气体地球化学勘查研究进展与展望
李高鑫 , 陈鑫 , 郑有业 , 高顺宝 , 林成贵 , 薛兆龙 , 姜晓佳
地球科学 ›› 2025, Vol. 50 ›› Issue (11) : 4473 -4498.
气体地球化学勘查研究进展与展望
Research Progress and Prospects of Gas Geochemical Exploration
,
随着我国矿产勘查程度持续提高,覆盖区隐伏矿床勘查已成为未来重要方向.系统回顾了以气体为勘查介质在覆盖区找矿的研究进展,分析了与矿化相关气体用于勘查的原理、特征、来源及运移机制,总结了环境因素对其运移与富集的影响.针对不同类型的气体(CO₂、烃类气体、含硫气体、惰性气体Rn、He及Hg),归纳了其在矿产勘查中的应用特征及面临的挑战,提出了多种气体联合测量在金属硫化物矿床勘查方面的优势.尽管气体地球化学方法在找矿实践中成效显著,但各类气体的成因机制、运移规律及其影响因素仍需深入研究,相关理论体系有待完善.同时,亟需构建涵盖气体地球化学异常检测、识别、追踪与评价的综合体系,以提升该方法的普适性和有效性.
As mineral exploration in China continues to advance, the search for concealed deposits in covered areas has become a crucial future direction. In this paper it systematically reviews the research progress in using gases as prospecting media for mineral exploration in covered terrains. It analyzes the principles, characteristics, sources, and migration mechanisms of mineralization-related gases used in exploration, summarizes the influence of environmental factors on their migration and enrichment. For different types of gases (such as CO₂, hydrocarbon gases, sulfur-bearing gases, inert gases Rn and He, and mercury vapor (Hg)), it summarizes their application characteristics and challenges in mineral exploration, highlighting the advantages of multi-gas joint surveys specifically for metallic sulfide deposits. Although gas geochemical methods have demonstrated significant effectiveness in exploration practice, the genetic mechanisms, migration patterns, and influencing factors of various gases require further in-depth research, and the related theoretical framework needs refinement. Concurrently, there is an urgent need to establish a comprehensive system encompassing the detection, identification, tracing, and evaluation of gas geochemical anomalies to enhance the applicability and effectiveness of this method.
覆盖区 / 隐伏矿床勘查 / 气体运移机制 / 含硫气体找矿 / 问题与展望 / 地球化学.
covered area / exploration of concealed ore deposits / mechanism of gas migration / sulfurous gas prospecting / problems and prospects / geochemistry
| [1] |
Ahmadi, N., Heck, K., Rolle, M., et al., 2021. On Multicomponent Gas Diffusion and Coupling Concepts for Porous Media and Free Flow: A Benchmark Study. Computational Geosciences, 25(5): 1493-1507. https://doi.org/10.1007/s10596⁃021⁃10057⁃y |
| [2] |
Alonso, E. E., Gens, A., Delahaye, C. H., 2003. Influence of Rainfall on the Deformation and Stability of a Slope in Overconsolidated Clays: A Case Study. Hydrogeology Journal, 11(1): 174-192. https://doi.org/10.1007/s10040⁃002⁃0245⁃1 |
| [3] |
Alpers, C. N., Dettman, D. L., Lohmann, K. C., et al., 1990. Stable Isotopes of Carbon Dioxide in Soil Gas over Massive Sulfide Mineralization at Crandon, Wisconsin. Journal of Geochemical Exploration, 38(1/2): 69-86. https://doi.org/10.1016/0375⁃6742(90)90093⁃P |
| [4] |
Amali, S., Rolston, D. E., 1993. Theoretical Investigation of Multicomponent Volatile Organic Vapor Diffusion: Steady⁃State Fluxes. Journal of Environmental Quality, 22(4): 825-831. https://doi.org/10.2134/jeq1993.00472425002200040027x |
| [5] |
Anand, R. R., Aspandiar, M. F., Noble, R. R. P., 2016. A Review of Metal Transfer Mechanisms through Transported Cover with Emphasis on the Vadose Zone within the Australian Regolith. Ore Geology Reviews, 73: 394-416. https://doi.org/10.1016/j.oregeorev.2015.06.018 |
| [6] |
Arias, J., Lowell, J., Hale, M., 1982. Development and Application of Vapour Geochemistry Techniques to Minerals Exploration in Overburden Covered Areas of Northern Chile. Revista Geologica de Chile, 16: 23-80. |
| [7] |
Arias, J.A., Hale, M., Webb, J.S., 1979. Vapour Dispersion of Mercury and Radon at Cachinal, Northern Chile. Revista Geologica de Chile, 8: 3-12. |
| [8] |
Ball, T. K., Crow, M. J., Laffoley, N., et al., 1990. Application of Soil⁃Gas Geochemistry to Mineral Exploration in Africa. Journal of Geochemical Exploration, 38(1-2): 103-115. https://doi.org/10.1016/0375⁃6742(90)90095⁃R |
| [9] |
Bellingrath⁃Kimura, S. D., Kishimoto⁃Mo, A. W., Oura, N., et al., 2015. Differences in the Spatial Variability among CO2, CH4, and N2O Gas Fluxes from an Urban Forest Soil in Japan. AMBIO, 44(1): 55-66. https://doi.org/10.1007/s13280⁃014⁃0521⁃z |
| [10] |
Ben⁃Noah, I., Friedman, S. P., Berkowitz, B., 2023. Dynamics of Air Flow in Partially Water⁃Saturated Porous Media. Reviews of Geophysics, 61(2): e2022RG000798. https://doi.org/10.1029/2022RG000798 |
| [11] |
Bloom, A. A., Palmer, P. I., Fraser, A., et al., 2012. Seasonal Variability of Tropical Wetland CH4 Emissions: The Role of the Methanogen⁃Available Carbon Pool. Biogeosciences, 9(8): 2821-2830. https://doi.org/10.5194/bg⁃9⁃2821⁃2012 |
| [12] |
Bradshaw, P.M.D., 2015. Barringer, Back to the Future: Airborne Geochemistry and Many Related Topics. Association of Applied Geochemists, Nepean. |
| [13] |
Brown, A., 2000. Evaluation of Possible Gas Microseepage Mechanisms. AAPG Bulletin, 84: 1775-1789. https://doi.org/10.1306/8626c389⁃173b⁃11d7⁃8645000102c1865d |
| [14] |
Butt, C. R. M., Gole, M. J., 1985. Helium in Soil and Overburden Gas as an Exploration Pathfinder—An Assessment. Journal of Geochemical Exploration, 24(2): 141-173. https://doi.org/10.1016/0375⁃6742(85)90043⁃3 |
| [15] |
Butt, C. R. M., Gole, M. J., Dyck, W., 2000. Chapter 10 Helium. Geochemical Remote Sensing of the Sub⁃ Surface. Elsevier, Amsterdam, 303-352. https://doi.org/10.1016/s0168⁃6275(00)80034⁃3 |
