体主要进行垂向运移.其中含硫气体(H2S和SO2)异常对矿体的指示最好,具有一致性的特点,CH4和CO2的指示较差.同时在不同矿床中,矿化指标气体不同,蒙亚啊矿床为H2S⁃SO2⁃CH4气体,驱龙矿床为H2S⁃SO2⁃CH4⁃CO2气体,普朗矿床为H2S⁃SO2气体,这可能与矿床的形成背景有关.

含硫气体含量与硫化物矿体含量呈正相关,蒙亚啊矿床PM44的含硫气体浓度远高于PM14(图13a,13b),而驱龙矿床含硫气体浓度同样远高于蒙亚啊矿床,同时矿体中部有着最高的异常,与下伏高品位的Cu矿体对应.而在同一矿床中,CH4和CO2浓度差距不大,这可能与气体来源有关.如前所述,含硫气体主要来源于硫化物矿物的物理化学反应,而CH4和CO2有更加复杂的来源.同时,在普朗矿床(图14b),气体异常并非只在矿体垂直的正上方出现,而倾向于出现在矿液运移的方向出现,这是气体沿热液运移路径前进的结果.在多处矿床的成功应用证明了该方法极强的普适性,具备广泛推广应用的价值.

5 环境条件对气体测量结果的影响

如前所述,自然条件变化(如温度、湿度、天气、pH等)显著影响土壤气体的生成、运移与检测,是气体地球化学勘查中不可忽视的干扰因素.温度直接调控微生物活性与化学反应速率直接作用于气体动态:夏季高温促进有机质分解和产甲烷作用,导致CO₂和CH₄浓度显著升高,而汞等挥发性气体则因高温加速逸散,地表浓度降低.湿度则通过改变气体溶解度和运移路径影响检测结果,还可能促进厌氧微生物活动,高湿度环境下H₂S、CO₂等易溶于水,自由气体浓度下降,但强降雨可能通过淋滤作用将深部气体携带至浅层,形成短暂异常,Pizarro(2016)发现雨后24 h内CS2异常升高.降雨和降雪后水会短期充填土壤孔隙,抑制气体扩散,而持续低气压可能增强深部气体垂向迁移,提升汞的大气沉降(Lynam et al.,2014);大风天气加速地表气体稀释,导致Hg、Ra等轻质气体信号衰减(Rose et al.,1990).此外,土壤pH值通过控制氧化还原反应与微生物群落,调节气体生成类型,在酸性环境(pH<5)促进硫化物氧化,释放H₂S和SO₂,增加土壤中的汞含量,而碱性条件(pH>8)有利于CO₂与Ca²⁺结合沉淀,限制汞的迁移(Virtanen et al.,2017).值得注意的是,多因素耦合效应(如高温高湿激发微生物爆发性活动)可能放大单一变量的影响.

基于这些特点,认识到自然条件变化对土壤中气体含量的影响是极其复杂的,这取决于各类气体的固有性质(溶解度、氧化还原性、物性参数、选择性吸附)、多种多样的气体来源、研究区域以及不同的测量方法(主动/被动采样、采样深度).需要指出的是,由于这些差异,能够引起一些争议性的结论.如对土壤中氡气测量的不同程序引起了明显不同的结果(Yang et al.,2022),不同季节引起土壤氡浓度变化:冬季高、夏季高和无明显变化(Rose et al.,1990).对于烃类气体,无论何时何地都很难排除生物作用对该气体的生成和消耗的影响,季节变化影响明显大于空间异质性(Bloom et al.,2012Bellingrath et al.,2015).Winkler et al.(2001)比较发现不同方法、空间异质性和季节变化中季节对土壤氡排放的影响最大.汞的高通量一般出现在温暖季节,而冬季较低(Feng et al.,2004Fu et al.,2010).此外,在不同采样深度下(30 cm、60 cm、90 cm),温度日变化和年变化对土壤中CO2气体浓度的影响程度也不同(Lovell,1979).国际比较的结果表明,抽样误差通常大于仪器误差(Hutter and Knutson,1998).这些都限制了我们对矿致异常的选取和比较.

6 问题与展望

本文通过对气体地球化学勘查技术自20世纪以来的理论发展与工程实践的系统梳理,得出以下结论:作为深部隐伏矿床探测的关键技术手段,气体地球化学勘查在覆盖区具有不可替代的独特优势.在传统地质填图及常规化探方法受限于厚层覆盖区背景下,该技术通过捕获深部矿化系统释放的含硫气体、烃类化合物、二氧化碳、稀有气体(如氦气)及汞蒸气等特征迁移组分,能够有效揭示常规技术难以识别的深部矿致异常.尤其在草原、干旱戈壁、山间浅覆盖区等特殊景观区,其穿透性探测能力已通过大量实证案例得到验证.尽管气体地球化学勘查展现出显著的技术前瞻性,但其理论体系与方法学创新仍存在明显滞后性.研究表明,气体异常的强度、形态及空间分布特征受控于多维度耦合机制,包括矿床成因类型、矿体空间构型、围岩地球化学障效应、上覆介质渗透性差异以及表生环境动态扰动等复杂因素.然而,当前研究多局限于异常现象的经验性描述与成功案例的简单堆砌,缺乏对气体迁移富集动力学过程、异常形成机理等基础理论的深入解析.基于上述挑战与机遇,未来气体地球化学勘查研究需重点突破以下方向:

(1)气体地球化学勘查理论体系的构建仍面临基础研究薄弱的核心挑战.当前研究对气体在成矿系统中的源‒运‒储动态过程缺乏系统性认知,尤其在气体成因属性判识、多尺度迁移机制解析及矿化响应特征量化等关键科学问题上尚未形成理论突破.Hamilton(2000)Hamilton et al. (2004a,2004b)提出的矿床上方气体迁移电荷驱动模型,首次揭示了电场作用下离子态气体的垂向运移规律;Klusma(2009)发展的还原烟囱理论则进一步引入非饱和带微生物代谢对还原性气体传输的增强效应.然而,这些开创性理论模型后续缺乏定量验证与拓展应用,其普适性在复杂地质条件下仍存争议.近年来研究虽在技术层面取得进展,如通过纳米金属颗粒(NAMEG)捕获技术证实了深部矿体物质垂向迁移现象(Kristiansson et al., 1990Xie et al., 1999),利用金属颗粒元素组合(Cao et al., 2009,2010a, 2010b,, 2015; Lu et al.,2019)及Pb同位素指纹(Wan et al., 2017)建立矿化关联模型,但这些成果本质上仍属于气体运移的间接示踪证据.值得关注的是,自Alpers et al.(1990)尝试运用δ13C(CO2)同位素分馏效应进行矿体判别失败后,学界对气体成因的直接示踪研究陷入停滞,转而聚焦于实验室模拟硫化物风化过程的气体生成机制(Plet et al., 2021),这反映出基础理论研究正面临方法论瓶颈.气体地球化学系统本质上是多过程耦合的复杂动力学体系:①气体生成受控于矿物‒流体‒微生物相互作用的多相反应网络;②迁移过程涉及裂隙网络渗透、多场耦合驱动(浓度梯度、电势场、温度场等)及气‒液‒固界面效应;③地表异常形成则与土壤介质异质性、环境参数动态扰动及生物地球化学循环产生非线性交互.破解这一复杂系统亟需构建跨学科协同研究,整合微生物群落代谢机制、流体‒岩石相互作用动力学、多相介质传输模型及高精度同位素示踪技术,通过建立“成因指纹‒迁移路径‒地表响应”的理论框架,最终实现气体异常与深部矿化的定量关联解译.

(2)气体地球化学勘查技术标准亟待完善.当前,气体地球化学勘查的研究中存在较为严重的一致性问题,尤其是在气体采样方法、气体种类、检测仪器以及数据处理系统等方面,文献中的差异性明显.由于气体具有较强的地球化学流动性,在气体采样过程中甚至在样品收集后,都很难准确判断样品是否成功取样且未发生泄漏.此外,目标气体的含量通常较低(如H2S、SO2、CS2等),任何微小的误差都可能对测量结果产生显著影响,且难以预估.尽管诸多学者尝试采用现场分析技术进行研究(如Hinkle and Dilbert,1984Oakes and Hale,1987Polito et al.,2002Lintern et al.,2013),但对于目标气体、采样方法及气体分析技术的选择,尚未形成统一的标准.例如,烃类气体的有效性尚存在争议(Arias et al.,1982Plet et al.,2021),主动式采样虽可实现快速剖面测量,但易受土壤渗透率各向异性影响气体绝对含量的重现性弱,而被动式吸附虽能产生更为均匀的信号,然而需要时间较长.不同技术的应用也可能导致测量结果偏差,从而模糊了对气体有效性的认知.比如,使用快速便捷的红外和电化学测量方法与精确但繁琐的气相色谱法所得结论是否一致,仍然存在较大不确定性.总体而言,现有研究结果之间难以进行有效对比,且相关数据的重复性和可靠性受到限制.

当前亟需制定统一的标准勘查技术,只有在此基础上,后续的结果深入讨论和比较才有意义.矿业公司采用的SDPTM和AGITM方法已取得较好成果,但由于其商业性质,尚难以广泛推广.作者团队利用中国地质调查局研发的便携式多组分气体(H2S、SO2、CH4、CO2)快速分析仪,在矿产勘查中取得了显著进展.研究表明,含硫气体中的H2S和SO2被认为是硫化物矿体找矿的有效指标,并在斑岩铜矿、造山型金矿、矽卡岩型铅锌矿等矿床类型中获得了较好效果(Lin et al.,2021Dou et al.,2024).该仪器具有高精度、高效率、经济性和普适性,能够进行多种气体的联合剖面测量,具有广泛的应用前景.

此外,许多研究缺乏详细的矿床地质背景和环境信息,这在一定程度上限制了研究结果的普适性和实际应用.关于环境信息,哪些信息应被记录仍值得深入探讨.除了自然条件和生物条件外,盖层的矿物成分、介质孔隙度等信息同样值得关注.如前所述,许多碳氢化合物和CO2气体存在于矿物的流体包裹体中,这些矿物的破裂可能导致该位置的气体浓度升高(Polito et al.,2001).气体倾向沿着阻力最小的路径迁移,例如地下隐伏的裂缝.如果盖层中含有丰富的胶结物,介质孔隙度较小,渗透性较差,则可能会阻碍气体的上升,从而导致异常的缺失.此类现象与地质、生物或人为活动密切相关.因此,未来亟需建立气体地球化学勘查的测量方法和标准,并探讨不同比例尺下的采样间距和网格大小,制定相关的操作规范,以提高矿产勘查的精度和效率.

(3)不同环境对气体地球化学的影响仍需进一步深入探讨.土壤中气体浓度易受到多种环境因素的影响,如土壤pH值、温度、湿度、光照强度及气象条件等.由于气体具有较高的流动性,其浓度异常的重现性较差,且环境变化对气体浓度的影响较大,这使得异常现象的稳定观测与重复性成为一大挑战.现有研究尚未对这些环境因素的影响进行系统的定量分析.因此,在选择合适的气体测量方法后,需要进行大量实验,以比较不同环境条件下气体浓度的差异.随后,可借助统计分析方法与机器学习技术,对复杂的环境因素进行交互分析(Liu et al., 2015),并通过大数据驱动的智能校正进一步优化模型.与此同时,应建立一个全球数据收集平台,精准划分采样方法、测量手段、采样位置,并记录各类环境条件特征,以便开展系统的对比分析.总而言之,如何在环境不确定性较高的条件下有效识别气体异常,并减少环境干扰,从而提升气体地球化学勘查的普适性与可靠性,仍是亟待解决的关键问题.

(4)气体地球化学勘查领域正面临仪器研发滞后的关键制约瓶颈.当前气体检测技术的突破高度依存于高灵敏度分析仪器的创新迭代,这使得新技术与新装备的持续研发具有决定性意义.然而,国内外研究现状显示,自21世纪初以来该领域技术创新呈现显著放缓态势,基础性研究体系与检测技术方法长期缺乏突破性进展.值得注意的是,国际学术界尤其是西方研究机构对该领域的关注度呈持续下降趋势,导致相关前沿研究成果呈现明显稀缺性特征.鉴于气体检测的精确度与数据可靠性直接受制于技术装备的更新周期,现阶段亟需突破高精度、高分辨率的多组分气体同步检测技术瓶颈,加速推进多参数地球化学勘查装备的集成化研发进程.这一技术革新目标的实现需要构建政策引导与市场驱动协同推进的创新机制.值得注意的是,自然资源部近期颁布的《关于加强新一轮找矿突破战略行动装备建设的指导意见》(自然资办函〔2024〕845号)已作出明确部署,要求至2027年实现勘查装备体系的全面升级,同步推进智能化综合数据分析处理平台的研发应用.在此战略框架下,多气体联合在线监测装置的突破性研发不仅将显著提升传统矿产资源的勘查评价效率,更对氦气、氢气等战略新兴资源的勘探开发具有重要战略价值.该技术装备的突破将有效填补当前非常规气体矿产勘查技术体系的空白,为构建新型矿产资源安全保障体系提供关键技术支撑.

参考文献

[1]

Ahmadi, N., Heck, K., Rolle, M., et al., 2021. On Multicomponent Gas Diffusion and Coupling Concepts for Porous Media and Free Flow: A Benchmark Study. Computational Geosciences, 25(5): 1493-1507. https://doi.org/10.1007/s10596⁃021⁃10057⁃y

[2]

Alonso, E. E., Gens, A., Delahaye, C. H., 2003. Influence of Rainfall on the Deformation and Stability of a Slope in Overconsolidated Clays: A Case Study. Hydrogeology Journal, 11(1): 174-192. https://doi.org/10.1007/s10040⁃002⁃0245⁃1

[3]

Alpers, C. N., Dettman, D. L., Lohmann, K. C., et al., 1990. Stable Isotopes of Carbon Dioxide in Soil Gas over Massive Sulfide Mineralization at Crandon, Wisconsin. Journal of Geochemical Exploration, 38(1/2): 69-86. https://doi.org/10.1016/0375⁃6742(90)90093⁃P

[4]

Amali, S., Rolston, D. E., 1993. Theoretical Investigation of Multicomponent Volatile Organic Vapor Diffusion: Steady⁃State Fluxes. Journal of Environmental Quality, 22(4): 825-831. https://doi.org/10.2134/jeq1993.00472425002200040027x

[5]

Anand, R. R., Aspandiar, M. F., Noble, R. R. P., 2016. A Review of Metal Transfer Mechanisms through Transported Cover with Emphasis on the Vadose Zone within the Australian Regolith. Ore Geology Reviews, 73: 394-416. https://doi.org/10.1016/j.oregeorev.2015.06.018

[6]

Arias, J., Lowell, J., Hale, M., 1982. Development and Application of Vapour Geochemistry Techniques to Minerals Exploration in Overburden Covered Areas of Northern Chile. Revista Geologica de Chile, 16: 23-80.

[7]

Arias, J.A., Hale, M., Webb, J.S., 1979. Vapour Dispersion of Mercury and Radon at Cachinal, Northern Chile. Revista Geologica de Chile, 8: 3-12.