| [16] |
Cameron, E. M., Hamilton, S. M., Leybourne, M. I., et al., 2004. Finding Deeply Buried Deposits Using Geochemistry. Geochemistry: Exploration, Environment, Analysis, 4(1): 7-32. https://doi.org/10.1144/1467⁃7873/03⁃019 |
| [17] |
Cao, J. J., 2011. Migration Mechanisms of Gold Nanoparticles Explored in Geogas of the Hetai Ore District, Southern China. Geochemical Journal, 45(3): e9-e13. https://doi.org/10.2343/geochemj.1.0128 |
| [18] |
Cao, J. J., Hu, R. Z., Liang, Z. R., et al., 2009. TEM Observation of Geogas⁃Carried Particles from the Changkeng Concealed Gold Deposit, Guangdong Province, South China. Journal of Geochemical Exploration, 101(3): 247-253. https://doi.org/10.1016/j.gexplo.2008.09.001 |
| [19] |
Cao, J. J., Hu, X. Y., Jiang, Z. T., et al., 2010a. Simulation of Adsorption of Gold Nanoparticles Carried by Gas Ascending from the Earth’s Interior in Alluvial Cover of the Middle⁃Lower Reaches of the Yangtze River. Geofluids, 10(3): 438-446. https://doi.org/10.1111/j.1468⁃8123.2010.00287.x |
| [20] |
Cao, J. J., Liu, C., Xiong, Z. H., et al., 2010b. Particles Carried by Ascending Gas Flow at the Tongchanghe Copper Mine, Guizhou Province, China. Science China Earth Sciences, 53(11): 1647-1654. https://doi.org/10.1007/s11430⁃010⁃4115⁃8 |
| [21] |
Cao, J. J., Li, Y. K., Jiang, T., et al., 2015. Sulfur⁃ Containing Particles Emitted by Concealed Sulfide Ore Deposits: An Unknown Source of Sulfur⁃Containing Particles in the Atmosphere. Atmospheric Chemistry and Physics, 15(12): 6959-6969. https://doi.org/10.5194/acp⁃15⁃6959⁃2015 |
| [22] |
Carr, G. R., Wilmshurst, J. R., 2000. Chapter 12 Mercury. Geochemical Remote Sensing of the Sub⁃Surface. Elsevier, Amsterdam, 395-437. https://doi.org/10.1016/s0168⁃6275(00)80036⁃7 |
| [23] |
Carter, J. S., Cazalet, P. C. D., Ferguson, J., 1988. Light Hydrocarbon Gases and Mineralization. Mineral Deposits within the European Community. Springer, Berlin, 406-427. https://doi.org/10.1007/978⁃3⁃642⁃51858⁃4_22 |
| [24] |
Chang, F. C., 1989. The Effects of the Soil Low⁃Temperature Adsorbed Mercury Survey Method in Prospecting. Journal of Guilin University of Technology, 9(3): 311-318 (in Chinese with English abstract). |
| [25] |
Christophersen, M., Kjeldsen, P., 2001. Lateral Gas Transport in Soil Adjacent to an Old Landfill: Factors Governing Gas Migration. Waste Management & Research, 19(2): 144-159. https://doi.org/10.1177/0734242X0101900206 |
| [26] |
Ciotoli, G., Lombardi, S., Annunziatellis, A., 2007. Geostatistical Analysis of Soil Gas Data in a High Seismic Intermontane Basin: Fucino Plain, Central Italy. Journal of Geophysical Research: Solid Earth, 112(B5): 2005JB004044. https://doi.org/10.1029/2005JB004044 |
| [27] |
Cohen, D. R., Kelley, D. L., Anand, R., et al., 2010. Major Advances in Exploration Geochemistry, 1998-2007. Geochemistry: Exploration, Environment, Analysis, 10(1): 3-16. https://doi.org/10.1144/1467⁃7873/09⁃215 |
| [28] |
Delahaye, C. H., Alonso, E. E., 2002. Soil Heterogeneity and Preferential Paths for Gas Migration. Engineering Geology, 64(2-3): 251-271. https://doi.org/10.1016/S0013⁃7952(01)00104⁃1 |
| [29] |
Dentith, M. C., Mudge, S. T., 2014. Geophysics for the Mineral Exploration Geoscientist. Cambridge University Press, Cambridge. |
| [30] |
Disnar, J. R., 1990. Volatile Hydrocarbons in Ba⁃Zn⁃Pb Ore Genesis: Analysis and Use in Mineral Exploration. Journal of Geochemical Exploration, 38(1/2): 205-224. https://doi.org/10.1016/0375⁃6742(90)90102⁃G |
| [31] |
Disnar, J. R., Gauthier, B., 1988. Exploration for Concealed Orebodies by the Analysis of Volatile Organic Compounds Contained in Surface Rocks: Trèves Zn⁃Pb Deposit (Gard, France). Journal of Geochemical Exploration, 30(1-3): 179-196. https://doi.org/10.1016/0375⁃6742(88)90058⁃1 |
| [32] |
Dou, X. F., Zheng, Y. Y., Zheng, S. L., et al., 2024. Advanced Soil⁃Gas Geochemical Exploration Methods for Orogenic Gold Deposits: A Case Study of Chalapu Deposit, Xizang. Ore Geology Reviews, 173: 106226. https://doi.org/10.1016/j.oregeorev.2024.106226 |
| [33] |
Du, L. T., 2006. The Five Gas⁃Spheres of the Earth and Natural Gasexploitation from Middle Crust. Natural Gas Geoscience, 17(1): 25-30, 35 (in Chinese with English abstract). |
| [34] |
Dyck, W., Jonasson, I. R., 1977. The Nature and Behavior of Gases in Natural Waters. Water Research, 11(8): 705-711. https://doi.org/10.1016/0043⁃1354(77)90111⁃7 |
| [35] |
Dyck, W., Jonasson, I. R., 2000. Chapter 12 Radon. Handbook of Exploration Geochemistry, 7: 353-394. https://doi.org/10.1016/S0168⁃6275(00)80035⁃5 |
| [36] |
Etiope, G., Martinelli, G., 2002. Migration of Carrier and Trace Gases in the Geosphere: An Overview. Physics of the Earth and Planetary Interiors, 129(3/4): 185-204. https://doi.org/10.1016/S0031⁃9201(01)00292⁃8 |
| [37] |
Etiope, G., Sherwood, B. L., 2013. Abiotic Methane on Earth. Reviews of Geophysics, 51(2): 276-299. https://doi.org/10.1002/rog.20011 |
| [38] |
Fen, C. S., Lin, Y. R., Chen, C. Y., et al., 2021. Methane Transport in a Soil Column: Experimental and Modeling Investigation. Environmental Engineering Research, 26(5): 200311. https://doi.org/10.4491/eer.2020.311 |
| [39] |