[8]

Ball, T. K., Crow, M. J., Laffoley, N., et al., 1990. Application of Soil⁃Gas Geochemistry to Mineral Exploration in Africa. Journal of Geochemical Exploration, 38(1-2): 103-115. https://doi.org/10.1016/0375⁃6742(90)90095⁃R

[9]

Bellingrath⁃Kimura, S. D., Kishimoto⁃Mo, A. W., Oura, N., et al., 2015. Differences in the Spatial Variability among CO2, CH4, and N2O Gas Fluxes from an Urban Forest Soil in Japan. AMBIO, 44(1): 55-66. https://doi.org/10.1007/s13280⁃014⁃0521⁃z

[10]

Ben⁃Noah, I., Friedman, S. P., Berkowitz, B., 2023. Dynamics of Air Flow in Partially Water⁃Saturated Porous Media. Reviews of Geophysics, 61(2): e2022RG000798. https://doi.org/10.1029/2022RG000798

[11]

Bloom, A. A., Palmer, P. I., Fraser, A., et al., 2012. Seasonal Variability of Tropical Wetland CH4 Emissions: The Role of the Methanogen⁃Available Carbon Pool. Biogeosciences, 9(8): 2821-2830. https://doi.org/10.5194/bg⁃9⁃2821⁃2012

[12]

Bradshaw, P.M.D., 2015. Barringer, Back to the Future: Airborne Geochemistry and Many Related Topics. Association of Applied Geochemists, Nepean.

[13]

Brown, A., 2000. Evaluation of Possible Gas Microseepage Mechanisms. AAPG Bulletin, 84: 1775-1789. https://doi.org/10.1306/8626c389⁃173b⁃11d7⁃8645000102c1865d

[14]

Butt, C. R. M., Gole, M. J., 1985. Helium in Soil and Overburden Gas as an Exploration Pathfinder—An Assessment. Journal of Geochemical Exploration, 24(2): 141-173. https://doi.org/10.1016/0375⁃6742(85)90043⁃3

[15]

Butt, C. R. M., Gole, M. J., Dyck, W., 2000. Chapter 10 Helium. Geochemical Remote Sensing of the Sub⁃ Surface. Elsevier, Amsterdam, 303-352. https://doi.org/10.1016/s0168⁃6275(00)80034⁃3

[16]

Cameron, E. M., Hamilton, S. M., Leybourne, M. I., et al., 2004. Finding Deeply Buried Deposits Using Geochemistry. Geochemistry: Exploration, Environment, Analysis, 4(1): 7-32. https://doi.org/10.1144/1467⁃7873/03⁃019

[17]

Cao, J. J., 2011. Migration Mechanisms of Gold Nanoparticles Explored in Geogas of the Hetai Ore District, Southern China. Geochemical Journal, 45(3): e9-e13. https://doi.org/10.2343/geochemj.1.0128

[18]

Cao, J. J., Hu, R. Z., Liang, Z. R., et al., 2009. TEM Observation of Geogas⁃Carried Particles from the Changkeng Concealed Gold Deposit, Guangdong Province, South China. Journal of Geochemical Exploration, 101(3): 247-253. https://doi.org/10.1016/j.gexplo.2008.09.001

[19]

Cao, J. J., Hu, X. Y., Jiang, Z. T., et al., 2010a. Simulation of Adsorption of Gold Nanoparticles Carried by Gas Ascending from the Earth’s Interior in Alluvial Cover of the Middle⁃Lower Reaches of the Yangtze River. Geofluids, 10(3): 438-446. https://doi.org/10.1111/j.1468⁃8123.2010.00287.x

[20]

Cao, J. J., Liu, C., Xiong, Z. H., et al., 2010b. Particles Carried by Ascending Gas Flow at the Tongchanghe Copper Mine, Guizhou Province, China. Science China Earth Sciences, 53(11): 1647-1654. https://doi.org/10.1007/s11430⁃010⁃4115⁃8

[21]

Cao, J. J., Li, Y. K., Jiang, T., et al., 2015. Sulfur⁃ Containing Particles Emitted by Concealed Sulfide Ore Deposits: An Unknown Source of Sulfur⁃Containing Particles in the Atmosphere. Atmospheric Chemistry and Physics, 15(12): 6959-6969. https://doi.org/10.5194/acp⁃15⁃6959⁃2015

[22]

Carr, G. R., Wilmshurst, J. R., 2000. Chapter 12 Mercury. Geochemical Remote Sensing of the Sub⁃Surface. Elsevier, Amsterdam, 395-437. https://doi.org/10.1016/s0168⁃6275(00)80036⁃7

[23]

Carter, J. S., Cazalet, P. C. D., Ferguson, J., 1988. Light Hydrocarbon Gases and Mineralization. Mineral Deposits within the European Community. Springer, Berlin, 406-427. https://doi.org/10.1007/978⁃3⁃642⁃51858⁃4_22

[24]

Chang, F. C., 1989. The Effects of the Soil Low⁃Temperature Adsorbed Mercury Survey Method in Prospecting. Journal of Guilin University of Technology, 9(3): 311-318 (in Chinese with English abstract).

[25]

Christophersen, M., Kjeldsen, P., 2001. Lateral Gas Transport in Soil Adjacent to an Old Landfill: Factors Governing Gas Migration. Waste Management & Research, 19(2): 144-159. https://doi.org/10.1177/0734242X0101900206

[26]

Ciotoli, G., Lombardi, S., Annunziatellis, A., 2007. Geostatistical Analysis of Soil Gas Data in a High Seismic Intermontane Basin: Fucino Plain, Central Italy. Journal of Geophysical Research: Solid Earth, 112(B5): 2005JB004044. https://doi.org/10.1029/2005JB004044

[27]

Cohen, D. R., Kelley, D. L., Anand, R., et al., 2010. Major Advances in Exploration Geochemistry, 1998-2007. Geochemistry: Exploration, Environment, Analysis, 10(1): 3-16. https://doi.org/10.1144/1467⁃7873/09⁃215

[28]

Delahaye, C. H., Alonso, E. E., 2002. Soil Heterogeneity and Preferential Paths for Gas Migration. Engineering Geology, 64(2-3): 251-271. https://doi.org/10.1016/S0013⁃7952(01)00104⁃1

[29]

Dentith, M. C., Mudge, S. T., 2014. Geophysics for the Mineral Exploration Geoscientist. Cambridge University Press, Cambridge.

[30]

Disnar, J. R., 1990. Volatile Hydrocarbons in Ba⁃Zn⁃Pb Ore Genesis: Analysis and Use in Mineral Exploration. Journal of Geochemical Exploration, 38(1/2): 205-224. https://doi.org/10.1016/0375⁃6742(90)90102⁃G

[31]

Disnar, J. R., Gauthier, B., 1988. Exploration for Concealed Orebodies by the Analysis of Volatile Organic Compounds Contained in Surface Rocks: Trèves Zn⁃Pb Deposit (Gard, France). Journal of Geochemical Exploration, 30(1-3): 179-196. https://doi.org/10.1016/0375⁃6742(88)90058⁃1

[32]

Dou, X. F., Zheng, Y. Y., Zheng, S. L., et al., 2024. Advanced Soil⁃Gas Geochemical Exploration Methods for Orogenic Gold Deposits: A Case Study of Chalapu Deposit, Xizang. Ore Geology Reviews, 173: 106226. https://doi.org/10.1016/j.oregeorev.2024.106226

[33]

Du, L. T., 2006. The Five Gas⁃Spheres of the Earth and Natural Gasexploitation from Middle Crust. Natural Gas Geoscience, 17(1): 25-30, 35 (in Chinese with English abstract).

[34]

Dyck, W., Jonasson, I. R., 1977. The Nature and Behavior of Gases in Natural Waters. Water Research, 11(8): 705-711. https://doi.org/10.1016/0043⁃1354(77)90111⁃7

[35]

Dyck, W., Jonasson, I. R., 2000. Chapter 12 Radon. Handbook of Exploration Geochemistry, 7: 353-394. https://doi.org/10.1016/S0168⁃6275(00)80035⁃5

[36]

Etiope, G., Martinelli, G., 2002. Migration of Carrier and Trace Gases in the Geosphere: An Overview. Physics of the Earth and Planetary Interiors, 129(3/4): 185-204. https://doi.org/10.1016/S0031⁃9201(01)00292⁃8

[37]

Etiope, G., Sherwood, B. L., 2013. Abiotic Methane on Earth. Reviews of Geophysics, 51(2): 276-299. https://doi.org/10.1002/rog.20011

[38]

Fen, C. S., Lin, Y. R., Chen, C. Y., et al., 2021. Methane Transport in a Soil Column: Experimental and Modeling Investigation. Environmental Engineering Research, 26(5): 200311. https://doi.org/10.4491/eer.2020.311

[39]

Feng, X. B., Yan, H. Y., Wang, S. F., et al., 2004. Seasonal Variation of Gaseous Mercury Exchange Rate between Air and Water Surface over Baihua Reservoir, Guizhou, China. Atmospheric Environment, 38(28): 4721-4732. https://doi.org/10.1016/j.atmosenv.2004.05.023

[40]

Fu, X. W., Feng, X. B., Wan, Q., et al., 2010. Probing Hg Evasion from Surface Waters of Two Chinese Hyper/Meso⁃Eutrophic Reservoirs. Science of the Total Environment, 408(23): 5887-5896. https://doi.org/10.1016/j.scitotenv.2010.08.001

[41]

Fursov, V. Z., 1990. Mercury Vapor Surveys: Technique and Results. Journal of Geochemical Exploration, 38(1/2): 145-155. https://doi.org/10.1016/0375⁃6742(90)90098⁃U

[42]

Gal, F., Joublin, F., Haas, H., et al., 2011. Soil Gas (222Rn, CO2, 4He) Behaviour over a Natural CO2 Accumulation, Montmiral Area (Drôme, France): Geographical, Geological and Temporal Relationships. Journal of Environmental Radioactivity, 102(2): 107-118. https://doi.org/10.1016/j.jenvrad.2010.10.010

[43]

Gan, J., Li, H., He, Z. W., et al., 2022. Application and Significance of Geological, Geochemical, and Geophysical Methods in the Nanpo Gold Field in Laos. Minerals, 12(1): 96. https://doi.org/10.3390/min12010096

[44]

Goodman, S., 1987. The Relationship between Light Hydrocarbons and Carbonate Petrology—A Study from the Mendip Hills. Geological Journal, 22(4): 371-382. https://doi.org/10.1002/gj.3350220408

[45]

Gougoulias, C., Clark, J. M., Shaw, L. J., 2014. The Role of Soil Microbes in the Global Carbon Cycle: Tracking the Below⁃Ground Microbial Processing of Plant⁃Derived Carbon for Manipulating Carbon Dynamics in Agricultural Systems. Journal of the Science of Food and Agriculture, 94(12): 2362-2371. https://doi.org/10.1002/jsfa.6577

[46]

Govett, G. J. S., 1976. Detection of Deeply Buried and Blind Sulphide Deposits by Measurement of H+ and Conductivity of Closely Spaced Surface Soil Samples. Journal of Geochemical Exploration, 6(1/2): 359-382. https://doi.org/10.1016/0375⁃6742(76)90024⁃8

[47]

Govett, G. J. S., Atherden, P. R., 1987. Electrogeochemical Patterns in Surface Soils⁃Detection of Blind Mineralization beneath Exotic Cover, Thalanga, Queensland, Australia. Journal of Geochemical Exploration, 28(1/2/3): 201-218. https://doi.org/10.1016/0375⁃6742(87)90048⁃3

[48]

Green, C. T., Walvoord, M. A., Andraski, B. J., et al., 2015. Multimodel Analysis of Anisotropic Diffusive Tracer⁃Gas Transport in a Deep Arid Unsaturated Zone. Water Resources Research, 51(8): 6052-6073. https://doi.org/10.1002/2014WR016055

[49]

Guan, Z.N., 2005. Geomagnetic Field and Magnetic Prospecting. Geological Publishing House, Beijing (in Chinese).

[50]

Hale, M., 2010. Gas Geochemistry and Deeply Buried Mineral Deposits: The Contribution of the Applied Geochemistry Research Group, Imperial College of Science and Technology, London. Geochemistry, 10(3): 261-267. https://doi.org/10.1144/1467⁃7873/09⁃236

[51]

Hale, M., 2000. Chapter 1 Genesis, Behaviour and Detection of Gases in the Crust. Handbook of Exploration Geochemistry, 7: 3-15. https://doi.org/10.1016/s0168⁃6275(00)80025⁃2

[52]

Hamilton, S. M., 2000. Chapter 3 Spontaneous Potentials and Electrochemical Cells. In: Govett, G.J.S., ed., Geochemical Remote Sensing of the Sub⁃Surface. Elsevier, Amsterdam, 81-119. https://doi.org/10.1016/s0168⁃6275(00)80027⁃6

[53]

Hamilton, S. M., Cameron, E. M., McClenaghan, M. B., et al., 2004a. Redox, pH and SP Variation over Mineralization in Thick Glacial Overburden. Part I: Methodologies and Field Investigation Atthe Marsh Zone Gold Property. Geochemistry: Exploration, Environment, Analysis, 4(1): 33-44. https://doi.org/10.1144/1467⁃7873/03⁃020

[54]

Hamilton, S. M., Cameron, E. M., McClenaghan, M. B., et al., 2004b. Redox, pH and SP Variation over Mineralization in Thick Glacial Overburden. Part II: Field Investigation at Cross Lake VMS Property. Geochemistry: Exploration, Environment, Analysis, 4(1): 45-58. https://doi.org/10.1144/1467⁃7873/03⁃021

[55]

Han, X., Li, Y., Du, J., et al., 2014. Rn and CO2 Geochemistry of Soil Gas across the Active Fault Zones in the Capital Area of China. Natural Hazards and Earth System Sciences, 14(10): 2803-2815. https://doi.org/10.5194/nhess⁃14⁃2803⁃2014.

[56]

He, W., 2012. Study on the Genesis Mechanism and Distribution Prediction of Mercury in Natural Gas (Dissertation). China University of Geosciences (Beijing), Beijing (in Chinese with English abstract).

[57]

Hibi, Y., 2008. Formulation of a Dusty Gas Model for Multi⁃Component Diffusion in the Gas Phase of Soil. Soils and Foundations, 48(3): 419-432. https://doi.org/10.3208/sandf.48.419

[58]

Hibi, Y., Fujinawa, K., Nishizaki, S., et al., 2010. Investigation for Necessity of Dispersivity and Tortuosity in the Dusty Gas Model for a Binary Gas System in Soil. Soils and Foundations, 50(1): 143-159. https://doi.org/10.3208/sandf.50.143

[59]

Highsmith, P., 2004. Overview of Soil Gas Theory. The Association of Applied Geochemists Quarterly Newsletter Explore, 122: 1-15.

[60]

Hinkle, M. E., 1994. Environmental Conditions Affecting Concentrations of He, CO2, O2 and N2 in Soil Gases. Applied Geochemistry, 9(1): 53-63. https://doi.org/10.1016/0883⁃2927(94)90052⁃3

[61]

Hinkle, M. E., Dennen, K. O., 1989. Tabulation of Meteorological Variables and Concentrations of Helium, Carbon Dioxide, Oxygen, and Nitrogen in Soil Gases Collected Regularly from a Site at Reston, Virginia, for One Year. U.S. Geological Survey, Washington, D.C.. https://doi.org/10.3133/ofr8910

[62]

Hinkle, M. E., Dilbert, C. A., 1984. Gases and Trace Elements in Soils at the North Silver Bell Deposit, Pima County, Arizona. Journal of Geochemical Exploration, 20(3): 323-336. https://doi.org/10.1016/0375⁃6742(84)90074⁃8

[63]

Hinkle, M. E., Ryder, J. L., 1987. Effect of Moisture and Carbon Dioxide on Concentrations of Helium in Soils and Soil Gases. Journal of Geophysical Research: Solid Earth, 92(B12): 12587-12594. https://doi.org/10.1029/JB092iB12p12587

[64]

Hinkle, M. E., Ryder, J. L., Sutley, S. J., et al., 1990. Production of Sulfur Gases and Carbon Dioxide by Synthetic Weathering of Crushed Drill Cores from the Santa Cruz Porphyry Copper Deposit near Casa Grande, Pinal County, Arizona. Journal of Geochemical Exploration, 38(1-2): 43-67. https://doi.org/10.1016/0375⁃6742(90)90092⁃O

[65]

Hinkle, M.E., Kantor, J.A., 1978. Collection and Analysis of Soil Gases Emanating from Buried Sulfide Mineralization, Johnson Camp Area, Cochise County, Arizona. Journal of Geochemical Exploration, 9: 209-216.