Feng, X. B., Yan, H. Y., Wang, S. F., et al., 2004. Seasonal Variation of Gaseous Mercury Exchange Rate between Air and Water Surface over Baihua Reservoir, Guizhou, China. Atmospheric Environment, 38(28): 4721-4732. https://doi.org/10.1016/j.atmosenv.2004.05.023 |
| [40] |
Fu, X. W., Feng, X. B., Wan, Q., et al., 2010. Probing Hg Evasion from Surface Waters of Two Chinese Hyper/Meso⁃Eutrophic Reservoirs. Science of the Total Environment, 408(23): 5887-5896. https://doi.org/10.1016/j.scitotenv.2010.08.001 |
| [41] |
Fursov, V. Z., 1990. Mercury Vapor Surveys: Technique and Results. Journal of Geochemical Exploration, 38(1/2): 145-155. https://doi.org/10.1016/0375⁃6742(90)90098⁃U |
| [42] |
Gal, F., Joublin, F., Haas, H., et al., 2011. Soil Gas (222Rn, CO2, 4He) Behaviour over a Natural CO2 Accumulation, Montmiral Area (Drôme, France): Geographical, Geological and Temporal Relationships. Journal of Environmental Radioactivity, 102(2): 107-118. https://doi.org/10.1016/j.jenvrad.2010.10.010 |
| [43] |
Gan, J., Li, H., He, Z. W., et al., 2022. Application and Significance of Geological, Geochemical, and Geophysical Methods in the Nanpo Gold Field in Laos. Minerals, 12(1): 96. https://doi.org/10.3390/min12010096 |
| [44] |
Goodman, S., 1987. The Relationship between Light Hydrocarbons and Carbonate Petrology—A Study from the Mendip Hills. Geological Journal, 22(4): 371-382. https://doi.org/10.1002/gj.3350220408 |
| [45] |
Gougoulias, C., Clark, J. M., Shaw, L. J., 2014. The Role of Soil Microbes in the Global Carbon Cycle: Tracking the Below⁃Ground Microbial Processing of Plant⁃Derived Carbon for Manipulating Carbon Dynamics in Agricultural Systems. Journal of the Science of Food and Agriculture, 94(12): 2362-2371. https://doi.org/10.1002/jsfa.6577 |
| [46] |
Govett, G. J. S., 1976. Detection of Deeply Buried and Blind Sulphide Deposits by Measurement of H+ and Conductivity of Closely Spaced Surface Soil Samples. Journal of Geochemical Exploration, 6(1/2): 359-382. https://doi.org/10.1016/0375⁃6742(76)90024⁃8 |
| [47] |
Govett, G. J. S., Atherden, P. R., 1987. Electrogeochemical Patterns in Surface Soils⁃Detection of Blind Mineralization beneath Exotic Cover, Thalanga, Queensland, Australia. Journal of Geochemical Exploration, 28(1/2/3): 201-218. https://doi.org/10.1016/0375⁃6742(87)90048⁃3 |
| [48] |
Green, C. T., Walvoord, M. A., Andraski, B. J., et al., 2015. Multimodel Analysis of Anisotropic Diffusive Tracer⁃Gas Transport in a Deep Arid Unsaturated Zone. Water Resources Research, 51(8): 6052-6073. https://doi.org/10.1002/2014WR016055 |
| [49] |
Guan, Z.N., 2005. Geomagnetic Field and Magnetic Prospecting. Geological Publishing House, Beijing (in Chinese). |
| [50] |
Hale, M., 2010. Gas Geochemistry and Deeply Buried Mineral Deposits: The Contribution of the Applied Geochemistry Research Group, Imperial College of Science and Technology, London. Geochemistry, 10(3): 261-267. https://doi.org/10.1144/1467⁃7873/09⁃236 |
| [51] |
Hale, M., 2000. Chapter 1 Genesis, Behaviour and Detection of Gases in the Crust. Handbook of Exploration Geochemistry, 7: 3-15. https://doi.org/10.1016/s0168⁃6275(00)80025⁃2 |
| [52] |
Hamilton, S. M., 2000. Chapter 3 Spontaneous Potentials and Electrochemical Cells. In: Govett, G.J.S., ed., Geochemical Remote Sensing of the Sub⁃Surface. Elsevier, Amsterdam, 81-119. https://doi.org/10.1016/s0168⁃6275(00)80027⁃6 |
| [53] |
Hamilton, S. M., Cameron, E. M., McClenaghan, M. B., et al., 2004a. Redox, pH and SP Variation over Mineralization in Thick Glacial Overburden. Part I: Methodologies and Field Investigation Atthe Marsh Zone Gold Property. Geochemistry: Exploration, Environment, Analysis, 4(1): 33-44. https://doi.org/10.1144/1467⁃7873/03⁃020 |
| [54] |
Hamilton, S. M., Cameron, E. M., McClenaghan, M. B., et al., 2004b. Redox, pH and SP Variation over Mineralization in Thick Glacial Overburden. Part II: Field Investigation at Cross Lake VMS Property. Geochemistry: Exploration, Environment, Analysis, 4(1): 45-58. https://doi.org/10.1144/1467⁃7873/03⁃021 |
| [55] |
Han, X., Li, Y., Du, J., et al., 2014. Rn and CO2 Geochemistry of Soil Gas across the Active Fault Zones in the Capital Area of China. Natural Hazards and Earth System Sciences, 14(10): 2803-2815. https://doi.org/10.5194/nhess⁃14⁃2803⁃2014. |
| [56] |
He, W., 2012. Study on the Genesis Mechanism and Distribution Prediction of Mercury in Natural Gas (Dissertation). China University of Geosciences (Beijing), Beijing (in Chinese with English abstract). |
| [57] |
Hibi, Y., 2008. Formulation of a Dusty Gas Model for Multi⁃Component Diffusion in the Gas Phase of Soil. Soils and Foundations, 48(3): 419-432. https://doi.org/10.3208/sandf.48.419 |
| [58] |
Hibi, Y., Fujinawa, K., Nishizaki, S., et al., 2010. Investigation for Necessity of Dispersivity and Tortuosity in the Dusty Gas Model for a Binary Gas System in Soil. Soils and Foundations, 50(1): 143-159. https://doi.org/10.3208/sandf.50.143 |
| [59] |
Highsmith, P., 2004. Overview of Soil Gas Theory. The Association of Applied Geochemists Quarterly Newsletter Explore, 122: 1-15. |
| [60] |
Hinkle, M. E., 1994. Environmental Conditions Affecting Concentrations of He, CO2, O2 and N2 in Soil Gases. Applied Geochemistry, 9(1): 53-63. https://doi.org/10.1016/0883⁃2927(94)90052⁃3 |
| [61] |