[66]

Hinkle, M. E., Lovell, J. S., 2000. Chapter 8 Sulphur Gases. Geochemical Remote Sensing of the Sub⁃Surface. Elsevier, Amsterdam, 249-289. https://doi.org/10.1016/s0168⁃6275(00)80032⁃x

[67]

Hinze, W. J., von Frese, R. R. B., 1990. Magnetics in Geoexploration. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, 99(4): 515-547. https://doi.org/10.1007/BF02840315

[68]

Hu, G., Cao, J. J., Hopke, P. K., et al., 2015. Study of Carbon⁃Bearing Particles in Ascending Geogas Flows in the Dongshengmiao Polymetallic Pyrite Deposit, Inner Mongolia, China. Resource Geology, 65(1): 13-26. https://doi.org/10.1111/rge.12055

[69]

Hu, G. L., Tian, J. J., Lai, W. M., et al., 1980. Migration and Transformation of Mercury and Formation of Mercury Gas Anomaly in Soil. Geology and Prospecting, 16(12): 55-60 (in Chinese with English abstract).

[70]

Hu, Z., 2000. Chapter 13 Discrimination of Mercury Anomalies. Handbook of Exploration Geochemistry, 7: 439-450. https://doi.org 10.1016/S0168⁃6275(00)80037⁃9

[71]

Hutter, A. R., Knutson, E. O., 1998. An International Intercomparison of Soil Gas Radon and Radon Exhalation Measurements. Health Physics, 74(1): 108-114. https://doi.org/10.1097/00004032⁃199801000⁃00014

[72]

Jia, G.X., 2009. Research and Application of Geochemical Techniques for Radon Gas Exploration (Dissertaiton). Kunming University of Science and Technology, Kunming (in Chinese with English abstract).

[73]

Jiang, T., Liu, G. A., Wu, J. Y., et al., 2018. Analysis of Prospecting Potential of Deep Uranium Deposits in an Uranium Exploration Area of North Guangdong Province. Geology and Exploration, 54(1): 52-58 (in Chinese with English abstract).

[74]

Jiang, Y. Y., Liu, Q. Y., Li, J. J., et al., 1984. Helium Survey-Its Applicaion to Geological Mapping and Energy Exploration. Geophysical and Geochemical Exploration, 8(6): 321-331 (in Chinese with English abstract).

[75]

Jin, J., Hu, Z. Q., Sun, X. L., et al., 1989. Geochemical Exploration in Thick Transported Overburden, Eastern China. Journal of Geochemical Exploration, 33(1/2/3): 155-169. https://doi.org/10.1016/0375⁃6742(89)90026⁃5

[76]

Kahma, A., Nurmi, A., Mattsson, P., 1975. On the Composition of the Gases Generated by Sulphide⁃ Bearing Boulders during Weathering and on the Ability of Prospecting Dogs to Detect Samples Treated with These Gases in the Terrain. Geological Survey of Finland, Espoo.

[77]

Klusman, R. W., 2009. Transport of Ultratrace Reduced Gases and Particulate, Near⁃Surface Oxidation, Metal Deposition and Adsorption. Geochemistry: Exploration, Environment, Analysis, 9(3): 203-213. https://doi.org/10.1144/1467⁃7873/09⁃192

[78]

Klusman, R. W., Jaacks, J. A., 1987. Environmental Influences Upon Mercury, Radon and Helium Concentrations in Soil Gases at a Site near Denver, Colorado. Journal of Geochemical Exploration, 27(1/2): 259-280. https://doi.org/10.1016/0375⁃6742(87)90023⁃9

[79]

Klusman, R. W., Leopold, M. E., LeRoy, M. P., 2000. Seasonal Variation in Methane Fluxes from Sedimentary Basins to the Atmosphere: Results from Chamber Measurements and Modeling of Transport from Deep Sources. Journal of Geophysical Research: Atmospheres, 105(D20): 24661-24670. https://doi.org/10.1029/2000JD900407

[80]

Kristiansson, K., Malmqvist, L., 1982. Evidence for Nondiffusive Transport of 86Rn in the Ground and a New Physical Model for the Transport. Geophysics, 47(10): 1444-1452. https://doi.org/10.1190/1.1441293

[81]

Kristiansson, K., Malmqvist, L., 1987. Trace Elements in the Geogas and Their Relation to Bedrock Composition. Geoexploration, 24(6): 517-534. https://doi.org/10.1016/0016⁃7142(87)90019⁃6

[82]

Kristiansson, K., Malmqvist, L., Persson, W., 1990. Geogas Prospecting: A New Tool in the Search for Concealed Mineralizations. Endeavour, 14(1): 28-33. https://doi.org/10.1016/S0160⁃9327(05)80049⁃3

[83]

Kromer, E., Friedrich, G., Wallner, P., 1981. Mercury and Mercury Compounds in Surface Air, Soil Gas, Soils and Rocks. Journal of Geochemical Exploration, 15(1-3): 51-62. https://doi.org/10.1016/0375⁃6742(81)90055⁃8

[84]

Lett, R.E., Sacco, D.A., Elder, B., 2020a. Real⁃Time Detection of Bedrock Mineralization and Geological Faults beneath Glacial Deposits in Central British Columbia Using Onsite Soil Gas Carbon Dioxide and Oxygen Analysis by Electronic Gas Sensors (NTS 093A/58, 093G/03). Geoscience BC, Vancouver.

[85]

Lett, R.E., Sacco, D.A., Elder, B., 2020b. Real⁃Time Analysis of Soil Gas for Carbon Dioxide and Oxygen to Identify Bedrock Mineralization and Geological Faults beneath Glacial Deposits in Central British Columbia. Geoscience BC, Vancouver.

[86]

Li, S.B., 2020. Development of a Rapid Radon Measurement Instrument for RaA in Soil (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).

[87]

Li, S. Y., Xu, F. F., 1997. A Test on the Application of Light Hydrocarbon and Sulfide Gasometry to the Prospecting for Polymetallic Concealed Deposits. Geophysical and Geochemical Exploration, 21(2): 128-138, 127 (in Chinese with English abstract).

[88]

Li, W., Liu, C. H., He, G. W., et al., 2017. The Application of Soil Mercury Survey Method to the Exploration of Concealed Mineral Resources in Yingnao, Yudu Area. Geophysical and Geochemical Exploration, 41(5): 840-845 (in Chinese with English abstract).

[89]

Lin, C. G., Cheng, Z. Z., Chen, X., et al., 2021. Application of Multi⁃Component Gas Geochemical Survey for Deep Mineral Exploration in Covered Areas. Journal of Geochemical Exploration, 220: 106656. https://doi.org/10.1016/j.gexplo.2020.106656

[90]

Lintern, M. J., Noble, R. R. P., Reid, N., et al., 2013. Metal Migration at the North Miitel Ni Sulphide Deposit in the Southern Yilgarn Craton: Part 2, Vegetation and Organic Soil. Geochemistry: Exploration, Environment, Analysis, 13(2): 87-98. https://doi.org/10.1144/geochem2012⁃133

[91]

Liu, H. B., Han, J., Shi, X., et al., 2023. Application Study of Gas Geochemical Survey Method in the Exploration of Zaohuohao Sandstone Type Uranium Deposit. Uranium Geology, 39(2): 287-301 (in Chinese with English abstract).

[92]

Liu, H. L., Zhang, B. M., Wang, X. Q., et al., 2021. The Application of Deep⁃Penetrating Geochemistry in the Arid Gobi Desert Terrain: A Case Study in the Huaniushan Pb⁃Zn Deposit, Gansu Province. Acta Geoscientica Sinica, 42(4): 545-554 (in Chinese with English abstract).

[93]

Liu, H. T., Liu, J. M., Yu, C. M., et al., 2006. Integrated Geological and Geophysical Exploration for Concealed Ores beneath Cover in the Chaihulanzi Goldfield, Northern China. Geophysical Prospecting, 54(5): 605-621. https://doi.org/10.1111/j.1365⁃2478.2006.00553.x

[94]

Liu, Q., Hu, X., Ye, M., et al., 2015. Gas Recognition under Sensor Drift by Using Deep Learning. Int. J. Intell. Syst., 30: 907-922. https://doi.org/10.1002/int.21731

[95]

Liu, Q. Y., 1988. Application of CO2 Gas Geochemical Method in Geological Prospecting. Geology⁃Geochemistry, 16(6): 11-16 (in Chinese with English abstract).

[96]

Lovell, J.S., 1979. Applications of Vapour Geochemistry to Mineral Exploration (Dissertation). University of London, London.

[97]

Lovell, J.S., Hale, M., 1983. Application of Soil Air Carbon Dioxide and Oxygen Measurements to Mineral Exploration. Transactions of the Institution of Mining and Metallurgy Section B. Applied Earth Science, 92: B28-B32.

[98]

Lu, M., Ye, R., Wang, Z. K., et al., 2019. Geogas Prospecting for Buried Deposits under Loess Overburden: Taking Shenjiayao Gold Deposit as an Example. Journal of Geochemical Exploration, 197: 122-129. https://doi.org/10.1016/j.gexplo.2018.11.015

[99]

Luca, P.R.F., 2012. Procesos De Oxidación Química y Bioquímica en Rocas Sulfuro Mineralizadas y Relación con La Generación De Iones Libres y Gases De Hidrocarburos: Aplicacación a La Exploración De Yacimientos Bajo Cobertura (Dissertation). University of Chile, San Diego (in Spanish).

[100]

Lukashev, V. K., 1990. Application of Artificial Sorbents for Testing Gas Seeps on the Seafloor and on Shore. Journal of Geochemical Exploration, 38(1/2): 225-231. https://doi.org/10.1016/0375⁃6742(90)90103⁃H

[101]

Lynam, M. M., Dvonch, J. T., Hall, N. L., et al., 2014. Spatial Patterns in Wet and Dry Deposition of Atmospheric Mercury and Trace Elements in Central Illinois, USA. Environmental Science and Pollution Research, 21(6): 4032-4043. https://doi.org/10.1007/s11356⁃013⁃2011⁃4

[102]

Malmqvist, L., Kristiansson, K., 1984. Experimental Evidence for an Ascending Microflow of Geogas in the Ground. Earth and Planetary Science Letters, 70(2): 407-416. https://doi.org/10.1016/0012⁃821X(84)90024⁃4

[103]

Malmqvist, L., Kristiansson, K., 1985. A Physical Mechanism for the Release of Free Gases in the Lithosphere. Geoexploration, 23(4): 447-453. https://doi.org/10.1016/0016⁃7142(85)90072⁃9

[104]

Malmqvist, L., Kristiansson, K., Kristiansson, P., 1999. Geogas Prospecting-An Ideal Industrial Application of PIXE. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 150(1-4): 484-490. https://doi.org/10.1016/S0168⁃583X(98)01044⁃1

[105]

Martínez, J., Rey, J., Sandoval, S., et al., 2019. Geophysical Prospecting Using ERT and IP Techniques to Locate Galena Veins. Remote Sensing, 11(24): 2923. https://doi.org/10.3390/rs11242923

[106]

McCarthy, J. H., 1972. Mercury Vapor and Other Volatile Components in the Air as Guides to Ore Deposits. Journal of Geochemical Exploration, 1(2): 143-162. https://doi.org/10.1016/0375⁃6742(72)90012⁃X

[107]

McCarthy, J. H., Lambe, R. N., Dietrich, J. A., 1986. A Case Study of Soil Gases as an Exploration Guide in Glaciated Terrain; Crandon Massive Sulfide Deposit, Wisconsin. Economic Geology, 81(2): 408-420. https://doi.org/10.2113/gsecongeo.81.2.408

[108]

McCarthy, J. H., McGuire, E., 1998. Soil Gas Studies along the Carlin Trend, Eureka and Elko Counties, Nevada. In: Tosdal, R.M., ed., Contributions to the Gold Metallogeny of Northern Nevada. U.S. Geological Survey, Washington, D.C., 243-250.

[109]

McCarthy, J. H., Reimer, G. M., 1986. Advances in Soil Gas Geochemical Exploration for Natural Resources: Some Current Examples and Practices. Journal of Geophysical Research: Solid Earth, 91(B12): 12327-12338. https://doi.org/10.1029/JB091iB12p12327

[110]

Menon, R., Sunder Raju, P. V., Reddy, G. K., 2009. Soil⁃Geochemistry, Radiometric and Soil Gas Helium Studies in the Uranium Mineralized Zone of Tumallapalle, Cuddapah Basin, Andhra Pradesh. Journal of the Geological Society of India, 74(1): 23-26. https://doi.org/10.1007/s12594⁃009⁃0099⁃4

[111]

Mulshaw, S. C., 1996. A Critical Evaluation of the Use of Hydrocarbon Gases in Rocks as a Pathfinder for Base⁃Metal Mineralisation in Shannonbridge, Central Ireland. Journal of Geochemical Exploration, 56(3): 265-277. https://doi.org/10.1016/S0375⁃6742(96)00055⁃6

[112]

Muntean, J., Taufen, P., 2011. Geochemical Exploration for Gold through Transported Alluvial Cover in Nevada: Examples from the Cortez Mine. Economic Geology, 106(5): 809-833. https://doi.org/10.2113/econgeo.106.5.809

[113]

Mwenifumbo, C. J., Elliott, B. E., Jefferson, C. W., et al., 2004. Physical Rock Properties from the Athabasca Group: Designing Geophysical Exploration Models for Unconformity Uranium Deposits. Journal of Applied Geophysics, 55(1-2): 117-135. https://doi.org/10.1016/j.jappgeo.2003.06.008

[114]

Noble, R. R. P., Seneshen, D. M., Lintern, M. J., et al., 2018. Soil⁃Gas and Weak Partial Soil Extractions for Nickel Exploration through Transported Cover in Western Australia. Geochemistry: Exploration, Environment, Analysis, 18(1): 31-45. https://doi.org/10.1144/geochem2017⁃026

[115]

Nriagu, J. O., 1979. Geochemical Processes, Water and Sediment Environments. Geochimica et Cosmochimica Acta, 43(11): 1869-1870. https://doi.org/10.1016/0016⁃7037(79)90038⁃3

[116]

Ou, G. X., Chen, A. F., Cui, J. Y., et al., 2000. Uranium Metallogenic Model of Hydrocarbons in Granite⁃Type Uranium Deposits. China Nuclear Science and Technology Report, 577-593 (in Chinese with English abstract).

[117]

Oakes, B.W., 1984. Vapour Geochemical Pathfinders for Oxidizing Sulphide Mineralization beneath Exotic Overburden (Dissertation). University of London, London.