Hinkle, M. E., Dennen, K. O., 1989. Tabulation of Meteorological Variables and Concentrations of Helium, Carbon Dioxide, Oxygen, and Nitrogen in Soil Gases Collected Regularly from a Site at Reston, Virginia, for One Year. U.S. Geological Survey, Washington, D.C.. https://doi.org/10.3133/ofr8910 |
| [62] |
Hinkle, M. E., Dilbert, C. A., 1984. Gases and Trace Elements in Soils at the North Silver Bell Deposit, Pima County, Arizona. Journal of Geochemical Exploration, 20(3): 323-336. https://doi.org/10.1016/0375⁃6742(84)90074⁃8 |
| [63] |
Hinkle, M. E., Ryder, J. L., 1987. Effect of Moisture and Carbon Dioxide on Concentrations of Helium in Soils and Soil Gases. Journal of Geophysical Research: Solid Earth, 92(B12): 12587-12594. https://doi.org/10.1029/JB092iB12p12587 |
| [64] |
Hinkle, M. E., Ryder, J. L., Sutley, S. J., et al., 1990. Production of Sulfur Gases and Carbon Dioxide by Synthetic Weathering of Crushed Drill Cores from the Santa Cruz Porphyry Copper Deposit near Casa Grande, Pinal County, Arizona. Journal of Geochemical Exploration, 38(1-2): 43-67. https://doi.org/10.1016/0375⁃6742(90)90092⁃O |
| [65] |
Hinkle, M.E., Kantor, J.A., 1978. Collection and Analysis of Soil Gases Emanating from Buried Sulfide Mineralization, Johnson Camp Area, Cochise County, Arizona. Journal of Geochemical Exploration, 9: 209-216. |
| [66] |
Hinkle, M. E., Lovell, J. S., 2000. Chapter 8 Sulphur Gases. Geochemical Remote Sensing of the Sub⁃Surface. Elsevier, Amsterdam, 249-289. https://doi.org/10.1016/s0168⁃6275(00)80032⁃x |
| [67] |
Hinze, W. J., von Frese, R. R. B., 1990. Magnetics in Geoexploration. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, 99(4): 515-547. https://doi.org/10.1007/BF02840315 |
| [68] |
Hu, G., Cao, J. J., Hopke, P. K., et al., 2015. Study of Carbon⁃Bearing Particles in Ascending Geogas Flows in the Dongshengmiao Polymetallic Pyrite Deposit, Inner Mongolia, China. Resource Geology, 65(1): 13-26. https://doi.org/10.1111/rge.12055 |
| [69] |
Hu, G. L., Tian, J. J., Lai, W. M., et al., 1980. Migration and Transformation of Mercury and Formation of Mercury Gas Anomaly in Soil. Geology and Prospecting, 16(12): 55-60 (in Chinese with English abstract). |
| [70] |
Hu, Z., 2000. Chapter 13 Discrimination of Mercury Anomalies. Handbook of Exploration Geochemistry, 7: 439-450. https://doi.org 10.1016/S0168⁃6275(00)80037⁃9 |
| [71] |
Hutter, A. R., Knutson, E. O., 1998. An International Intercomparison of Soil Gas Radon and Radon Exhalation Measurements. Health Physics, 74(1): 108-114. https://doi.org/10.1097/00004032⁃199801000⁃00014 |
| [72] |
Jia, G.X., 2009. Research and Application of Geochemical Techniques for Radon Gas Exploration (Dissertaiton). Kunming University of Science and Technology, Kunming (in Chinese with English abstract). |
| [73] |
Jiang, T., Liu, G. A., Wu, J. Y., et al., 2018. Analysis of Prospecting Potential of Deep Uranium Deposits in an Uranium Exploration Area of North Guangdong Province. Geology and Exploration, 54(1): 52-58 (in Chinese with English abstract). |
| [74] |
Jiang, Y. Y., Liu, Q. Y., Li, J. J., et al., 1984. Helium Survey-Its Applicaion to Geological Mapping and Energy Exploration. Geophysical and Geochemical Exploration, 8(6): 321-331 (in Chinese with English abstract). |
| [75] |
Jin, J., Hu, Z. Q., Sun, X. L., et al., 1989. Geochemical Exploration in Thick Transported Overburden, Eastern China. Journal of Geochemical Exploration, 33(1/2/3): 155-169. https://doi.org/10.1016/0375⁃6742(89)90026⁃5 |
| [76] |
Kahma, A., Nurmi, A., Mattsson, P., 1975. On the Composition of the Gases Generated by Sulphide⁃ Bearing Boulders during Weathering and on the Ability of Prospecting Dogs to Detect Samples Treated with These Gases in the Terrain. Geological Survey of Finland, Espoo. |
| [77] |
Klusman, R. W., 2009. Transport of Ultratrace Reduced Gases and Particulate, Near⁃Surface Oxidation, Metal Deposition and Adsorption. Geochemistry: Exploration, Environment, Analysis, 9(3): 203-213. https://doi.org/10.1144/1467⁃7873/09⁃192 |
| [78] |
Klusman, R. W., Jaacks, J. A., 1987. Environmental Influences Upon Mercury, Radon and Helium Concentrations in Soil Gases at a Site near Denver, Colorado. Journal of Geochemical Exploration, 27(1/2): 259-280. https://doi.org/10.1016/0375⁃6742(87)90023⁃9 |
| [79] |
Klusman, R. W., Leopold, M. E., LeRoy, M. P., 2000. Seasonal Variation in Methane Fluxes from Sedimentary Basins to the Atmosphere: Results from Chamber Measurements and Modeling of Transport from Deep Sources. Journal of Geophysical Research: Atmospheres, 105(D20): 24661-24670. https://doi.org/10.1029/2000JD900407 |
| [80] |
Kristiansson, K., Malmqvist, L., 1982. Evidence for Nondiffusive Transport of 86Rn in the Ground and a New Physical Model for the Transport. Geophysics, 47(10): 1444-1452. https://doi.org/10.1190/1.1441293 |
| [81] |
Kristiansson, K., Malmqvist, L., 1987. Trace Elements in the Geogas and Their Relation to Bedrock Composition. Geoexploration, 24(6): 517-534. https://doi.org/10.1016/0016⁃7142(87)90019⁃6 |
| [82] |
Kristiansson, K., Malmqvist, L., Persson, W., 1990. Geogas Prospecting: A New Tool in the Search for Concealed Mineralizations. Endeavour, 14(1): 28-33. https://doi.org/10.1016/S0160⁃9327(05)80049⁃3 |
| [83] |
Kromer, E., Friedrich, G., Wallner, P., 1981. Mercury and Mercury Compounds in Surface Air, Soil Gas, Soils and Rocks. Journal of Geochemical Exploration, 15(1-3): 51-62. https://doi.org/10.1016/0375⁃6742(81)90055⁃8 |
| [84] |
Lett, R.E., Sacco, D.A., Elder, B., 2020a. Real⁃Time Detection of Bedrock Mineralization and Geological Faults beneath Glacial Deposits in Central British Columbia Using Onsite Soil Gas Carbon Dioxide and Oxygen Analysis by Electronic Gas Sensors (NTS 093A/58, 093G/03). Geoscience BC, Vancouver. |
| [85] |
Lett, R.E., Sacco, D.A., Elder, B., 2020b. Real⁃Time Analysis of Soil Gas for Carbon Dioxide and Oxygen to Identify Bedrock Mineralization and Geological Faults beneath Glacial Deposits in Central British Columbia. Geoscience BC, Vancouver. |
| [86] |
Li, S.B., 2020. Development of a Rapid Radon Measurement Instrument for RaA in Soil (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract). |
| [87] |
Li, S. Y., Xu, F. F., 1997. A Test on the Application of Light Hydrocarbon and Sulfide Gasometry to the Prospecting for Polymetallic Concealed Deposits. Geophysical and Geochemical Exploration, 21(2): 128-138, 127 (in Chinese with English abstract). |
| [88] |
Li, W., Liu, C. H., He, G. W., et al., 2017. The Application of Soil Mercury Survey Method to the Exploration of Concealed Mineral Resources in Yingnao, Yudu Area. Geophysical and Geochemical Exploration, 41(5): 840-845 (in Chinese with English abstract). |
| [89] |
Lin, C. G., Cheng, Z. Z., Chen, X., et al., 2021. Application of Multi⁃Component Gas Geochemical Survey for Deep Mineral Exploration in Covered Areas. Journal of Geochemical Exploration, 220: 106656. https://doi.org/10.1016/j.gexplo.2020.106656 |
| [90] |
Lintern, M. J., Noble, R. R. P., Reid, N., et al., 2013. Metal Migration at the North Miitel Ni Sulphide Deposit in the Southern Yilgarn Craton: Part 2, Vegetation and Organic Soil. Geochemistry: Exploration, Environment, Analysis, 13(2): 87-98. https://doi.org/10.1144/geochem2012⁃133 |
| [91] |
Liu, H. B., Han, J., Shi, X., et al., 2023. Application Study of Gas Geochemical Survey Method in the Exploration of Zaohuohao Sandstone Type Uranium Deposit. Uranium Geology, 39(2): 287-301 (in Chinese with English abstract). |
| [92] |
Liu, H. L., Zhang, B. M., Wang, X. Q., et al., 2021. The Application of Deep⁃Penetrating Geochemistry in the Arid Gobi Desert Terrain: A Case Study in the Huaniushan Pb⁃Zn Deposit, Gansu Province. Acta Geoscientica Sinica, 42(4): 545-554 (in Chinese with English abstract). |
| [93] |
Liu, H. T., Liu, J. M., Yu, C. M., et al., 2006. Integrated Geological and Geophysical Exploration for Concealed Ores beneath Cover in the Chaihulanzi Goldfield, Northern China. Geophysical Prospecting, 54(5): 605-621. https://doi.org/10.1111/j.1365⁃2478.2006.00553.x |
| [94] |
Liu, Q., Hu, X., Ye, M., et al., 2015. Gas Recognition under Sensor Drift by Using Deep Learning. Int. J. Intell. Syst., 30: 907-922. https://doi.org/10.1002/int.21731 |
| [95] |
Liu, Q. Y., 1988. Application of CO2 Gas Geochemical Method in Geological Prospecting. Geology⁃Geochemistry, 16(6): 11-16 (in Chinese with English abstract). |
| [96] |
Lovell, J.S., 1979. Applications of Vapour Geochemistry to Mineral Exploration (Dissertation). University of London, London. |
| [97] |
Lovell, J.S., Hale, M., 1983. Application of Soil Air Carbon Dioxide and Oxygen Measurements to Mineral Exploration. Transactions of the Institution of Mining and Metallurgy Section B. Applied Earth Science, 92: B28-B32. |
| [98] |
Lu, M., Ye, R., Wang, Z. K., et al., 2019. Geogas Prospecting for Buried Deposits under Loess Overburden: Taking Shenjiayao Gold Deposit as an Example. Journal of Geochemical Exploration, 197: 122-129. https://doi.org/10.1016/j.gexplo.2018.11.015 |
| [99] |
Luca, P.R.F., 2012. Procesos De Oxidación Química y Bioquímica en Rocas Sulfuro Mineralizadas y Relación con La Generación De Iones Libres y Gases De Hidrocarburos: Aplicacación a La Exploración De Yacimientos Bajo Cobertura (Dissertation). University of Chile, San Diego (in Spanish). |
| [100] |
Lukashev, V. K., 1990. Application of Artificial Sorbents for Testing Gas Seeps on the Seafloor and on Shore. Journal of Geochemical Exploration, 38(1/2): 225-231. https://doi.org/10.1016/0375⁃6742(90)90103⁃H |
| [101] |
Lynam, M. M., Dvonch, J. T., Hall, N. L., et al., 2014. Spatial Patterns in Wet and Dry Deposition of Atmospheric Mercury and Trace Elements in Central Illinois, USA. Environmental Science and Pollution Research, 21(6): 4032-4043. https://doi.org/10.1007/s11356⁃013⁃2011⁃4 |
| [102] |
Malmqvist, L., Kristiansson, K., 1984. Experimental Evidence for an Ascending Microflow of Geogas in the Ground. Earth and Planetary Science Letters, 70(2): 407-416. https://doi.org/10.1016/0012⁃821X(84)90024⁃4 |
| [103] |
Malmqvist, L., Kristiansson, K., 1985. A Physical Mechanism for the Release of Free Gases in the Lithosphere. Geoexploration, 23(4): 447-453. https://doi.org/10.1016/0016⁃7142(85)90072⁃9 |
| [104] |
Malmqvist, L., Kristiansson, K., Kristiansson, P., 1999. Geogas Prospecting-An Ideal Industrial Application of PIXE. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 150(1-4): 484-490. https://doi.org/10.1016/S0168⁃583X(98)01044⁃1 |
| [105] |
Martínez, J., Rey, J., Sandoval, S., et al., 2019. Geophysical Prospecting Using ERT and IP Techniques to Locate Galena Veins. Remote Sensing, 11(24): 2923. https://doi.org/10.3390/rs11242923 |
| [106] |