[118]

Oakes, B. W., Hale, M., 1987. Dispersion Patterns of Carbonyl Sulphide above Mineral Deposits. Journal of Geochemical Exploration, 28(1/2/3): 235-249. https://doi.org/10.1016/0375⁃6742(87)90050⁃1

[119]

Ozima, M., Podosek, F.A., 2001. Noble Gas Geochemistry. Cambridge University Press, Cambridge.

[120]

Pauwels, H., Baubron, J. C., Freyssinet, P., et al., 1999. Sorption of Metallic Compounds on Activated Carbon: Application to Exploration for Concealed Deposits in Southern Spain. Journal of Geochemical Exploration, 66(1-2): 115-133. https://doi.org/10.1016/S0375⁃6742(99)00011⁃4

[121]

Pizarro, P.P.I., 2016. Gas⁃Transported Elements as an Exploration Technique under Post⁃Mineral Cover: Atlantida Deposit and Surroundings (Dissertation). University of Chile, San Diego.

[122]

Plet, C., Noble, R. R. P., 2023. Soil Gases in Mineral Exploration: A Review and the Potential for Future Developments. Geochemistry: Exploration, Environment, Analysis, 23(2): 2023-2028. https://doi.org/10.1144/geochem2023⁃008

[123]

Plet, C., Siégel, C., Woltering, M., et al., 2021. Sulfur and CO2 Gases Emitted during Weathering of Sulfides: Role of Microbial Activity and Implications to Exploration through Cover. Ore Geology Reviews, 134: 104167. https://doi.org/10.1016/j.oregeorev.2021.104167

[124]

Polito, P.A., 1999. Exploration Implications Predicted by the Distribution of Carbon⁃Oxygen⁃Hydrogen Gases above and within the Junction Gold Deposit, Kambalda, Western Australia (Dissertation). University of Adelaide, Adelaide.

[125]

Polito, P. A., Bone, Y., Clarke, J. D. A., et al., 2001. Compositional Zoning of Fluid Inclusions in the Archaean Junction Gold Deposit, Western Australia: A Process of Fluid‐Wall‐Rock Interaction? Australian Journal of Earth Sciences, 48(6): 833-855. https://doi.org/10.1046/j.1440⁃0952.2001.00903.x

[126]

Polito, P. A., Clarke, J. D. A., Bone, Y., et al., 2002. A CO2⁃O2⁃Light Hydrocarbon⁃Soil⁃Gas Anomaly above the Junction Orogenic Gold Deposit: A Potential, Alternative Exploration Technique. Geochemistry: Exploration, Environment, Analysis, 2(4): 333-344. https://doi.org/10.1144/1467⁃787302⁃035

[127]

Qian, J. L., Yu, J., Chen, W., et al., 2015. Application of Mercury Gas Measurement in Soil in Lajiu District, Longzi County, Xizang. China Mining Magazine, 24(S2): 92-95 (in Chinese with English abstract).

[128]

Qin, L. Y., Xu, Q. H., Wei, K. L., et al., 2012. Hydrocarbon Component Characteristics of Danchi Tin⁃Polymetallic Ore Belt in Guangxi and Their Metallogenic Indication Significance. Mineral Deposits, 31(1): 111-118 (in Chinese with English abstract).

[129]

Reid, A. R., Rasmussen, J. D., 1990. The Use of Soil⁃Gas CO2 in the Exploration for Sulfide⁃Bearing Breccia Pipes in Northern Arizona. Journal of Geochemical Exploration, 38(1-2): 87-101. https://doi.org/10.1016/0375⁃6742(90)90094⁃Q

[130]

Rich, S.D., 2016. Geochemical Mapping of Porphyry Deposits and Associated Alteration through Transported Overburden (Dissertation). University of British Columbia, Vancouver. https://doi.org/10.14288/1.0307413

[131]

Rose, A. W., Hutter, A. R., Washington, J. W., 1990. Sampling Variability of Radon in Soil Gases. Journal of Geochemical Exploration, 38(1/2): 173-191. https://doi.org/10.1016/0375⁃6742(90)90100⁃O

[132]

Ruan, T., Fei, Q., 2000. Chapter 6 Gas Geochemistry Surveys for Petroleum. Handbook of Exploration Geochemistry, 7: 213-231. https://doi.org/10.1016/S0168⁃6275(00)80030⁃6

[133]

Ruan, T. J., Cheng, J. P., 1991. Hydrogen Stripping of Absorbed Hydrocarbons in Soil Sample—A New Method in Geochemical Exploration for Oil and Gas. Journal of Southeast Asian Earth Sciences, 5(1-4): 5-7. https://doi.org/10.1016/0743⁃9547(91)90003⁃g

[134]

Ruan, T. J., Hale, M., Howarth, R. J., 1985a. Numerical Modelling Experiments in Vapour Geochemistry. II: Vapour Dispersion Patterns and Exploration Implications. Journal of Geochemical Exploration, 23(3): 265-280. https://doi.org/10.1016/0375⁃6742(85)90030⁃5

[135]

Ruan, T. J., Howart, R. J., Hale, M., 1985b. Numerical Modelling Experiments in Vapour Geochemistry—I. Method and FORTRAN Program. Computers & Geosciences, 11(1): 55-67. https://doi.org/10.1016/0098⁃3004(85)90038⁃X

[136]

Rukhlov, A.S., Ootes, L., Hickin, A.S., et al., 2021. Near⁃Surface Mercury Vapour Haloes in Air above Ore Deposits and Faults on Vancouver Island: Insights into Buried Materials in Real⁃Time? In: Geological Fieldwork 2020, British Columbia Ministry of Energy, Mines and Low Carbon Innovation. British Columbia Geological Survey, Victoria.

[137]

Ryall, W. R., 1979. Mercury Distribution in the Woodlawn Massive Sulfide Deposit, New South Wales. Economic Geology, 74(6): 1471-1484. https://doi.org/10.2113/gsecongeo.74.6.1471

[138]

Schodde, R., 2017. Challenges of Exploring Under Deep Cover. AMIRA International’s 11th Biennial Exploration Managers Conference, Healesville.

[139]

Shen, Q. W., Chen, Z. J., Dong, Q. F., et al., 2025. Application of H2S and SO2 Gas Geochemical Measurements in the Pulang Porphyry Copper Deposit, Yunnan Province. Bulletin of Geological Science and Technology, 44(2): 204-213 (in Chinese with English abstract).

[140]

Song, M. C., Wan, G. P., Cao, C. G., et al., 2012. Geophysical⁃Geological Interpretation and Deep⁃Seated Gold Deposit Prospecting in Sanshandong⁃Jiaojia Area, Eastern Shandong Province, China. Acta Geologica Sinica⁃English Edition, 86(3): 640-652. https://doi.org/10.1111/j.1755⁃6724.2012.00692.x

[141]

Sormaz, K., 2014. Application of Soil He Surveys to the Mapping of Underlying Geological Structures in the Dalby Area, Queensland (Dissertation). University of New South Wales, Sydney.https://doi.org/10.26190/unsworks/19205

[142]

Tan, K.H., 2009. Environmental Soil Science (3rd ed.). CRC Press, Boca Raton. https://doi.org/10.1201/9781439895016

[143]

Taylor, C. H., Kesler, S. E., Cloke, P. L., 1982. Sulfur Gases Produced by the Decomposition of Sulfide Minerals: Application to Geochemical Exploration. Journal of Geochemical Exploration, 17(3): 165-185. https://doi.org/10.1016/0375⁃6742(82)90001⁃2

[144]

Thorstenson, D. C., Pollock, D. W., 1989. Gas Transport in Unsaturated Porous Media: The Adequacy of Fick’s Law. Reviews of Geophysics, 27(1): 61-78. https://doi.org/10.1029/RG027i001p00061

[145]

Vàrhegyi, A., Hakl, J., Monnin, M., et al., 1992. Experimental Study of Radon Transport in Water as Test for a Transportation Microbubble Model. Journal of Applied Geophysics, 29(1): 37-46. https://doi.org/10.1016/0926⁃9851(92)90011⁃9

[146]

Virtanen, S., Puustinen, M., Yli⁃Halla, M., 2017. Oxidation of Iron Sulfides in Subsoils of Cultivated Boreal Acid Sulfate Soil Fields⁃Based on Soil Redox Potential and pH Measurements. Geoderma, 308: 252-259. https://doi.org/10.1016/j.geoderma.2017.05.020

[147]

Wan, W., Wang, M. Q., Cheng, Z. Z., et al., 2023. An Experimental Investigation of the CO2 and SO2 Gas Geochemical Survey Method for Mineral Exploration in Forested Areas. Geophysical and Geochemical Exploration, 47(5): 1137-1146 (in Chinese with English abstract).