McCarthy, J. H., 1972. Mercury Vapor and Other Volatile Components in the Air as Guides to Ore Deposits. Journal of Geochemical Exploration, 1(2): 143-162. https://doi.org/10.1016/0375⁃6742(72)90012⁃X |
| [107] |
McCarthy, J. H., Lambe, R. N., Dietrich, J. A., 1986. A Case Study of Soil Gases as an Exploration Guide in Glaciated Terrain; Crandon Massive Sulfide Deposit, Wisconsin. Economic Geology, 81(2): 408-420. https://doi.org/10.2113/gsecongeo.81.2.408 |
| [108] |
McCarthy, J. H., McGuire, E., 1998. Soil Gas Studies along the Carlin Trend, Eureka and Elko Counties, Nevada. In: Tosdal, R.M., ed., Contributions to the Gold Metallogeny of Northern Nevada. U.S. Geological Survey, Washington, D.C., 243-250. |
| [109] |
McCarthy, J. H., Reimer, G. M., 1986. Advances in Soil Gas Geochemical Exploration for Natural Resources: Some Current Examples and Practices. Journal of Geophysical Research: Solid Earth, 91(B12): 12327-12338. https://doi.org/10.1029/JB091iB12p12327 |
| [110] |
Menon, R., Sunder Raju, P. V., Reddy, G. K., 2009. Soil⁃Geochemistry, Radiometric and Soil Gas Helium Studies in the Uranium Mineralized Zone of Tumallapalle, Cuddapah Basin, Andhra Pradesh. Journal of the Geological Society of India, 74(1): 23-26. https://doi.org/10.1007/s12594⁃009⁃0099⁃4 |
| [111] |
Mulshaw, S. C., 1996. A Critical Evaluation of the Use of Hydrocarbon Gases in Rocks as a Pathfinder for Base⁃Metal Mineralisation in Shannonbridge, Central Ireland. Journal of Geochemical Exploration, 56(3): 265-277. https://doi.org/10.1016/S0375⁃6742(96)00055⁃6 |
| [112] |
Muntean, J., Taufen, P., 2011. Geochemical Exploration for Gold through Transported Alluvial Cover in Nevada: Examples from the Cortez Mine. Economic Geology, 106(5): 809-833. https://doi.org/10.2113/econgeo.106.5.809 |
| [113] |
Mwenifumbo, C. J., Elliott, B. E., Jefferson, C. W., et al., 2004. Physical Rock Properties from the Athabasca Group: Designing Geophysical Exploration Models for Unconformity Uranium Deposits. Journal of Applied Geophysics, 55(1-2): 117-135. https://doi.org/10.1016/j.jappgeo.2003.06.008 |
| [114] |
Noble, R. R. P., Seneshen, D. M., Lintern, M. J., et al., 2018. Soil⁃Gas and Weak Partial Soil Extractions for Nickel Exploration through Transported Cover in Western Australia. Geochemistry: Exploration, Environment, Analysis, 18(1): 31-45. https://doi.org/10.1144/geochem2017⁃026 |
| [115] |
Nriagu, J. O., 1979. Geochemical Processes, Water and Sediment Environments. Geochimica et Cosmochimica Acta, 43(11): 1869-1870. https://doi.org/10.1016/0016⁃7037(79)90038⁃3 |
| [116] |
Ou, G. X., Chen, A. F., Cui, J. Y., et al., 2000. Uranium Metallogenic Model of Hydrocarbons in Granite⁃Type Uranium Deposits. China Nuclear Science and Technology Report, 577-593 (in Chinese with English abstract). |
| [117] |
Oakes, B.W., 1984. Vapour Geochemical Pathfinders for Oxidizing Sulphide Mineralization beneath Exotic Overburden (Dissertation). University of London, London. |
| [118] |
Oakes, B. W., Hale, M., 1987. Dispersion Patterns of Carbonyl Sulphide above Mineral Deposits. Journal of Geochemical Exploration, 28(1/2/3): 235-249. https://doi.org/10.1016/0375⁃6742(87)90050⁃1 |
| [119] |
Ozima, M., Podosek, F.A., 2001. Noble Gas Geochemistry. Cambridge University Press, Cambridge. |
| [120] |
Pauwels, H., Baubron, J. C., Freyssinet, P., et al., 1999. Sorption of Metallic Compounds on Activated Carbon: Application to Exploration for Concealed Deposits in Southern Spain. Journal of Geochemical Exploration, 66(1-2): 115-133. https://doi.org/10.1016/S0375⁃6742(99)00011⁃4 |
| [121] |
Pizarro, P.P.I., 2016. Gas⁃Transported Elements as an Exploration Technique under Post⁃Mineral Cover: Atlantida Deposit and Surroundings (Dissertation). University of Chile, San Diego. |
| [122] |
Plet, C., Noble, R. R. P., 2023. Soil Gases in Mineral Exploration: A Review and the Potential for Future Developments. Geochemistry: Exploration, Environment, Analysis, 23(2): 2023-2028. https://doi.org/10.1144/geochem2023⁃008 |
| [123] |
Plet, C., Siégel, C., Woltering, M., et al., 2021. Sulfur and CO2 Gases Emitted during Weathering of Sulfides: Role of Microbial Activity and Implications to Exploration through Cover. Ore Geology Reviews, 134: 104167. https://doi.org/10.1016/j.oregeorev.2021.104167 |
| [124] |
Polito, P.A., 1999. Exploration Implications Predicted by the Distribution of Carbon⁃Oxygen⁃Hydrogen Gases above and within the Junction Gold Deposit, Kambalda, Western Australia (Dissertation). University of Adelaide, Adelaide. |
| [125] |
Polito, P. A., Bone, Y., Clarke, J. D. A., et al., 2001. Compositional Zoning of Fluid Inclusions in the Archaean Junction Gold Deposit, Western Australia: A Process of Fluid‐Wall‐Rock Interaction? Australian Journal of Earth Sciences, 48(6): 833-855. https://doi.org/10.1046/j.1440⁃0952.2001.00903.x |
| [126] |
Polito, P. A., Clarke, J. D. A., Bone, Y., et al., 2002. A CO2⁃O2⁃Light Hydrocarbon⁃Soil⁃Gas Anomaly above the Junction Orogenic Gold Deposit: A Potential, Alternative Exploration Technique. Geochemistry: Exploration, Environment, Analysis, 2(4): 333-344. https://doi.org/10.1144/1467⁃787302⁃035 |
| [127] |
Qian, J. L., Yu, J., Chen, W., et al., 2015. Application of Mercury Gas Measurement in Soil in Lajiu District, Longzi County, Xizang. China Mining Magazine, 24(S2): 92-95 (in Chinese with English abstract). |
| [128] |
Qin, L. Y., Xu, Q. H., Wei, K. L., et al., 2012. Hydrocarbon Component Characteristics of Danchi Tin⁃Polymetallic Ore Belt in Guangxi and Their Metallogenic Indication Significance. Mineral Deposits, 31(1): 111-118 (in Chinese with English abstract). |
| [129] |
Reid, A. R., Rasmussen, J. D., 1990. The Use of Soil⁃Gas CO2 in the Exploration for Sulfide⁃Bearing Breccia Pipes in Northern Arizona. Journal of Geochemical Exploration, 38(1-2): 87-101. https://doi.org/10.1016/0375⁃6742(90)90094⁃Q |
| [130] |
Rich, S.D., 2016. Geochemical Mapping of Porphyry Deposits and Associated Alteration through Transported Overburden (Dissertation). University of British Columbia, Vancouver. https://doi.org/10.14288/1.0307413 |
| [131] |
Rose, A. W., Hutter, A. R., Washington, J. W., 1990. Sampling Variability of Radon in Soil Gases. Journal of Geochemical Exploration, 38(1/2): 173-191. https://doi.org/10.1016/0375⁃6742(90)90100⁃O |
| [132] |
Ruan, T., Fei, Q., 2000. Chapter 6 Gas Geochemistry Surveys for Petroleum. Handbook of Exploration Geochemistry, 7: 213-231. https://doi.org/10.1016/S0168⁃6275(00)80030⁃6 |
| [133] |
Ruan, T. J., Cheng, J. P., 1991. Hydrogen Stripping of Absorbed Hydrocarbons in Soil Sample—A New Method in Geochemical Exploration for Oil and Gas. Journal of Southeast Asian Earth Sciences, 5(1-4): 5-7. https://doi.org/10.1016/0743⁃9547(91)90003⁃g |
| [134] |
Ruan, T. J., Hale, M., Howarth, R. J., 1985a. Numerical Modelling Experiments in Vapour Geochemistry. II: Vapour Dispersion Patterns and Exploration Implications. Journal of Geochemical Exploration, 23(3): 265-280. https://doi.org/10.1016/0375⁃6742(85)90030⁃5 |
| [135] |
Ruan, T. J., Howart, R. J., Hale, M., 1985b. Numerical Modelling Experiments in Vapour Geochemistry—I. Method and FORTRAN Program. Computers & Geosciences, 11(1): 55-67. https://doi.org/10.1016/0098⁃3004(85)90038⁃X |
| [136] |
Rukhlov, A.S., Ootes, L., Hickin, A.S., et al., 2021. Near⁃Surface Mercury Vapour Haloes in Air above Ore Deposits and Faults on Vancouver Island: Insights into Buried Materials in Real⁃Time? In: Geological Fieldwork 2020, British Columbia Ministry of Energy, Mines and Low Carbon Innovation. British Columbia Geological Survey, Victoria. |
| [137] |
Ryall, W. R., 1979. Mercury Distribution in the Woodlawn Massive Sulfide Deposit, New South Wales. Economic Geology, 74(6): 1471-1484. https://doi.org/10.2113/gsecongeo.74.6.1471 |
| [138] |
Schodde, R., 2017. Challenges of Exploring Under Deep Cover. AMIRA International’s 11th Biennial Exploration Managers Conference, Healesville. |
| [139] |
Shen, Q. W., Chen, Z. J., Dong, Q. F., et al., 2025. Application of H2S and SO2 Gas Geochemical Measurements in the Pulang Porphyry Copper Deposit, Yunnan Province. Bulletin of Geological Science and Technology, 44(2): 204-213 (in Chinese with English abstract). |
| [140] |
Song, M. C., Wan, G. P., Cao, C. G., et al., 2012. Geophysical⁃Geological Interpretation and Deep⁃Seated Gold Deposit Prospecting in Sanshandong⁃Jiaojia Area, Eastern Shandong Province, China. Acta Geologica Sinica⁃English Edition, 86(3): 640-652. https://doi.org/10.1111/j.1755⁃6724.2012.00692.x |
| [141] |
Sormaz, K., 2014. Application of Soil He Surveys to the Mapping of Underlying Geological Structures in the Dalby Area, Queensland (Dissertation). University of New South Wales, Sydney.https://doi.org/10.26190/unsworks/19205 |
| [142] |
Tan, K.H., 2009. Environmental Soil Science (3rd ed.). CRC Press, Boca Raton. https://doi.org/10.1201/9781439895016 |
| [143] |
Taylor, C. H., Kesler, S. E., Cloke, P. L., 1982. Sulfur Gases Produced by the Decomposition of Sulfide Minerals: Application to Geochemical Exploration. Journal of Geochemical Exploration, 17(3): 165-185. https://doi.org/10.1016/0375⁃6742(82)90001⁃2 |
| [144] |
Thorstenson, D. C., Pollock, D. W., 1989. Gas Transport in Unsaturated Porous Media: The Adequacy of Fick’s Law. Reviews of Geophysics, 27(1): 61-78. https://doi.org/10.1029/RG027i001p00061 |
| [145] |
Vàrhegyi, A., Hakl, J., Monnin, M., et al., 1992. Experimental Study of Radon Transport in Water as Test for a Transportation Microbubble Model. Journal of Applied Geophysics, 29(1): 37-46. https://doi.org/10.1016/0926⁃9851(92)90011⁃9 |
| [146] |
Virtanen, S., Puustinen, M., Yli⁃Halla, M., 2017. Oxidation of Iron Sulfides in Subsoils of Cultivated Boreal Acid Sulfate Soil Fields⁃Based on Soil Redox Potential and pH Measurements. Geoderma, 308: 252-259. https://doi.org/10.1016/j.geoderma.2017.05.020 |
| [147] |
Wan, W., Wang, M. Q., Cheng, Z. Z., et al., 2023. An Experimental Investigation of the CO2 and SO2 Gas Geochemical Survey Method for Mineral Exploration in Forested Areas. Geophysical and Geochemical Exploration, 47(5): 1137-1146 (in Chinese with English abstract). |
| [148] |
Wan, W., Wang, M. Q., Hu, M. Y., et al., 2017. Identification of Metal Sources in Geogas from the Wangjiazhuang Copper Deposit, Shandong, China: Evidence from Lead Isotopes. Journal of Geochemical Exploration, 172: 167-173. https://doi.org/10.1016/j.gexplo.2016.10.008 |
| [149] |
Wang, C.M., Li, X.H., Wei, B.L, 1991. Application of Fault Gas Measurement in Seismology. Seismological Press,Beijing (in Chinese with English abstract). |
| [150] |