[148]

Wan, W., Wang, M. Q., Hu, M. Y., et al., 2017. Identification of Metal Sources in Geogas from the Wangjiazhuang Copper Deposit, Shandong, China: Evidence from Lead Isotopes. Journal of Geochemical Exploration, 172: 167-173. https://doi.org/10.1016/j.gexplo.2016.10.008

[149]

Wang, C.M., Li, X.H., Wei, B.L, 1991. Application of Fault Gas Measurement in Seismology. Seismological Press,Beijing (in Chinese with English abstract).

[150]

Wang, K., Ge, X. B., Ning, J. G., et al., 2022. Multidisciplinary Geophysical Investigations over Deep Coal⁃ Bearing Strata: A Case Study in Yangjiazhangzi, Northeast China. Energies, 15(15): 5689. https://doi.org/10.3390/en15155689

[151]

Wang, M. Q., Gao, Y. Y., Liu, Y. H., 2008. Progress in the Collection of Geogas in China. Geochemistry: Exploration, Environment, Analysis, 8(2): 183-190. https://doi.org/10.1144/1467⁃7873/07⁃138

[152]

Wang, X.L., 2023. Response of Deep Soil CO2 Concentration to Rainfall Events (Dissertation). Northwest A&F University, Xi’an (in Chinese with English abstract).

[153]

Whire, D.E., Waring, G.A., 1963. Data of Geochemistry Chapter K, Volcanic Emanations. US Geol. Survey Prof. Paper, D153⁃D161.

[154]

Winkler, R., Ruckerbauer, F., Bunzl, K., 2001. Radon Concentration in Soil Gas: A Comparison of the Variability Resulting from Different Methods, Spatial Heterogeneity and Seasonal Fluctuations. Science of the Total Environment, 272(1-3): 273-282. https://doi.org/10.1016/S0048⁃9697(01)00704⁃5

[155]

Wu, Z. H., Jin, Y. F., Gu, P., 1996. Principles of Geogas Survey and Its Applicationin Geological Exploration. Geophysical and Geochemical Exploration, 20(4): 259-264 (in Chinese with English abstract).

[156]

Wu, Z. H., Jin, Y. F., Guo, Y. J., et al., 1995. A Study of Application of Geogas Survey in Yexian⁃Dengxian⁃ Nanzhang Geoscience Profile. Acta Petrologica Sinica, 11(3): 333-342 (in Chinese with English abstract).

[157]

Xiang, R.J., Shi, C.Z., Feng, Z.X., 1991. Advances in Crust and Upper Mantle Research. Seismological Press, Beijing (in Chinese).

[158]

Xie, X. J., Wang, X. Q., Xu, L., et al., 1999. Orientation Study of Strategic Deep Penetration Geochemical Methods in the Central Kyzylkum Desert Terrain, Uzbekistan. Journal of Geochemical Exploration, 66(1-2): 135-143. https://doi.org/10.1016/S0375⁃6742(99)00024⁃2

[159]

Xu, L. S., 1999. Helium Survey and Its Significance in Geological Prospecting. Hunan Geology, (4): 264-268 (in Chinese with English abstract).

[160]

Xu, Q. D., Zhang, X. J., Shang, H. S., et al., 2012. New Approach of Integrated Geological Prospection in Covered Areas: A Case Study from Northwestern Xilinguole, Inner Mongolia. Earth Science, 37(6): 1252-1258 (in Chinese with English abstract).

[161]

Xu, Q. H., Chen, Y. R., Jia, G. X., et al., 2007. Application of Hydrocarbons in Metallogenic and Mineral Resource Exploration Research. Acta Petrologica Sinica, 23(10): 2623-2638 (in Chinese with English abstract).

[162]

Xu, Y. C., Shen, P., Tao, M. X., et al., 1991. Industrial Accumulation of Mantle Source Helium and the Tanchenglujiang Fracture Zone. Chinese Science Bulletin, 36(6): 494-498.

[163]

Yan, G.X., 2021. Study on the Variation Law of Radon Concentration in Soil in a Uranium Exploration Area (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).

[164]

Yang, Y. F., Lv, L. D., Qiu, S. K., et al., 2022. Study on the Influence of Sampling Methods for Measuring Soil Radon Exhalation Rates. Radiation Measurements, 159: 106880. https://doi.org/10.1016/j.radmeas.2022.106880

[165]

Yin, B. C., 1997. Integrated Geochemical Gas Survey. Geophysical and Geochemical Exploration, 21(4): 241-246 (in Chinese with English abstract).

[166]

Yin, Y., Xu, W. S., 1991. Distribution and Genesis of CO2 Anomalies in the Caijiaying Lead⁃Zinc Ore District. Geophysical and Geochemical Exploration, 15(6): 453-458 (in Chinese with English abstract).

[167]

You, Y. F., Zhou, Q. R., 1992. Research and Application of the Instantaneous Measurement Technique of CO2 in Soilgas for Locating Gold Orebodies. Uranium Geology, 8(3): 174-177 (in Chinese with English abstract).

[168]

Zhang, J., Cheng, Z. Z., Lun, Z. Y., et al., 2016. Soil Air Carbon Dioxide, Sulphur Dioxide and Hydrogen Sulfide Measurements as a Guide to Concealed Mineralization. Geological Science and Technology Information, 35(4): 12-17 (in Chinese with English abstract).

[169]

Zhang, M. T., 1983. Sulfur Dioxide Gas Measurement Prospecting Method. Geology of Chemical Minerals, 5(1): 72-73 (in Chinese with English abstract).

[170]

Zhang, W.Y., 2016. Study on the Prospecting Model for Concealed Polymetallic Ore Using Ground Gas Method (Dissertation). Chengdu University of Technology,Chengdu (in Chinese with English abstract).

[171]

Zhang, X., 2015. The Formation Conditions and Resource Estimation of Natural Gas and Helium in the Weihe Basin (Dissertation). Chang’an University, Xi’an (in Chinese with English abstract).

[172]

Zhang, Z. M., 1981. Research and Application of Mercury Vapor Halo. Geophysical and Geochemical Exploration, 5(6): 375-380 (in Chinese with English abstract).

[173]

Zhi, C., Zhang, Y. C., Chen, Y. F., 2022. Experiment of Mercury Gas Measurement in Deep Prospecting of Hucun Village Copper⁃Molybdenum Deposit, Tongling Ore Concentration Area. Journal of Geology, 46(3): 313-319 (in Chinese with English abstract).

[174]

Zhou, S. C., Wang, D. H., Liu, X. H., et al., 2023. Technical Methods for Integrated Geogas Survey and Their Applications in the Exploration of Pegmatite⁃Type Rare Metal Deposits. Geophysical and Geochemical Exploration, 47(6): 1627-1634 (in Chinese with English abstract).

基金资助

地球深部探测与矿产资源勘查国家科技重大专项(2025ZD1005904)

西藏自治区科技计划(XZ202401ZY0026)

AI Summary AI Mindmap
PDF (5262KB)

24

访问

0

被引

详细

导航
相关文章

AI思维导图

/