Wang, K., Ge, X. B., Ning, J. G., et al., 2022. Multidisciplinary Geophysical Investigations over Deep Coal⁃ Bearing Strata: A Case Study in Yangjiazhangzi, Northeast China. Energies, 15(15): 5689. https://doi.org/10.3390/en15155689 |
| [151] |
Wang, M. Q., Gao, Y. Y., Liu, Y. H., 2008. Progress in the Collection of Geogas in China. Geochemistry: Exploration, Environment, Analysis, 8(2): 183-190. https://doi.org/10.1144/1467⁃7873/07⁃138 |
| [152] |
Wang, X.L., 2023. Response of Deep Soil CO2 Concentration to Rainfall Events (Dissertation). Northwest A&F University, Xi’an (in Chinese with English abstract). |
| [153] |
Whire, D.E., Waring, G.A., 1963. Data of Geochemistry Chapter K, Volcanic Emanations. US Geol. Survey Prof. Paper, D153⁃D161. |
| [154] |
Winkler, R., Ruckerbauer, F., Bunzl, K., 2001. Radon Concentration in Soil Gas: A Comparison of the Variability Resulting from Different Methods, Spatial Heterogeneity and Seasonal Fluctuations. Science of the Total Environment, 272(1-3): 273-282. https://doi.org/10.1016/S0048⁃9697(01)00704⁃5 |
| [155] |
Wu, Z. H., Jin, Y. F., Gu, P., 1996. Principles of Geogas Survey and Its Applicationin Geological Exploration. Geophysical and Geochemical Exploration, 20(4): 259-264 (in Chinese with English abstract). |
| [156] |
Wu, Z. H., Jin, Y. F., Guo, Y. J., et al., 1995. A Study of Application of Geogas Survey in Yexian⁃Dengxian⁃ Nanzhang Geoscience Profile. Acta Petrologica Sinica, 11(3): 333-342 (in Chinese with English abstract). |
| [157] |
Xiang, R.J., Shi, C.Z., Feng, Z.X., 1991. Advances in Crust and Upper Mantle Research. Seismological Press, Beijing (in Chinese). |
| [158] |
Xie, X. J., Wang, X. Q., Xu, L., et al., 1999. Orientation Study of Strategic Deep Penetration Geochemical Methods in the Central Kyzylkum Desert Terrain, Uzbekistan. Journal of Geochemical Exploration, 66(1-2): 135-143. https://doi.org/10.1016/S0375⁃6742(99)00024⁃2 |
| [159] |
Xu, L. S., 1999. Helium Survey and Its Significance in Geological Prospecting. Hunan Geology, (4): 264-268 (in Chinese with English abstract). |
| [160] |
Xu, Q. D., Zhang, X. J., Shang, H. S., et al., 2012. New Approach of Integrated Geological Prospection in Covered Areas: A Case Study from Northwestern Xilinguole, Inner Mongolia. Earth Science, 37(6): 1252-1258 (in Chinese with English abstract). |
| [161] |
Xu, Q. H., Chen, Y. R., Jia, G. X., et al., 2007. Application of Hydrocarbons in Metallogenic and Mineral Resource Exploration Research. Acta Petrologica Sinica, 23(10): 2623-2638 (in Chinese with English abstract). |
| [162] |
Xu, Y. C., Shen, P., Tao, M. X., et al., 1991. Industrial Accumulation of Mantle Source Helium and the Tanchenglujiang Fracture Zone. Chinese Science Bulletin, 36(6): 494-498. |
| [163] |
Yan, G.X., 2021. Study on the Variation Law of Radon Concentration in Soil in a Uranium Exploration Area (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract). |
| [164] |
Yang, Y. F., Lv, L. D., Qiu, S. K., et al., 2022. Study on the Influence of Sampling Methods for Measuring Soil Radon Exhalation Rates. Radiation Measurements, 159: 106880. https://doi.org/10.1016/j.radmeas.2022.106880 |
| [165] |
Yin, B. C., 1997. Integrated Geochemical Gas Survey. Geophysical and Geochemical Exploration, 21(4): 241-246 (in Chinese with English abstract). |
| [166] |
Yin, Y., Xu, W. S., 1991. Distribution and Genesis of CO2 Anomalies in the Caijiaying Lead⁃Zinc Ore District. Geophysical and Geochemical Exploration, 15(6): 453-458 (in Chinese with English abstract). |
| [167] |
You, Y. F., Zhou, Q. R., 1992. Research and Application of the Instantaneous Measurement Technique of CO2 in Soilgas for Locating Gold Orebodies. Uranium Geology, 8(3): 174-177 (in Chinese with English abstract). |
| [168] |
Zhang, J., Cheng, Z. Z., Lun, Z. Y., et al., 2016. Soil Air Carbon Dioxide, Sulphur Dioxide and Hydrogen Sulfide Measurements as a Guide to Concealed Mineralization. Geological Science and Technology Information, 35(4): 12-17 (in Chinese with English abstract). |
| [169] |
Zhang, M. T., 1983. Sulfur Dioxide Gas Measurement Prospecting Method. Geology of Chemical Minerals, 5(1): 72-73 (in Chinese with English abstract). |
| [170] |
Zhang, W.Y., 2016. Study on the Prospecting Model for Concealed Polymetallic Ore Using Ground Gas Method (Dissertation). Chengdu University of Technology,Chengdu (in Chinese with English abstract). |
| [171] |
Zhang, X., 2015. The Formation Conditions and Resource Estimation of Natural Gas and Helium in the Weihe Basin (Dissertation). Chang’an University, Xi’an (in Chinese with English abstract). |
| [172] |
Zhang, Z. M., 1981. Research and Application of Mercury Vapor Halo. Geophysical and Geochemical Exploration, 5(6): 375-380 (in Chinese with English abstract). |
| [173] |
Zhi, C., Zhang, Y. C., Chen, Y. F., 2022. Experiment of Mercury Gas Measurement in Deep Prospecting of Hucun Village Copper⁃Molybdenum Deposit, Tongling Ore Concentration Area. Journal of Geology, 46(3): 313-319 (in Chinese with English abstract). |
| [174] |
Zhou, S. C., Wang, D. H., Liu, X. H., et al., 2023. Technical Methods for Integrated Geogas Survey and Their Applications in the Exploration of Pegmatite⁃Type Rare Metal Deposits. Geophysical and Geochemical Exploration, 47(6): 1627-1634 (in Chinese with English abstract). |
地球深部探测与矿产资源勘查国家科技重大专项(2025ZD1005904)
西藏自治区科技计划(XZ202401ZY0026)
/
| 〈 |
|
〉 |